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Abstract—We address the problem of endowing a robot with
the capability to learn a repertoire of actions using as little
prior knowledge as possible. Taking a handwriting task as an
example, we apply the deep learning paradigm to build a network
which uses a high-level representation of digits to generate
sequences of commands, directly fed to a low-level control loop.
Discrete variables are used to discriminate different digits, while
continuous variables parametrize each digit. We show that the
proposed network is able to generalize learned actions to new
contexts. The network is tested on trajectories recorded on the
iCub humanoid robot.

I. INTRODUCTION

During their development, children learn an increasingly
complex set of actions while interacting with their environ-
ment. Piaget [1] outlined that they build such a repertoire
by progressively adapting known gestures to novel objects
(assimilation) and by differentiating novel actions for objects
which cannot be assimilated smoothly by known actions
(accommodation).

Despite recent progress in control and perception, robots
are still far from such capabilities. On one hand, several
works aim to optimize a movement primitive depending on
some parameters. For instance, [2] adds context parameters
to dynamical movement primitives (DMPs) [3] to generate
movements which generalize to new objects. On the other
hand, some approaches provide a set of actions for the robot,
which learns to associate these actions with different objects
and contexts [4]. Some works (e.g. [5], [6], [7], [8], [9]) try to
fuse both approaches by learning a repertoire of movement
primitives, but are usually limited either by the curse of
dimensionality or by the amount of required prior knowledge.

In this work, we present a neural architecture which is able
to learn a repertoire of actions with very few priors. The
proposed architecture can generalize learned actions to new
contexts through a parametrization of each action. It uses gated
connections to enable a distributed representation of actions
shared by the whole repertoire and, using the deep learning
paradigm, it provides a natural framework to use the powerful
dimensionality reduction properties of deep networks [10].

We illustrate this architecture on a digit writing task. First,
the network learns to generate trajectories for each of the ten
digits. In a second experiment, we illustrate the parametriza-
tion of actions by teaching the network to draw rotated digits.

II. RELATED WORK

Most of the works addressing the problem of learning a
repertoire of movement primitives rely on Dynamical Move-
ment Primitives (DMPs) [3] (e.g. [5], [6], [7], [8], [9]), which
combine a fixed spring-damper system to ensure convergence
and stability properties, and a learnable term to deform the
spring-damper trajectory into a given action. Usually, DMPs
are parametrized with time (or with phase variables) [3], but
other variables can be used to extend the context and provide
more flexibility [11], [2]. Though this learnable term can
theoretically deform the spring-damper trajectory to any trajec-
tory, it typically necessitates prior knowledge from an external
designer who defines adequate parametrized primitives along
with their relevant context variables to circumvent the curse
of dimensionality. As a result, DMPs are generally restricted
to simple reaching or cyclic movements.

On the other hand, reproducing dynamical sequences using
neural networks has been studied by several authors. An
early tentative is the Elman’s network [12], in which the
hidden layer is copied at each time step into a context layer
which is itself fed back to the hidden layer for the next time
step. Such recurrent networks are difficult to train due to the
vanishing gradient problem [13]. Other techniques such as
echo state networks and liquid state machines [14], [15] also
use recurrent hidden layers but with randomly chosen weights
which remain untrained1. Such approaches necessitate large
hidden layers whose connectivity matrices are carefully tuned,
mainly based on their spectral radius.

Long-short term memories alternatively consist in using
complex cells in which a carousel can propagate the gradient
for an undetermined amount of time and for which several
gates modulate the information flow [17]. This has been shown
to be efficient to learn long-term dependences, for instance for
hand-writing recognition [18].

Neural networks have been used for robotic control [19],
for example in a global control architecture to solve inverse
and forward kinematics along trajectories planned at a higher
level of the architecture.

More recently, deep networks have been applied to se-
quence prediction [20]. The Conditional Restricted Boltzmann

1Except in some approaches where an Hebbian-like learning rule can be
used to strengthen or weaken recurrent weights [16].



