
  

 

Abstract—This work introduces a novel balance monitoring 

strategy for humanoid robots. The proposed method addresses 

the problem of ensuring the balance maintenance of a 

humanoid robot, through the online monitoring of its state of 

balance by means of a Lyapunov (energy) function. The 

proposed method involves the use of dynamical models 

accounting for both the link and motor states. Energy limits 

corresponding to the front and rear edges of the support 

polygon are computed using a closed-loop Lyapunov function. 

Therefore, this method focuses on the resolution of two issues 

through a single control scheme, namely, guaranteeing 

asymptotical stability of the robot at the joint level, in addition 

to ensuring that it maintains its dynamical balance. A 

mathematical proof of the previous claims, as well as of the 

method’s validity, is provided in the paper, whereby a direct 

relationship between the CoP and the system’s energy has been 

established for the first time. Experimental results of step 

recovery and walking tests performed on the COmpliant 

huMANoid (COMAN) corroborate the method’s applicability 

and performance as a balance monitor.    

I. INTRODUCTION 

HE topic of humanoid balancing has been studied 

extensively as its importance has undergone a steady 

increase in recent years, owing to the development of 

numerous humanoids possessing distinct mechanical 

structures. Among the most important contributions that 

aided in the shaping of the theories developed thereafter, was 

the introduction of the zero-moment-point (ZMP), that has 

been offered to the field through the work presented in [1], 

wherein the authors propose a point under the foot sole 

whose position defines the dynamic balance of a bipedal 

system. There have also been noteworthy extensions of this 

theory that have aided in the clarification of certain aspects 

pertaining to the original ZMP notion. The work in [2] 

rigorously describes the center of pressure (CoP) and ZMP 

concepts, highlighting their differences as well as the cases 

in which they are equivalent. Another important balance 

criterion known as the foot rotation indicator (FRI) [3] has 

been defined as the point on a humanoid’s foot at which the 

net normal force must act in order to ensure that the foot 

remains stationary, although this only applies to the single 
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support stance.  As far as balancing strategies are concerned, 

there have been several works dealing with this topic. [4] 

proposes dynamic balancing through the use of ankle and 

hip strategies. The former involves movement of the entire 

system about the ankle and has been studied in [5] and [6], 

where the authors have utilized torque control of the ankles. 

[6] assumes a direct torque control of the stiff ankle, 

rendering it possible to control the CoP in a delay-free 

manner, whereas this paper demonstrates how the presence 

of under-actuated elastic elements in compliant humanoids 

prevents the latter from holding true. A natural extension of 

these schemes, namely the hip strategy, has been examined 

in addition to how a humanoid can switch between various 

stabilization techniques [6], i.e. hip/ankle strategies, and 

stepping, to ensure that stability is maintained. [7] proposes 

a method of passivating a humanoid through a combination 

of translating the ground reaction forces (GRFs) to joint 

torques and gravity compensation control. [8] also focuses 

on a passivity-based approach that is aimed at absorbing the 

GRFs acting on a humanoid during walking. [9] 

demonstrates that the monitoring and modification of the 

rate of change of angular momentum as both a stability 

criterion and control variable, can be used to balance a 

bipedal robot. ZMP preview control schemes are a common 

choice for stabilization and have been described in 

[10][11][12], while ZMP feedback controllers have been 

presented and adapted to the field of stepping in the presence 

of external perturbations [13]. This leads to the next topic of 

stepping, where [14] provides an answer to the question of 

‘when and where must a step be taken’ in order to stabilize a 

given system, by introducing the Capture Region concept. 

These are regions on the terrain, within which a robot can 

take a step in order to stabilize its structure. The problem of 

humanoid balance monitoring and fall detection has been 

approached using several methods, ranging from the 

utilization of attitude sensors and reflexes [15], to viability 

theory [16] and probabilistic techniques [17], while it is 

crucial to mention the utilization of the Maximal Output 

Admissible (MOA) set technique that was recently proposed 

[18]. Contrarily, this paper aims at addressing the afore-

mentioned problem through the consideration of dynamical 

models of increased complexity and closed-loop energy 

functions that are used to generate values corresponding to 

unstable states, from which the robot would not be capable 

of recovering its balance. The idea of utilizing Lyapunov 

Stability Margins for the assessment of a robot’s dynamical 

balance, was initially introduced in the pioneering work seen 

in [19], for two reasons. Firstly, the ZMP/CoP is incapable 

of providing a useful measure of stability on uneven terrain 

and secondly, the Energy Stability Margins unanimously 

conclude that tipping over a contact point edge is an unstable 
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situation for walking systems, even though this phenomenon 

is frequently encountered in stable walking [19]. While [19] 

introduced the Lyapunov Stability Margin concept without 

giving a practical and computationally tractable example, 

our proposed approach contributes by providing a specific 

Lyapunov Stability Margin for a humanoid robot that can be 

computed quickly through a simple relationship between the 

CoP deviation and the closed-loop energy using specific 

Lyapunov functions. Furthermore, it distinguishes itself 

from the orbital energy [20] and energy stability margin 

methods [21] of monitoring balance, in the sense that it 

considers not only more intricate dynamical models that 

include compliance but it also accounts for the closed-loop 

system properties. An additional contribution of this work is 

that it presents a control scheme that ensures the closed-loop 

system’s asymptotical stability and offers a method, based 

on this same control scheme, through which the robot’s 

dynamical stability can be monitored. 

