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Abstract— One of the greatest challenges in microrobotic is
to handle individually a large number of objects in a short
time, for applications such as cell sorting and assembly of
microcomponents. This ability to handle a large number of
microobjects is directly related to the size of the microrobot.
This paper proposes a theoretical study of the size of a magnetic
microrobot maximizing its capacity of displacement. It demon-
strates that there is an optimal size can be obtained, due to a
trade-off between the inertial and the viscous effects. Analytical
expressions of the optimal size and the related frequency of
motion are derived from a simplified model to highlight the
influence of the geometrical and the physical parameters of the
magnetic manipulation system such as the viscosity of the liquid
and the size of the workspace. A numerical simulation validates
the analytical analysis and demonstrates a high displacement
capacity of the microrobot (around 100 back and forth motions
per second for a robot of around 20 µm).

I. INTRODUCTION

Magnetic actuation is used to control robots for a wide
range of applications, such as minimally invasive medical
procedures [1], cells manipulation [2], [3], [4] and parallel
assembly at the microscale [5]. They are based on the use of
an artificial magnetic structure called microrobot that can be
powered and controlled by a magnetic source [1], [6], [7].
The size of the microrobots range from a few micrometers
to a few millimeters.

The magnetic microrobots are promising solution to
manipulate micro-objects with high precision and rapidity.
Indeed, thanks to the development of microfabrication
techniques, many complex forms are manufactured (start
shape, U shape, rectangular shape, etc.) [6], [7] and
investigated on the precise positioning of objects [8].
In addition, the ability to handle (position, move, sort,
characterize, etc.) a large number of micro-objects is
crucial. For example, biologists would greatly benefit from
a microrobotic system able to characterize and to sort each
cell of a whole population individually according to its
mechanical and/or electrical properties. The number of
cells in a population can reach several millions. Sorting a
whole population thus requires to perform a large number
of elementary operations, such as positioning and moving,
per second. This is directly related to the ability of the
microrobot to perform a large number of back-and-forth
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motions per second in its workspace.

No matter its geometrical shape, this dynamic capacity of
displacement depends on the size of the microrobot. Indeed,
the behavior of a small microrobot is ruled by viscous
forces, whereas inertial effects limit the velocity of large
microrobots. Therefore, there is an optimal size maximizing
the dynamic capacity of displacement.

In this paper the size of the microrobot maximizing
the dynamic capacity of displacement is determined. The
optimization method can be applied for different shapes of
microrobot, but in this work the method is illustrated for a
spherical geometry of microrobot. An analytical expression
of the optimal size and its related capacity of displacement
are derived based on a simplified model. It highlights the
influence of the geometrical and physical parameters of the
non contact magnetic system on the dynamic capacity of
displacement. A numerical simulation is performed to solve
the dynamic model of motion without these assumptions to
validate the analytical results. It shows good agreement with
the analytical expressions. This paper demonstrates that a
magnetic microrobot of a size of a few tens of micrometers
can perform more than 100 back-and-forth motions per
second in its workspace. This work will enable to develop
magnetic devices with high capacity of displacement that
can be used in the future for any application requiring the
handling of a large number of micro-objects.

This paper is organized as follows. In Section II the
motion of a ferromagnetic microrobot driven by a magnetic
force is modeled. In Section III the analytical expression
of the optimal size of the robot is derived based on some
assumptions. A numerical simulation which does not require
such assumptions is performed in Section IV to validate
the analytical approach. Conclusions and perspectives of this
work are discussed in Section V.

