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Abstract— Balance strategies range from continuous postural
adjustments to discrete changes in contacts: their simultaneous
execution is required to maintain postural stability while
considering the engaged walking activity. In order to compute
optimal time, duration and position of footsteps along with the
center of mass trajectory of a humanoid, a novel mixed-integer
model of the system is presented. The introduction of this model
in a predictive control problem brings the definition of a Mixed-
Integer Quadratic Program, subject to linear constraints. Sim-
ulation results demonstrate the simultaneous adaptation of the
gait pattern and posture of the humanoid, in a walking activity
under large disturbances, to efficiently compromise between
task performance and balance. In addition, a push recovery
scenario displays how, using a single balance-performance ratio,
distinct behaviors of the humanoid can be specified.

I. INTRODUCTION

Humanoid robots employ locomotion systems which are
essentially of hybrid nature, combining discrete supports and
multi-body dynamics. Legged locomotion couples these two
sub-systems in different ways, and distinct behaviors emerge
depending on the desired performance and constraints [1].
The choice of balance strategy is all the more important in
situations where the robot undergoes large physical distur-
bances. Appropriate strategies in such cases generally lies
between whole-body balancing and changes in the base
of support (BoS). The robotics literature presents various
solutions in this range, involving torque compensation [2],
bracing behaviors [3] at the center of mass (CoM), angular
momentum rejection [4] and shifts in foot placement [4], [5].

Changes in the BoS, however, have the potential to provide
a greater degree of stabilization than whole-body adjustments
in a fixed-support configuration [6], and may, on one hand,
even be necessary depending on the activity and the con-
straints the system is subject to. On the other hand control of
these changes may be more challenging. It requires indeed
the determination of the adequate time, duration, distance
and direction of the shift, while regarding both constraints
on the system and the desired motion of the robot. With the
Capture Region approach [4], Pratt et al. propose to solve
the problem of when and where to take a step, along with
suitable CoM and angular momentum behaviors. Although
it has largely demonstrated its efficiency in push-recovery
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Fig. 1. Illustration of the hybrid nature of safe biped walking: the walking
task induces discrete changes in the base of support, while balance is
maintained through continuous postural adjustments and adaptation of the
contacts position.

cases, this method lacks consideration of the constraints
the robot is subject to and of the engaged activity, which
could potentially affect the feasibility of the expected step.
Furthermore, little insight on the suitable duration of the step
is given.

Predictive approaches are appropriate to preview the
influence of the duration and placement of the step taken,
and can be applied to the Capture Region method as
Krause et al. [7] propose in a Model Predictive Control
(MPC) framework. MPC indeed provides a future time
window to estimate the evolution of the system’s state, and
the formulation of an optimization problem is favorable to
the consideration of constraints and objectives the robot
must comply with. However, the additional complexity
generally requires the use of reduced models, constraints
approximations and predefined entities or heuristics in
order to obtain computationally-efficient formulations.
Moreover the hybrid nature of biped walking, involving
continuous evolution of the system’s motion and discrete
changes in constraints and forces acting on it as illustrated
in Figure 1, tends to prevent straightforward formulations.
In order to confine the resolution to the continuous,
smooth part of the problem, Herdt et al. [5] propose to
exploit a previously given horizon of contacts activation to
simultaneously optimize the CoM trajectory with contacts
positions. Another method consists in regularizing the
problem: Mordatch et al. [8] make for example use of
hard-constraints smoothing for rigid contacts, in order to
ensure regularity of the model.



This papers proposes an original approach to the
capture, in a predictive framework, of the influence of
both CoM dynamics and changes in the BoS with respect
to constraints on the system and the ongoing walking
activity. No regularization of the hybrid nature of biped
walking is carried out, and discrete events are described
using a computationally favorable, redundant set of highly-
constrained integer variables. Behavior of the system is
specified at a high level, as a sole ratio between balance
and performance of the walking activity. The resulting
MPC problem takes the form of a quadratic, linearly
constrained mixed-integer program (MIQP) which allows
to determine, over a preview horizon, an optimal strategy
between changes in the BoS and CoM behavior, subject to
multiple constraints, maximizing balance and performance
of a walking activity.

