
Control and estimation algorithms for the stabilization of VTOL

UAVs from mono-camera measurements

H. de Plinval1, A. Eudes2, P. Morin2

1 ONERA-DCSD, Toulouse, France, henry.de plinval@onera.fr
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Abstract

This paper concerns the control of Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vechicles
(UAVs) based on exteroceptive measurements obtained from a mono-camera vision system. By assuming
the existence of a locally planar structure in the field of view of the UAV’s camera, the so-called homography
matrix can be used to represent the vehicle’s motion between two views of the structure. In this paper we
report recent results on both the problem of homography estimation from the fusion of visual and inertial
data, and the problem of feedback stabilization of VTOL UAVs from homography measurements.

1 Introduction

Obtaining a precise estimation of the vehicle’s posi-
tion is a major issue in aerial robotics. The GPS
is a very popular sensor in this context and it has
been used extensively with VTOL UAVs, expecially
for navigation via waypoints. Despite recent progress
of this technology, especially in term of precision,
many applications cannot be addressed with the GPS
as unique position sensor. First, GPS is not avail-
able indoor and it can also be masked in some out-
door environments. Then, most inspection applica-
tions require a relative localization with respect to
(w.r.t.) the environment, rather than an absolute
localization as provided by the GPS. Finally, evolv-
ing in dynamic environments also requires relative
localization capabilities. For all these reasons, it is
important to develop control strategies based on ex-
teroceptive sensors that can provide a relative posi-
tion information w.r.t the local environement. Exam-
ples of such sensors are provided by cameras, lasers,

radars, etc. Cameras are interesting sensors to use
with small UAVs because they are light, low cost,
and provide a rich information about the environ-
ment at a relatively high frequency. A precise 3D
relative position information is best obtained from a
stereo vision system with a ”long” baseline (i.e. inter-
distance between the optical centers of the cameras).
In this case, available feedback controllers that re-
quire position errors as inputs can be used. Using
a mono-camera system is more challenging because
the depth-information cannot be recovered instanta-
neously (i.e., based on a single measurement). Nev-
ertheless, a mono-camera system can be preferred in
some applications due to its compacity, or because
the distance between the camera and the environ-
ment is large so that even a stereo-system would pro-
vide a poor depth-information.

This paper concerns the control of VTOL UAVs
from mono-camera measurements. We assume the
existence of a locally planar structure in the environe-
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ment. This assumption is restrictive but it is relevant
in practice because i) many man-made buildings are
locally planar, and ii) when the distance between the
camera and the environment is large, the planarity
assumption can be satisfied locally in first approxi-
mation despite the environment not being perfectly
planar (e.g. as in the case of ground observation at
relatively high altitude). Based on two camera views
of this planar structure, it is well known in computer
vision that one can compute the so-called homography
matrix, which embeds all the displacement informa-
tion between these two views [15]. This matrix can
be estimated without any specific knowledge on the
planar structure (like its size or orientation). There-
fore, it is suitable for the control of UAVs operating
in unknown environments. Homography-based stabi-
lization of VTOL UAVs raises two important issues.
The first one is the estimation of the homography ma-
trix itself. Several algorithms have been developed in
the computer vision community to obtain such an
estimation (see, e.g., [15, 1]). Recently, IMU-aided
fusion algorithms have been proposed to cope with
noise and robustness limitations associated with ho-
mography estimation algorithms based on vision data
only [16, 9]. The second issue concerns the design
of stabilizing feedback laws. The homography asso-
ciated with two views of a planar scene is directly
related to the cartesian displacement (in both posi-
tion and orientation) between these two views but
this relation depends on unknown parameters (nor-
mal and distance to the scene). Such uncertainties
significantly complicate the design and stability anal-
ysis of feedback controllers. This is all the more true
that VTOL UAVs are usually underactuated systems,
with high-order dynamic relations between the vehi-
cle’s position and the control input For example, hor-
izontal displacement is related to roll and pitch con-
trol torque via fourth-order systems. For this reason,
most existing control strategies based on homogra-
phy measurements make additional assumptions on
the environment, i.e. the knowledge of the normal
to the planar scene [20, 21, 18, 14]. This simplifies
the control design and stability analysis since in this
case, the vehicle’s cartesian displacement (rotation
and position up to an unknown scale factor) can be
extracted from the homography measurement.

This paper reports recent results by the authors
and co-authors on both the problem of homography
estimation via the fusion of inertial and vision data
[16, 9], and the design of feedback controllers based
on homography measurements [5, 7]. The paper is
organized as follows. Preliminary background and
notation are given in section 2. Feedback control al-
gorithms are presented in section 3 and homography
estimation algorithms in section 4. Finally, some im-
plementation issues are discussed in section 5.

2 Background

In this section we review background on both the
dynamics of VTOL UAVs and the homography ma-
trix associated with two camera images of a planar
scene. Let us start by defining the control problem
addressed in this paper.

