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Abstract— A solution to visuo-inertial filtering and estimation
based on homography, angular velocity, and specific accel-
eration measurements is proposed. This corresponds to the
typical situation of a mono-camera/IMU sensor facing a (locally)
planar environment. By lifting the estimation state space to
a higher-dimensionnal space, we show that the problem can
be formulated as a linear estimation problem. This allows
for the application of classical estimation techniques, e.g.,
Kalman filtering. Based on this linear formulation, we also
determine explicitly the motion conditions that ensure uniform
observability of the system, and we propose a simple linear
Luenberger-like observer. A validation of the proposed solution
based on real data is presented.

I. INTRODUCTION

For decades, vision has been a major topic of interest in
robotics due to its importance in many applications such
as visual-servoing and SLAM. Motivated by challenging
problems in highly dynamic environments, recent years have
seen an increased interest for visuo-inertial fusion, where
inertial data provides complementary information, especially
in term of bandwith (see, e.g., [7] for an introduction and
[16], [14], [12], [19] for recent contributions). The litterature
on the subject can be roughly splitted into two categories.
In the first one, it is assumed that the cartesian pose can
be recovered from vision, as in the case of a stereo-camera
system. In the second one, typically associated with a mono-
camera system, the cartesian pose is not directly available
and the problem partly consists in estimating this pose.
Feature-based estimation techniques are then often used, with
features positions being estimated together with the pose and
other parameters [16], [20]. The present paper also belongs
to the second category but it does not rely on features
positions estimation. More precisely, by assuming that the
sensor is facing a locally planar environment, vision can
provide the homography matrix that relates two images of the
planar scene (see, e.g., [18] for more details). The problem
addressed in this paper is to use IMU measurements (i.e.,
obtained from gyrometers and accelerometers) to obtain in
real-time filtered values of the homography matrix, estimates
of the sensor velocity, and estimates of the environment
structure (i.e. the so-called Structure from Motion problem).
Filtering of the homography matrix is instrumental in im-
proving homography estimation vision algorithms, especially
those based on direct methods (see [8] for more details).
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This is also needed to provide good inputs to homography-
based visual-servoing algorithms [2], [13], [17], [4], [24],
[9], [25]. Velocity estimates are typically needed in visual-
servoing applications (see [11], [12] for related work). As
for environment structure estimation, it can be used for both
visual-servoing and SLAM.

Existing methods of visual inertial fusion for homography-
based filtering and estimation make use of non-linear tech-
niques like the EKF [10], [23], the UKF [10], or nonlin-
ear geometric observers [19], [8]. Kalman-like approaches
(EKF, UKF) can provide covariance estimates, but in the
nonlinear framework stability can usually not be guaran-
teed and performance may be poor. Nonlinear geometric
observers are of interest for their computational simplicity,
large stability domains and explicit stability conditions, but
to our knowledge no solution of this type has been pro-
posed in order to incorporate accelerometer measurements.
In particular, the solution proposed in [19] can only cope
with gyrometers measurements. The solution proposed in
this paper departs from those existing methods. It is based
on the observation that the problem can be formulated as
a linear estimation problem by lifting the estimation state
space to a higher-dimensionnal space. This observation is
as simple as powerful since it allows for the application of
linear estimation techniques, e.g. the Kalman filter, which
typically come with guarantees of stability in term of the
system’s uniform observability, and optimality of the filter.
As a matter of fact, we derive in this paper conditions for the
uniform observability of the system. Concurrently, the linear
structure also allows us to derive a very simple Luenberger-
like linear observer and to establish its stability assuming the
system’s uniform observability, as in the case of the Kalman
filter.

The paper is organized as follows. Section II provides
technical background. Section III presents the main results
of the paper, which consist of the problem formulation as a
linear estimation problem, the uniform observability analysis,
and the design of a linear Luenberger-like observer. Section
IV concerns the validation of the proposed observer. The
paper ends with some concluding remarks and perspective
for future work.

II. TECHNICAL BACKGROUND

A. Notation

• S(x) is the antisymmetric matrix associated with the
cross product by x, i.e. S(x)y = x × y with × the
cross product.



• In is the n×n identity matrix and 0n ∈ Rn is the null
vector.

