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Abstract— A novel formulation of the synthesis of motor
coordination for humanoid whole-body motion is proposed
in this paper, in order to ensure robust control of postural
stability. It relies on the distributed model predictive control
framework to coordinate, in an optimal way, several objectives.
The effectiveness of this control technique to maintain postural
stability of a biped against strong external disturbances is
shown. Control of the horizontal dynamics of the center of mass
can withstand limited perturbations. Thus postural stability
criteria are specified with respect to the robot center of mass
vertical and horizontal dynamics, and to the angular dynamics
of its torso. Formulating the balance problem in a predictive
form and distributing at different time scales significantly
increases the robustness of the system to external disturbances,
in terms of both tip-over and slippage risks. This original
control architecture is validated through the simulation of
an iCub robot performing a walking activity under unknown
external actions.

I. INTRODUCTION

The work presented in this paper introduces a robust
whole-body control approach to ensure postural stability of
multi-legged locomotion systems, more particularly bipeds,
against external perturbations. These perturbations, which
may be of different nature (unexpected actions from the
environment, uncertainty on contact conditions), affect the
stability of contacts and consequently the control of the
locomotion system as a whole, possibly causing the biped
to tip-over or the contacts to slip. Several types of compen-
satory motions can be involved to improve the control of
biped postural stability: horizontal [1], [2] and vertical [3]
dynamics of the system, angular momentum [4], [5], actions
induced by the upper-limbs [6] or recovery steps [7], [8].
The framework of Distributed Model Predictive Control
(DMPC) offers to combine in an optimal way these different
motor activities. The predictive aspect of such an architecture
brings robustness to postural balance through the preview of
future consequences of inputs on the system. The distributed
aspect allows to deal with conflicting objectives, with the
additional ability to adapt preview horizons to the dynamics
of the controlled sub-processes.

In this paper, a control architecture for biped postural
stability is developed according to this approach. Several
models of the system dynamics are coordinated in order
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Fig. 1. Overview of postural stability dynamics

to simultaneously optimize multiple balance and contacts
stability objectives, previewed over different future horizons.

The control problem of balance and stable biped loco-
motion for humanoid robots is often tackled through the
control of some characteristic point such as the Zero-Moment
Point [9] (ZMP) or Capture Point [4] (CP). The most
robust applications of such criteria generally implement a
predictive problem in order to provide anticipative features
to the reaction of the system. A significant breakthrough
in balance control involved a ZMP criterion in a predictive
approach [1] and later in a Model Predictive Control (MPC)
problem [2], introducing explicitly a set of constraints acting
on the ZMP into the optimization problem and leading to
significant improvements in robustness against strong per-
turbations. Robust control algorithms for walking activities
were developed based on CP dynamics [10] and are subject
to further developments in a MPC framework [11].
Predictive approaches are not applied to all aspects of robot
control; indeed the formulation of an optimization problem
over a preview horizon tends to regulate control inputs,
its main advantage being the rejection of short-term distur-
bances. In that sense long preview horizons are not suitable to
the control of systems of high-frequency dynamics. The MPC
framework yet provides an indisputable gain in robustness
for balance control. However, the computational cost it adds
makes it more favorable to models of the system dynamics of
a higher level of abstraction. A constrained Linear Inverted
Pendulum (LIP) model of constant altitude is commonly used
to derive the dynamics of the ZMP or CP. In addition, a
significant amount of valuable developments based on the
ZMP Preview Control framework [1] rely solely on the
control of the horizontal dynamics of the center of mass
(CoM) of the robot to maintain balance, and rotational effects
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Fig. 2. Illustration of centralized, decentralized and distributed optimization problems

are commonly neglected in the ZMP equations. In order
to increase balance robustness against strong perturbations,
such as external pushes or ground irregularities, the introduc-
tion of additional controlled degrees of freedom is necessary;
focus has been recently put in this direction towards the
computation of recovery steps [12], [8], [13] to avoid the fall
of the robot. These approaches hold tip-over as the main fall
scenario. Contact stability is largely considered as a low-level
(high priority) constraint exclusively [14], [15], [16] and no
optimization is made towards the minimization of slippage
risk. Nevertheless slippage is also a major concern as it
leads to uncontrollable traction from the ground, and contact
conditions strongly influence motor activity for example in
sit-to-stand motions [17].

