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ABSTRACT
We hypothesize that the initiative of a robot during a col-
laborative task with a human can influence the pace of in-
teraction and the reaction time of the human response to
attention cues. We designed a two-phases object learning
experiment where the human teaches the robot about the
properties of some objects. We compare the effect of the ini-
tiator of the task in the teaching phase (human or robot) on
the rhythm of the interaction in the verification phase. We
measure the reaction time of the human gaze when respond-
ing to attention utterances of the robot. Our experiments
show that when the robot is the initiator of the learning
task, the pace of interaction is higher and the reaction to
attention cues faster.
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1. INTRODUCTION
Verbal and non-verbal behaviors, interplays and interper-
sonal synchrony are critical to determine the functional role
of humans during social tasks [1]. Non-verbal communica-
tion is critical for achieving natural interaction between the
human and the robot, especially to achieve engagement and
synchronization in tasks where the two are teamed. Implicit
non-verbal communication positively impacts human-robot
tasks performance [2]. The inter-personal synchrony and the
timing of the attention response during HRI can be used as
an indirect measure of the human engagement toward the
robot and the task [3, 4]. Particularly in turn-taking sce-
narios where the partners collaborate in a systematic way,
time is critical [5]: synchrony, delays in replies, and rhythm
of interaction can impact on the perception of the robot by
the human, amplifying or decreasing the perceived engage-
ment and influencing impression and responsive behaviors.
This is true for robots [6] and agents in general [7]. There-
fore, there is an apparent link between the timing of inter-
action, the role of the partners in the interaction and their
impressions and responsive behaviors: while this has been
shown for virtual conversational agents [8], there are still
open questions about robots in teaching, collaborative and
conversational scenarios. Here, we hypothesize that the re-
action time of a human in response to a robot utterance can
depend on the roles of the human and robotic partners dur-
ing the interaction. We also hypothesize that the different
roles of the partners can influence the rhythm of interaction
and the perceived engagement [9]. We study the effects of
a simple joint attention system during a learning task, in
terms of induced joint attention (reaction time) and engage-
ment perceived on the human side. We designed a two-step
learning experiment, where people had to teach the iCub the
color of objects. The learning situation was simple, as shown
in Fig. 1, and interaction between robot and human was
naturalistic. Remarkably, participants were not required to
do any calibration nor wear eye-tracking devices, such as
in [10]. Objects were selected by simply gazing at them by
both pairs, and the information transfer about their color



property was based on verbal communication (speech). We
compare the effect of the initiator of the task in the teaching
phase (human or robot) on the reaction time of the human
gaze when responding to attention cues of the robot and the
rhythm of interaction.

Figure 1: The object learning experimental scenario.

2. MATERIALS & METHODS
Experimental protocol. The experimental scenario is shown
in Fig. 1: the human is standing in front of the robot, be-
tween the two there is a table with several colored objects.
The experiment consists of a supervised learning process,
across two phases: a teaching phase and a verification phase.
In the first phase, the robot is taught the labels of the ob-
jects by the human partner. The object of interest is selected
through joint gaze. In the second phase, the human gazes to
one of the objects, and the robot responds with the learnt
label. The teaching phase can be performed in two differ-
ent conditions: Human Initiative (HI) and Robot Initiative
(RI). HI and RI conditions are used to establish which part-
ner initiates the action, that is the first who gazes at the
object of interest.

Experimental procedure. We recruited 13 adult volunteers
within the local campus population, mostly from the ISIR
laboratory, who had no prior experience of interactions with
iCub. Volunteers were divided into two groups, and asso-
ciated to condition HI or RI. The only requirement for the
participants was the lack of prior experience with the robot;
that is we selected volunteers that had never interacted with
the robot before. Age and sex were not control variables
for our study, and interpersonal differences were not rele-
vant. Participants were equally informed about the purpose
of the study and the technological limitations of the robot.
They were equipped with a lavalier microphone, and then
could enter the robot’s room. They were simply instructed
to stay in front of the robot (their position was not fixed
a priori) and do the teaching task. No calibration was re-
quired. iCub was not moving except for the head, which
was a choice made to avoid proactive gaze effects. Three
colored balls were placed on a table in between the human
and the robot, on the left, on the center and on the right.
During the two phases, participants were free to speak and
interact with the robot in the way they were feeling more
comfortable with. The teaching session was composed in
both HI and RI conditions of only 3 trials, corresponding to
the 3 objects to teach. Once the 3 colors were learnt, the
verification phase would begin: the humans needed to verify
that the robot had learnt correctly the 3 objects.

