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Abstract. The perception of haptic textures depends on the mechan-
ical interaction between a surface and a biological sensor. A texture is
apprehended by sliding one’s fingers over the surface of an object. We de-
scribe here an apparatus that makes it possible to record the mechanical
fluctuations arising from the friction between a human fingertip and eas-
ily interchangeable samples. Using this apparatus, human participants
tactually scanned material samples. The analysis of the results indicates
that the biomechanical characteristics of individual fingertips clearly af-
fected the mechanical fluctuations. Nevertheless, the signals generated
for a single material sample under different conditions showed some in-
variant features. We propose that this apparatus can be a valuable tool
for the analysis of natural haptic surfaces.
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1 Introduction

In vision and in audition, the importance of considering the structure of nat-
ural scenes to better understand the organization of the nervous system has
been extensively developed and studied, and have led to groundbreaking results
in neurophysiology [8,13]. Very few studies of natural haptic scenes, and of tex-
tures in particular, have been undertaken, however. Studies about natural haptic
textures are either strictly psychophysical [3, 10, 22], neurophysiological [18], or
robotic [2, 7, 9]. To our knowledge, there has been no study regarding the phys-
ical determinants of the interaction between a human fingertip and a complex
surface, known to depend on so many rich physico-chemical phenomena [1], save
for correlates of the sensation of pleasantness [11].

This gap can be explained by the limitations of the available techniques for
recording natural haptic textures. A visual scene can be recorded by a camera,
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an auditory scene can be recorded by a microphone, but there is no standardized
device or method to record a haptic texture elicited through finger exploration.
Several apparatuses have been recently developed for similar ends [4, 6, 19], but
they are based on an artificial probe as a haptic sampler. . Nevertheless, inter-
esting approaches involved the measurement of the acoustic emissions due to
a finger sliding on a surface or measurements through vibrometers [12, 15]. In
this study, we adapted an apparatus developed in [20] that has the advantage of
leaving the finger free of any mechanical interference, owing to finger movement
restrictions or devices attached to the anatomy.

It has been shown that haptic texture perception is a multi-dimensional pro-
cess that does not only depend on the microgeometry of tactually explored sur-
face, but also on the tribology of finger pad-surface interaction on the mechanics
of fingertip pulp [1, 20]. Therefore, haptic texture recordings that use a robotic
finger or a probe are liable to miss critical aspects of this process. In this study,
we described an apparatus specifically designed for capturing and quantifying
the detailed physics underlying texture perception when a human finger is spon-
taneously exploring a surface. We studied several typical cases, by varying the
haptic sampler or the explored material. We performed several recordings where
a human participant was asked to spontaneously slide her finger or a rigid probe
on various surfaces, but not asked to report her sensation. We emphasized here
on the importance of the sampler and the sampler-surface contact on the pro-
duced vibration that can be encoded by the mechanoreceptors, and not on the
perceptual process. Our objective was to demonstrate that a natural haptic tex-
ture should consist of a naturally produced friction between a fingertip and a
surface, and not of a surface microgeometry only.

2 Materials and Methods

The experimental setup. As shown in Figure 1, the main components of the setup
comprise a mechanical system for material sample plates fixation, a position
measurement device, and a specifically designed friction force transducer. The
mechanical system takes advantage of a lever system to easily insert, fixate,
and remove a 10 cm x 10 cm plate. The plate was fixed during a slide, and
could be changed between slides. The position measurement device consists of
a string potentiometer of very high accuracy, ≈ 10 µm (WPS-250-MK30-P10,
Micro-Epsilon, Ortenburg, Germany). The restriction of the participant’s finger
movement in a single direction allowed us to use a single string potentiometer (cf.
Task). To compensate the retraction force exerted by the string potentiometer,
we introduced a counter-weight of 250 g at the other end of the string. The force
transducer and the charge amplifiers are the ones used in [20].

Task. We used as stimulus texture a matt glass and a structured floor tile,
taken from the set of materials collected and studied in [3]. These two samples
were chosen for their typical perceptual properties: the matt glass is one of the
smoothest textures of the set (averaged roughness: 5.2 µm/

√
mm−1; compress-

ibility, 67/m/m2, as measured in [3]), and the structured floor tile is one of the
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Fig. 1. Experimental setup. A: Participants run their finger over a sample (a) clamped
to the measurement bench (b). The finger is inserted in a ring maintained by strings
(c). The plate is removable and its height adjustable (d). B: The device measures fric-
tional force (arrows in gray) by three piezoelectric force transducers (e): one transducer
measured the tangential component of the force (e1), the two others measured its nor-
mal component (e2). The two leaf springs (e3) allow motion in the horizontal direction
only. The finger position along the sliding direction is measured with high accuracy by
a string potentiometer (f). The traction force exerted by the string of the potentiometer
is counter-balanced (g).

roughest textures of the set (averaged roughness: 15 µm/
√

mm−1; compressibil-
ity, 25 67/m/m2, as measured in [3]).