Contribution of this paper is directed to three aspects
of predictive balance control, in an attempt to answer to
the foregoing remarks. First, postural stability is maintained
through both balance (tip-over) and contacts stability (slip-
page) maximization. Second, balance control takes advantage
of both horizontal and vertical CoM dynamics, along with
rotational effects through angular momentum of the robot
around its CoM, as illustrated in figure 1. Last, several
models of different levels of abstraction and objectives are
combined within a single distributed predictive problem, and
span multiple preview horizons.

The paper is organized as follows. Distribution methods
are first introduced to highlight their advantages in solving
large optimization problem. An optimal postural stability
control problem is next developed, and its resolution is
presented in the following section through decomposition
and distribution at different time scales. Last section validates
the resulting control architecture through the simulation
of a walking activity under external pushes, and exhibits
noticeable gains in robustness with respect to tip-over and
slippage risks.

II. DISTRIBUTED MODEL PREDICTIVE CONTROL

Optimal control of systems with numerous degrees of
freedom for multi-task activities generally requires the setup
of a proper control architecture. A centralized architecture
is the most intuitive and presents ascertained optimality
properties: it consists in using a complete model of the
controlled system capturing internal couplings between its
different sub-processes. The monolithic structure of such
an architecture raises several obstacles mainly related to
computational cost that lead to a paradigm of decentralized
control. Decentralized control has been subject to various

developments in the last couple of decades in the field of
industrial control [18], and focuses on the decomposition
of the system in autonomous sub-processes as illustrated
in figure 2(a).
However, in the case of strongly coupled sub-systems, adhoc
techniques have to be setup in order to guarantee clear
optimality properties or even stability [19]. An alternative to
decentralized control is a two-layers architecture consisting
in a set of autonomous sub-systems regulated by a higher-
level coordinator with respect to global objectives. In the case
of conflicting subsystems, coordination consists mainly in a
hierarchy [20]. Examples of coordinated architectures can be
found applied to humanoid robotics with the works of [21]
and [16]: the distribution of degrees of freedom among a
set of local objectives (tasks) is solved either by a strict
hierarchy [22] or a weighting strategy [23], respectively.

Distributed methods propose to balance drawbacks and
advantages of each architecture by taking advantage from
the structure of the controlled system: a communication
network between sub-systems is enforced in order to reach
a consensus. Communication can be bilateral (parallel distri-
bution) or unilateral (sequential) distribution, depending on
the considered coupling between sub-processes.

The Model Predictive Control (MPC) framework is no-
tably favorable to distributed techniques as problems of large
dimension are considered and it offers a time window within
which a coordination strategy can be settled. Two classes
of Distributed MPC (DMPC) architectures are distinguished
depending on the range of the cost function considered as
illustrated in table I.

Objective g (u1, u2) , ω1g1 (u1, u2)
+ω2g2 (u1, u2)

Centralized problem min
u1,u2

g (u1, u2)

Non-cooperative distribution
(Nash equilibrium)

min
u1

g1 (u1, u2) min
u2

g2 (u1, u2)

Cooperative distribution
(Pareto optimum)

min
u1

g (u1, u2) min
u2

g (u1, u2)

TABLE I
DISTRIBUTED PROBLEMS AND RESPECTIVE OPTIMALITY

Non-cooperative distributed architectures implement sub-
problems with local objectives: the resulting problem is
equivalent to a non-cooperative game where each sub-process
only cooperates with others if it can benefit from this
strategy, and convergence of such a problem is towards a
Nash [24] equilibrium. A cooperative architecture considers
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Fig. 3. Illustration of optimality from different coordination techniques:
Pareto (P) and Nash (N) optima for two concurrent objectives g1 (u1, u2)
and g2 (u1, u2) with their Pareto frontier fp.

a shared global objective for every sub-problems and thus
constitutes a team problem where all sub-processes cooperate
in order to reach a minimal cost, i.e. a Pareto optimum. A
comparison of these architectures is made in figure 2(b).
Note that in the case of independent sub-systems Pareto
efficiency and Nash equilibrium are identical; however if
sub-processes are strongly interconnected a large gap might
stand between the two optima, as illustrated in figure 3. Non-
cooperative architectures are thus highly advantageous in
computational cost terms by considering local optimization
problems solely, but might not converge to a global optimum
in the case of highly interdependent sub-systems. Alterna-
tives such as dual decomposition techniques [25] allow to
rewrite a team problem as a non-cooperative game, and hence
set equivalence between a Nash equilibrium and a desired
Pareto optimum.