Robotic framework. The robot behavior was controlled by

a pool of software modules developed in YARP and ROS
[11], particularly for robot gaze, 3D people tracking, head
pose estimation, object recognition, verbal communication.
Technical details about these modules can be found in [12].

Measurements. The course of the experiment was controlled
by a finite state machine. The timing of the events gen-
erated by the computer, the robot actions and the partici-
pants’ responses were imported from the log of each exper-
iment. The human gaze was continuously estimated from
the RGB-D sensor through a gaze tracking module. Over-
all, gaze strategies for the HI and RI groups were diverse,
but while the timing of the reactions was critical, the inter-
individual differences about gaze were not relevant for our
study. We retrieved two important measurements. The first
is the reaction time of the human in response to the attention
stimulus of the robot, i.e., the request to select an object. We
measure in this case the time elapsed between the onset of
robot speech and the time when the human gaze, stabilized
on the object of interest, is correctly identified by the robot.
The second is the interval between two successive requests
from the robot, marking the amount of time dedicated by
the partners to exchange information about the object of
interest. This measurement is inversely proportional to the
pace of interaction as it has been defined by [4]. The shorter
the interval, the higher the pace or the faster the rhythm.

3. RESULTS
Table 1 and 2 report the reaction time and the indirect pace
measurement for the participants of the two groups. The
time distributions were compared with Wilcoxon’s test. The
test shows that there is a difference in the timing between
the two groups (p ≤ 0.005). People in the RI group re-
act faster than the ones of the HI group, and the
interaction with the robot has a higher rhythm (see
Figure 2). Figure 3 shows the normalized gaze heat-maps of
the two groups. Each map is a plot in the head’s pitch-yaw
space, thus each point represents the gaze direction of the
human during the interaction with the robot. The range of
pitch and yaw is [−90, 90] degrees. For the head pitch, 90
is on top of the head, 0 is in front of the head, −90 is be-
low the head. For the yaw, 0 is in front of the head, while
−90 and 90 represent left and right. We identified the four
clusters associated to the robot head and the three objects
by applying K-means on the points, indicated in the left up-
per corner of each plot. We compared the density of each
cluster in the two conditions with Wilcoxon’s test. The test
showed that there is no significant statistical difference in
the clusters for both conditions (p > 0.1). It is however
interesting to observe the amount of time spent by the par-
ticipants in looking at the different salient topics, which is
proportional to the density of the clusters. Overall humans
spent 66% of their time looking at the robot. For the
three objects, the amount of time is unequal: while the left
and right objects get almost the same amount of time (7%
and 6%), the object in the center was the focus of attention
for almost twice the time spent for the others (21%). This
has a double explanation: on one side, it is more difficult for
the robot to detect that the human has moved the head to
gaze at the object of interest if the movement is exclusively
on the head pitch; on the other side, sometimes participants
spontaneously looked downward to match the robot’s gaze
(this behavior is in fact ”normal” for humans and rather a



Figure 2: Reaction time to robot attention stimuli
and time interval between consecutive attention re-
quests in the verification phase.

Table 1: Reaction time (seconds) in response to
robot attention stimuli (utterances) during verifica-
tion phase

Group mean std median Wilcoxon’s test
HI 1.932 0.711 1.917 W=418,

p-value=0.005RI 1.296 1.145 1.106

Table 2: Time interval (seconds) between consecu-
tive robot attention stimuli (utterances) during ver-
ification phase

Group mean std median Wilcoxon’s test
HI 9.524 1.515 8.588 W=447;

p-value=1.6e-5RI 7.287 1.653 7.257

positive sign of natural, engaged interaction with the robot).