This work is presented as follows. A linearly-constrained,
mixed-integer set of variables is first introduced in Section II
to characterize admissible changes in the BoS. The Zero-
Moment Point (ZMP) approach is employed to capture, in
terms of balance, the state of the system with respect to the
BoS. The resulting model allows the linear expression of
several constraints related to the walking activity.
Section III employs this model of the system in an MPC
framework, and defines the control objective as a com-
promise between balance and performance of the walking
task, which is formulated as the tracking of a desired CoM
trajectory. An optimal horizon of changes in the BoS and
CoM trajectory is computed from a MIQP, without the use
of pre-defined gait patterns or heuristics.
Simulations results in Section IV validates this approach
in various scenarii. Performance of the tracking task is
demonstrated in a sinusoidal trajectory tracking case, and
the introduction of large physical disturbances on the robot
exhibits the conjoint adaptation of gait pattern and CoM
trajectory. Last, the influence of the balance and walking
weights is exhibited in a push recovery case where the system
behavior, as a response to an unknown external action,
significantly varies for different values of the weights ratio.

II. ZERO-MOMENT POINT, MIXED-INTEGER
BIPED MODEL

In order to adopt the appropriate balance strategy, control
algorithms should exploit a model of the system describing
the effect of various quantities of interest on the postural
stability of the robot. Indeed, employing this model to
evaluate the performance of different evolutions of each of
these quantities may lead to the identification of the best
combination to select.

Under several hypotheses, the Zero-Moment Point [9]
approach captures the balance state of the system by relating
its CoM dynamics to the base of support. However, the
hybrid nature of biped walking clearly differentiates CoM
dynamics changes from BoS shifts: the former is continuous
in essence, while the latter is restrained to discrete events.
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Fig. 2. Mixed-integer contact state description —2(a): Real val-
ued a and b describe bounds of the position of the feet in con-
tact, with their respective binary rising/falling edges α and b. Binary
variable γ differentiates single and double support phases, and δ re-
strains the evolution of bounds a, b during transitions from double
to single support. Current BoS is linearly expressed (dark gray) and
previewed BoSs are approximated by their bounding box (light gray).
—2(b): typical evolution of linearly-constrained variables (a, b,α,β, δ, γ),
related to the base of support. Variable r = (a+ b)/2 is displayed here to
describe the center of the supporting surface.

MPC methods, writing the control problem as an optimiza-
tion problem, generally consider the continuous members
of the ZMP model solely as degrees of freedom (DoF).
Kajita et al. [10] and Wieber [11] for example adjusted the
CoM dynamics to maintain balance; Herdt et al. [5] isolated
the discrete aspect of changes in the BoS in a priorly-defined
activation matrix, allowing to add the determination of the
footsteps location to the MPC problem.

However, the time of activation of discrete changes in the
BoS might noticeably affect the performance of both balance
and the walking task. This section therefore describes a
model considering simultaneously the CoM dynamics, am-
plitude and instants of changes in the BoS. Aiming at a
computationally-efficient formulation, the use of a redundant
set of integer and real variables to describe the contact state
of the robot allows to keep a linear form of the various
constraints the system is subject to.

A. Mixed-Integer biped model

To capture the discrete nature of changes in the BoS,
with a view to future optimization, a choice of linearly-
constrained, redundant descriptors of the contact state is
proposed. Additional details can be found in [12].

The amplitude and position of the BoS are described by
its bounding box, as illustrated in Figure 2(a): real-valued
variables (a, b) ∈ R2×R2 are defined as the upper and lower
bounds, respectively, of the position in the two horizontal
directions of the feet in contact. The discrete essence of
changes in the BoS leads to the definition of several con-



straints, called shape constraints, restraining variables (a, b).
Essentially, (a, b) must be piecewise-constant. This con-
straint can be linearly expressed with the introduction of
binary variables (α,β) ∈ {0, 1}2 × {0, 1}2 as rising and
falling edges of a and b, respectively.