The following section describes the biped stability control
problem as a DMPC problem with concurrent and conflicting
local objectives.

III. CONTROL PROBLEM

Whole-body control methods for humanoids aim at ex-
ecuting stable motion activities. Apart from joint-related
constraints, the most severe restrictions that controllers have
to cope with are related to contact points; in the case of biped
walking, the stability of contacts at the feet (no slippage)
and the guarantee to ensure postural balance (no tipping
over) through unilateral actions are preponderant. A common
way of achieving this objective is to compute the horizontal
dynamics of the CoM securing postural balance – through
a ZMP Preview Control [1] method, for example – to
finally compute the whole-body control torques achieving
this desired safe CoM behavior while respecting, among
others, contact constraints [14], [15], [16].

Postural stability is ensured in this work through the
minimization of both tip-over and slippage risks: contacts
stability is explicitly accounted for in the preview problem
along with biped balance. To achieve this objective CoM
control must involve more degrees of freedom than just
its horizontal dynamics: optimal future trajectories of the
CoM linear acceleration and rate of angular momentum are
computed online to maximize postural stability.

Scalars are noted a, vectors a and matrices A; ak denotes
the measured variable a at control step k and ak+i|k the
previewed value of a at step k + i from measured state at
step k.

A. Postural stability
Postural stability of a humanoid robot is solely supported

by contact reactions from the environment. A straightforward
analysis of biped balance raises two main failure cases:
tipping over and slippage. Such situations are commonly
characterized by the relative amplitudes of the contact
actions (friction) and their distribution on the contact areas
(tip-over): their main influence in the system dynamics can
hence be found respectively in the force and momentum
expressions of the system equations of motion. Two
postural stability criteria are derived from the whole-body
dynamics expressed at the CoM G of the system. These
dynamics correspond in the Lagrange formalism to the
equations of motion projected in the variety spanned by the
unactuated degrees of freedom and are illustrated in figure 1.

Let c, z respectively denote the horizontal and vertical
positions of the CoM of the robot. With Fn and Ft the
respective normal and tangential norms of the resulting
reaction force from the ground, the force equation yields

F 2
n =M2 (z̈ + g)

2
, F 2

t =M2‖c̈‖2, (1)

where M is the total mass of the system and g the gravity
acceleration amplitude. Note that a contact situation requires
Fn · z > 0, and thus the constraint

∀t ∈ R, z̈ (t) > −g (2)

needs to be enforced.
The momentum equation at any point O writes

Mc
O + OG×Mg = OG×M

[
c̈T z̈

]T
+ ḢG, (3)

where ḢG is the rate of change of angular momentum of the
system around its CoM and Mc

O the moment of the contact
forces around O. Angular momentum of the robot around the
CoM is assumed in this paper to be supported by the upper-
body solely, with the torso as its root body of which angular
position is written a along the longitudinal and lateral axes.
Thus its rate of change is written ḢGx , äxIx where Ix is
the upper-body inertia around the robot CoM and along the
x axis, with a similar expression along the y axis. Assuming
that all contacts are coplanar in plane (x,y), the center of
pressure (CoP) is the point on the ground of position p where
Mc

P · x = Mc
P · y = 0, and hence holds

(g + z̈) (px − cx) + zc̈x − äyIy/M = 0
(g + z̈) (py − cy) + zc̈y − äxIx/M = 0.