II. DYNAMIC MODELING

A. Non contact magnetic actuation system

Most of the magnetic actuation systems present similar
designs [9]. The optimization method proposed in this paper
is illustrated on a magnetic device based on four coils
using direct propulsion (the movement of the microrobot
is produced by the magnetic force). The two pairs of coils
enable controlled in-plane displacements (see figure 1). The
microrobot is composed of a ferromagnetic material since
its magnetization is higher than paramagnetic or diamagnetic



materials, leading to higher magnetic forces and thus higher
velocities [6]. It is placed in a workspace filled with a
liquid. An ambient environment would present a smaller
viscosity but the adhesion force between the robot and the
substrate would be high, leading to a poor reproducibility of
the control. In addition most of the current systems are in
liquid environments since its enables biomedical applications
[8], [7], [10]. The workspace is located in the center of the
magnetic actuation device. A non uniform magnetic field is
created by applying a current in the coils. The size of the
workspace is closely related to the size of the robot. At the
microscale practical considerations also limit the size of the
workspace since imaging small particles necessitate a high
magnification lens which presents a small field of view. In
that work it will be considered that the size of the workspace
is proportional to the size of the robot.

Workspace

Coil

Mobile support

Fig. 1. Non contact magnetic actuation device: four coils create a magnetic
force to control the position of the robot. They are placed on a mobile
support to adapt the size of the workspace and the distance between the
workspace and the coils to the size of the robot.

To determine the size of the microrobot that enables
the highest dynamic capacity of displacement a reference
trajectory along one axis will be considered (see figure 2).
The microrobot is placed at one extremity of the workspace,
on the coil axis (o,~x) (position A). It is first moved to position
B, at the other extremity of the workspace, using the coil
1. Then it is moved back to position A using coil 2. It is
considered that the same time T is needed to perform each
trajectory A→ B and B→ A. The total trajectory is thus
performed in a time 2T .

The microrobot used is spherical (radius r) and composed
of ferromagnetic material. The workspace is located at a
distance d from the coils. Its size w is proportional to
the one of the microrobot: w = ar. Two criteria are used
to evaluate the performance of the microrobot to perform
high capacity of displacement: (i) the average velocity Vm
needed to perform the round trip A→ B→ A, (ii) the related

frequency of motion f =
1

2T
:

Vm =
x(T )

T
=

ar
T
,

f =
1

2T
=

Vm

2ar
.

(1)

A dynamic model will be derive to determine these two

Fig. 2. Side view of the magnetic device: A reference trajectory along
one axis is considered to evaluate the performance of the microrobot. The
microrobot is placed at one extremity of the workspace (position A) and it is
moved to position B, at the other extremity of the workspace, using the coil
1. It is then moved back to A using coil 2. a: scale factor, d: offset distance,
r: radius of the microrobot, T : time needed to perform the trajectory A→ B.

criteria with respect to the radius r.

B. Dynamic model

Since the displacement A→B and B→A is symmetric the
analysis will be focused on the motion created by one coil
only. Figure 3 shows the configuration of the system when
the coil 1 is switched on.

The forces applied to the microrobots are: (i) the magnetic
force produced by the coils, (ii) the drag force, (iii) the
gravitational force. Since this work is focused on the in-
plane motion, the gravitational force is not considered. It is
assumed that the adhesion force between the microrobot and
the substrate is negligible since it is in liquid environments.

The magnetic force ~Fm applied to a ferromagnetic spheri-
cal microrobot, is given by [11]:

~Fm =
4
3

πr3(~M.∇)~B, (2)

where ~B is the external magnetic field vector which depends
on the position of the microrobot (x,y,z) and the current
applied in the coils, ~M is the magnetization vector and r is the
radius of the microrobot. Soft magnetic materials (e.g: nickel
and iron) are characterized by their low coercivity (Hc <
103 A/m). They can be easily magnetized by external fields
[11]. It is thus assumed in this work that the ferromagnetic
material is saturated. This hyptothesis will be discussed in
the numerical analysis.

The drag force applied to a spherical microrobot depends
on the density of the fluid ρ f and its dynamic viscosity η. In
this work the typical value of the Reynold number is about
2.8, thus for Reynolds numbers smaller than 1000 the drag
force is defined by the Schiller-Naumann model [12]:

~Fd =−k1~V − k2 ‖~V ‖1.687

(
~V
‖~V ‖

)
, (3)

where k1 = 6πrη, k2 = 1.448πr1.687η0.313ρ0.687
f and

t~V = (ẋ, ẏ, ż) is the vector representing the velocity of the
microrobot.