Bounds (a, b) are furthermore implicitly related to feet
positions: thus there exists couplings between the two
directions of a and b, called admissibility constraints.
First, single support phases (SS) impose that a equals b,
as the BoS is reduced to one foot (cf. Figure 2(a)). SS
phases must hence be differentiated from double support
ones (DS): the binary variable γ ∈ {0, 1} is introduced to
this purpose, and allows to define this constraint linearly.
Second, each change in the pair (a, b) leads to the
alternation of γ, as any shift in the BoS corresponds to
either a transition SS→DS or DS→SS. Note that, as a
result, γ is fully defined by (a, b) and (α,β) assuming that
an initial value of γ is known.
Last, potential changes in a and b from DS to SS depend
on the configuration of the feet, relatively to bounds a
and b, in the previous DS phase. Indeed, as illustrated
in Figure 2(a), only the pairs (a1, a0) or (b1, b0) can
change when leaving the first DS configuration. On the
contrary, leaving the last DS configuration can only lead to
changes in the pairs (b1, a0) or (a1, b0). This coupling can
be linearly expressed with the introduction of the binary
variable δ ∈ {0, 1}: the first configuration in Figure 2(a)
corresponds to δ = 1 and the last to δ = 0. Note that
this relation is bilateral: when leaving SS to DS, changes
in (a, b) set the value of δ, and when switching back to SS,
the value of δ restrains potential changes in (a, b).
Figure 2(b) proposes typical evolutions of this set of BoS
variables.

Contact state of the robot can therefore be described
by the linearly-constrained, mixed-integer set of variables
(a, b,α,β, δ, γ). The ZMP model, neglecting rotational ef-
fects, relates CoM dynamics to the BoS; state ξ of the system
in a balance perspective can thus be reduced to

ξ = [ a b α β δ γ c ċ c̈ ]
T
, (1)

where c ∈ R3 is the position of the CoM in the world frame.
In the rest of this paper, time is sampled at discrete control
instants ti, and notation vj for function v of time t denotes
the value v (tj), and vk|j the value v (tj) estimated from
control time tk. As stated earlier, the major contribution of
such a description of the contact state is that, in discrete time,
shape and admissibility constraints can be put in the linear
form

∀k ∈ N, Aclξk + Acrξk+1 � f c, (2)

where Acl and Acr are nc × 19 matrices, and f c a vector
in Rnc .

Biped postural stability, in non-sliding cases, can be ob-
tained by avoiding tip-over of the humanoid: with coplanar
contacts, the center of pressure (CoP) must stay away from

the edges of the BoS. The ZMP approach [9] allows the com-
putation of the position p on the ground of the CoP from the
dynamics of the system. Ignoring rotational effects compared
to translational ones, and neglecting vertical acceleration of
the CoM compared to its horizontal acceleration, p writes

p = h− c · e2

g
ḧ where h = c− (c · e2)e2, (3)

with e2 the ascendant vertical direction, g the gravity ampli-
tude and h the horizontal position of the CoM. In order
to have a linear expression of p with respect to ξ and
considering the approximation on the vertical acceleration of
the CoM, the altitude of the CoM is considered as constant
in the rest of this paper. The relevant CoM dynamics are thus
the horizontal ones h, therefore system state ξ, matrices Acl

and Acr and vector f c are modified accordingly. Also, the
balance constraint is linear with respect to the horizontal
dynamics of the CoM, but changes in the supporting surface
being reflected by changes in state variables (a, b), the
inclusion constraint is quadratic with respect to the state ξ
of the system. Nevertheless, as shown in [5], overestimating
the convex hull of this surface by its bounding box in
forward and lateral directions brings the definition of a set of
linear inequality constraints with respect to ξ. Note that this
approximation is solely made for future potential DS phases:
constraints for an established BoS can be fully implemented
without overestimation (cf. Figure 2(a)). Remarks on this
approximation are provided in Section IV-D. Under this
overestimation, the CoP constraints write

∀k ∈ N, Apξk � fp, (4)

where Ap is a np × 16 matrix, and fp a vector in Rnp .
The previous description of the contact state, with the

ZMP model, brings the resulting mixed-integer biped model
at time tk

ξk =
[
ak bk αk βk δk γk hk ḣk ḧk

]T

s.t.



