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Abstract—A skid-steering mobile robot steers by creating a
moment that is larger than the frictional moment which results
in a lateral slippage also known as skidding. This moment is in
turn generated by a difference of the forces originated from the
two sides of the robot. Tracking a given trajectory using this
type of steering mechanism is not easy since it requires to relate
skidding to steering. A necessary condition for the stability of
skid-steering mobile robots is that the longitudinal component
of the instantaneous center of rotation (ICR) resides within
the robot dimension. In the present work, we propose a novel
trajectory-tracking control design using a backstepping technique
that guarantees the Lyapunov stability and that satisfies this
necessary condition by relating the longitudinal component of
the “desired ICR” to the curvature of a given trajectory and
the reference linear speed. Finally, we compare the performance
of the proposed controller to that of other existing controllers
for skid-steering mobile robots and show the robustness of the
proposed controller even in the presence of modeled sensory noise
and control time delay in simulation.

I. INTRODUCTION

Skid-steering mobile robots are often used for their robust-
ness owing to their simplicity. These robots steer by causing
lateral skidding, which is the product of generating a difference
in forces originated from the two sides of the robot. This
difference creates a moment, and if this moment is larger
than the frictional moment, then skidding takes place and,
consequently, rotational motion. However, tracking a given
trajectory using this type of steering mechanism is not easy
because it is not straightforward to relate the necessary amount
of skidding to accomplish a desired steering effect.

A first approach to establish the skid-to-steer relationship
might be the search for the instantaneous pivot point in the
world about which the moment is generated. This pivot point
is also known as the instantaneous center of rotation (ICR).
The ICR can then be defined as the point in the world from
which the robot’s motion is viewed as a pure rotational motion.
In other words, the ICR is the point in the world for which all
the vectors that point to the contact points are perpendicular
to their respective contact velocity vectors. As a result, one
can deduce that, for this type of robots, the ICR is always
away from their lateral axis that passes through their center of
gravity when they make turns, and, therefore, skidding takes
place.

Hence, the knowledge of the ICR location seems to make
the skid-to-steer relationship hold. In the literature, there are
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several works on estimating the location of the ICR while
a four-wheel skid-steering mobile robot [1] or a tracked
mobile robot [2], with the purpose to improve the control of
these types of robots. However, estimating the location of the
ICR is not straightforward because it depends on the robot’s
instantaneous lateral velocity and its instantaneous angular
velocity. Instead, one might be able estimate the longitudinal
component of the “desired ICR” in the robot body coordinate
system in order to generate steering motion while satisfying
the robot stability.

In effect, there have been works on controlling the steering
motion of four-wheel skid-steering mobile robots by forcing
the desired ICR to be at a constant distance from the robot’s
center of gravity along the longitudinal axis [3], [4], where this
distance is smaller than the longitudinal robot dimension in
order to guarantee the controllability [3], [5]. This is achieved
by establishing an operational nonholonomic constraint associ-
ated with the desired ICR location and by designing controllers
that work to preserve this condition.

Despite the fact that this approach guarantees both the non-
zero lateral velocity condition (and, therefore, skidding and
in turn steering motion) and the controllability, for a given
trajectory, a controller designed based on this approach might
not be able to guarantee the asymptotic convergence in the
error dynamics because the velocity relationship established
by this operational nonholonomic constraint might not hold
from the reference trajectory side.

In the present work, on top of the dynamic modeling of
a planar four-wheel skid-steering mobile robot that Carac-
ciolo et al. developed in [3], we propose a novel nonlinear
trajectory-tracking controller that preserves the dynamics of
the system, using a backstepping technique that guarantees
the Lyapunov stability. Within this framework, we propose
a method that sets the longitudinal component of the desired
ICR as a function of the curvature of a given trajectory and the
reference linear speed. As a result, we show that the controller
proposed in the present work is more robust than the controller
proposed in [3] even in the presence of sensory noise and
control time delay.

The paper is organized as follows. In Section II, the dynamic
modeling of a four-wheel skid-steering mobile robot is recalled
and discussed. In Section III, a new operational nonholonomic
constraint is proposed. In Section IV, a novel backstepping-
based controller that guarantees the Lyapunov-stability is
presented. In Section V, simulation results are reported and
discussed. Finally, conclusion remarks and perspectives are
given in Section VI.
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Fig. 1. A model for a four-wheel skid-steering mobile robot.