Machines (CRBM) take as input several time steps which
are fed to the hidden layer and influence the prediction of
the next input. This architecture is able to correctly model
time series such as human limbs movements for different
walking gaits [21]. CRBM has been extended to Factorized
CRBM [21], in which gated connections decrease the number
of learned parameters. Other approaches can also use recurrent
connections at the hidden layer [22].

III. BACKGROUND: DEEP NETWORKS AND GATED
CONNECTIONS

Though neural networks with a single hidden layer are
universal approximators, the number of units required to
approximate a given function can grow exponentially with
the desired accuracy [23]. For a large set of functions, the
number of required units decreases by stacking multiple levels
of hidden layers [24], but then they are hard to train due to
the vanishing gradient problem [13] and the presence of many
poor local optima [25]. To overcome this issue, [10] proposed
to pre-train each layer to learn a good representation of its
input. Different possible pre-training algorithms are surveyed
in [26]. One of the most popular paradigms is the autoencoding
approach, which aims at minimizing the reconstruction error
of the input data. Given a visible input2 v and a hidden layer
h, it learns the encoding

h = σ(W1v + bh) (1)

where W1 is a learned weight matrix, bh is a bias term and σ
is usually a non-linear activation function such as a sigmoid
function: σ(x) = 1

1+exp(−x) . This encoding is then decoded
to reconstruct the input using

v̂ = σ(W2h + bv) (2)

where W2 is another learned weight matrix. Autoencoders
are trained by backpropagating the reconstruction error (e.g.
||v − v̂||22, or the cross-entropy in the binary input case).
Several regularization techniques can be used, for instance
weight tying, sparsity [27], denoising corrupted input [28] or
penalization of the hidden layer sensitivity to input [29].

When the network learns a relation between inputs, for
instance the transformation between two images or the tem-
poral evolution of a variable, it is useful to use gated connec-
tions [30], [21], [31]. Factorizing these connections reduces
the number of weights and makes learning easier [32]. Given
two different input x and y, such connections introduce an
intermediate factors layer, which performs an element-wise
multiplication between projections fx and fy of both inputs.
The resulting factors fh are then projected to the hidden layer
h (see Fig. 1):

fx = Wxx, fy = Wyy (3)

fh = fx ∗ fy (4)

2In the following, we denote vectors with bold letters, and matrices with
capital letters.
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Fig. 1. Illustration of factored gated connections. Given two input x and y,
their projections through Wx and Wy are multiplied in an intermediate factors
layer ∗, before being projected on the hidden layer h. Such connections are
useful to learn representations of multi-dimensional relations between different
variables. The role of the three external layers can be exchanged, making it
possible to compute a reconstruction of y given x and h, and vice versa: the
two input are projected on the factors layer (red arrows), and the resulting
factors are projected on the third layer (blue arrow).

h = σ(W>h fh) (5)

where ∗ denotes the element-wise multiplication. The role of
x, y and h can be exchanged, allowing for instance to compute
a reconstruction of y given x and h.

IV. ARCHITECTURE

In this section, a general mathematical formulation of the
adressed task is presented. Then, the proposed implementation
using deep networks is detailed.

A. Mathematical framework

A general representation of action is given by

qt = f(st,mt, ct) (6)

where qt is the command at time t (e.g. torques, Cartesian
or joints velocities, . . . ), st is the state of the system at
time t, mt corresponds to a memory of past states and
ct is a general context variable describing for instance the
current goal of the system. We distinguish between state s
and context c in the way it evolves while the system is
performing an action: st describes an instantaneous state (for
instance the current joint positions) which evolves at each
time step and is strongly related to the course of the action
currently performed, while the context ct is intended to be a
slowly varying input describing an overall situation, such as a
symbolic representation of the pursued goal.