Ac,rξk � f c −Ac,lξk−1,
Apξk � fp,

(αk, βk) ∈ {0, 1}2 × {0, 1}2 ,
(δk, γk) ∈ {0, 1} × {0, 1} ,
(ak, bk) ∈ R2 × R2,(

hk, ḣk, ḧk

)
∈ R2 × R2 × R2,

(5)

which describes and restrains the balance state of the system.

B. Walking motion constraints

The model described in (5) allows the consideration of
a large variety of linear constraints, inherent to the con-
trol problem of walking humanoids. Relevant constraints
regarded in this paper are maximum leg span, maximum
swinging foot average velocity and minimal SS/DS phases
durations. Such constraints will ban strategies involving too
large or fast steps, and hinder solutions such as fast series
of small steps. Note that additional constraints such as
maximal SS/DS durations, bounds on the CoM velocity and



acceleration, or bounds on positions of the feet can also be
put in a linear form with respect to the system state ξ.
Let v̄ denote the maximal swinging foot velocity, s̄ the
maximal step length and t̄ the largest of minimum durations
of SS and DS phases. Constraints on leg span, foot velocity
and SS/DS durations write∑

tk+j−tk≤max(s̄/v̄,t̄)

Aw,jξk+j � fw, j ∈ N, (6)

where Aw,j is a nw×19 matrix, and fw a vector in Rnw . It
can be shown that fw depends on a history of states ξ prior
to tk, and can be written in the form

fw = fw0
+

∑
tk−tk−j<max(s̄/v̄,t̄)

Bw,jξk−j , j ∈ N∗. (7)

Condition tk+j − tk ≤ max (s̄/v̄, t̄) (resp. tk − tk−j) states
that the forward (resp. backward) history influence is
irrelevant beyond the time step where both minimum
duration and maximum average velocity constraints are
necessarily respected. A constraint to avoid the overlapping
of feet is added, in the form of a linearized collision
avoidance constraint.

This model is employed in the following section to eval-
uate and optimize the performance, in terms of walking
activity and balance, of admissible evolutions of the system
state.

III. QUADRATIC, MIXED-INTEGER MPC

The walking control problem, in a predictive framework,
consists in finding an optimal and admissible horizon of
future system states ξk|k+j that ensure the performance of
an ongoing walking activity while maximizing balance of
the system. The descriptors of the system state presented
in Section II being taken as variables of an optimization
problem, these objectives can be written in the form of
quadratic functions, leading to the formulation of a MPC
problem as a mixed-integer quadratic program.

Considering approximations exploited in the ZMP model,
a minimal set of parameters can be obtained to describe an
horizon of system states ξk|k+j . Indeed, a discrete integration
scheme brings, with piecewise constant CoM jerks u =
∂3h/∂t3

∀j ∈ N∗, ĥk|k+j+1 = Ahĥk|k+j + Bhuk|k+j+1, (8)

where ĥ = [h ḣ ḧ]T is the CoM horizontal dynamics,
and Ah, Bh integration matrices. The minimal set of vari-
ables required to preview ξk|k+j+1 from ξk|k+j is hence
denoted χk|k+j+1, defined as

χ = [ a b α β δ γ u ]
T
.

The model (5) can thus be written as the Linear Time-
Invariant process

∀j ∈ N∗, ξk|k+j+1 = Qξk|k+j + Tχk|k+j+1, (9)

where Q and T are state description matrices derived
from (8). Relation (9) allows to preview an horizon Ck,N

of N future states ξk|k+j from an horizon Xk,N of N future
inputs χk|k+j and the actual state ξk|k = ξk. The preview
writes, with P and R combinations of Q and T

Ck,N =

 ξk|k+1

...
ξk|k+N

 = Pξk + R

 χk|k+1

...
χk|k+N

 ,
denoted as

Ck,N = Pξk + RXk,N . (10)

Linear equation (10) allows to reformulate the linear equal-
ities (2), (4) and (6) as

AXk,N � f (11)

where f depends on a history of actual and previous
states ξ, as shown in (2), (6) and (7).