2.1 Control problem

Figure 1 illustrates the visual servoing problem ad-
dressed in this paper. A VTOL UAV is equipped
with of a mono-camera. A reference image of a planar
scene T , which was obtained with the UAV located
at a reference frame R∗, is available. From this ref-
erence image and the current image, obtained from
the current UAV location (frame R), the objective is
to design a control law that can asymptotically sta-
bilize R to R∗. Note that asymptotic stabilization is
possible only if R∗ corresponds to a possible equilib-
rium, i.e., in the absence of wind the thrust direction
associated with R∗ must be vertical.

2.2 Dynamics of VTOL UAVs

We consider the class of thrust-propelled underac-
tuated vehicles consisting of rigid bodies moving in
3D-space under the action of one body-fixed force
control and full torque actuation [13]. This class con-
tains most VTOL UAVs (quadrotors, ducted fans,
helicopters, etc). Being essentially interested here in
hovering stabilization, throughout the paper we ne-
glect aerodynamic forces acting on the vehicle’s main
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body. Assuming that R∗ is a NED (North-East-
Down) frame (See Fig. 1), the dynamics of these sys-
tems is described by the following well-known equa-
tions: 

mp̈ = −TRb3 +mgb3
Ṙ = RS(ω)
Jω̇ = Jω × ω + Γ

(1)

with p the position vector of the vehicle’s center of
mass, expressed in R∗, R the rotation matrix from
R to R∗, ω the angular velocity vector of R w.r.t.
R∗ expressed in R, S(.) the matrix-valued function
associated with the cross product, i.e. S(x)y = x ×
y , ∀x, y ∈ R3, m the mass, T the thrust control
input, b3 = (0, 0, 1)T , J the inertia matrix, Γ the
torque control input, and g the gravity constant.
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Figure 1: Problem scheme

2.3 Homography matrix and monocu-
lar vision

With the notation of Figure 1, consider a point P ∈ T
and denote by X∗ the coordinates of this point inR∗.
InR∗, the plane T is defined as {X∗ ∈ R3 : n∗TX∗ =
d∗} with n∗ the coordinates in R∗ of the unit vector
normal to T and d∗ the distance between the origin
of R∗ and the plane. Let us now denote as X the
coordinates of P in the current frame R. One has

X∗ = RX + p and therefore,

X = RTX∗ −RT p
X = RTX∗ −RT p[ 1

d∗n
∗TX∗]

= (RT − 1
d∗R

T pn∗T )X∗

= H̄X∗

(2)

with

H̄ = RT − 1

d∗
RT pn∗T (3)

The matrix H̄ could be determined by matching
3D-coordinates in the reference and current camera
planes of points of the planar scene. Camera do
not provide these 3D-coordinates, however, since only
the 2D-projective coordinates of P on the respective
image planes are available. More precisely, the 2D-
projective coordinates of P in the reference and cur-
rent camera planes are respectively given by

µ∗ = K
X∗

z∗
, µ = K

X

z

where z∗ and z denote the third coordinate of X∗ and
X respectively (i.e., the coordinate along the camera
optical axis), and K is the calibration matrix of the
camera. It follows from (2) and (4) that

µ = Gµ∗ (4)

with

G ∝ KH̄K−1

where ∝ denotes equality up to a positive scalar fac-
tor. The matrix G ∈ R3×3, defined up to a scale
factor, is called uncalibrated homography matrix. It
can be computed by matching projections onto the
reference and current camera planes of points of the
planar scene. If the camera calibration matrix K is
known, then the matrix H̄ can be deduced from G, up
to a scale factor, i.e., K−1GK = αH̄. As a matter of
fact, the scale factor α corresponds to the mean sin-
gular value of the matrix K−1GK: α = σ2(K−1GK)
(see, e.g., [15, Pg. 135]). Therefore, α can be com-
puted together with the matrix H̄. Another interest-
ing matrix is

H = det(H̄)−
1
3 H̄ = η H̄ (5)
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Indeed, det(H) = 1 so that H belongs to the Special
Linear Group SL(3). We will see further that this
property can be exploited for homography filtering
and estimation purposes. Let us finally remark that
η3 = d∗

d .

3 Feedback Control Design

We present in this section two classes of feedback con-
trol laws for the asymptotic stabilization of VTOL
UAVs based on homography measurements of the
form H̄ defined by (3). The first class consists of con-
trol laws affine w.r.t. the homography matrix com-
ponents. These control laws ensure local asymptotic
stabilization under very mild assumptions on the ob-
served scene. The second class consists of nonlinear
control laws that ensure large stability domains under
stronger assumptions on the scene.