A common way to maximize biped balance is to maximize
the distance between the CoP and the edges of the susten-
tation convex hull. This is usually performed by setting a
reference position pr in the center of the contacts hull as
a tracking objective for the ZMP p, and hence maximizing
postural balance is equivalent to minimizing a distance ht

between p and pr. The minimal tip-over risk situation
p = pr can be written, assuming (g + z̈) 6= 0, as the balance
objective

ht ,

[
(g + z̈) (prx − cx) + zc̈x − äyIy/M
(g + z̈)

(
pry − cy

)
+ zc̈y − äxIx/M

]2
= 0. (4)

A reduced model can be also deduced from (3) neglecting
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rotational effects ä, which brings the biped balance simplified
objective

hb ,

[
(g + z̈) (prx − cx) + zc̈x
(g + z̈)

(
pry − cy

)
+ zc̈y

]2
= 0. (5)

A similar expression of the ZMP can be found in [3] and is
strictly equivalent, under the assumption ∀t ∈ R, ż (t) = 0,
to the widespread expression of the ZMP objective [1], [2],
[8].

Slippage risk is measured in this work as a non-Euclidean
distance hs to the Coulomb friction cone. A simple dry
friction model considers two contact regimes: static friction
if Ft < µFn and kinetic friction (slippage) for Ft = µFn.
To maximize contacts stability, slippage regimes should be
avoided: tangential efforts are not controllable in such cases.
The objective is hence to maximize a distance hs to the
friction limit Ft = µFn, written if Ft < µFn

hs , − log
(
µ2Fn

2 − Ft2
)
+ log

(
µ2Fn

2
)
. (6)

The distance hs is a logarithmic frontier to the slip-
page regime: in a minimal slippage risk situation
Ft = 0⇒ hs = 0, and hs →∞ when Ft → µF−n .

B. Control parameters

Trajectories of the CoM linear acceleration and rate of
angular momentum are captured by the definition of the jerks
u ,

...
c , v ,

...
z and w ,

...
a . In discrete time of period dt,

dynamics ĉ ,
[

c ċ c̈
]T

, ẑ and â can be deduced from
a simple integration scheme

∀i ∈ N,
ĉk+i+1|k = Aĉk+i|k + Buk+i|k
ẑk+i+1|k = Azẑk+i|k + Bzvk+i|k
âk+i+1|k = Aâk+i|k + Bwk+i|k.

Thus any function of ĉ, ẑ or â is written as a function of u,
v or w, respectively.

C. Optimization

The control problem solved in this paper aims at max-
imizing postural stability over a preview horizon; that is,
maximize biped balance and contacts stability. Cost functions
ht, hb and hs involve different dynamics (vertical, horizontal
and rotational) and capture these objectives at different
levels: ht measures a tip-over risk with a view to vertical,
horizontal and rotational dynamics of the system, hb relies
on a simpler model of the system to quantify a balance
error to a reference CoP position and hs defines a contacts
stability criterion as a slippage risk with respect to vertical
and horizontal dynamics. This difference in insight provided
by each cost function leads to the exploitation of different
preview horizons nt, nb and ns respectively. In discrete time
of period dt, the postural stability maximization problem
hence writes

min ωt

nt∑
i=1

htk+i|k︸ ︷︷ ︸
Ht

nt

+ωb

nb∑
i=1

hbk+i|k︸ ︷︷ ︸
Hb

nb

+ωs

ns∑
i=1

hsk+i|k︸ ︷︷ ︸
Hs

ns

s.t. (2)

, (7)

where ωt, ωb and ωs are scalar coefficients defining the
relative predominance of each individual objective and ac-
counting for differences in dimensions. Horizons U , V and
W of control inputs u, v and w described in the previous
paragraph are denoted at control step k

Um
k ,

[
uk|k . . . uk+m−1|k

]T
,

V m
k ,

[
vk|k . . . vk+m−1|k

]T
,

Wm
k ,

[
wk|k . . . wk+m−1|k

]T
.

Let N , max (nt, nb, ns); the optimization problem derived
from the postural stability cost (7) writes

min
UN

k ,V
N
k ,W

nt
k

Ht
nt

(Unt

k ,V
nt

k ,W
nt

k )

+Hb
nb

(Unb

k ,V
nb

k ) +Hs
ns

(Uns

k ,V
ns

k )
s.t. (2).