For the sake of clarity, throughout this paper we consider the
example of a robotic writing task, in which we control the end-
effector of a robot in the three dimensional Cartesian space to
write different digits. Thus, we flesh-out (6) with the following
variables: qt encodes the desired Cartesian velocities ẋt of
the end-effector, st is the current Cartesian position xt of the
end effector, mt stores some memory about past positions
(this will be further described in the following), and ct is a
symbolic representation of the action being performed (i.e. the
digit being written), represented by a boolean action vector a
containing only zeros, except for the desired digit for which
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Fig. 2. Architecture of the network used for the experiment. The Cartesian
positions xt are fed into a standard autoencoder which learns a representation
ξ. This representation is used to compute a trace mt of the positions, and to
compute the desired velocity. A sub-network uses the trace mt and the overall
goal a to compute an intermediate representation of an instantaneous goal
g(mt,a). The arrows denote the direction of the projections computed by
the corresponding matrices (transposed matrices are used to project backward,
except for the two lower standard autoencoders). They are oriented according
to the information flow inside the network when it is used to generate a desired
velocity ẋt given a position xt, an overall goal a and a current progress mt.

the corresponding bit is set to one. With these notations, (6)
becomes:

ẋt = f(xt,mt,a). (7)

We further factorize (7), introducing an instantaneous goal
function, g(mt,a), which depends on the action being per-
formed a (the “overall goal”) and its current progress mt:

ẋt = f(xt, g(mt,a)) (8)

Notably, such a factorization of the representations reduces
the dimensionality of the input when the dimensionality of
the output of g is smaller than the dimensions of mt and a;
further, it allows function f to learn synergies which can be
re-used by any of the actions from the repertoire.

B. Neural network implementation

The proposed network (8) contains two sublayers (Fig. 2):
• The top one corresponds to the computation of g which

takes mt and a as input.
• The bottom one corresponds to the computation of f and

takes xt and the output of the first sub-network as input.
The positions x of the end-effector are first encoded by an

autoencoder using sigmoid units at the hidden layer, and linear
units at the visible layer. This results in a “normalized” input

(each unit is between 0 and 1) fed to the remaining network.
To deal with an arbitrary range of values, the weights of this
autoencoder are not tied: the encoder uses a weight matrix
W in, while the decoder uses a weight matrix W in

dec. The output
of this encoder is denoted by:

ξt = σ(W inxt). (9)

Similarly, Cartesian velocities are encoded by a second
autoencoder using matrices W out and W out

dec , whose output
is denoted by:

ξ̃t = σ(W outẋt). (10)

In the current implementation of the network, mt is related
to the past positions by a simple exponential window:

mt = (1− α)mt−1 + αξt. (11)

Each sub-network uses gated connections, which results in
a factorization of representations at each layer. Thus, the g
function is computed as

g(mt,a) = σ (Wg1 ((Wmmt) ∗ (Waa))) (12)

and the h function is computed as

ξ̃t = σ
(
Wξ̃ ((Wξξt) ∗ (Wg2g(mt,a)))

)
. (13)

Training this architecture consists in learning all connec-
tivity matrices W∗ in (9), (10), (12) and (13). This is done
by minimizing the reconstruction error of predicted Cartesian
velocities ˆ̇x given the positions and the vector a, using a
standard gradient descent on the error

∑
t || ˆ̇xt − ẋt||2.

According to the deep learning paradigm, each sub network
is pre-trained independently. First, the autoencoders are trained
to learn a representation ξ of x and a representation ξ̃ of ẋ by
minimizing the reconstruction error of x and ẋ respectively.
Then, the lower level gated network is trained to learn a
representation gt, given ξt and ξ̃t, by minimizing the distance
with their reconstructions ξreconst and ξ̃reconst :

gt = σ(W>g2(Wξξt ∗W>ξ̃ ξ̃t)) (14)

ξreconst = σ(W>ξ (Wg2gt ∗W>ξ̃ ξ̃t)) (15)

ξ̃reconst = σ(Wξ̃(Wξξt ∗Wg2gt)). (16)

Then, the upper level gated network is trained to infer the
intermediate goal gt provided by the lower level network,
given mt and a, by minimizing the difference between gt and
g(mt,a) (12). Finally, a global gradient descent involving all
matrices is performed to fine-tune the network to minimize
the global prediction error of ẋt.