Fig. 3. Configuration of the system when the coil1 is actuated : the
workspace is located at a distance d from coil1 and the microrobot moves
under the action of the magnetic field B to cover the distance w = ar from
A to B. Fm and Fd are the magnetic and the drag force respectively.

Using the second Newton’s law and a projection along the
(o,~x) axis, the motion the microrobot is given by:

mẍ = Fm (x, i)+Fd (ẋ) , (4)

where m is the mass of the microrobot, ẍ is its acceleration
and i is the current applied in the coil. Based on equations
(2), (3) and (4) the motion of the microrobot is ruled by:

ẍ+
(

1
τ1

)
ẋ+
(

1
τ2

)
ẋ1.687 =

(
Ms

ρp

)
∂B(x, i)

∂x
, (5)

where τn =
m
kn
, n= (1,2), ρp is the density of the microrobot

and Ms is the value of the saturated magnetization of the
microrobot.

The behavior of the microrobot is given by equation (5).
In order to study the impact of the microrobot size on the
dynamic behavior, analytical resolution of the equation (5)
will be performed under some assumptions in Section III.

III. ANALYTICAL ANALYSIS OF THE EQUATION OF
MOTION

In order to derive an analytical expression of the average
velocity Vm and of the motion frequency f defined in
equation (1) from the dynamic model (5), the study will
be focused around the position (x0 = d + ar) using some
assumptions:

1) The fluid flow is considered as a Stokes flow, thus the
drag force is given by :

Fd(ẋ) =−6πrηẋ =−k1ẋ. (6)

2) The magnetic field gradient is considered linear in
function of the input current i [13]. Thus the variation
of the magnetic field B as a function of the position x
of the microrobot can be expressed using the Maxwell
equations as follows:

∂B(x, i)
∂x

= i.g(x), (7)

where g(x) is a function that characterizes the non
linearity of the magnetic field gradient ∇B with respect
to the position x.

3) The magnetic field gradient is considered to be linear
around the operating point (x0 = d+ar, i = i0). Thus,

based on a Taylor expansion, the linearized expression
of (7) is given by:

∂B(x, i)
∂x

' (x− x0)
∂(i.g(x))

∂x
|(x0, i0)+ i.g(x0) (8)

= (x− x0)
∂2B(x, i)

∂x2 |(x0, i0)+

(
i
i0

)
∂B(x, i)

∂x
|(x0, i0).

(9)

These assumptions will be discussed in Section IV. The
analytical results will be compared to the numerical simula-
tions of the equation of motion performed without making
these assumptions. Based on the above equations the simpli-
fied dynamic model obtained is expressed as follows:

∆ẍ+
(

1
τ1

)
∆ẋ−α∆x = βI, (10)

where: 

α =

(
Ms

ρp

)
∂2B(x, i)

∂x2 |(x0,i0) > 0,

β =

(
Ms

ρp

)
∂B(x, i)

∂x
|(x0,i0) < 0,

I =

(
i
i0

)
and ∆x = x− x0.

(11)

The parameters α and β define the intensity of the mag-
netic force which depends on the operating point.
In order to create the magnetic force, the coils are controlled
by the current. Several signals of current can be applied to
perform the trajectory A→ B. In this work a constant value
of current is used to illustrate the approach of optimization.
Using the Laplace transform then its inverse properties, the
position x(t) when the input current is i = i0 is given by:

x(t)= x0+
β

λ+−λ−

[(
exp(λ+t)−1

λ+

)
−
(

exp(λ−t)−1
λ−

)]
,

(12)

where λ(+,−) =
−1∓

√
1+4ατ12

2τ1
are the poles of system.

Equation (12) presents two behaviors for spheres of small or
large radius detailed in the following paragraphs. The optimal
radius rop can be approximated by the limit between these
two behaviors.