A walking activity can be interpreted as reaching a target
position with a desired horizontal velocity, which can be
expressed at the level of the CoM. It is in such terms a
tracking task, whose performance can be evaluated as a
tracking error. Let ĥ

ref
denote the desired trajectory of the

CoM. Objective Jw of the walking activity can be written,
over a preview horizon, as the minimization of

Jwk =

N∑
j=1

∥∥∥S(ĥk|k+j − ĥ
ref

k|k+j

)∥∥∥2

, (12)

where S is a 6 × 6 weighting selection matrix, diagonal,
defining whether position, velocity and/or acceleration are
tracked in each of the two horizontal directions. For example,
a standstill activity aiming at ḣ→ 0 can be expressed with
ĥ
ref

= 0 and the only non-null terms of S corresponding
to velocity in both horizontal directions; that is, Jwk =∑N

j=1 ‖ḣk|k+j‖2.
While performance of the walking activity is essential,

robustness of the posture of the robot is also a major
objective in walking motions. Balance is guaranteed, under
the assumptions of the model, by the CoP constraint (4)
in (11). Nevertheless, as a tip-over situation occurs when the
CoP reaches the edges of the BoS, robustness of the balance
state of the robot can be captured as a distance to the edges.
The balance maximization objective can thus be written as
the minimization of Jb

Jbk =

N∑
j=1

∥∥∥pk|k+j − rk|k+j

∥∥∥2

, (13)

where r = (a+ b)/2 is the center of the BoS, i.e. the point
at the greatest distance from the edges of the supporting
surface.

Secondary objectives are added to the control problem in
these works for regularization purposes. They aim at mini-
mizing CoM jerks, avoid excessive changes in solutions from
one control step to another, keep track of the previous BoS



size and prefer DS phases over SS ones. These regularization
objectives are written in the form of a quadratic cost q, which
can be used to reward desired behaviors in order to favor
short and frequent stepping over slower gaits, for example.

Objectives (12) and (13) are quadratic with respect
to Xk,N , and are considered in the global cost function J

Jk = ωbJbk+ωwJwk+q = XT
k,NHXk,N+dTXk,N , (14)

where H is a positive definite matrix, d a vector and (ωb, ωw)
scalar weights defining a compromise between balance ro-
bustness and tracking performance. The MPC problem finally
writes

min
Xk,N

XT
k,NHXk,N + dTXk,N

s.t.



AXk,N � f
ξk|k = ξk

ξk|k+j+1 = Qξk|k+j + Tχk|k+j+1,(
ak|k+j , bk|k+j

)
∈ R2 × R2,(

αk|k+j , βk|k+j

)
∈ {0, 1}2 × {0, 1}2 ,(

δk|k+j , γk|k+j

)
∈ {0, 1} × {0, 1} ,

uk|k+j ∈ R2,

(15)

which is a Mixed-Integer Quadratic Program in canonical
form. The computational complexity of problem (15) is
strongly related to the number of non-real variables. Nev-
ertheless its QP form allows the use of fast algorithms and
binary variables can be sampled at a lower frequency, as
discussed in Section IV-D.

IV. RESULTS

Contribution of the MPC formulation (15) is exposed
with several simulation results, demonstrating the variety of
behaviors generated in diverse scenarii.

Opening results illustrate that, without the use of any
heuristics other than motion constraints and controller
weights, the MPC (15) automatically generates an intuitive
gait pattern to follow a varying reference velocity. A second
set of results exhibits optimal modifications of the gait
pattern to accommodate an ongoing walking activity to large
physical disturbances on the robot. Last, results in a push-
recovery scenario demonstrate how weights in (14) allows to
implicitly define, at a high level, different behaviors of the
humanoid.

Simulations are performed using the ARBORIS-PYTHON
simulator [13] developed at ISIR, and whole-body motion
from optimal outputs of the MPC (15) is ensured by an
LQP-based controller [14] for an iCub [15] robot model.
The system state is previewed over an horizon of 1.0s, and
simulations are run with a time step of dt = 1.e−2s. The
humanoid weighs ≈ 27kg with an height of ≈ 1m.