• tr(M) is the trace of the matrix M , det(M) its deter-
minant, and ‖M‖ :=

√
tr(MTM) its norm.

B. Homographies
Consider two images IA and IB of a planar scene taken

by a monocular camera. Each image I∗ (∗ ∈ {A,B}) is
taken from a specific pose of the camera and we denote by
F∗(∗ ∈ {A,B}) an associated camera frame with origin
corresponding to the optical center of the camera and third
basis vector aligned with the optical axis. Furthermore, we
denote by d∗ and n∗ respectively the distance from the
origin of F∗ to the planar scene and the normal to the scene
expressed in F∗.

Let R denote the rotation matrix from FB to FA and
p ∈ R3 the coordinate vector of the origin of FB expressed
in FA. The uncalibrated homography matrix is defined as
(see, e.g., [18] for details):

G ∝ KHK−1 (1)

with
H = RT − 1

dA
RT pnTA (2)

K the calibration matrix of the camera, and where ∝ denotes
equality up to a positive scalar factor. The matrix G maps
pixel coordinates from IA to IB . If the camera calibration
matrix K is known, then the matrix H can be deduced from
G up to a scale factor, i.e., K−1GK = αH . As a matter
of fact, the scale factor α corresponds to the mean singular
value of the matrix K−1GK: α = σ2(K−1GK) (see, e.g.,
[18, Pg. 135]). Therefore, α can be computed together with
the matrix H .

Another interesting matrix is

H̄ = det(H)−
1
3 H = η H (3)

Indeed, det(H̄) = 1 so that H̄ belongs to the Special Linear
Group SL(3).

C. Inertial data
Strapped down IMUs provide the angular velocity vector

of the sensor (w.r.t. inertial frame) in body frame ω, and the
so-called specific acceleration as. More precisely, assuming
that FA is an inertial frame and FB the body frame1, ω and
as are defined by the following relations:

Ṙ = RS(ω) , p̈ = gA +Ras (4)

where gA denotes the gravitational acceleration field ex-
pressed in FA. Note that as can also be defined by the
relation

v̇ = −S(ω)v + as + gB (5)

where v = RT ṗ denotes the velocity of FB w.r.t. FA
expressed in FB , and gB = RT gA is the gravitational
acceleration field expressed in FB .

1For simplicity it is assumed in this paper that the camera frame and
IMU frame coincide. This means in practice that a preliminary calibration
has been performed so as to bring visual and inertial measurements in the
same frame (see, e.g., [21] for solutions to this latter problem).

D. Problem statement and motivation

Consider a visuo-inertial sensor consisting of an IMU
rigidly attached to a monocular camera observing a planar
scene. With the above notation, the objective is to fuse the
homography measurements obtained from vision with iner-
tial data. Two main types of solutions have been proposed,
which differ by the estimation problem formulation. A first
approach (see, e.g., [23]) essentially consists in defining
the state to be estimated as x = (R, p, v, nA, dA), with
measurement y = (H,ω, as). Since H is a nonlinear function
of x, the estimation problem is nonlinear and one must resort
to nonlinear estimation techniques, like e.g. the EKF used
in [23]. A second approach [19], [8], essentially consists in
setting x = (H̄,M, nA) where H̄ is defined by (3) and M =

v
nT
A

dA
, with measurement y = (H̄, ω, as). The measurement

then becomes a linear function of x, but the dynamics of
x is nonlinear. The fact that H̄ belongs to a Lie group
has been exploited in [19], [8] to derive nonlinear observers
with strong stability results, but under restrictive assumptions
on the sensor motion that prevent the use of accelerometer
measurements. We show in the next section that another
choice of x leads to a linear form that much simplifies the
estimation problem and yields strong estimation results.

III. MAIN RESULTS

Define the state to be estimated as

x = (H,M,ns, Q) (6)

with H defined by (2) and

M = vnTs , ns =
nA
dA

, Q = gBn
T
s (7)

Then, using the fact that nA and dA are constant, one verifies
from (4) and (5) the following relations:

Ḣ = −S(ω)H −M
Ṁ = −S(ω)M +Q+ asn

T
s

ṅs = 0

Q̇ = −S(ω)Q

(8)

This expression calls for several remarks.
1) Since ω and as are known time-functions, the above

system is a linear time-varying system in x. This is a
strong asset for estimation purposes. Clearly, the price
to pay is that the estimation state space is larger than
what would be strictly needed for the estimation of
H, v, nA, dA, and gB . In other words, the estimation
problem has been lifted to a higher-dimensional state
space. The main point is that this lifting much simpli-
fies the observer design and analysis.