II. RECALL ON THE DYNAMIC MODELING OF A
FOUR-WHEEL SKID-STEERING MOBILE ROBOT

As shown in [3], the equations of motion of a four-wheel
skid-steering mobile robot are given by

Mq̈ + c(q, q̇) = E(q)τ , (1)

where q , [X,Y, θ]
T with (X,Y ) the coordinates of the

robot’s center of mass expressed in the inertial frame and θ
its yaw angle. The terms M, c and E and the control vector
τ are defined as

M ,

m 0 0
0 m 0
0 0 I

 , c(q, q̇) ,

Rx cos θ − Fy sin θ
Rx sin θ + Fy cos θ

Mr

 ,
E(q) ,

cos θ/r cos θ/r
sin θ/r sin θ/r
t/r −t/r

 , τi = 2rFxi , i = 1, 2

where m, I and r denote the robot’s mass, its inertia about
the body z-axis and the wheel radius, respectively. a, b and
t are the robot’s dimensional parameters (as defined in Fig.
1). Fxi is the i-th wheel’s tractive force. Rx, Fy and Mr are
the resistive longitudinal and lateral forces, and the resistive
moment, respectively, which can be computed as follows

Rx =

4∑
i=1

Rxi = fr
mg

2
(sgn(ẋ1) + sgn(ẋ2)) ,

Fy =

4∑
i=1

Fyi = µ
mg

a+ b
(b sgn(ẏ1) + a sgn(ẏ3)) ,

Mr = a(Fy1 + Fy2)− b(Fy3 + Fy4)

+ t [(Rx2 +Rx3)− (Rx1 +Rx4)]

= µ
a bmg

a+ b
(sgn(ẏ1)− sgn(ẏ3))

+ fr
tm g

2
(sgn(ẋ2)− sgn(ẋ1)) ,

with g, fr, µ, and sgn(·) the gravitational acceleration, the
coefficient of rolling friction, the coefficient of lateral friction

and the sign function, respectively. Besides, ẋi and ẏi, with
i = 1, · · · , 4, are respectively the longitudinal and the lateral
wheel velocities, subject to the following relationships with
the linear and angular velocities (ẋ, ẏ, θ̇) expressed in the body
frame 

ẋ1 = ẋ4 = ẋ− tθ̇,
ẋ2 = ẋ3 = ẋ+ tθ̇,

ẏ1 = ẏ2 = ẏ + aθ̇,

ẏ3 = ẏ4 = ẏ − bθ̇.
The velocity in the body frame is related to the velocity in

the inertial frame as follows[
Ẋ

Ẏ

]
= R

[
ẋ
ẏ

]
, (2)

with R ,

[
cos θ − sin θ
sin θ cos θ

]
the rotation matrix.

III. NEW OPERATIONAL NONHOLONOMIC CONSTRAINT

The location (xICR, yICR), expressed in the body frame,
of the instantaneous center of rotation (ICR) should remain
inside the robot’s dimension along the longitudinal direction
(i.e., −b ≤ xICR ≤ a) at any time instant in order to
ensure the robot’s motion stability. If the ICR goes outside
the robot’s dimension along the longitudinal direction, then all
the resistive lateral forces Fyi, with i = 1, · · · , 4, will have
the same sign (equivalently all four lateral wheel speeds will
have the same sign), and, consequently, there will be no way
to balance the amount of skidding with the wheel actuators,
causing the loss of controllability of the mobile robot [6].
If the location of the ICR is known, then a controller may
be designed to track a reference trajectory while ensuring
the constraint −b ≤ xICR ≤ a so as to avoid instability.
However, it is not easy to design such a controller due
to the fact that the ICR is a function of the robot states,
[xICR, yICR] = [−ẏ/θ̇, ẋ/θ̇]. A practical solution has been
proposed by Caracciolo et al. [3] by imposing a “virtual”
constraint xICR = d0, with 0 < d0 < a. This yields the
following nonholonomic constraint

ẏ + d0θ̇ = 0, (3)

which implies that the lateral speed and the angular velocity
should have a fixed relationship by the constant distance d0.
This “unnatural” constraint is not always satisfied in reality,
and a controller should be designed to closely maintain this
relationship.