A. Gait generation: sinusoidal velocity tracking

A first simulation scenario is performed to illustrate the
behavior of the MIQP problem in nominal conditions. A
walking activity is specified as the tracking of a sinusoidal
CoM velocity in the forward direction, and a null velocity
in the lateral direction. Major weights (ωb, ωw) in the cost

Fig. 3. CoM velocity tracking performance — thick line: forward —
thin line: lateral — dotted lines: reference velocities

Fig. 4. Generated gait pattern from CoM velocity tracking — solid: average
foot velocity during single support— dotted: CoM reference velocities

function (14) are equal, and forward and lateral directions
have the same importance in the tracking error function (12),
i.e. Sij ∈ {0, 1}.

Performance of the tracking task is depicted in Figure 3:
both forward and lateral CoM velocity tend towards the
reference ḣ

ref
. However, oscillations are still visible as the

result of the alternation between SS and DS phases. Indeed,
velocity of the CoM is restrained by the CoP constraints (4)
its acceleration is subject to, constraints that are all the more
restrictive in single support phases. Consequently, velocity
tracking is hindered during SS phases, and DS phases release
DoFs of the CoM, allowing the recovery of the tracking task.
Nevertheless, in periods of fast reference velocity ḣ

ref
, a

new SS phase is rapidly required and the robot do not have
time, due to regularizing terms q, to fully reach the required
velocity.

This last effect is illustrated in Figure 4 which displays
SS/DS alternations with the average foot velocity during each
SS phase. Indeed, time periods of high reference velocity
such as t = 15s require steps of high velocity and frequency,
while periods of medium reference velocity such as t ∈
[10s, 13s] lead to slower, sparser steps and a better CoM
velocity tracking.

From a more distant point of view, Figure 4 exposes an
intuitive strategy computed from (15): steps taken automat-
ically tend to be longer, faster and more frequent as the
desired walking velocity grows higher.

Note that equal weights ωb = ωw in (14) tend to give a
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— thick line: CoM position — thin line: actual CoP position
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higher priority to the walking task, particularly in cases of
high velocity tracking. This is mainly due to objectives Jw
and Jb not being normalized, hence letting differences in
magnitude have an influence. This effect can be observed
in Figure 5 which presents an extract of CoM, CoP and
feet positions. Although balance is still ensured, the tracking
task slightly prevents, especially in SS phases, the CoP from
staying in the middle of the BoS.
Figure 5 shows that the feet tend to be aligned in the forward
direction as a result of the null velocity tracking in the
lateral direction, in order to minimize the lateral velocity of
the CoM during footsteps. However, cases of low forward
reference velocities require small steps: the non-overlapping
constraint on the feet forces a lateral gap between them,
hence inducing a loss of performance of the tracking task
in the lateral direction, as shown in Figure 3 around t = 22s
for example.

B. Activity adjustments: walking under large disturbances

This simulation aims at exhibiting, for an identical set of
weights in the cost function (14), differences in the optimal
behavior against unknown disturbances. The humanoid has
to perform a walking task with a target forward velocity
of 0.20m.s−1, and a null desired lateral velocity. Three cases
are compared: an unknown lateral impact of +60N (more
thant a fifth of the total weight of the robot) is applied to the
head of the humanoid during a period of 0.1s, then no effort
is applied to the robot and, last, an opposite impact of −60N
is considered. Note that applying the external action to the
head brings additional disturbances as large rotational effects
are induced, effects which are not taken into account in the
ZMP model (3). Snapshots of the different cases are provided
in Figure 6.

Figure 7 shows that changes in the system state from the
impact lead to an intuitive modification of the steps taken:

Fig. 8. Generated gait pattern from CoM velocity tracking as a response
to different impacts — solid: average foot velocity during single support—
dotted: CoM reference velocities

Fig. 9. CoM velocity tracking performance against the impact —
thick line: forward — thin line: lateral — dotted lines: reference velocities

balance is ensured with a lateral drift of the robot in the
direction of the impact. It can be noted that for the impact
of +60N the right foot crosses the left one: such a solution
can be excluded by a set of linear constraints in (15), or self-
collisions should be handled at the whole-body control level.
The impact occurring during an ongoing step, Figure 8 shows
that the speed and duration of this step is slightly altered as
a response to the disturbance. Moreover, a major aspect of
the recovery strategy is illustrated: the DS phase following
the impact is noticeably shorter than in the undisturbed case.
A lateral step is indeed taken almost immediately in order
to improve balance.