A. First behavior - small radius

When the radius r of the microrobot tends to 0, the
position x(t) can be simplified as follows:

x(t) = x0 +
β0

α0
(exp(α0τ1t)−1) , (13)

where α0 and β0 are respectively the values of α and β

when x0 = d. This expression represents the solution of the



dynamic model given by:

1
τ1

∆ẋ−α0∆x = β0I. (14)

This equation could also be obtained from the general
dynamic model (10) by neglecting the inertial term. It can
be concluded that the inertial force is negligible for small
microrobots. It’s assumed that the electrical response time is
negligible and thus the coil provide instantaneous values of
the current.

Based on the Taylor expansion exp(h)'1+h and the ex-
pression of τ1 and β0, the average velocity and the frequency
of the motion can be expressed as follows:

Vm '−β0τ1 =

(
−

2ρpβ0

9η

)
r2 and f '

(
−

β0ρp

9ηa

)
r. (15)

Note that β0 < 0 (see (11)), Vm and f are positive functions.
The modification of the workspace size (parameter a) does
not change the average velocity. This is due to the high dy-
namic behavior: the microrobot reaches a permanent velocity
instantaneously because the inertial force is negligible. The
frequency of motion f decreases while the workspace size
increases, and it increases linearly with respect to the radius
of the microrobot.

B. Second behavior-large radius

Using an asymptotic expansion of the poles λ+ and λ−

for a high radius, x(t) can be expressed as follows:

x(t) = x0 +
β

α

(
cosh(

√
αt)−1

)
. (16)

This expression represents the solution of the dynamic model
given by:

∆ẍ−α∆x = βI. (17)

This model can also be obtained from the general dynamic
model (10) if the viscous force is neglected. It can be
concluded that the viscous force is negligible for the spheres
with a large radius.

Based on the Taylor expansion cosh(h)'1+
h2

2
in (16)

the average velocity and the frequency of motion can be
expressed as:

Vm '
√
−βar

2
and f '

√
− β

8ar
. (18)

Note that β < 0 (see (11)), Vm and f are positive func-
tions. The average velocity (resp. the frequency of motion)
increases (resp. decreases) with respect to the workspace size
and the microrobot radius.

C. Optimal radius

Two different behaviors can thus be derived from equa-
tions (15) and (18): for small radius microrobots the fre-
quency of motion f increases when the radius r increases
(equation (15)) while for large ones the frequency decreases
when the radius increases (equation (18)). The maximum
frequency of motion is obtained for an optimal radius rop

when the inertia effect is similar to the viscous effect. In
order to build an analytic expression approximating the value
of the optimal radius, it is assumed that rop is reached when
the both effects are in equilibrium. It is approximated by the
intersection of the curves of f for the small and large radius.
Based on (15) and (18), the values of this optimal radius can
be computed by solving the equation:

8(β0ρp)
2r3 +81η

2aβ = 0. (19)

To get an analytical solution of this equation (19), the
approximation that the magnetic field gradient is constant is
made, with β = β0. This approximation will be discussed in
the next Section. Under these conditions the optimal radius
can be expressed by:

rop =

(
−81aη2

8β0ρ2
p

)1
3
. (20)

TABLE I
NUMERICAL VALUES USED FOR THE SIMULATIONS

Microrobot Medium
Material: nickel - Liquid: water
ρp = 8902 (kg/m3) ρ f = 1000 (kg/m3)

Ms = 4.77105 (A/m) η f = 10−3 Pa.s
- Liquid: blood
ρ f = 1066 (kg/m3)

η f = 6.10−3 Pa.s

Using the parameters presented in Table I and for a
workspace size that is ten times the dimension of the micro-
robot (a = 10), placed at a distance d = 4 mm of the coil and
for a magnetic field gradient ∇B = 3 T/m (which represents
β0 =−160 mATkg−1 from (10)), the optimal radius is 20 µm
in water and 67 µm in blood. This radius is indeed situated
in the micron size domain.