3.1 Linear control laws

The main difficulty in homography-based stabiliza-
tion comes from the mixing of position and orienta-
tion information in the homography matrix compo-
nents, as shown by relation (3). If the normal vec-
tor n∗ is known, then one can easily extract from H̄
the rotation matrix and the position vector up to the
scale factor 1/d∗. When n∗ is unknown, however, this
extraction is no longer possible and one has to deal
with this mixing of information. The control laws
here presented rely on the possibility of extracting
from H̄ partially decoupled position and rotation in-
formation. This is shown by the following result first
proposed in [6].

Proposition 1 Let ē = Me with

M =

(
2I3 S(m∗)

−S(m∗) I3

)
, e =

(
ep
eΘ

)
(6)

and

ep = (I − H̄)m∗ , eΘ = vex(H̄T − H̄)
m∗ = b3 = (0, 0, 1)T

(7)

where vex(.) is the inverse of the S(.) operator:
vex(S(x)) = x , ∀x ∈ R3. Let Θ = (φ, θ, ψ)T de-
note any parametrization of the rotation matrix R

such that R ≈ I3 + S(Θ) around R = I3 (e.g., Euler
angles). Then,

1. (p,R) 7−→ ē defines a local diffeomorphism
around (p,R) = (0, I3). In particular, ē = 0
if and only if (p,R) = (0, I3).

2. In a neighborhood of (p,R) = (0, I3),

ē = L

(
p
Θ

)
+O2(p,Θ), L =

(
Lp 0
LpΘ LΘ

)
(8)

with LpΘ = S((α∗, β∗, 0)T ),

Lp =

c∗ 0 α∗

0 c∗ β∗

0 0 2c∗

 , LΘ =

1 0 0
0 1 0
0 0 2

 ,

α∗, β∗ the (unknown) constant scalars defined by
n∗ = d∗(α∗, β∗, c∗)T , c∗ = 1

‖X∗‖ , and O2 terms

of order two at least. 4

Eq. (8) shows the rationale behind the definition of
ē: at first order, components ē1, ē2, ē3 contain infor-
mation on the translation vector p only, while com-
ponents ē4, ē5, ē6 contain decoupled information on
the orientation (i.e. LΘ is diagonal), corrupted by
components of the translation vector. Although the
decoupling of position and orientation information in
the components of ē is not complete, it is sufficient
to define asymptotically stabilizing control laws, as
shown below.

Let ēp ∈ R3 (resp. ēΘ ∈ R3) denote the first (resp.
last) three components of ē, i.e. ē = (ēTp , ē

T
Θ)T . The

control design relies on a dynamic extension of the
state vector defined as follows:

ν̇ = −K7ν − ēp (9)

with K7 a diagonal gain matrix. The variable ν copes
with the lack of measurements of ˙̄e. The control de-
sign is presented through the following theorem.

Theorem 1 Assume that the target is not vertical
and the camera frame is identical with R (as shown
on Fig. (1)). Let{

T = m (g + k1ē3 + k2ν3)

Γ = −JK3

(
ω − ωd

) (10)
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with {
ωd = −K4

g

(
gēΘ + b3 × γd

)
γd = −K5ēp −K6ν

(11)

Then,

1. Given any upper-bound c∗M > 0, there exist

diagonal gain matrices Ki = Diag(kji ) i =
3, . . . , 7; j = 1, 2, 3 and scalar gains k1, k2, such
that the control law (10) makes the equilib-
rium (p,R, v, ω, ν) = (0, I3, 0, 0, 0) of the closed-
loop System (1)-(9)-(10)-(11) locally exponen-
tially stable for any value of c∗ ∈ (0, c∗M ].

2. If the diagonal gain matrices Ki and scalar gains
k1, k2 make the closed-loop system locally expo-
nentially stable for c∗ = c∗M , then local expo-
nential stability is guaranteed for any value of
c∗ ∈ (0, c∗M ]. 4

This result calls for several remarks.

1) The control calculation only requires the knowl-
edge of H̄ (via ē) and ω. Thus, it can be imple-
mented with a very minimal sensor suite consisting
of a mono-camera and gyrometers only.

2) This result does not address the case of a vertical
target. This case can be addressed as well with the
same kind of technique and stability result. Such an
extension can be found in [7] together with several
other generalizations of Theorem 1.

3) Since c∗ = 1/‖X∗‖ and ‖X∗‖ ≥ d∗, a sufficient
condition for c∗ ∈ (0, c∗M ] is that d∗ ≥ 1/c∗M . Thus,
Property 1) ensures that stabilizing control gains can
be found given any lower bound on the distance be-
tween the reference pose and the observed planar tar-
get. This is a very weak requirement from an appli-
cation point of view. Property 2) is also a very strong
result since it implies that in order to find stabilizing
control gains for any c∗ ∈ (0, c∗M ], it is sufficient to
find stabilizing control gains for c∗ = c∗M . This is a
much easier task which can be achieved with classi-
cal linear control tools. In particular, by using the
Routh-Hurwitz criterion, explicit stability conditions
on the control gains can be derived (see [7] for more
details).