These modifications in the gait pattern as a response to
the impact seem natural from the balance point of view.
Nevertheless, as illustrated in Figure 9, although a null lateral
velocity obviously cannot be reached during the impact, the
desired CoM velocities are rapidly recovered. Also, it can be
noted that the tracking task in the forward direction is almost
unaffected by the impact. The recovery steps taken are hence
compatible with the ongoing walking activity, as objective
function Jw is still part of the optimization problem.
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Fig. 6. Snapshots of a walking activity under different unknown external impacts, applied to the head of the humanoid
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Fig. 10. Influence of the objective weights on the CoM velocity tracking
performance — thick line: forward — thin line: lateral — dotted lines: ref-
erence velocities

C. Behavior specification: push-recovery

A last simulation scenario demonstrates how the balance
behavior of the humanoid can be specified with the sole
ratio ωw/ωb. Differences in behavior are illustrated in a push
recovery case. The humanoid must stand still, i.e. ḣ

ref
= 0,

and experiences an unknown impact of 50N in the forward
direction and −25N in the lateral one, during a period
of 0.1s. The standing task is incrementally relaxed in three
cases. A first set of weights targets the best activity perfor-
mance with ωw/ωb = 5.0, a second is placed as reference
with ωw/ωb = 1.0 and a last set gives a higher priority to
the balance objective Jb with ωw/ωb = 0.5. The difference
in the resulting behavior of the humanoid is illustrated in
figures 10, 11 and 12 for the three cases.

As expected, results provided in Figure 10 show that prior-
ity of the tracking objective Jw, relatively to Jb, has a direct
influence on the evolution of the CoM velocity. Although
the humanoid eventually reaches the null reference velocity
in all cases, control with ωw/ωb = 5.0 attains the standstill
objective around three times faster than with ωw/ωb = 0.5.

This gain in performance is achieved with a noticeably
different gait pattern for the three cases. Indeed, as shown
in Figure 11 the first controller stops the CoM with one
step, the second with two and the third recovers a standstill
state after three steps. It can be observed that the duration
of the first recovery step grows with the decrease of the
ratio ωw/ωb, which can be interpreted as the concurrence
of two effects. During SS phases, the dynamics of the CoM
are conditioned by the CoP constraint (4), hence potentially
affecting the tracking objective Jw as shown in Figure 10;
on the other hand, a longer step duration allows to place

ω ω

ω ω

ω ω

Fig. 11. Generated gait pattern from CoM velocity tracking for different
objective weights in a push recovery scenario — solid: average foot velocity
during single support

the BoS as desired, in favor of the balance objective Jb.
Essentially, DS phases provides the CoM with a greater
degree of freedom, while SS phases are required to adapt
the BoS in regard to the balance objective.
Figure 12 indeed confirms these remarks. The first recovery
step tends to be further away from the initial feet configura-
tion as the ratio ωw/ωb decreases, which leads, in average,
to a better placement of the CoP with respect to the BoS.

D. Remarks and discussions

As observed in figures 5, 7 and 12, the CoP happens to
reach the edges of the BoS, thus putting the system at tip-
over risk although constraints on the CoP (4) are specified
with a safety margin of ≈ 30%, and are guaranteed in
problem (15). The ZMP model (3) used as an approximation
of the CoP ignores, among others, rotational effects. However
such effects may yet be of large magnitude in the cases
studied in this section: fast reference velocities and sudden
disturbances are considered, leading to rapid steps and, as a
consequence, fast movements of the swinging leg. Moreover,
the application of the external force to the head of the robot
induces rotational effects from the entire upper body of the
humanoid (cf. figure 6), thus increasing the gap between the
actual CoP and estimated ZMP (3). Note that this gap might
be partially reduced by setting a lower maximal foot velocity.
Another approximation regarding the CoP is the overestima-
tion of the convex hull of the contact points by its bounding
box, in order to write linear constraints with respect to
state ξ. Nevertheless, outputs from (15) can be validated at
each control step to ensure that the previewed CoP remains
inside the convex hull of the BoS. If not, a fast QP program
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Fig. 12. Evolution of the actual CoP and CoM with generated footsteps for an identical impact and different objective weights (ωb, ωw) — thick line: CoM
position — thin line: actual CoP position