(8)

Note that no straightforward convexity properties can be
found in Ht, Hb and Hs. However an admissible initial
guess can be derived from an unconstrained implementation
of a ZMP Preview controller [1], [2] for example and a
local optimum within its neighborhood can be computed. The
optimization problem is regularized with the introduction of
additional strictly convex objective functions for each control
parameter. A generalized Tikhonov regularization method is
introduced with the following additional convex objective
functions

Hu
n , ωu

n−1∑
i=0

‖uk+i|k‖2, Hz
n ,

n∑
i=1

‖Ωz(ẑk+i|k − ẑr)‖2,

Hv
n , ωv

n−1∑
i=0

v2k+i|k and Hw
n ,

n∑
i=1

‖Ωw(âk+i|k − âr)‖2,

where ωu and ωv are scalar coefficients, Ωz and Ωw diag-
onal weighting matrices. Hu and Hv can be interpreted as
objective terms giving preference to smaller norm solutions.
Additional costs Hz and Hw describe supplementary tasks
maintaining the CoM vertical position and torso orientation
around reference states; note that desired reference states ẑr

and âr are not necessarily constant and can be used to add
a desired trajectory as an additional objective.

The postural stability control problem is written as the
following regularized optimization problem

min
UN

k ,V
N
k ,W

nt
k

Gtnt
(Unt

k ,V
nt

k ,W
nt

k )

+Gbnb
(Unb

k ,V
nb

k ) +Gsns
(Uns

k ,V
ns

k )
s.t. (2),

(9)

where
Gtnt

(Unt

k ,V
nt

k ,W
nt

k ) , Ht
nt

(Unt

k ,V
nt

k ,W
nt

k )

+Hw
nt

(W nt

k ) ,

Gbnb
(Unb

k ,V
nb

k ) , Hb
nb

(Unb

k ,V
nb

k )

+Hu
nb

(Unb

k ) +Hz
nb

(V nb

k ) ,

and Gsns
(Uns

k ,V
ns

k ) , Hs
ns

(Uns

k ,V
ns

k )

+Hv
ns

(V ns

k )

are the three regularized cost functions of problem (8).
The following section presents the distribution method pro-
posed to solve such an optimization problem.
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IV. RESOLUTION

Concurrency between balance models is first distributed
and conflicts between stability objectives are next exposed
and relaxed through dual decomposition. The resulting
DMPC problem is solved with an implementation of a
parallelized projected gradient algorithm.

A. Sequential distribution

A sequential distribution is performed to uncouple the
rotational variable W k from the linear ones. Problem (9)
can be divided into two optimization problems, with
N , max (nb, ns)

min
UN

k ,V
N
k

Gbnb
(Unb

k ,V
nb

k ) +Gsns
(Uns

k ,V
ns

k )

s.t. (2),
min

U
nt
k ,V

nt
k ,W

nt
k

Gtnt
(Unt

k ,V
nt

k ,W
nt

k )

s.t. (2)

(10a)

(10b)

which are coupled by the variables Uk and V k. The
distribution adopted consists in solving the problem (10b)
after (10a): Uk and V k are considered as inputs to the prob-
lem (10b). The centralized problem (9) is hence distributed
as follows

Find UN
k
∗,V N

k
∗ that solve

min
UN

k ,V
N
k

Gbnb
(Unb

k ,V
nb

k ) +Gsns
(Uns

k ,V
ns

k )

s.t. (2),
Find W nt

k
∗ that solves

min
W

nt
k

Gtnt
(Unt

k
∗,V nt

k
∗,W nt

k )

s.t. (2)

(11a)

(11b)

which is not strictly equivalent. Nevertheless such a distri-
bution can be interpreted as the consideration of angular mo-
mentum as a non-conflicting means to increase the balance
performance: optimal CoM linear dynamics are first com-
puted unaware of rotational effects through (11a), and the
torso angular dynamics are subsequently adjusted according
to (11b) in order to maximize the postural stability of the
system. This sequential distribution (11) of (9) is adopted in
this work to reduce the influence of Ht over Uk and V k

to a unilateral pairing, due to the error-prone approximation
made on the angular momentum support.