Moreover, given a reference trajectory, both its curvature
and the desired velocity might vary, and, therefore, (3) might
not be adequate if the value for d0 is fixed a priori. Under
this hypothesis, a new operational nonholonomic constraint
is proposed in the present work. which takes into account
both the instantaneous curvature of a given trajectory and the
desired linear speed. In fact, for a given trajectory, its expected
centripetal acceleration is defined as

ây = κ(t)h(t), (4)
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Fig. 2. The desired ICR along the longitudinal direction of the robot as
function of the expected centripetal acceleration given from the reference
trajectory.

where h(t) is defined as ξ̇
T

r ξ̇r. In turn, ξ̇r =
[

˙̄Xr,
˙̄Yr

]T
represents the desired velocity of the control point for a given
reference trajectory in the inertial frame. The control point is
posteriorly defined in (15).

On the other hand, κ(t) is the curvature of the trajectory
and is defined as

κ =
˙̄Xr

¨̄Yr − ¨̄Xr
˙̄Yr(

˙̄Xr

2
+ ˙̄Yr

2
)3/2

. (5)

Let us now define the longitudinal component of the desired
ICR as the constraint xICR = D, where

D = D∗e−
(ây))2

2σ2 , (6)

in which D∗ is a positive real value that represents maxD,
and σ is a positive real number that represents the sensitivity
of the modulation of D as function of κ and h. That is,
the smaller σ is, the faster D approaches to small values
(therefore, D is sensitive in the changes of the expected
centripetal acceleration). However, the larger σ is, the more
slowly D changes (therefore, D is less sensitive in the changes
of the expected centripetal acceleration).

In essence, D has the form of a bell-shaped function as
shown in Fig. 2 and depends on two terms: the curvature of a
given trajectory and the squared reference linear speed. When
the curvature (the reference linear speed) is small, the desired
ICR point is moved as forward as possible (but bounded by
the robot longitudinal dimension). But, when the curvature
(the reference linear speed) is large, the desired ICR point is
brought close to the center of gravity. D ranges between 0 and
a.

Hence, (3) now becomes as

ẏ +Dθ̇ = 0. (7)

Next, the first and the second time-derivatives of D can be
computed as

Ḋ = − ây
˙̂ay

σ2
D,

D̈ = − 1

σ2

[(
˙̂a2y + ây ¨̂ay

)
D − ây ˙̂ayḊ

]
,

(8)

where ˙̂ay depends on (h, ḣ, κ, κ̇), and ¨̂ay , (h, ḣ, ḧ, κ, κ̇, κ̈).
ḣ and ḧ can be easily computed by differentiating h with

respect to t and have as their expressions 2ξ̇
T

r ξ̈r and
2
(
ξ̈
T

r ξ̈r + ξ̇
T

r

...
ξ r

)
, respectively. Finally, κ̇ and κ̈ can be easily

computed by differentiating (5) with respect to time.
Inspired by [3], the system (1) is augmented by including

the new operational nonholonomic constraint (7) as follows

Mq̈ + c(q, q̇) = E(q)τ + A(q)
T
λ, (9)

where λ is a vector of Lagrangian multipliers representing the
constrained forces, while the matrix A holds the following
relationship

[
− sin θ cos θ D

] ẊẎ
θ̇

 = A(q)q̇ = 0.

The admissible generalized velocities q̇ can be defined as

q̇ = N(q)η, (10)

where η ∈ R2 is a pseudo-velocity, and the columns of the
matrix N are in the null space of A, e.g.,

N(q) =

cos θ − sin θ
sin θ cos θ

0 − 1
D

 .
By differentiating (10) and eliminating λ from (9) one obtains{

q̇ = Nη,

NTMNη̇ = NT(Eτ −MṄη − c).
(11)

One verifies that the matrices NTMN and NTE are invert-
ible. Thus, by making simple change of control variables

τ =
(
NTE

)−1 (
NTMNu + NTMṄη + NTc

)
, (12)

with u =
[
u1 u2

]T
the vector of new control variables, then

system (11) can be rewritten as{
q̇ = Nη,

η̇ = u,
(13)

which is equivalent to

Ẋ = cos θη1 − sin θη2,

Ẏ = sin θη1 + cos θη2,

θ̇ = − 1

D
η2,

η̇1 = u1,

η̇2 = u2.

(14)

IV. A NOVEL TRAJECTORY TRACKING CONTROL DESIGN
BASED ON A BACKSTEPPING PROCEDURE THAT

GUARANTEES THE LYAPUNOV STABILITY

A. Control design

Similar to [3], a control point is chosen on the longitudinal
body axis at the distance D from the origin of the body frame.
But, in the present work, the control point is modulated as
described in Section III. Notice that the controller is designed
for the system (14).