3.2 Nonlinear control laws

Theorem 1 shows that homography-based stabilizing
control laws can be designed from very limited a pri-
ori information (essentially, a lower bound on the dis-
tance to the scene at the desired configuration and
the scene planarity property). A weakness of this
stability result, however, is the lack of knowledge on
the size of the stability domain. Under some assump-
tions on the scene orientation, it is possible to derive
stabilizing control laws with explicit (and large) sta-
bility domains. A first case of interest in practice is
when the target is horizontal. In this case, the normal
vector to the scene is known and the extraction of the
orientation and position up to as scale factor, from H̄,
allows one to use available nonlinear control laws with
large stability domains. Another interesting scenario
for applications is when the target is vertical. This
case is more challenging since knowing that the scene
is vertical does not completely specify its orientation.
We present below a nonlinear feedback control to ad-
dress this case.

First, let us remark that n∗3 = 0 when the scene
is vertical. Indeed, the normal vector to the scene is
horizontal and the reference frame R∗ is associated
with an equilibrium configuration so that its third
basis vector is vertical (pointing downward). Then,
it follows from (3) that{

σ := H̄b2 × H̄b3 − H̄b1 = RTM(n
∗

d∗ )p
γ := gH̄b3 = gRT b3

(12)

with M(τ) = τ1I3 + S(τ2b3). These relations show
that one can extract from H̄ decoupled information
in term of position and orientation. Compared to the
result given in Proposition 1, this result is stronger
since the decoupling is complete and it holds without
any approximation. On the other hand, it is limited
to a vertical scene. Note that γ corresponds to the
components of the gravity vector in body frame. This
vector, which is used in conventional control schemes
based on cartesian measurements, is typically esti-
mated from accelerometers and gyrometers measure-
ments of an IMU, assuming small accelerations of the
UAV [17].

Eq. (12) leads us to address the asymptotic sta-
bilization of UAVs from pose measurements of the
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form σ = RTMp , γ = gRT b3 where M is an un-
known positive definite matrix. We further assume
that the velocity measurements ω and v = RT ṗ are
also available. The variable v can be estimated, e.g.,
via optical flow algorithms [10, 11, 9]. In most stud-
ies on feedback control of underactuated UAVs, it is
assumed that M is the identity matrix, so that the
relation between the measurement function and the
cartesian coordinates is perfectly known. Several con-
trol design methods ensuring semi-global stability of
the origin of System (1) have been proposed in this
case (see, e.g., [19, 13]). We show below that similar
stability properties can be guaranteed in the case of
uncertainties on the matrix M . To this end, let us
introduce some notation.

For any square matrix M , Ms := M+MT

2 and

Ma := M−MT

2 respectively denote the symmetric and
antisymmetric part of M . Given a smooth function f
defined on an open set of R, its derivative is denoted
as f ′. Given δ = [δm; δM ] with 0 < δm < δM , we
introduce the saturating function

satδ(τ) =

{
1 if τ ≤ δ2

m
δM√
τ
− (δM−δm)2√

τ(
√
τ+δM−2δm)

if τ > δ2
m

(13)
Note that τ 7−→ τsatδ(τ

2) defines a classical satu-
ration function, in the sense that it is the identity
function on [0, δm] and it is upper-bounded by δM .

We can now state the main result of this section
(See [5] for more details, generalizations, and proof).
By a standard time separation argument commonly
used for VTOL UAVs, we assume that the orientation
control variable is the angular velocity ω instead of
the torque Γ (i.e., once a desired angular velocity
ωd has been defined, a torque control input Γ that
ensures convergence of ω to ωd is typically computed
through a high gain controller).

Theorem 2 Let satδ and satδ̄ denote two saturating
functions. Assume that M is positive definite and

consider any gain values k1, k2 > 0 such that
k2

2λmin(Ms) > k1||Ma||||M ||C
C , supτ (satδ(τ) + 2τ |sat′δ(τ)|)
k2δm > k1

k1 + k2δM < g
(14)

Define a dynamic augmentation:

ν̇ = ν × ω − k3(ν − σ) , k3 > 0 (15)

together with the control (T, ω) such that:
ω1 = − k4|µ̄|µ̄2

(|µ̄|+µ̄3)2
− 1
|µ̄|2 µ̄

TS(b1)RT µ̇

ω2 = k4|µ̄|µ̄1

(|µ̄|+µ̄3)2
− 1
|µ̄|2 µ̄

TS(b2)RT µ̇

T = mµ̄3

(16)

where µ̄, µ, and the feedforward term RT µ̇ are given
by

µ̄ := γ + k1satδ
(
|ν|2
)
ν + k2satδ̄

(
|v|2
)
v

µ := Rµ̄
RT µ̇ = −k1k3

[
satδ(|ν|2)I3 + 2sat′δ(|ν|2)ννT

]
(ν − σ)