The rest of the paper is structured as follows; section II 

introduces the dynamical models and the joint controller, 

section III describes the balance controllability, section IV 

provides a mathematical proof of the method’s validity, 

section V reports on the experimental results, section VI 

extends the relevant theory to walking, and finally section 

VII discusses the conclusions.  

II. DYNAMICAL MODEL AND JOINT CONTROL 

A. Compliant Robot Dynamics 

For the double support case, we consider a generic 𝑗-degree 

of freedom robot with 𝑛𝑖-drives for each degree of freedom 

 𝑖 = 1,2… 𝑗. The total number of drives is 𝑛 = ∑ 𝑛𝑖
𝑗
𝑖=1 . The 

link and motor dynamics may be described as follows [22]: 

 

    𝑀𝐽(𝑞)�̈� + 𝑁�̇� + 𝐶(𝑞, �̇�)�̇� + 𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞 − 𝜃) = 𝜏𝑔(𝑞)   (1) 

 

                          𝐽�̈� + 𝐷�̇� − 𝑃𝑆𝑚𝑞 + 𝑃𝜃 = 𝑉𝑇𝐺𝑉𝑚                  (2) 
 

where 𝑞 and 𝜃 are the link and motor positions, 𝑀𝐽(𝑞), 𝑁 

and 𝐶(𝑞, �̇�) ∈ 𝑅𝑗×𝑗 are the inertia, damping and 

Coriolis/centripetal matrices respectively, 𝜏𝑔(𝑞) is the 

gravity torque vector, 𝑉𝑇𝐺 ∈ 𝑅
𝑛×𝑛 is the voltage-to-torque 

gain matrix and 𝑉𝑚 represents the motor voltages. 𝑃 ∈ 𝑅𝑛×𝑛 

is a diagonal matrix with positive entries representing the 

passive spring stiffness between the motors and the robot 

links, while 𝐽, 𝐷 ∈ 𝑅𝑛×𝑛 are the motor inertia and damping. 

𝑆𝑚
𝑇 ∈ 𝑅𝑗×𝑛 possesses the following structure: 

 

               𝑆𝑚
𝑇 =

[
 
 
 
 
 
 
1 1⋯1⏟    
𝑛1

0 ⋯ 0

0 1 1⋯1⏟    
𝑛2

⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 1⋯1⏟    

𝑛𝑗 ]
 
 
 
 
 
 

              (3) 

A substantial degree of modeling accuracy was preserved by 

including all the sagittal joints in the system’s mathematical 

description. However, the over-actuated nature of the double 

support stance led to the six joints being treated as three 

(Fig. 1), although all six actuators were considered. This 

approach provides greater precision as compared to 

approximating the whole humanoid’s structure as a single 

inverted pendulum. Fig. 1 depicts the correspondence 

between the actual robot’s joints with those of the model. 

The elements of the 3-DOF double support vector were 

arranged as follows:  
 

𝜏𝑔0 = [𝜏𝑔𝑎 𝜏𝑔𝑘 𝜏𝑔ℎ]𝑇 

 

with 𝜏𝑎 , 𝜏𝑘, 𝜏ℎ representing the ankle, knee and hip torques 

respectively. One of the main properties of the gravity 

vector, to be used in subsequent sections, is the following: 

 

                                  ‖
𝜕𝜏𝑔(𝑞)

𝜕𝑞
‖ = ‖

𝜕2𝑈𝑔(𝑞)

𝜕𝑞2
‖ < 𝛼               (4) 

 

for some 𝛼 > 0 ; here 𝑈𝑔(𝑞) denotes the potential energy 

due to gravity, 𝜏𝑔(𝑞) = −(𝜕𝑈𝑔(𝑞)/𝜕𝑞)
𝑇

 and the operator 

norm ‖𝐴‖ = 𝑚𝑎𝑥{‖𝐴𝑥‖/‖𝑥‖} is considered.  

 

           
 

Figure 1. Lower body of compliant humanoid COMAN and corresponding   
double support model. 