The vector of coordinates expressed in the inertial frame of
this control point is thus given by

ξ =

[
X̄
Ȳ

]
=

[
X +D cos θ
Y +D sin θ

]
. (15)

From (14), one verifies that the time-derivative of ξ satisfies

ξ̇ = η1Re1, with e1 ,
[
1 0

]T
.

Let ξr ∈ R2 denote the reference position expressed in
the inertial frame for the control point defined up to third-
order derivative. Define ξ̃ , ξ − ξr and ξ̄ , RTξ̃ as the
position errors expressed in the inertial frame and body frame,
respectively.

It is straightforward to deduce following equations of the
error dynamics

˙̄ξ = −ωSξ̄ + η1e1 −RTξ̇r,

Ṙ = ωRS,

η̇1 = u1,

ω̇ = ū2,

(16)

with ū2 , Ḋ
D2 η2 − 1

Du2 the new control variable, ω , θ̇ and

S ,

[
0 −1
1 0

]
. Then, the control objective can be stated as

the asymptotical stabilization of ξ̄, or equivalently of ξ̃, about
zero using (u1, ū2) as control inputs.

The first equation of (16) indicates that the relation ξ̄ ≡ 0
implies that

η1e1 −RTξ̇r ≡ 0. (17)

As long as |ξ̇r| is different from zero, one can define a locally
unique solution of R (or θ) to equation (17). However, this
solution cannot be prolonged by continuity at ξ̇r = 0. This
singularity corresponds to the case when the linearization of
system (16) at any equilibrium (ξ̄,R, ω) = (0,R∗, 0) is not
controllable. Moreover, one can verify from the application of
the Brockett’s theorem [7] for this case that there does not exist
any time-invariant C1 feedback control law that asymptotically
stabilizes the system at the equilibrium (ξ̄,R, ω) = (0,R∗, 0).
We thus discard this difficult issue in the present work and
make the following assumption with the purpose to propose
a trajectory tracking control design based on a backstepping
technique that guarantees the Lyapunov stability,

Assumption 1. There exist positive constants δr and ar such
that |ξ̇r(t)| ≥ δr and |ξ̈r(t)| ≤ ar, ∀t.

The following result is obtained based on a Lyapunov
function constructed using a backstepping proceduce.

Proposition 1. Consider the error system (16). Assume that
Assumption 1 holds. Let η1d and ωd denote auxiliary control
variables derived from the backstepping procedure and defined
as  η1d , eT

1 RTξ̇r − k1ξ̄1,

ωd , ωr − k2|ξ̇r|ξ̄2 + k3|ξ̇r|
(
eT
2 RTξ̇r

)
,

(18)

where ωr , − ξ̇
T
r Sξ̈r

|ξ̇r|2
, k1,2 are positive constant gains, and

k3 is a positive gain (not necessarily constant) satisfying
inf
t
k3(t) > 0. Apply the following control law
u1 = η̇1d − k4ξ̄1 − k6(η1 − η1d),

ū2 = ω̇d +
k5
k2

eT
2 RTξ̇r

|ξ̇r|
+

(
k̇5
2k5
− k7

)
(ω − ωd),

(19)

where k4,6 are positive constant gains and k5,7 are positive
gains (not necessarily constant) satisfying inf

t
k5,7(t) > 0.

Then, the following properties hold:
1) There exist only two equilibria (ξ̄,R, ω) = (0,R∗±, ωr),

with R∗T+ e1 = ξ̇r
|ξ̇r|

and R∗T− e1 = − ξ̇r
|ξ̇r|

.

2) The equilibrium (ξ̄,R, ω) = (0,R∗+, ωr) is almost-
globally asymptotically stable.

Proof. The first property of Proposition 1 can be straightfor-
wardly deduced from (16) and (17). We prove now the second
property. Consider the following storage function

S ,
1

2
|ξ̄|2 +

1

k2

(
1− eT

1 RTξ̇r

|ξ̇r|

)
, (k2 > 0) (20)

whose time-derivative along the system’s solutions satisfies
(using Lemma 5 in [8])

Ṡ = ξ̄
T
(
η1e1 −RTξ̇r

)
+

1

k2

(
ωeT

1 SRTξ̇r

|ξ̇r|
− eT

1 RT d

dt

(
ξ̇r

|ξ̇r|

))

= ξ̄1

(
η1 − eT

1 RTξ̇r

)
− eT

2 RTξ̇r

k2|ξ̇r|

(
ω − ωr + k2|ξ̇r|ξ̄2

)
,

with ωr defined in Proposition 1. Then, using the expressions
(18) of the auxiliary control variables η1d and ωd one deduces

Ṡ=−k1ξ̄ 2
1 −

k3
k2

(eT
2 RTξ̇r)

2+ξ̄1(η1−η1d)−
eT
2 RTξ̇r

|ξ̇r|
(ω−ωd).