Three conditions were tested with a single participant (1 female, of age 25),
each lasting 5 s: the participant was asked to slide the bare index finger of her
dominant hand over the material sample using a back-and-forth motion at steady
speed (see Figure 1A); the same task but the finger was covered with talc; the
same task but the participant used a pen instead of her finger to scan the surface.

Data analysis. In this study, we considered the tangential friction force, FT , the
normal friction force, FN , and their ratio, µ(t) = FT (t)/FN (t). This last dimen-
sionless parameter can be considered as an instantaneous kinetic friction coeffi-
cient. For all the analysis described below, we only considered the fluctuation of
the instantaneous kinetic friction coefficient, δµ = µ− 〈µ〉, where “〈.〉” denotes
the average with respect to x. Following the methods used by [21], the temporal
signal, δµ(t), was resampled in the spatial domain. This reparameterization can
be justified by noting that the inverse problem of texture perception consists of
recovering the microtopography of a material’s surface from the friction between
a haptic sampler and the surface. The Fourier analysis of the resampled spatial
signal, δµ(x), followed the methods used in [21]. A fast Fourier transform was
performed on a signal, after having applied a 8th-order Butterworth high-pass
filter with a cutoff frequency of 0.01 mm−1 to the signal (note that the cutoff
frequency corresponds to a wavelength of 100 mm, the width of a material sam-
ple plate). The high-pass filtering helps to ensure that the oscillatory motion
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of the arm during the sliding is not taken into account by the Fourier analysis.
The cross-correlation analysis was performed on the same signals than the ones
processed in the Fourier analysis (δµ(x)). We computed the normalized cross-
correlation for two signals obtained in two distinct experimental conditions of
the three tested ones (bare finger, talc-covered finger, and probe).

3 Results and Discussion
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Fig. 2. Effect of the recording conditions. Black, grey, and red colors respectively in-
dicate data obtained in the bare finger, in the talc-covered finger, and in the rigid
probe conditions. A: Temporal variation of the tangential force (solid line), the nor-
mal force (dashed line), and the fingertip position (dotted line). B: Correlation be-
tween the instantaneous tangential sliding force and the instaneous normal sliding
force for each scanning condition. A solid line represents the linear regression of a
given correlation. C: Spatial variation of the fluctuating part of the kinetic friction
coefficient, δµ(x) = µ(x) − 〈µ〉. D: Envelope of the absolute value of the normalized
cross-correlation between signals, δµ(x), obtained in two of the three scanning condi-
tions. E: Normalized power spectrum of δµ(x). The thick line represents the regression
of the power spectrum by the function, y(x) = 2ζν2n/

√
(x2 − ν2n)2 + (2ζνnx)2. The

illustration on the upper right corner shows the geometric representation of the fitting
parameters (ζ = ∆ν/(2ν0) and νn = ν0/

√
1− ζ2). F: Moving average of the logarithm

of the normalized power spectrum of δµ(x) with the spatial frequency in logarithmic
scale.

Tribological analysis. We estimated the kinetic friction coefficient from the mea-
sured tangential and normal components of the friction force, as shown in Fig-
ures 2B and 3B. For that, we performed a linear regression on the relationship
between the instantaneous tangential friction force, FT (t), and the instantaneous
normal friction force, FN (t), obtained in the different experimental conditions for
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the two selected material samples. We measured for the dimensionless slope with
the matt glass surface: under the bare finger condition, 1.02 (with a coefficient of
the determination for the linear regression, r2= 0.95); under the talc condition,
0.75 (r2 = 0.77); and under the probe condition, 0.23 (r2= 0.79). For the struc-
tured floor tile surface, we obtained: under the bare finger condition, 0.43 (r2=
0.51); under the talc condition, 0.58 (r2 = 0.86); and under the probe condition,
0.18 (r2= 0.18). For all these regression analyses, we measured a p-value of zero,
which confirms the statistical significance of the linear regression. For the two
tested materials, the measured slope is much smaller in the probe condition than
in the bare finger condition. This result confirms that the tribological properties
of the contact, as estimated by the measured slope, can be affected by the sys-
tem used for scanning a material’s surface. It confirms the hypothesis that it is
critical to involve human bare finger in the study of natural texture perception.
Interestingly, whereas the friction coefficient changed significantly between the
two material samples for the bare finger condition, it barely changed for the talc
condition. This confirms that talc makes a finger contact closer to Coulombic
dry friction, and that the bare finger-surface contact is poorly described by a
dry friction model [1].
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Fig. 3. Effect of the material properties. Same color code as in Figure 2 for the scanning
conditions. Solid and dashed lines correspond respectively to results for the matt glass
and the floor tile surfaces. A: Material samples. B: Correlation between the instanta-
neous tangential sliding force and the instantaneous normal force for each material and
each scanning condition. A line represents the linear regression for a given correlation.
C: Envelope of the absolute value of the normalized cross-correlation between signals,
δµ(x), obtained with the two different material samples for each haptic sampler. D:
Results of the fit of the normalized power spectrum (cf. Spectral Analysis). The filled
and empty dots correspond respectively to the matt glass and the structured floor tile
surfaces, and the lines relate the data points for a given material’s surface.