2) Since nA is a unit vector and the sign of one com-
ponent of nA is known (the camera is facing the
scene), one can deduce from ns both nA and dA. As a
consequence, one can extract from H,M,ns, and Q:

nA, dA
v = d2AMns = Mns

‖ns‖2

gB = d2AQns = Qns

‖ns‖2



Recall also that R and p can be extracted from H and
ns using the standard homography decomposition.

The linear form of System (8) allows one to apply existing
tools of linear estimation theory, starting with the Kalman
Filter that ensures asymptotic convergence of the estimation
errors to zero as soon as the system is uniformly completely
observable (UCO) (See [15], [6], [3] for more details).
Assuming that the state matrix is bounded, UCO is equivalent
to the more classical notion of uniform observability (See,
e.g., [5]). A first question is to determine conditions under
which this latter property is satisfied for System (8). An
answer to this question is provided in the following result.

Proposition 1: Assume that

i) ω and as are continuous and bounded on [0,+∞), and
their first, second, and third-order time-derivatives are
well defined and bounded on [0,+∞);

ii) there exists two scalars δ, σ > 0 such that

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

‖ȧs(τ) + ω(τ)× as(τ)‖ dτ
(9)

Then, System (8) with measurement y = H is uniformly
observable.

The proof is given in Appendix.
The above proposition holds independently of the relation

between ω, as and the derivatives of p and R. When ω and
as are given by (4), however, one easily verifies that the
observability condition (9) reduces to

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

‖
...
p (τ)‖ dτ (10)

which essentially means that uniform observability is ensured
provided that the linear acceleration is not constant.

As already mentionned, a natural observer candidate for
System (8) is the Kalman filter, which ensures asymptotic
(exponential) convergence of the estimation errors to zero
under the above observability condition. We propose below
another solution, in the form of a Luenberger-like observer.
Although it is not expected that this observer performs better
than the Kalman filter, it is computationally simpler.

Consider the following observer, which classically consists
in a copy of the system’s dynamics plus innovation terms:

˙̂
H = −S(ω)Ĥ − M̂ + αH
˙̂
M = −S(ω)M̂ + Q̂+ asn̂

T
s + αM

˙̂ns = αn
˙̂
Q = −S(ω)Q̂+ αQ

(11)

where the α∗ denote the innovations. Define also the esti-
mation errors as

H̃ = Ĥ −H, M̃ = M̂ −M, ñs = n̂s − ns, Q̃ = Q̂−Q

so that the estimation error dynamics is given by:
˙̃H = −S(ω)H̃ − M̃ + αH
˙̃M = −S(ω)M̃ + Q̃+ asñ

T
s + αM

˙̃ns = αn
˙̃Q = −S(ω)Q̃+ αQ

(12)

Proposition 2: Assume that as is constant and that ω and
as satisfy Conditions i) and ii) of Proposition 1 for uniform
observability. Define the innovation terms as:

αH = −k1H̃
αM = ((k2 + k4)I3 + k3asa

T
s )H̃

αn = −k3H̃T (S(ω)− k1I3)as
αQ = k1k4H̃

(13)

where {k1, · · · , k4} denotes any set of strictly positive con-
stants. Then, the origin of System (12) is globally uniformly
exponentially stable.

The proof is given in Appendix.
Proposition 2 provides a simple observer that yields the

same asymptotic stability property as the Kalman filter, under
the stronger assumption that as is constant. Asymptotic
stability in the case as constant is sufficient to ensure good
stability properties in practice, provided that as does not
vary too rapidly. This will be illustrated in the experimental
validation section. If necessary, it is possible to modify the
above observer so as to better take into account possible
variations of as.