 

B. Desired Gravity Compensation Controller 

The low-level joint controller was based upon gravity 

compensation control, employing both motor and link 

feedback.  The associated control law may be represented as 

follows:  

 

              𝑉𝑚 = 𝐾𝑚1(𝑆𝑚𝑞𝑑 − 𝜃) − 𝐾𝑚2�̇� − 𝐾𝑗2�̇� + 𝑢𝑔𝑐         (5) 

 

where 𝑢𝑔𝑐 is the gravity compensation term and 𝑞𝑑 is the 

desired position, while 𝐾𝑚1, 𝐾𝑚2 and 𝐾𝑗2 are the diagonal, 

positive definite motor position, motor velocity and link 

velocity feedback gain matrices.  

For the double support, 𝑢𝑔𝑐 is given by: 

 

             𝑢𝑔𝑐 = −𝑉𝑇𝐺
−1(𝑉𝑇𝐺𝐾𝑚1𝑃

−1 + 𝐼)(𝑆𝑚
𝑇 )+𝜏𝑔(𝑞𝑑)           (6) 

 

where 𝑞 has been replaced with 𝑞𝑑 since we are considering 

a desired gravity compensation controller, while (𝑆𝑚
𝑇 )+ 

denotes the Moore-Penrose pseudoinverse of 𝑆𝑚
𝑇 . By 

considering the closed-loop system’s steady state equations, 

we can define the following matrix that plays a central role 

in the stability analysis since it must satisfy certain 



  

conditions in order for closed-loop stability to be guaranteed, 

as shown in [23]:  

 

                           𝑇𝐷 = [
𝑆𝑚
𝑇𝑃𝑆𝑚 −𝑆𝑚

𝑇𝑃
−𝑃𝑆𝑚 𝑉𝑇𝐺𝐾𝑚1 + 𝑃

]                     (7) 

 

The desired motor and link positions are related by: 

 

                            𝜃𝑑 = 𝑆𝑚𝑞𝑑 − 𝑃
−1(𝑆𝑚

𝑇 )+𝜏𝑔(𝑞𝑑)                   (8) 

 

Additionally, the following matrix is defined: 

 

                      𝛾 = 𝑁 ∙ (𝐷 + 𝑉𝑇𝐺𝐾𝑚2) −
(𝑉𝑇𝐺𝐾𝑗2)

2

4
               (9) 

 

in order to be used together with 𝑇𝐷 for the stability criteria 

statements.  

C. Closed-Loop System Lyapunov Function 

Using control law (5), the closed-loop system was rendered 

globally asymptotically stable, as was demonstrated in the 

analysis presented in [23].  Hence, the following Lyapunov 

function shall be considered throughout the paper: 

 

𝑉𝑇(𝑞𝐹 , �̇�𝐹) =
1

2
�̇�𝐹
𝑇𝑀(𝑞)�̇�𝐹 +

1

2
𝑞𝐸
𝑇𝑇𝐷𝑞𝐸 + 𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑)

+ 𝑞𝐸
𝑇 [
𝜏𝑔(𝑞𝑑)

0
] ≥ 0                                   (10) 

 

, where 𝑀(𝑞) = [
𝑀𝐽(𝑞) 0

0 𝐽
], 𝑞𝐹 = [

𝑞
𝜃
], 𝑞𝐹𝑑 = [

𝑞𝑑
𝜃𝑑
], 𝑞𝐸 =

(𝑞𝐹 − 𝑞𝐹𝑑). 

Explicit calculations proving that the time derivative is 

negative definite are omitted here as they can be found in 

[22]. It is essential to state that global stability holds if and 

only if the following conditions are satisfied [23]: 

 

𝜆𝑚𝑖𝑛(𝑇𝐷) > 𝛼 and 𝜆𝑚𝑖𝑛(𝛾) > 0 

 

where 𝜆𝑚𝑖𝑛 denotes the minimum Eigenvalue. 

The satisfaction of these conditions is contingent upon the 

tuning of the controller, which in this case is related to the 

selection of the 𝐾𝑚1, 𝐾𝑚2 and 𝐾𝑗2 matrices. 

Furthermore, global stability does not imply the humanoid’s 

possession of a dynamically balanced state in the CoP sense, 

and for this reason, the subsequent section will focus on 

describing and proving how the CoP deviation can be 

bounded by a constant multiplied by the square root of the 

value of the Lyapunov function (10).  