Spectral analysis. We observed that the power spectra of all recorded vibration
signals, , δµ(x) = µ(x)−〈µ(x)〉, can be accurately described around its peak by
the function, y = 2ζν2n/

√
(ν2 − ν2n)2 + (2ζνnν)2, typical of a damped harmonic

oscillator of undamped frequency, νn, and damping ratio, ζ (ζ = ∆ν/(2ν0),
with ∆ν the half-power bandwidth and ν0 the resonance frequency; additionally,
ν0 = νn

√
1− ζ2). The nonlinear regression gave for the matt glass surface:
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νn = 0.65 mm−1 and ζ = 2.6.10−2 for the bare finger (r2 = 0.76); νn = 0.63
mm−1 and ζ = 2.8.10−2 for the talc-covered finger (r2 = 0.49); νn = 0.78 mm−1

and ζ = 1.8.10−2 for the rigid probe (r2 = 0.73). Similarly, we obtained for the
structured floor tile surface: νn = 0.39 mm−1 and ζ = 3.10−2 for the bare finger
(r2 = 0.51); νn = 0.45 mm−1 and ζ = 1.4.10−2 for the talc-covered finger (r2

= 0.54); νn = 0.76 mm−1 and ζ = 1.3.10−2 for the rigid probe (r2 = 0.8). For
all these regression analyses, we measured a p-value of zero, which confirms the
statistical significance of the chosen regression. Interestingly, the representation
provided by this regression (see Figure 3D) shows that the relative characteristic
between the scanning conditions is preserved despite the change of surface. In
addition, we observed a strong similarity between the vibration signals obtained
under the different scanning conditions but a single surface, as shown in the cross-
correlation analysis of Figure 2D, which supports the hypothesis that texture
perception can be robust with respect to the scanning mode [22]. We can note
in Figure 3C that there is a stronger similarity between signals under the rigid
probe condition than under the talc-covered finger condition, which confirms that
texture discrimination is more than discriminating surface’s microtopography.

An interpretation of this regression result in the Fourier analysis could be that
it reflects the viscoelasticity of the fingertip’s skin [14, 16]. Under this hypothe-
sis, the undamped frequency, νn, would scale with the skin’s equivalent elastic
modulus, and the damping ratio, χ, with the skin’s equivalent viscosity. Highly
similar values were observed for the fitting parameters under the bare finger and
the talc-covered finger conditions, confirming the viscoelasticity hypothesis as
talc modifies the finger-surface tribology only, and not the skin mechanics. Nev-
ertheless, it was also possible to describe the power spectrum obtained under the
rigid probe condition with such function, but with a clearly distinct undamped
frequency. Another interpretation of this result would be that it reflects the fin-
gerprint pattern of the fingertip’s skin. This pattern has been indeed proposed
to induce a Gabor filter on the surface microgeometry [17], which also exhibits
a band-pass filter property. Using an elastomer whose surface is patterned with
parallel ridges mimicking the fingerprints, it was shown that the frequency at the
peak of the power spectrum, ν0, is given by the inverse of the interridge distance,
ν0 = 2π/λ. Under this hypothesis, our results in the bare finger condition would
predict an interridge distance of, λ ≈ 1.5 mm, fairly close to the typical value (≈
0.5 mm). However, we measured similar values for the frequency at peak under
the talc-covered finger and bare finger conditions, even though the talc fills the
interridge gap, which should impact the inferred interridge value. As suggested
by [5], it is possible that the patterned elastomer model does not fully capture
the complexity of the skin structure.

Wiertlewski et al. observed that the power spectrum of the vibration signal
generated by the slip of a human finger over a smooth, flat, but not mirror-finish
surface followed a 1/f trend [21]. The apparatus employed here was based on
a similar principle than the one they used, and we applied a similar methodol-
ogy for analyzing the friction signals. We filtered these signals using a high-pass
filter of cutoff spatial frequency, 0.01 mm−1 (i.e. 100 mm spatial periods), re-
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moving thus the low-frequency components of the signal’s energy. This filtering
was motivated by the observation that dissimilarity between textures were not
well reflected in our measurements. We hypothesized that the texture signal was
dominated in the low frequency range by the signal induced by the oscillatory
movement of the arm. Interestingly, the observation that the textures can be
well discriminated after high-pass filtering suggests that there are two main con-
tributions to the signal characteristic of a haptic texture, the hand’s exploratory
movement and the friction induced oscillations. This confirms the importance
of involving active motion in the study of touch, since passive touch would in-
form the brain of only the high-frequency components arising from mechanical
interactions.

4 Conclusion

We described an apparatus that can be used for quantifying the different con-
tributing factors to texture perception: the sampler-surface tribology , the sam-
pler mechanics, and the material’s surface microtopography. Unlike traditional
haptic texture recording devices, our recording involves the friction between a
human fingertip and any material’s surface, and an oscillatory motor behavior
typically observed during surface haptic exploration. In this study, we empha-
sized that a natural haptic texture consists of the friction between a fingertip
and natural material’s surface. The developed apparatus can thus be used for
investigating the structure and the statistics of natural haptic textures, supposed
to be a critical constraint on the somatosensory system.
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