Fig. 3. Experimental setup. The robot is controlled in zero-torque mode,
while a human operator moves its arm to write the digits between 0 and 9.
The three dimensional Cartesian positions of the end-effector are recorded at
approximately 100Hz.

TABLE I
NUMBER OF UNITS USED FOR THE EXPERIMENT

Layer Number of units

a 10
mt 100
factors (mt,a) 1000
g(mt,a) 100
ξt 100
factors (g,ξt) 100
ξ̃t 100

V. EXPERIMENTS

We test the architecture on a writing task with the iCub
humanoid robot [33]. We record the arm trajectories of the
robot being manipulated by a human operator to write the
digits between 0 and 9 [34]. Each digit basically corresponds
to a different action from a repertoire. A total of 76 trajectories
for each digit are recorded and used to train the network. For
each trajectory, the initial position is considered as the origin
of the three dimensional Cartesian frame. Each trajectory then
consists of the sequence of Cartesian positions sampled at
approximately 100Hz (providing between approximately 100
points for “short” digits like 1 and 500 points for longer digits
like 8). Figure 3 illustrates the experimental setup. Some of
the recorded trajectories are shown in Fig. 4.

The number of units in each layer of the network is given in
Table I. The time constant α of the exponential window is set
to 0.02, and we use a learning rate of 0.001 with a momentum
of 0.95. The memory mt is set to 0 at the beginning of each
trajectory.

A. Repertoire of actions

First, we train the network to learn the repertoire of actions
corresponding to the ten digits between 0 and 9. For this
purpose, the vector a consists of a boolean vector with ten
units and, for each trajectory, the unit corresponding to the
performed digit is set to 1 (human labeling). The network

Fig. 4. Samples of recorded trajectories from the iCub robot. Each trajectory
is plotted in a 12x8 cm box. Only two dimensions are plotted, the third being
constant for most digits, except for 4 and 5 which necessitate to lift the pen.

is trained on the recorded trajectories using mini-batches of
1000 points, i.e. 1000 Cartesian positions along with the
corresponding Cartesian velocities. These mini-batches are
obtained by concatenating trajectories randomly chosen from
the dataset until 1000 points are obtained. The network is
then tested to generate trajectories. For this purpose, we close
the loop between positions xt and predicted velocities ˆ̇xt by
simulating the movement of the end-effector according to:

xt+1 = xt + 0.001× η × ( ˆ̇xt + ν) (17)

where η is a noise modeling a variable control loop delay
(Poisson noise, λ = 10)3 and ν is a noise modeling an
approximate command of the robot, induced for instance by
an imprecise kinematic model (independent Gaussian noise,
std = 0.0025m/s, which approximately corresponds to an
average of 5% error between the desired velocity and its
execution). Both noises aim to test the robustness of the
learned trajectories. The process is started from the initial
position (0, 0, 0) and is iterated for a number of time steps
equal to the mean duration of recorded trajectories for the
considered digit. Figure 5 shows some generated trajectories.

B. Parametrization of actions

In the previous experiment, we trained the network to
learn a set of different primitives based on a symbolic

3This generates a control loop delay 0.001× η whose mean is 0.01s and
standard deviation is about 0.003s. It ranges approximately between 0 and
0.025s



Fig. 5. Trajectories generated by the network. Each trajectory is plotted in
a 12x8 cm box. Noise is added during the generation of each trajectory to
evaluate the robustness of the network.

representation of actions. However, the network can also
handle a parametrization of such actions. To illustrate this
capability, we generate new trajectories from the recorded
dataset, by rotating one sample of each digit by an angle
Θ ∈ {−π/2,−π/4, 0, π/4, π/2} (we apply the corresponding
rotation matrices to all points of the trajectories). This provides
a total of 50 trajectories for the training set (5 trajectories for
each digit). This contrasts with the previous experiment based
on 760 demonstrations, more than usually used by DMP-based
approaches. The rotation parameter is added to the top layer
a as two additional units taking values 1

2 (1 + cos(Θ)) and
1
2 (1 + sin(Θ)). The resulting top layer a is thus composed
of 10 binary units to represent the digits, and two real-valued
units representing the rotation angle. All the other parameters
are the same as for the previous experiment.