IV. NUMERICAL STUDY OF MOTION

The analytical analysis has highlighted two typical be-
haviours, for small and large microrobots. The influence of
the geometrical and physical parameters of the magnetic
actuation system has been derived, and the expression of
the optimal radius has been determined. However several as-
sumptions and simplifications have been made. This section
presents the numerical analysis of the dynamic model defined
in (5), taking into account the actual magnetic field gradient
and the Schiller Naumann model of the flow, to evaluate the
relevance of the analytical results.

A. Experimental identification of the magnetic field

In order to perform the numerical simulation, the mag-
netic field gradient must be determined. Since most of the
magnetic manipulation systems use ferromagetic core coils
there is no analytical expression of the magnetic field. An



identification of experimental measurements of the magnetic
field is performed in this paper. Alternatively finite element
modeling could be used.

Figure 4 shows the experimental system used to measure
the magnetic field along the axis of the coil. Measurements
were made using a teslameter (F.W Bell, Model 7010) which
is based on the use of an Hall probe to measure the intensity
of the magnetic field. The distance between the coil and
the probe is controlled by a 3-axis manual manipulator
(Newport Corporation). The current applied to the coil is
set to 0.4 A which is a typical value for the setup. Figure

Fig. 4. Experimental setup used for the magnetic field measurement along
the coil axis: an Hall sensor enables to measure the magnetic field. A 3 axis
manipulator controls the distance between the coil and the magnetic probe.

4 shows the experimental measurements. The minimum
value of the magnetic field is measured at a distance of
10 mm from the coil and is about 2.9 mT. Therefore, the
minimum external induction is about 2308 A/m which is
greater than the value of the coercive induction for a nickel
sample [14]. The magnetization of the nickel sphere is thus
saturated in the whole workspace. To calculate the magnetic
gradient field from the magnetic field measurements the
experimental measurements are approximated by a fourth
order polynomial, which is then differentiated.

B. Simulation of the motion of the microrobot

The motion of the microrobot is analysed using a nu-
merical simulation software (Matlab) based on the dynamic
model (5). The numerical values used are given in Table I.
Figure 5 represents the frequency of motion f simulated for
a scale factor a = 10 and an offset distance d = 4 mm. This
numerical solution is compared to the analytical solutions
(15) and (18) developed in Section III also represented in
figure 5.

The trends of the analytic solution derived for small and
large radius microrobots are similar to the numerical simula-
tion. The main results of Section III are thus confirmed: (i)
for small microrobots the inertial force is negligible, and (ii)
for large microrobots the viscous force is negligible. Several
reasons can explain the differences between the analytical
and the numerical solutions. The first one is that the magnetic
field gradient has been considered as constant to derive the
analytical solution. The second one is that the inertia of the

liquid is neglected in the simplified dynamic model. The
model can be improved by considering a converted mass
of the microrobot in (17).

The optimal radius obtained by the numerical simulation
is equal to 22 µm and corresponds to a maximum frequency
fmax = 172 Hz. A ferromagnetic microrobot of 22 µm size
will be able to perform 172 cycles of back-and-forth motion
per second in its workspace, and thus to handle a large
number of micro-objects individually in a short time.
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Fig. 5. Frequency of motion f derived by the analytical and the numerical
approaches. The maximal frequency derived by the analytical approach
fmax = 306 Hz is obtained for an optimal radius rop = 20 µm. The numerical
simulation gives a maximal frequency fmax = 172 Hz for an optimal radius
rop = 22 µm. Trends of the curves and order of magnitude of the frequency
and of the optimal radius are thus similar.