+k2

[
satδ̄(|v|2)I3 + 2sat′

δ̄
(|v|2)vvT

]
(γ − ub3)

Then,

i) there exists k3,m > 0 such that, for any k3 >
k3,m, the equilibrium (ν, p, ṗ, γ) = (0, 0, 0, gb3) of
the closed-loop system (1)-(15)-(16) is asymptot-
ically stable and locally exponentially stable with
convergence domain given by {(ν, p, ṗ, γ)(0) :
µ̄(0) 6= −|µ̄(0)|b3}.

ii) if Ms and Ma commute, the same conclusion
holds with the first inequality in (14) replaced by:

k2
2λmin(Ms) > k1‖Ma‖ (‖Ma‖ supτ satδ(τ)+

‖Ms‖ supτ 2τ |sat′δ(τ)|)
(17)

Let us comment on the above result. It follows
from (14) that

|k1satδ
(
|ν|2
)
ν+k2satδ̄

(
|v|2
)
v| ≤ k1+k2δM < g = |γ|

This guarantees that µ̄(0) 6= −|µ̄(0)|b3 whenever
gbT3 R(0)b3 > −(k1 + k2δM ). As a consequence, the
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only limitation on the convergence domain concerns
the initial orientation error and there is no limitation
on the initial position/velocity errors. Note also that
the limitation on the initial orientation error is not
very strong. Note that ω3, which controls the yaw dy-
namics, is not involved in this objective. Thus, it can
be freely chosen. In practice, however, some choices
are better than others (see below for more details).

Application to the visual servoing problem:
From (12), Theorem 2 applies directly with M =

M
(
n∗

d∗

)
=

n∗
1

d∗ I3 + S(
n∗
2

d∗ b3). In this case one verifies

that the stability conditions (14)-(17) are equivalent
to the following:

n∗1 > 0
k1, k2 > 0
k2δm > k1

k1 + k2δM < g

n∗1d
∗k2

2 > k1|n∗2|
(
|n∗2|+

2n∗
1

3
√

3

) (18)

Note that the first condition, which ensures that M
is positive definite, essentialy means that the camera
is ”facing” the target at the reference pose. This is a
very natural assumption from an application point of
view. When (loose) bounds are known for d∗: dmin ≤
d∗ ≤ dmax and n∗1 ≥ n1min, and recalling that |n∗| =
1, the last condition of equation (18) can be replaced
by:

n1mindmink
2
2 > k1

(
1 +

2

3
√

3

)
(19)

The yaw degree of freedom is not involved in the
stabilization objective. On the other hand, it mat-
ters to keep the target inside the field of view of the
camera. We propose to use the following control law:

ω3 = k5H21 (20)

Upon convergence of the position, velocity, roll and
pitch angles due to the other controls, the yaw dy-
namics will be close to ψ̇ ≈ −k5sinψ, thus ensuring
the convergence of ψ to zero unless ψ is initially equal
to π (case contradictory with the visibility assump-
tion). Another nice feature of this yaw control is that
it vanishes when H21 = 0, i.e. when the target is seen
-from yaw prospective- as it should be at the end

of the control task. This means that the controller
tries to reduce the yaw angle only when the posi-
tion/velocity errors have been significantly reduced.

4 Homography estimation

Obtaining in real-time a good estimate of the homog-
raphy matrix is a key issue for the implementation of
the stabilization algorithms presented before. In this
section we first briefly review existing computer vi-
sion algorithms to obtain an estimate of the homog-
raphy matrix. Then, we focus on the use of inertial
measurements to improve and speed-up the estima-
tion process.

4.1 Computer vision methods

There are two main classes of vision algorithms for
computing the homography matrix between two im-
ages of the same planar scene:

1. Interest points based methods

2. Intensity based methods

In the first case, the homography matrix is recov-
ered from points correspondence between the two im-
ages in a purely geometrical way. A first step con-
sists in the detection of interest points. These cor-
respondences can be estimate by matching (with in-
terest point detection and descriptor) or KLT track-
ing (based on intensity). From this correspondence
the homography matrix is recovered with algorithms
such as DLT [12], which are most of the time coupled
with robust estimation techniques like RANSAC or
M-estimator in order to avoid false matching. For
more details on interest points based methods, the
reader is also referred to [12].