as described in [11] can be set up to recompute a valid CoM
trajectory (possibly with new feet positions as in [5]), taking
as input the changes in BoS provided by (15). Nevertheless,
such a safety setup was not necessary in the presented
simulations.

Results introduced in this section were obtained with
the GUROBI OPTIMIZER [16]. A non uniform time sam-
pling scale was used, in order to keep a reduced size of
the optimization vector while avoiding the accumulation
of integration errors in the preview. Furthermore, variables
associated to changes in the BoS were sampled at a lower
frequency than variables describing the CoM dynamics.
Indeed, the complexity of the MIQP (15) is strongly related
to the number of integer variables, and it can arbitrarily
be considered that changes in the BoS occur at a lower
frequency than CoM adjustments. Solving the MIQP (15)
took an average of 40ms1, and note that since MIQP solvers
generally employ branch-and-bound based algorithms, com-
putation time can largely be influenced by the order of
variables and the use of heuristics, helping at reaching the
best nodes faster.

Lastly, it can be noted that the model of the BoS presented
in Section II omits DoFs from the rotations of the feet.
Nevertheless, orienting the BoS in the motion or disturbance
direction may be beneficial to balance.

V. CONCLUSIONS

A novel predictive formulation of the walking control
problem is validated in this paper. The consideration of all
admissible changes in the BoS adds DoFs to the behavior
of the system, behavior which can be specified with a high-
level lever in the form of a weight ratio between balance and
walking. Simulation results show a large range of balance
strategies adopted by the humanoid, independently from prior
gait patterns and moderated by the imposed compromise
between balance and walking performance, as a response
to the ongoing activity and unknown disturbances on the
system.

Future works may consider rotations of the feet to generate
a wider range of motions, and investigate in further details
the computational efficiency of the problem. Additional

1on a dual-core i7-2620M for ?? DoFs and ?? constraints. The compu-
tation time being greater than the timestep, simulation was slowed down
in this work. Future works will investigate the implementation of a slower
control loop for gait adaptation.

developments may also consider configurations with non-
coplanar contacts.

ACKNOWLEDGMENT
This work was partially supported by the French Ministry

of Higher Education and Research, by the RTE company
through its chair “Robotics Systems for field intervention in
constrained environments” hold by Vincent Padois and by
the European Commission within the CoDyCo project (FP7-
ICT-2011-9, No. 600716).

REFERENCES

[1] A. F. Miguel, “The emergence of design in pedestrian dynamics:
Locomotion, self-organization, walking paths and constructal law,”
Physics of life reviews, 2013.

[2] V. Prahlad, G. Dip, and C. Meng-Hwee, “Disturbance rejection by
online zmp compensation,” Robotica, vol. 26, no. 1, p. 9, 2008.

[3] S. Kanzaki, K. Okada, and M. Inaba, “Bracing behavior in humanoid
through preview control of impact disturbance,” in Proc. of the IEEE-
RAS Int. Conf. on Humanoid Rob. IEEE, 2005, pp. 301–305.

[4] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A
step toward humanoid push recovery,” in Proc. of the IEEE-RAS Int.
Conf. on Humanoid Rob. IEEE, 2006, pp. 200–207.

[5] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[6] B. E. Maki, W. E. Mcilroy, and G. R. Fernie, “Change-in-support
reactions for balance recovery,” Engineering in Medicine and Biology
Magazine, IEEE, vol. 22, no. 2, pp. 20–26, 2003.

[7] M. Krause, J. Englsberger, P.-B. Wieber, and C. Ott, “Stabilization
of the capture point dynamics for bipedal walking based on model
predictive control,” in Robot Control, vol. 10, no. 1, 2012, pp. 165–
171.

[8] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
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