B. Dual decomposition

The coupling between balance and stability objectives Gb

and Gs of problem (11a) cannot be handled safely through
a straightforward distribution as introduced in the previous
paragraph. Their concurrency indeed induces that any change
in Uk or V k that would benefit Gb might deteriorate the
distance Gs: such problems can be referred to as cooper-
ative – or team – problems. Dual decomposition allows to
set up a market mechanism where Gb and Gs are locally
optimized while both problems are driven to a consensus.
The resulting strictly equivalent problem is of a simpler
structure – non-cooperative – and thus more favorable to
common solving algorithms.

Problem (11a) can be written as the following constrained
problem by the introduction of local versions (Φ,Θ) of the
coupling variables (U ,V )

min
UN

k ,V
N
k ,

ΦN
k ,Θ

N
k

Gbnb
(Unb

k ,Θ
nb

k ) +Gsns
(Φns

k ,V
ns

k )

s.t.

 (2),
Φn
k −U

n
k = 0,

Θn
k − V

n
k = 0

(12)

where n , min (nb, ns). The Lagrangian L of this problem
writes, with the Lagrange multipliers θ and φ

L , Gbnb
(Unb

k ,Θ
nb

k ) +Gsns
(Φns

k ,V
ns

k )

+φnk
T [Φn

k −U
n
k ] + θ

n
k
T [Θn

k − V
n
k ]

and problem (12) – problem (11a) consequently – is strictly
equivalent to

max
φn

k ,θ
n
k

min
UN

k ,V
N
k ,

ΦN
k ,Θ

N
k

L
(
UN
k ,V

N
k ,Φ

N
k ,Θ

N
k ,φ

n
k ,θ

n
k

)
s.t. (2).

This problem is separable, and can be dissociated into four
subproblems

min
UN

k ,Θ
nb
k

Gbnb
(Unb

k ,Θ
nb

k ) + θnk
TΘn

k − φ
n
k
TUn

k

min
Φns

k ,V N
k

Gsns
(Φns

k ,V
ns

k ) + φnk
TΦn

k − θ
n
k
TV n

k

max
φn

k

φnk
T [Φn

k −U
n
k ]

max
θn
k

θnk
T [Θn

k − V
n
k ]

s.t. (2).

(13a)

(13b)

(13c)

(13d)

The set of problems (13) can be interpreted as a market
mechanism where θ and φ regulate the cost of violating
the coupling between the objectives Gb and Gs. Such a
distributed architecture represents a non-cooperative parallel
problem: each subproblem optimizes a local cost function
with its own variables. Communication between them is
sufficient to reach a Nash equilibrium of problem (13) which
is strictly equivalent to the desired Pareto optimum of the
centralized problem (11a).

C. Algorithm
Although problems (13c) and (13d) are always convex,

problems (13a) and (13b) present no peculiar convexity
properties; however an admissible local optimum around an
initial guess is considered as satisfactory in this work. The
linear constraint (2) and the previous remarks license the
setup of a projected gradient algorithm to solve problem (13).
Note that this algorithm is naturally decomposed in four
processes.

Problem (13) is written for the sake of simplicity

min
UN

k ,Θ
nb
k

Jb (Unb

k ,Θ
nb

k ,θ
n
k ,Θ

n
k ,φ

n
k ) , s.t. (2)

min
Φns

k ,V N
k

Js (Φns

k ,V
ns

k ,φ
n
k ,Φ

n
k ,θ

n
k ) , s.t. (2)

min
φn

k

Jφ (φnk ,Φ
n
k ,U

n
k )

min
θn
k

Jθ (θnk ,Θ
n
k ,V

n
k )

(14a)

(14b)

(14c)

(14d)
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where
Jφ (φnk ,Φ

n
k ,U

n
k ) = φnk

T [Un
k −Φn

k ] ,
Jθ (θnk ,Θ

n
k ,V

n
k ) = θnk

T [V n
k −Θn

k ] ,

and is solved with the parallelized algorithm described
in figure 4, with Πm

g : Rm → Rm a projector on the variety
delimited by (2) over m preview steps. Descent steps α are
determined using a backtracking line search method.