Let us end this section with a last remark. There are
benefits to maintaining the homography matrix estimate in
the Special Linear Group SL(3). In particular, this ensures
that the estimate is consistent with the physical constraint
that the camera remains on one side of the scene. The
homography estimate as given by (11) does not a priori
belong to SL(3), and it cannot be projected onto SL(3)
via the scaling defined by (3) since one cannot guarantee
that det(Ĥ) 6= 0. This limitation can be circumvented
by coupling the observer (11) with the one proposed in
[19]. More precisely, the output M̂ of (11) can be used
as input to the observer proposed in [19]. The latter then
provides estimates ˆ̄H ∈ SL(3) that benefit from an accurate
estimation of M .

IV. EXPERIMENTAL VALIDATIONS

In this section we validate the linear observer presented
in the previous sections and evaluate its performance. This
algorithm is used in conjunction with an ESM homogra-
phy computer vision algorithm [2]. Recall that ESM is an
intensity-based registration method. It relies on an efficient
optimization algorithm to estimate transformation parameters
(here homography parameters) that best align a reference
image with a current one. For each image, the observer is
used to make a prediction of the raw homography that is used
as initialization of the ESM algorithm. The visual method
provides two results: an homography estimation and the
correlation score between the current image and the reference



image. If the correlation score is good enough (> 0.85) the
estimate is considered as ”good” and is used as measurement
in the observer.

Three issues are investigated: i) tracking quality and
ability of the filter to follow the pattern in the presence
of fast dynamics; ii) ability of the filter to interpolate the
homography between two frames and provide estimation
of the homography at higher rate; iii) quality of the other
estimates (normal, velocity, gravity, scale factor).

A. Experimental setup

We use a sensor consisting of a xSens MTiG IMU working
at a frequency of 200 [Hz] and an AVT Stingray 125B
camera that provides 40 images of 800× 600 [pixel] resolu-
tion per second. The camera and the IMU are synchronized.
The camera uses wide-angle lenses (focal 1.28 [mm]). The
target is placed over a surface parallel to the ground and is
printed out on a 376 × 282 [mm] sheet of paper to serve
as a reference for the visual system. The reference image is
300× 225 [pixel]. So the distance dA can be determined as
0.2115[m]. The processed video sequence presented in the
accompanying video is 1321 frames long and presents high
velocity motion (rotations up to 5[rad/s], translations, scaling
change) and occlusions. In particular, a complete occlusion of
the pattern occurs little after t = 10[s]. If the pattern is lost,
we reset the algorithm with the ground-truth homography
(see below). The sequence is subsampled at 20Hz to obtain
a more challenging sequence. Four images of the sequence
are presented on Figure 1.

Unfortunately, we do not have an external system (e.g.,
Vicon) to provide ground truth. We compare the output of
the observer with ”pseudo ground-truth” values obtained as
follows. Since the pattern geometry and size and the camera
calibration parameters are known, we are able to compute
the ground-truth normal nA and distance dA. A ground-truth
homography for each frame of the sequence is computed
thanks to a global estimation of the homography by SIFT
followed by the ESM algorithm. Using the homography
decomposition (see [18, Pg. 136] for the decomposition algo-
rithm) and the ground-truth normal and distance mentionned
above, we get ground-truth rotation R and position p. From
the ground-truth rotation and a ground-truth gA obtained
from the accelerometers, we deduce a ground-truth gB .
Finally, an approximation v̂gt of the ground-truth velocity
is obtained applying a derivative filter to the ground-truth
position: 

˙̂pgt = v̂gt − k5(p̂gt −
p

dA
)

˙̂vgt = −k6(p̂gt −
p

dA
)

(14)

with k5 = 27 and k6 = 225. We are aware that vgt may
significantly differ from v, so that the comparison of v̂ with
vgt must be interpreted with caution.

The observer gains have been chosen as k1 = 25, k2 =
75, k3 = 0.4, k4 = 38.5. Following the notation of the
description available at http://esm.gforge.inria.fr/ESM.html,

the ESM algorithm is used with the following parameter
values: prec = 2,iter = 50.

Fig. 1. Four images of the sequence at 20[Hz]: pattern position at previous
frame (green), vision estimate (blue), and prediction of the filterIMU (red).

B. Performance evaluation

First, it should be noted that the ESM estimator alone
is able to correctly track the pattern on only 72% of the
sequence. Thanks to the observer, we are able to track the
pattern on 97% of the sequence (a loss of the pattern occurs
at t =10[s] because of the complete occlusion).

We now discuss the estimation results for each state
component.