Now, backstepping procedure can be applied to deduce the
real control inputs (u1, ū2). Consider the following Lyapunov
candidate function

L , S +
1

2k4
(η1 − η1d)2 +

1

2k5
(ω − ωd)2 , (21)

with S defined by (20). From the system (16) and the control
expressions (19), one deduces

L̇ = Ṡ +
1

k4
(η1 − η1d) (u1 − η̇1d)

+
1

k5
(ω − ωd)(ū2 − ω̇d)−

k̇5
2k25

(ω − ωd)2

= −k1ξ̄ 2
1 −

k3
k2

(eT
2 RTξ̇r)

2− k6
k4

(η1−η1d)2−
k7
k5

(ω−ωd)2.

(22)

Since L̇ is negative semi-definite, the terms ξ̄, η1 − η1d
and ω − ωd remain bounded. From the boundedness of the
reference acceleration ξ̈r (Assumption 1), one can show that



(a) Feedback linear. (td = 10ms) (b) Feedback linear. (td = 20ms)

(c) Lyapunov with d0 (td = 10ms) (d) Lyapunov with d0 (td = 20ms)

(e) Lyapunov with D (td = 10ms) (f) Lyapunov with D (td = 20ms)

Fig. 3. The performance of the considered three controllers are compared
while the robot model is asked to track an eight-shaped Lissajous curve
trajectory defined in (27). In addition, a white Gaussian noise is added to
the state vector to emulate the sensory noise. Moreover, two control delay
time values (td = {10, 20} ms) are considered to study the robustness of the
controllers.

L̈ is bounded which implies that L̇ is uniformly continuous
along every system’s solution. Then, by the application of the
Barbalat’s lemma [9], one can ensure that L̇ converges to zero.
Consequently, one can deduce that(

ξ̄1, e
T
2 RTξ̇r, η1 − η1d, ω − ωd

)
→ 0. (23)

In addition, one needs to make sure that ξ̄2 asymptotically
converges to zero. If u1 and ū2 are defined as (19), then ω
converges to ωd as indicated in (23). Using this fact and the
Lemma 5 of [8], one gets

d

dt

(
eT
2 RTξ̇r

|ξ̇r|

)
→ −eT

1 RTξ̇r

|ξ̇r|
(ωd − ωr) . (24)

From (23), eT
2 RTξ̇r converges to zero. Therefore, the ωd given

in (18) converges to

ωd → ωr − k2|ξ̇r|ξ̄2. (25)

Using (25) in (24), one gets

d

dt

(
eT
2 RTξ̇r

|ξ̇r|

)
→ k2(eT

1 RTξ̇r)ξ̄2. (26)

(a) Lyapunov with d0 (td = 30ms) (b) Lyapunov with d0 (td = 30ms)

(c) Lyapunov with D (td = 30ms) (d) Lyapunov with D (td = 30ms)

Fig. 4. The performance of the backstepping controllers with fixed desired
ICR and variable desired ICR locations are compared for an eight-shaped
Lissajous curve trajectory defined in (27). In addition, a white Gaussian noise
is added to the state vector to emulate the sensory noise, and a control delay
time of 30 ms is considered to study the robustness of the controllers. The
tracking results and the error functions along the X- and Y -directions are
shown.

On the other hand, since
(
eT
2 RTξ̇r

)
→ 0 holds (from

(23)), d
dt

(
eT
2 RTξ̇r

)
→ 0 must be true. Using Assumption

1, |ξ̇r| 6= 0. Hence, d
dt

(
eT
2 RTξ̇r

|ξ̇r|

)
→ 0 must also be true.

Therefore, eT
1 RTξ̇rk2ξ̄2 → 0. But, eT

1 RTξ̇r 9 0, and
k2 > 0. Therefore, ξ̄2 → 0.

V. RESULTS AND DISCUSSION

In this section, the performance of three trajectory tracking
controllers are compared: the feedback linearization approach
proposed in [3], the backstepping controller proposed in the
present work with fixed control point, and the same as the
latter one but with variable desired ICR location as shown in
the previous section. The comparison is performed using the
MATLAB/Simulink. For all three controllers, the system (1) is
independently solved using MATLAB ode-solver of type ode5
(Dormand-Prince) with a fixed time step (5ms).