dual decomposition

sequential distribution

Vk:=Πg(Vk-αV∇Js)
Φk:=Φk-αΦ∇JsUk:= Uk-αu∇Jb

Θk:=Πg(Θk-αΘ∇Jb)
ϕk:=ϕk-αϕ(Uk-Φk) θk:=θk-αθ(Vk-Θk)

Wk:=Wk-αW∇Gt

convergence?
Uk, Vk, Wk

Φk, Θk, ϕk, θk
Uk

adm(Uk,Φk), Πg(Vk
adm(Vk,Θk)), Wk

min Jb, nb min Js, ns min Jϕ, n min Jθ, n

Uk, Vk, Wk, Φk,Θk, ϕk, θk
initialization

min Gt, nt

Fig. 4. Flow chart of the iterative gradient descent algorithm solving the
non-cooperative and sequential distributed problems (14) and (11)

Typical convergence results for objective functions Jb

and Js with this algorithm are shown in figure 5: concur-
rency is clearly visible as both objectives successively and
alternately compromise until they reach a mutual agreement.
The gap between decoupled variables (U ,Φ) and (V ,Θ)
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Fig. 5. Typical convergence results for objective functions Jb and Js

– blue cross: Jb - red circle: Js

is simultaneously reduced and converges towards a con-
sensus for the values of (U ,V ), as shown in figure 6.
This figure shows that convergence of the pair (V ,Θ)
is slower than (U ,Φ); this can be interpreted as vertical
dynamics being the preponderant source of conflict between
balance and friction objectives. Note that a suboptimal so-
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Fig. 6. Typical convergence of constraint relaxations U = Φ and V = Θ
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lution can be obtained by stopping the algorithm before
convergence is reached: an admissible solution with re-
spects to the coupling constraints is obtained by projections
Un
k
adm =

Un
k+Φn

k

2 and V n
k
adm =

V n
k+Θn

k

2 onto the feasible
sets U = Φ and V = Θ. Note that convergence results in

figures 5 and 6 are obtained from the simulations presented
in Sec. V: less than 30 descent iterations were required to
reach convergence.

V. RESULTS

Simulations have been carried out using Arboris-
Python [26], an open-source dynamics simulator developed
at ISIR with the Python programming language. An accurate
model of an iCub robot [27] is simulated with 32+6 degrees
of freedom.

A. Compared frameworks

Whole-body control of the model is ensured by an LQP-
based controller [16] accounting for joint and contact con-
straints. Contacts between the robot and the ground are
solved according to a dry friction model of static coefficient
µ = 0.5. The whole-body controller takes as inputs desired
trajectories of the CoM position and torso orientation, and
the performance of the DMPC algorithm introduced in this
work is compared to the one of a state of the art predictive
framework.

A low-priority task is defined for both frameworks to
try and maintain all joints position around a predefined
reference describing a standing pose of the robot. Trajectory
tracking tasks for both the CoM position and the torso
orientation are included in the whole-body control problem
as top-level priority tasks (weight a hundred times greater in
magnitude). The predictive framework is centered around an
unconstrained implementation of the ZMP Preview Control
as described in [2] which provides optimal horizontal tra-
jectories for the CoM of the robot. Orientation of the torso
is indirectly maintained by the low priority reference task,
while CoM altitude is regulated with a stiff proportional-
derivative controller in order to enforce the constant-altitude
assumption made in the ZMP Preview Control formula-
tion [1].
In the second framework all CoM and torso desired trajecto-
ries are output from the DMPC algorithm introduced in this
paper, as shown in figure 7.
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CoM vertical

acceleration

torso angular

acceleration

joints & contacts
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DMPC

LQP
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Control

DMPC FRAMEWORK ZMP PREVIEW CONTROL FRAMEWORK

ROBOT

robot state

whole-body

torques

ROBOT

robot state

Fig. 7. Predictive control frameworks compared

B. Simulation results

The scenario supporting the simulation is a walking activ-
ity under an unknown external action from the environment
on the waist of the robot, as illustrated with a selection of
simulation snapshots in figure 8.
The profile of the external action is shown in figure 9
which exhibits two impulses in the horizontal plane shortly
preceding the changes of supporting foot.
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Fig. 8. Simulation snapshots for both control frameworks – top: ZMP
Preview control - bottom: DMPC
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Fig. 9. Amplitude profile of the unknown external action applied on the
waist of the robot – blue circle: lateral - black cross: longitudinal - red star:
vertical