In the second case, the homography matrix is esti-
mated by trying to align two images (the reference
image or ”template” T and the current image I).
This is done, e.g., by defining a transformation (usu-
ally called ”warping”) from the reference image to
the current image wρ : q∗ 7−→ q = wρ(q

∗), where
q∗ denotes a pixel in the reference image, q a pixel
in the current image, and ρ is a parameterization of
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the homography matrix, for example a parameteriza-
tion of the Lie algebra of SL(3). This definition leads
to an optimization problem which is solved numeri-
cally. The problem consists in minimizing w.r.t. ρ a
measure of the distance between the reference image
T = {T (q∗)} and the transform of the image I by the
warping: {I(wρ(q

∗))}. The cost function of the op-
timization problem varies with the proposed method
but most of the time it essentially boil downs to a
sum over the image’s pixels of the distance between
the pixel intensities in the two images. Usually, the
optimization process only provides the optimal solu-
tion locally, i.e. provided the distance between the
two images is small enough. One way to improve
the convergence of this type of method is to rely on
Gaussian pyramids [4]. In this case, the template
image is smoothed by a Gaussian and recursively
down-sampled by a factor two to form a pyramid of
images, with the template image at the bottom and
the smallest image at the top. The visual method is
then successively applied at each level of the pyra-
mid, from top to bottom. Thus, large movements are
kept small in pixel space and the convergence domain
of the method is improved.

In this paper we focus on two estimation algorithms
of this second class of methods: the ESM algorithm
(Efficient Second order Minimization) [3], and the
IC algorithm (Inverse Compositional) [2]. Table 5.2
summarizes the main features of both methods. The
main interest of the IC method is that it allows one to
make a lot of precomputation based on the reference
image. Indeed, the Jacobian matrix J of the cost
function is computed from the template image, i.e.
it depends neither on the current image nor on the
homography parameterization ρ. Thus, the inverse
of JTJ can also be precomputed. For each iteration,
only the computation of the intensity error and ma-
trix multiplication are needed. By contrast, the ESM
is a second order method that uses both the current
image gradient and template image to find the best
quadratic estimation of the cost function. Therefore,
each iteration of the optimization algorithm is longer
than for the IC method. As a counterpart, the con-
vergence rate of the method is faster.

4.2 IMU-aided homography estima-
tion

Cameras and IMUs are complementary sensors. In
particular, cameras frame rate is relatively low
(around 30Hz) and in addition vision data process-
ing can take a significant amount of time, especially
on small UAVs with limited computation power. By
contrast, IMUs provide data at high frequency and
this information can be processed quickly. Since
IMUs are always present on UAVs for control pur-
poses, it is thus natural to exploit them for improving
the homography estimation process. We present in
this section nonlinear observers recently proposed in
[16] to fuse a vision-based homography estimate with
IMU data. This fusion process is made on the Spe-
cial Linear Lie Group SL(3) associated with the ho-
mography representation (5), i.e. det(H) = 1. This
allows one to exploit Lie group invariance properties
in the observer design. We focus on two specific ob-
servers.

The first observer considered is based on the gen-
eral form of the kinematics on SL(3):

Ḣ = −XH (21)

with H ∈ SL(3) and X ∈ sl(3). The observer is given
by

˙̂
H = −AdH̃

(
X̂ − k1P

(
H̃(I3 − H̃)

))
Ĥ

˙̂
X = −k2P

(
H̃(I3 − H̃)

) (22)

with Ĥ ∈ SL(3), X ∈ sl(3), H̃ = ĤH−1. It is
shown in [16] that this observer ensures almost global
asymptotic stability of (I3, 0) for the estimation error
(H̃, X̃) = (ĤH−1, X − X̂) (i.e., asymptotic conver-
gence of the estimates to the original variables) pro-
vided thatX is constant (see [16, Th. 3.2] for details).
Although this condition is seldom satisfied in prac-
tice, this observer provides a simple solution to the
problem of filtering homography measurements. Fi-
nally, note that this observer uses homography mea-
surements only.

A second observer, which explicitly takes into ac-
count the kinematics of the camera motion, is pro-
posed in [16]. With the notation of Section 3, recall
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that the kinematics of the camera frame is given by{
Ṙ = RS(ω)

ṗ = Rv
(23)

With this notation, one can show that the group ve-
locity X in (21) is given by

X = S(ω) +
vnT

d
− vnT

3d
I3

= S(ω) + η3 P(M)

with

Y =
vnT

d∗
(24)

The following observer of H and Y is proposed in
[16]:

˙̂
H = −AdH̃

(
S(ω)+η3P(Ŷ )− k1P

(
H̃(I3 − H̃)

))
Ĥ

˙̂
Y = Ŷ S(ω)− k2η

3P
(
H̃(I3 − H̃)

)
(25)

with Ĥ ∈ SL(3), Ŷ ∈ R3×3 and H̃ = ĤH−1.
Conditions under which the estimates (Ĥ, Ŷ ) al-

most globally converge to (H,Y ) are given in [16,
Cor. 5.5]. These conditions essentially reduce to the
following: i) ω is persistently exciting, and ii) v is
constant. The hypothesis of persistent excitation on
the angular velocity is used to demonstrate the con-
vergence of Ŷ to Y . In the case of lack of persis-
tent excitation, Ŷ converges only to Y + a(t)I3 with
a(t) ∈ R but the convergence of Ĥ to H still holds.
The hypothesis of v constant is a strong assumption.
Asymptotic stability of the observer for v constant,
however, guarantees that the observer can provide ac-
curate estimates when v is slowly time varying with
respect to the filter dynamics. This will be illustrated
later in the paper and experimentally verified.