In the first place, the considered initial conditions are xo =
8 m, yo = 5 m, θo = π/2 rad, ẋo = 0.5 m/s, ẏo = 0.5
m/s, θ̇o = 0.1 rad/s. Next, the considered robot dimensions
correspond to those of an ATRV-2 mobile robot used in [3]
with m = 116 kg, I = 20 kgm2, a = 0.37 m, b = 0.55 m,
t = 0.315 m, d0 = 0.18 m, and r = 0.2 m. For the controller
proposed in the present work, the following parameter values
are used: D∗ = a/2.5 and σ = 2.

For a reasonable comparison between the three controllers,
the gains are independently tuned for tracking a circular
trajectory of 5 m radius. The resulting gains for the dynamic-
feedback-linearization-based controller are kv1 = 131, ka1 =
20, kp1 = 325, kv2 = 210, ka1 = 67, and kp1 = 580. Whereas,



(a) Curvature and the desired linear
speed

(b) The longitudinal component of the
desired ICR

Fig. 5. The curvature of the eight-shaped Lissajous curve trajectory defined
in (27) and the reference linear speed are shown in (a). The longitudinal
component of the desired ICR defined in (6) is shown for the considered
Lissajous curve trajectory in (b).

for the Lyapunov-based controller, the resulting gains are
k1 = 3, k2 = 15.8, κ3 = 7.95, k4 = 1, κ5 = 0.0005, k6 = 5,
and κ7 = 4.05.

Next, these gains are used to compare the performance of
the three controllers in tracking an eight-shaped Lissajous-
curve trajectory is considered as shown in Fig. 3 and Fig. 4.
This trajectory is characterized by its curvature that continu-
ously changes as shown in Fig. 5(a). The considered Lissajous
curve has the following expression

ξr =

[
X̄r(t)

Ȳr(t)

]
=

 5
(

1 + sin
(√

0.4t
))

5
(

1 + sin
(√

0.4t/2
))
 . (27)

Further, a multi-variate white Gaussian noise is added to
the state vector to emulate the sensor noise and study the
robustness of both controllers. The considered noise has the
following mean and standard deviation values: µx = 0 m,
µy = 0 m, µθ = 0 rad, µẋ = 0 m/s, µẏ = 0 m/s, µθ̇ = 0
rad/s, σx = 0.02 m, σy = 0.02 m, σθ = 0.01 rad, σẋ = 0.08
m/s, σẏ = 0.08 m/s, and σθ̇ = 0.01 rad/s.

Finally, on top of the additive noise, a control time delay is
also considered to further study the robustness of the system
controlled by each of the considered controllers. The results
presented in Fig. 3 show the tracking performance for a control
time delay of 10 ms and 20 ms. When the control delay time is
10 ms, all three controllers are able to track the trajectory (27).
However, when the delay time is 20 ms, then the feedback
linearization approach is unable to track the trajectory. We
further increase the delay time to 30 ms for the backstepping
approach with d0 and D. Fig. 4 shows that the backstepping
controller with d0 fails to track the trajectory (27), but the
controller proposed in the present work is able to track the
trajectory.

Fig. 5 shows the curvature of the considered Lissajous
function, the reference linear speed and the modulation of D
as function of the aforementioned variables. One can see that
as the curvature of the trajectory increases, both the reference
linear speed and D decrease. The fact that the curvature
increases implies that the robot is expected to make sharp
turns, and, therefore, D should be close to the center of gravity
in order not to lose the stability.

VI. CONCLUSION AND FUTURE WORK

In the present work, a trajectory tracking control design is
proposed for a planar four-wheel skid-steering mobile robot,
using a backstepping technique that guarantees the Lyapunov
stability and that maintains the longitudinal component of the
ICR to be within the robot dimension. This purpose is achieved
by defining the longitudinal component of the “desired ICR”,
which is a function of both the curvature of a given trajectory
and the reference linear speed. The proposed controller is
compared to other already-existing controllers for skid-steering
mobile robots, and we show that the presented controller
shows robustness in the presence of sensory noise and control
time delay.

In the future, the proposed controller will be validated by
implementing it on actual skid-steering mobile robots.
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