4. DISCUSSION
The response times reported in Table 1 show that humans
respond faster to robot’s utterances in the verification phase
when in the previous phase of the task the robot was lead-
ing the interaction (RI condition). The measurements verify
our initial hypothesis, that is the difference in the initia-
tor/leader of the learning task in the first phase is reflected
in different reaction times in the second phase of the task. In
the HI teaching phase, the robot asks the human to choose
an object, leaving the choice to the human, and making him
the main actor of the interaction. Once the human has gazed
to the object, and its gaze is correctly estimated, the robot
looks at the object of interest. The rhythm of the interac-
tion is essentially determined by the human response to the
robot’s utterance: in terms of time, the human can move
more or less quickly his head, and make the movement more
or less “readable” by the robot, thus influencing the time
needed by the robot to estimate the head direction correctly.
Once the direction is estimated, the robot moves its eyes and
head with a practically constant movement, determined by
the gaze controller - the same used in [13]. In the RI teaching
phase, the robot randomly picks an object on the table and
asks the human to tell the color of the object. The choice in
this case is made by the robot, which initiates the interac-
tion. The rhythm of the interaction as well as its success is
determined by the readability of the robot, its capability to
induce in the human a prompt response to the robot atten-
tion request, and of course by the readability of the human
that needs to have the same referential focus as the robot to

Figure 3: Normalized gaze heat map of the human
partners in the HI and RI groups. The plots show
the points in the pitch-yaw space representing the
gaze direction of the human partners during the in-
teraction with the robot. Note that the range of
pitch and yaw is [−90, 90]degrees. For the head pitch,
−90 is on top of the head, 0 is in front of the head,
90 is below the head. For the yaw, 0 is in front of
the head, while −90 and 90 represent left and right.

make the interaction advance1. Again, the duration of the
robot’s movements is fixed, so the human is the main actor
responsible for setting the pace of the interaction through
his behavior. Why do these two conditions reflect in differ-
ent reaction times in the verification phase? There could be
several reasons. One possible reason is that in the RI condi-
tion, participants learned how to “read” the robot behavior
to advance in the teaching phase, and reply to its questions
contingently. Therefore, in the verification phase they could
be facilitated in responding promptly to the robot attention
request. Another possibility is that, in the RI condition,
the robot is interacting in a more “active” way, because it
asks questions about the objects. As observed by [14], this
pro-active behavior regulates the interaction and provides a
feedback signal to the human about the internal state of the
robot. This behavior is also likely to induce in humans a
social parenting effect: humans could have the impression
that they are teaching the objects properties to a curious
child. Conversely, in the HI case the robot acts “passively”:
it asks the human to provide the attention stimulus. So
not only the learning process is led by the human, but the
human could also be more hesitating in front of such re-
quest. The active/passive attitude could be responsible for
making the robot more transparent to the human, in a way
that the human would have or not a clear intuition about
the robot’s internal state. This claim is partially supported
by some negative evaluations provided by the participants
in the post-experiment questionnaire (see [9]). To summa-
rize, the prior experience of an “active” robot leading the
learning task makes the human react faster to the robot’s
attention utterances. Among the possible reasons, the robot
active attitude improves its readability and the intuition of
the human about the robot’s state, hence the human reacts
faster when he is interrogated by the robot. Our observa-
tions can be put in relation with the ones of [15], where
they showed that “a robot responding to joint attention is
more transparent, such that interactive task performance is

1In the experiment, the robot was programmed in a way
that it was waiting for the human to match its referential
focus. So an erroneous situation -i.e., the human looking at
a different object than the one chosen by the robot- would
have been caught. However, during the experiments this
situation never occurred: the human always looked at the
correct object pointed by the robot.



faster and more efficient”. It is clear that the variable pro-
active element in the two conditions was decisive for setting
the rhythm of the interaction in the two phases, especially
in the verification phase. Though preliminary, our study
suggests that the leading role of the robot can influence the
pace of the interaction in a social task. Further, in this work
we investigated also how social interaction can be made not
only effective for the accomplishment of the task (i.e., teach-
ing something to the robot) but also natural as if the human
was teaching to another human. A remarkable result that
suggest a natural interaction is the average amount of time
that the participants in our study spent looking at the robot.
According to [16], during human-human interaction people
look at each other about 60% of the time, and look more
while listening than while talking (during which they give
frequent short glances). Interestingly the participants in our
study looked at the robot about 65−67% of the time, which
is comparable with the human-human case. This could be
a positive indicator of natural interaction2. Though pre-
liminary, our results provide insights for improving the en-
gagement system of the robot and make interaction with the
human more natural and effective.
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