4.3 Architecture and data synchro-
nization

Implementation of the above observers from IMU
and camera data is made via a classical predic-
tion/correction estimation scheme. Quality of this
implementation requires careful handling of data

acquisition and communication. Synchronization
and/or timestamping of the two sensor data are in-
strumental in obtaining high-quality estimates. If
the two sensors are synchronized, timestamping may
be ignored provided that the communication delay is
short enough and no data loss occurs. Discrete-time
implementation of the observers can then be made
with fixed sampling rate. If the sensors are not syn-
chronized, it is necessary to timestamp the data as
close to the sensor output as possible, and deal with
possibly variable sampling rates.

Figure 2 gives a possible architecture of the inter-
actions between estimator and sensors (Vision and
IMU). Homography prediction obtained from IMU
data is used to initialize the vision algorithm. Once a
new image has been processed, the obtained vision es-
timate, considered as as a measure, is used to correct
the filter’s homography estimate. Due to the signifi-
cant duration of the vision processing w.r.t. the IMU
sampling rate, this usually requires to re-apply the
prediction process via IMU data from the moment
of the image acquisition. This leads us to maintain
two states of the same estimator (See Figure 2): the
real-time estimator, obtained from the last homog-
raphy measure and IMU data, and a post-processed
estimator which is able correct a posteriori the ho-
mography estimates from the time of the last vision
data acquisition to the time this data was processed.

4.4 Experimental setup

We make use of a sensor consisting of a xSens MTiG
IMU working at a frequency of 200 [Hz], and an AVT
Stingray 125B camera that provides 40 images of
800 × 600 [pixel] resolution per second. The cam-
era and the IMU are synchronised. The camera uses
wide-angle lenses (focal 1.28 [mm]). The target is
placed over a surface parallel to the ground and is
printed out on a 376 × 282 [mm] sheet of paper to
serve as a reference for the visual system. The refer-
ence image is 320×240 [pixel]. So the distance d∗ can
be determined as 0.527[m]. The processed video se-
quence presented in the accompanying video is 1321
frames long and presents high velocity motion (rota-
tions up to 5[rad/s], translations, scaling change) and
occlusions. In particular, a complete occlusion of the
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Figure 2: Visuo-Inertial method scheme and sensor
measurements processing timeline

pattern occurs little after t = 10[s].
Four images of the sequence are presented on Fig-

ure 3. A ”ground truth” of the correct homography
for each frame of the sequence has been computed
thanks to a global estimation of the homography by
SIFT followed by the ESM algorithm. If the pattern
is lost, we reset the algorithm with the ground-truth
homography. The sequence is used at different sam-
pling rates to obtain more challenging sequences and
evaluate the performances of the proposed filters.

For both filters (22) and (25), the estimation gains
have been chosen as k1 = 25 and k2 = 250. Fol-
lowing the notation of the description available at
http://esm.gforge.inria.fr/ESM.html, the ESM algo-
rithm is used with the following parameter values:
prec = 2, iter = 50.

4.5 Tracking quality

In this section we measure the quantitative perfor-
mance of the different estimators. This performance
is reflected by the number of frames for which the
homography is correctly estimated. We use the cor-
relation score computed by the visual method to dis-
criminate between well and badly estimated frames.
A first tracking quality indicator is the percentage
of well estimated frames. This indicator will be la-

Figure 3: Four images of the sequence at 20[Hz]: pat-
tern position at previous frame (green), vision esti-
mate (blue), and prediction of the filterIMU (red).

belled as ”%track”. Another related criteria concerns
the number of time-sequences for which estimation is
successful. For that, we define a track as a contin-
uous time-sequence during which the pattern is cor-
rectly tracked. We provide the number of tracks in
the sequence (label ”nb track”) and also the mean
and the maximum of track length. Table 1 presents
the obtained results for the full sequence at different
sampling rates (40[Hz], 20[Hz], 10[Hz]).

The ESMonly estimator works well at 40[Hz] since
95% of the sequence is correctly tracked but perfor-
mance rapidly decreases as distance between images
grow (72% at 20[Hz], and only 35% at 10[Hz]). It
must be noted that the ESM estimator parameters
are tuned for speed and not for performance, having
in mind real-time applications.

The filternoIMU estimator outperforms the ES-
MOnly filter on the sequence at 40[Hz]. Tracks are on
average twice longer and many losses of the pattern
are avoided ( 11 tracks versus 19 for ESMonly). At
20[Hz] the performance is still better but the differ-
ence between these two solutions reduces. At 10[Hz]
the filter degrades performance.