Figure 2 shows the results of the homography estimation.
The blue curve corresponds to the matrix norm of the dif-
ference between the predicted homography (by the observer)
and the ground-truth at current fame. In order to show the
benefit brought by the observer, we have also displayed in
green the matrix norm of the difference between the ground-
truth at previous frame and the ground-truth at current frame.
This clearly shows the capacity of the observer to provide
accurate predictions.

Figure 3 shows the results of the scale factor estimation
(i.e., dA). More precisely, the blue curve corresponds to the
ratio of d̂A (as deduced from n̂s) over the ground-truth dA.
One can notice that the scale estimation is very accurate
(ultimate error is about 0.5%).

Figure 4 presents the angular error between estimate and
ground-truth for the normal nA (top) and the gravity vector
gB (bottom). The figure exhibits the convergence of the
normal estimate to the ground-truth (the final error is less
than one degree). The direction of the gravity is also correctly
estimated. The estimation seems less accurate and more
noisy than for the normal but let us remark that the ground-
truth is obtained from the visual processing and it is not
completely accurate either. A better evaluation would require
a better ground-truth.

Figure 5 shows the velocity components for both the
estimation v̂ (blue) and the ground truth vgt (red). The trends
are similar but as in the previous case, the reader must be
aware that vgt is not a very reliable ground-truth. One can
observe that the estimation error on the scale factor at the
begin of the sequence explains the larger difference between



ground-truth and estimate. As time goes by, the two curves
get closer.

Let us finally remark that these performances are obtained
despite the fact that the assumption of constant specific accel-
eration (upon which the observer stability was established)
is violated.

Fig. 2. Homography: ||H̃|| (blue), error between homography at current
and previous frames (green)

Fig. 3. Scale factor: ratio d̂A/dA

CONCLUSION

We have shown that the problem of visuo-inertial estima-
tion based on homography measurements can be formulated
as a linear estimation problem by lifting the state space
to a higher-dimensional space. This allows for the direct
application of linear estimation theory. Based on this for-
mulation, a uniform observability analysis has been derived
and a Luenberger-like linear observer has been proposed
together with its stability analysis in term of the system’s
observability. Experimental validation of the proposed so-
lutions have shown the capacity of the observer to provide
good-quality estimates of homography, linear velocity, and

Fig. 4. Normal nA and gravity gB : errors in degrees between estimation
and ground-truth

Fig. 5. Velocity : v̂ (blue), vgt (red)

environment structure parameters. Possible extensions of this
work include, e.g., coupling the proposed solution with
”geometric observers” that better preserve the structure of
the problem, addressing possible IMU biaises, or applying
the proposed solution to UAVs.

APPENDIX

Proof of Proposition 1

The proof is based on known relations between uniform
observability and properties of the observability matrix (see,
e.g. [5, Ch. 5]). It follows the same lines as [3], [22, App.
A.4]. Recall that for a time-varying linear system{

ẋ = A(t)x,
y = C(t)x

(15)

with x ∈ Rn, the observability matrix is

O(t) =

N0(t)
N1(t)

...





with N0 = C and Nk+1 = NkA + Ṅk for k = 1, · · · . We
recall the following result, which is a particular case of [22,
Lemma 3.1].

Lemma 1: Consider the linear time-varying system (15) and
assume that

1) C is constant,
2) A is continuous and bounded on [0,+∞),
3) The k-th order derivative of A is well defined and

bounded on [0,+∞) up to order k = K ≥ 0,
4) There exist an m × n matrix P , composed of row

vectors of N0, · · · , NK , and two scalars δ, σ > 0 such
that

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

det(P (τ)TP (τ)) dτ (16)

Then, System (15) is uniformly observable.