Figure 6 shows the analytical curves and the numerical
values of the optimal radius calculated for different geome-
tries of the workspace (parameters a and d). Based on the
analytical expressions (15), (18) and (20) the increase of the
scale factor a decreases the maximum frequency of motion
but increases the value of the optimal radius. If the distance d
between the coil and the workspace increases the microrobot
is subject to a lower magnetic field gradient (β and β0
decreases when d increases). According to (15), (18) and (20)
the frequency f will decrease while the optimal radius will
increase. The numerical simulation confirms these trends.
However, the difference between the analytical curves and
the simulated values of the optimal radius is important for
large scale factors. Indeed, the analytical results are obtained
assuming small displacement around the initial position (x =
d +ar), which holds only for small scale factors.

The use of different liquid environments changes the
behavior of the microrobots due to the modification of
the dynamic viscosity η. Figure 7 illustrates this result.
For viscous environments the response time of the system
increases (the acceleration decreases) which corresponds to
slower motions. Thus, the average velocity Vm and the motion
frequency f decrease. The simulated results show that the
optimal radius for a blood environment is equal to three times
the one for a water environment. This is in good agreement
with the analytical expression (20) since a factor of 3.3 was
predicted by the term η

2
3 .

The numerical simulation has thus confirmed the trends of
the analytical expressions obtained from a simplified model.
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These expressions can be used to derive rules to develop
microrobots for high throughput handling of micro-objects.

V. CONCLUSION

In this work a general approach has been proposed to
optimize the size of a ferromagnetic microrobot aiming
to maximize its dynamic capacity of displacement. This
approach used to define the scale effect on magnetic micro-
robots can be also extended to the case considering a constant
workspace size. The optimization method presented in this
paper can be applied for different shapes of microrobot,
but it has been illustrated for a spherical geometry of
microrobot. The analytical approach demonstrates that there
is a trade off between the viscous forces ruling the behavior
of small microrobots and the inertial effects limiting the
motion of large microrobots. An optimal radius of a few
tens of micrometers approximated by the limit between the
two behaviors has been derived. The frequency of motion
obtained for the microrobots of optimal size is more than
100 Hz, which is highly promising for applications that
necessitate to handle a large number of micro-objects. Good
agreement between the analytical approach and the simula-
tion results (that do not assume neither a constant gradient
magnetic field nor a Stockes flow) is highlighted, which
validates the approximation made in the analytical analysis.

The influence of the scale factor, the offset distance and
the dynamic viscosity has been studied. This theorical work
shows a general method that can be applied to identify the
best microrobot size when developing a wireless magnetic
device. Therefore, the magnetic device can be used for any
application requiring to handle a large number of objects,
such as cells sorting for example.

This modeling and simulation work is a preliminary work,
which will be validated experimentally in the future works
using microrobots with sizes ranging from a few micrometers
to several hundred micrometers with different shapes.
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overview of multiple dof magnetic actuated micro-robots,” Journal of
Micro-Nano Mechatronics, vol. 7, no. 4, pp. 97–113, 2012.

[10] A. A. J. Dal Hyung Kim, Paul Seung Soo Kim and M. J. Kim, “Three-
dimensional control of engineered motile cellular microrobots,” in
IEEE ICRA, 2012, pp. 721–726.

[11] K. B. Yesin, K. Vollmers, and B. J. Nelson, “Modeling and control of
untethered biomicrorobots in a fluidic environment using electromag-
netic fields,” The International Journal of Robotics Research, vol. 25,
no. 5-6, pp. 527–536, 2006.

[12] L. Zeng, S. Balachandar, and P. Fischer, “Wall-induced forces on a
rigid sphere at finite reynolds number,” Journal of Fluid Mechanics,
vol. 536, no. 1, pp. 1–25, 2005.

[13] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and
B. J. Nelson, “Octomag: An electromagnetic system for 5-dof wireless
micromanipulation,” IEEE Transactions on Robotics, pp. 1006–1017,
2010.

[14] K. Mulyokov, G. Korznikov, R. Abdulov, and R. Valiev, “Magnetic
hysteretic properties of submicron grained nickel and their varia-
tions upon annealing,” Journal of magnetism and magnetic materials,
vol. 89, no. 1-2, pp. 207–213, 1990.