As the cost function Gb is the closest in in-
sight – among Gb, Gt and Gs – to the objective function
minimized in the ZMP Preview Control framework, its
horizon nb is set similarly to the ZMP Preview control
problem and covers 1.0s. The selected values for preview
horizons nt and ns both span 0.25s. Different values of nt
and ns from nb/8 to nb resulted in a lower performance of
the controller during critical phases. This remark validates
the need for different preview horizons depending on the
level of insight provided by each control objective and the
predominant dynamics it involves. To allow for compari-
son regularization of Hb is set up to the same order of
magnitude as in the ZMP Preview Control problem, that is
ωu/ωb = 1.e−6.

Figures 10 and 11 show the evolution of the CoP position
on the ground for both frameworks, with regard to the
tracked reference position. These figures show that, as
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Fig. 10. Evolution of the ZMP in longitudinal direction – blue cross: DMPC
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expected, the concomitant use of both horizontal and vertical
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Fig. 12. Evolution of the required friction coefficient – blue cross: DMPC
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degrees of freedom of the CoM along with the control of
angular momentum allows for a significant gain in balance
performance. This improvement in reference tracking can
reach up to more than 50% during critical intervals, as shown
at instants t ≈ 2.0s and t ≈ 3.0s when the ZMP Preview
Control framework almost fails at maintaining the robot
postural balance.

An additional benefit from the introduction of the vertical
control of the CoM is displayed in figure 12 which maps the
amplitude ratio ν between tangential and normal components
of the resulting contact force with the ground. This ratio can
be interpreted as a required friction coefficient: if the actual
friction coefficient µ, characterizing the contact conditions
with the ground, is lower than or equal to ν, then slippage
occurs and might lead to postural instability. In that sense,
the lowest required friction coefficient minimizes the risk of
slippage in case of ill-estimation of the current contact condi-
tions. Actual friction coefficient µ might be overestimated in
a variety of usual cases in unstructured environments: strong
drops in admissible traction can be observed for example if
the robot steps over a wet area or an unexpected region of dif-
ferent material. Figure 12 shows that the robot can control the
reaction forces from the ground until a limit of µmin = 0.25
with the DMPC framework and down to µmin = 0.34 with
the ZMP Preview Control framework. Relatively to the
expected friction coefficient µ = 0.5 these figures bring an
uncertainty tolerance – robustness – of 50% for the DMPC
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framework and less than 35% for the ZMP Preview Control
framework. The consequences of this higher robustness are
illustrated in the video attached to this paper, presenting
a disturbed scenario where postural stability is maintained
with the DMPC controller while the ZMP Preview Control
framework fails at ensuring contacts stability. The DMPC
framework is thus prominently more robust to disturbances
than the ZMP Preview Control framework. Note that due to
the exponential growth of the slippage cost function Hs, no
noticeable performance gain can be found in the nominal
region and only slippage-prone peaks are cut down.

Finally, the DMPC framework allows to automatically reg-
ulate the altitude of the CoM of the robot and its variations,
as shown in figure 13. The ZMP Preview Control framework
bounds the CoM to stay at a constant altitude in order to
preserve the validity of the cart-table model, while the DMPC
framework takes benefit from this degree of freedom in order
to compromise between balance and stability objectives.

VI. CONCLUSIONS
The control problem of postural stability of a humanoid

robot is approached in this work in a distributed model
predictive control framework. This novel formulation takes
advantage of different models of the balance dynamics,
coordinated along multiple future horizons, and efficiently
increases the robustness of the system against strong and
unexpected external perturbations.

Contributions of this control architecture are highlighted
with the simulation of a walking activity under external
pushes: significant gains in balance and contacts stability are
observed compared to a ZMP Preview Control framework.
Tip-over and slippage risks are noticeably minimized with
the predictive control of the center of mass horizontal and
vertical dynamics, and of the robot angular momentum.

Future works will investigate the generalization of the
DMPC framework for the control problem of multi-task
activities.
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