The filterIMU tracks almost all the sequence at
both 40[Hz] and 20[Hz]. There is just one tracking
failure, which occurs around time t = 10[s] due to the
occlusion of the visual target. Improvement provided
by the IMU is clearly demonstrated. At 10[Hz], the
performance significantly deteriorates but this filter

10



still outperforms the other ones.
Let us finally remark that these performances are

obtained despite the fact that the assumption of con-
stant velocity in body frame (upon which the filter
stability was established) is violated.

Frame
Method %track

nb track length
rate track mean max

40Hz
ESMonly 94.31 19 65.36 463

FilternoIMU 97.74 11 114.27 607
1321 img FilterIMU 98.78 2 646.5 915

20Hz
ESMonly 72.38 59 8.0 89

FilternoIMU 80.5 52 10.17 94
660 img FilterIMU 97.42 2 321.5 456

10Hz
ESMonly 38.79 46 2.78 27

FilternoIMU 32.36 58 1.72 4
330 img FilterIMU 58.66 59 3.27 27

Table 1: Rate of good track for different frame-rates
and methods: percentage of well estimated frames,
number of tracks, mean and maximum track length
on the sequence

5 Computational aspects

Implementing vision algorithms on small UAVs is still
a challenge today. Computational optimization is of-
ten necessary in order to reach real-time implemen-
tation (e.g. vision processing at about 10 − 20 Hz).
In this section, we discuss some possible approaches
to speed up the vision processing for the homography
estimation problem here considered.

5.1 Computational optimization

Two types of optimizations can be considered. The
first one concerns the optimal use of the com-
puting power. It consists, e.g. in computa-
tion parallelization (SIMD instructions, GPU, multi-
processor/core), fix-point computation, or cache op-
timization. This type of optimization does not affect
the vision algorithm accuracy. Another type of opti-
mization concerns the vision algorithm itself and the
possibilities to lower its computational cost. This
may affect the accuracy of the vision algorithm out-
put. These two types of optimization have been uti-
lized here: SIMD (Single Instruction Multiple Data)

for computing power optimization, and pixels selec-
tion for vision algorithm optimization.

SIMD instructions allow one to treat data by pack-
ets. In SSE (x86 processor) and NEON (arm proces-
sor), it is possible with one instruction to treat four
floating point data. So, using this instruction with
careful data alignment can theoretically improve per-
formance by a factor four. This theoretical figure is
limited by load/store operation and memory (cache)
transfer issues. This optimization is only done on
computation intensive parts of the program such as
intensity gradients computation, image warping, or
Jacobian estimation.

One approach to speed up dense vision algorithms
is to use only the pixels that provide effective infor-
mation for the minimization process. Indeed, the
lower the number of pixel, the lower the computa-
tion cost. There are many ways to select good pix-
els for the pixel intensity minimization between two
images([8]). One approach consists in using only pix-
els with strong gradient since intensity errors provide
position/orientation information contrary to image
parts with no intensity gradient. In the experimental
results reported below, we used the best 2500 pixels.

5.2 Evaluation

We report in this section experimental result ob-
tained with both the ESM and IC methods. For each
method, we uses the same stop criteria for the opti-
mization: the maximal number of steps per scale is
30 and the stop error is 1e-3. The number of scales
in the pyramid is four.

Table 2 provides the mean frame time (in ms)
and mean performance (percentage of correctly esti-
mated homographies) of the different couples of opti-
mization and methods on the sequence at 40Hz (see
experimental setup). The computation is done on
a desktop PC (Intel(R) Core(TM) i7-2600K CPU
@ 3.40GHz) and the same result is provided for
an embedded platform (Odroid U2) based on an
Exynos4412 Prime 1.7Ghz ARM Cortex-A9 Quad
processor.

With SIMD the performance gain is from 3.0x to
1.7x on x86 and 1.7x to 1.17x on arm. With pixel
selection the gain is better from 1.3 to 2.1 for ESM
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and from 1.3x to 9x for IC.
At the end, the ratio between the fastest to the

slowest is 13.6x with a lost of 22% of correctly tracked
frames.

Conclusion

We have presented recent stabilization and estima-
tion algorithms for the stabilization of VTOL UAVs
based on mono-camera and IMU measurements. The
main objective is to rely on a minimal sensor suite
while requiring as least information on the environ-
ment as possible. Estimation algorithms have already
been evaluated experimentally. The next step is to
conduct full experiments on a UAV with both stabi-
lization and estimation algorithms running on-board.
This work is currently in progress. Possible exten-
sions of the present work are multiple, like e.g. the
use of accelerometers to improve the homography es-
timation and/or the stabilization, or the extension of
this work to possibly non-planar scenes.

Acknowledgement: A. Eudes and P. Morin have
been supported by “Chaire dexcellence en Robotique
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∑
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