After training, the network is used to generate trajectories
with rotation angles Θ = k π8 for k in {−4, · · · , 4}. No noise
is added for the generation (17), the control loop delay is set
to 10ms. Figure 6 shows the resulting trajectories.

VI. DISCUSSION

In our work, the role of the memory layer, even in its
very simple current implementation (11), is visible in Fig. 5
for digits with sharp corners (e.g. digits 2 and 9) and for
digits with cross points (e.g. digits 4, 6 and 8). It actually
allows the network to produce different desired velocities for
a same current position x, without explicitly modeling features
such as corners or cross points. In a DMP approach, this
would require either carefully chosen parametrized primitives,
or a segmentation of such trajectories into several segments.
However, since our approach does not use prior knowledge, it
can prevent the network from learning very specific features,

−π/2 −3π/8 −π/4 −π/8 0 π/8 π/4 3π/8 π/2

Fig. 6. Trajectories generated by the network for different rotation angles.
Digits on gray background correspond to rotation angles which were pre-
sented to the network during training (only one trajectory for each (digit,
rotation angle) pair was provided for training). Other trajectories show the
generalization capabilities of the network.

like for digit 5 for which the link between the lower part of the
digit and the horizontal upper line is not considered as a more
important point of the trajectory than all others. Improving
such trajectories would necessitate either an optimization
framework such as reinforcement learning to drive the network
towards better trajectories, or a more sophisticated memory mt

able to extract and store relevant information about important
via-points. This latter property is typically hand-crafted in
classical DMPs, but recent probabilistic approaches aim at
capturing such features [35].

Our approach aims at endowing control architectures with
the powerful dimensionality reduction capabilities of deep
networks [10]. First, it separates the lowest level of control
from the high level trajectory planning by introducing the
intermediate goal representation g(mt,a). Moreover, using
gated connections, it factorizes knowledge from which we
can expect an increasingly faster learning of new trajectories
when the amount of knowledge increases. However, further
experiments with more complex tasks are necessary to quantify
such expected improvements.

Few assumptions are made about the input of the proposed
architecture. Other state/command variables can be used, but
also other representations of high level actions can be provided
as input. For instance, a representation based on clustering of
another modality, such as images or spoken words, can be
used to trigger the execution of one action or another. This
paves the way for loosely supervised interaction scenarios,
for instance for programming by demonstration experiments.
The possibility to use the high-level representation of context
to parametrize the execution of an action also increases the
expressiveness of our approach compared to the current theory
of associative skill memories, which, as outlined in [11],
makes the assumption that “the movement generated for a
particular skill should be as stereotypic as possible” and leaves
context sensitivity for future work.



VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an architecture able to learn
a repertoire of actions based on a factorization of represen-
tations. It relies on standard deep learning principles, that
is the minimization of a reconstruction error by gradient
descent. This architecture can be naturally plugged into a
wider architecture, which can use powerful dimensionality
reduction capabilities of deep networks to provide a compact
and meaningful representation of perception. In turn, this can
be used to efficiently learn actions grounded in contexts from
complex environments, which is a key step for affordance
learning. This will be the subject of future work.

In the experiments we discussed, the memory mt has been
hard-coded as an exponential window over past positions (11).
This restricts the network function to learning only local tem-
poral regularities, whose spread depends on the chosen time
constant. Further work will consist in learning the recurrent
weights from the memory layer, possibly involving long short
term memory units [17], to make the network more generic.
This will require top-down interactions from the upper layer
a, to be able to select and memorize relevant information
depending on the overall goal. Direct interactions between the
memory mt and the goal a are also necessary in order to learn
to segment and cluster continuous time sequences.

Another direction for future work consists in stacking sev-
eral layers of this architecture. The top layer a of the proposed
architecture could be considered as an intermediate goal for
a higher, more global objective. Such an approach could be
fruitful to efficiently learn sequences of actions.
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