We apply the above lemma to System (8), where columns
vectors of H , M , and Q, are stacked vertically so as to obtain
a vector x ∈ R9+9+3+9. Assumption 1 is clearly satisfied
since y = H . Assumptions 2 and 3 with K = 3 are also
satisfied by Assumption i) of Proposition 1. There remains
to show that Assumption 4 above is satisfied. We simply set

P (τ) =


N0(τ)
N1(τ)
N2(τ)
N3(τ)


One verifies that P has the following block structure:

P =

I9 0 0
∗ −I9 0
∗ ∗ Pr

 (17)

where

Pr =

(
−P33 −I9
−P43 P44

)
and the matrices Pij are given by

P33 =

aseT1ase
T
2

ase
T
3

 , P43 =

(ȧs − 2ω × as)eT1
(ȧs − 2ω × as)eT2
(ȧs − 2ω × as)eT3


and

P44 = 3

S(ω) 0 0
0 S(ω) 0
0 0 S(ω)


with ei the canonical vectors of R3. In the above expressions
the ∗ denote matrices the expression of which is unimportant.
Due to the block structure of P (cf. (17)), one can show that
(16) is equivalent to

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

det(Pr(τ)TPr(τ)) dτ (18)

Furthermore, we remark that

Pr =

(
0 I9

−(P43 + P44P33) −P44

)(
I3 0
−P33 −I9

)

so that (18) can be further reduced to

∀t ≥ 0, 0 < δ ≤
∫ t+σ

t

det(Prr(τ)TPrr(τ)) dτ (19)

with

Prr = P43 + P44P33 =

(ȧs + ω × as)eT1
(ȧs + ω × as)eT2
(ȧs + ω × as)eT3


Condition (19) follows from (9), after noting that PTrrPrr =
‖ȧs + ω × as‖2I3.

Proof of Proposition 2

Define two new variables n̄s, Q̄ as:{
n̄s = ñs + k3H̃

Tas
Q̄ = Q̃+ k4H̃

and note that the mapping (H̃, M̃ , ñs, Q̃) 7−→ (H̃, M̃ , n̄s, Q̄)
is a diffeomorphism. Using the assumption that as is con-
stant, one verifies from (12) that

˙̃H = −S(ω)H̃ − M̃ + αH
˙̃M = −S(ω)M̃ + Q̄+ asn̄

T
s + ᾱM

˙̄ns = −k3M̃Tas + ᾱn
˙̄Q = −S(ω)Q̄− k4M̃ + ᾱQ

(20)

with  ᾱM = αM − k4H̃ − k3asaTs H̃
ᾱN = αN + k3(H̃TS(ω) + αTH)as
ᾱQ = αQ + k4αH

(21)

Consider the candidate Lyapunov function

L =
1

2

(
c1‖H̃‖2 + c2‖M̃‖2 + c3‖n̄s‖2 + c4‖Q̄‖2

)
where the ci’s are positive constant specified latter. The time
derivative of L is given by

L̇ = c1 tr(H̃T ˙̃H) + c2 tr(M̃T ˙̃M) + c3n̄
T
s

˙̄ns + c4 tr(Q̄T ˙̄Q)

Using the expressions of ˙̃H, ˙̃M, ˙̄ns,
˙̃Q in (20), and the fact

that for any square matrix P and any vectors z1, z2 ∈ Rn,
tr(P ) = tr(PT ) and tr(z1z

T
2 ) = zT1 z2, one obtains:

L̇ = c1 tr(−H̃T M̃ + H̃TαH) + c2 tr(M̃T ᾱM )

+(c2 − c3k3)n̄Ts M̃
Tas + (c2 − c4k4) tr(M̃T Q̄)

+c3n̄
T
s ᾱn + c4 tr(Q̄T ᾱQ)

(22)
Let us set 

αH = −k1H̃
ᾱM = k2H̃
ᾱN = 0
ᾱQ = 0


c2 = c1

k2

c3 = c2
k3

c4 = c2
k4

and note, in view of (21), that this definition of αH , ᾱM , ᾱN
and ᾱQ is equivalent to (13). One then deduces from (22)
that

L̇ = −c1k1 tr(H̃T H̃) = −k1c1‖H̃‖2 ≤ 0



This shows that the origin of System (12) is stable. Further-
more, it follows from [1, Th. 5] that the origin of System
(12) is uniformly exponentially stable provided that the pair
(A(t), C) is uniformly observable, with A(t) the state matrix
of System (12)-(13), and C the constant matrix defined by
H̃ = Cx̃ with x̃ = (H̃, M̃ , ñs, Q̃), i.e., provided that System
(12)-(13) is uniformly observable with H̃ as measurement.
Since the innovations only depend on H̃ , this is equivalent to
the uniform observability of the original system (8) with H
as measurement. The latter property follows by application
of Proposition 1.
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