III. BALANCE MONITORING 

A. Dynamical CoP Expression for Compliant Bipeds 

This sub-section provides an expression for a compliant 

biped’s CoP, revealing that this variable may not be 

controlled in a direct manner, as opposed to a stiff biped’s 

CoP. We need to express the CoP in terms of the system’s 

dynamics and shall commence with the following equation:  

                                              𝑋𝐶𝑜𝑃 =
𝜏𝑎
𝐹𝑍
                                    (11) 

 

with 𝜏𝑎 and 𝐹𝑍 representing the ankle torque and the vertical 

component of the GRF, that may also be expressed as: 

  

                                      𝐹𝑍 = 𝑚𝑇(�̈�𝐶 + 𝑔)                              (12) 
 

where 𝑚𝑇 is the robot’s total mass and �̈�𝐶 is the CoM 

acceleration along the z-axis, while the acceleration of 

gravity, 𝑔 = 9.81
𝑚

𝑠2
. The relationship presented in [6] may 

now be employed, although it needs to be appropriately 

modified for the treatment of compliant humanoids 

beforehand. Thus, (1) − (2) may be expressed as follows: 

 

                                           𝑀�̈�𝐹 = 𝜏 −𝑊                                (13) 
 

where 𝜏 = [
−𝑆𝑚

𝑇𝑃(𝑆𝑚𝑞 − 𝜃)
𝑉𝑇𝐺𝑉𝑚

], 𝑊 = [
−𝜏𝑔(𝑞) + (𝑁 + 𝐶)�̇�

−𝑃(𝑆𝑚𝑞 − 𝜃) + 𝐷�̇�
]. 

By substituting (12) into (11) we obtain: 

 

                                       𝑋𝐶𝑜𝑃 =
𝜏𝑎

𝑚𝑇(�̈�𝐶 + 𝑔)
                        (14) 

 

𝜏𝑎 is the first component of the vector 𝜏 =

[
−𝑆𝑚

𝑇𝑃(𝑆𝑚𝑞 − 𝜃)
𝑉𝑇𝐺𝑉𝑚

], so: 

 

                                𝑋𝐶𝑜𝑃 =
−𝐺 ∙ 𝑆𝑚

𝑇𝑃(𝑆𝑚𝑞 − 𝜃)

𝑚𝑇(�̈�𝐶 + 𝑔)
                 (15) 

 

where 𝐺 is a selection matrix that selects the ankle torque. 

The above equation sheds light on the fact that a compliant 

robot’s CoP may not be directly controlled, since the torque 

input 𝜏𝑎 = −𝐺 ∙ 𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞 − 𝜃) is not directly controllable. 

B. Trigger Energy and CoP  

The aim is to obtain an energy value corresponding to a state 

that has been assumed by the robot, from which it may not 

be able to recover its balance [19], and to set this as the 

trigger energy. Given the fact that our dynamical model and 

energy function are concerned solely with sagittal motions, 

this would imply the CoP reaching either one of the x-axis 

limits of the support polygon.  

Lateral motions are not considered since the relevant joints 

do not incorporate compliant elements and would hence 

require a different control law that would be accompanied 

with a distinct Lyapunov function. It is noted that the robot 

is to be operated around the point of maximal balance which 

would imply 𝑋𝐶𝑜𝑃 = 0, that in our case corresponds to 

𝑞𝐹𝑑 = 0. The method works not only for this specific 

operating point of ‘maximal balance’ but also for arbitrary 

equilibrium points. Furthermore, the trigger energy can be 

computed using equation (36) that is presented in the next 

sub-section, while the Lyapunov function (10) is to be used 

for the measurement of the total energy during the 

experiments. Thus, the difference between the measured and 



  

trigger energy values will provide insight into the robot’s 

state of stability at a given time, as described in [19].  

To elaborate, the energy value tends to increase as the CoP 

moves from the center of the polygon towards its edges, 

although the two are not related in a linear manner.  

Additionally, this approach can be used for trajectory 

generation entailing models that are more intricate than the 

linear inverted pendulum model (LIPM). 

IV. LYAPUNOV ENERGY-COP EXPRESSION 

A. Relationship Formulation 

For a bipedal robot whose closed-loop energy is described 

by (10), there exists a range of energy values for which the 

CoP can only remain within the support polygon, as will be 

demonstrated in the subsequent lines. 

It shall be assumed that the value of �̈�𝐶 is small in 

comparison to that of 𝑔, as it is in practice, and has also been 

considered in several other works [5][6][13], such that:  

 

                                           𝑋𝐶𝑜𝑃 =
𝜏𝑎
𝑚𝑇𝑔

                                  (16) 

 

where 𝜏𝑎 = −𝐺 ∙ 𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞 − 𝜃). 

Additionally, we define the CoP position and the ankle 

torque at equilibrium (𝑋𝐶𝑜𝑃𝑑 and 𝜏𝑑): 

 

                                           𝑋𝐶𝑜𝑃𝑑 =
𝜏𝑑
𝑚𝑇𝑔

                                (17) 

 

with 𝜏𝑑 = −𝐺 ∙ 𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞𝑑 − 𝜃𝑑). 

Besides, we recall that 𝜏𝑎 = −𝐺 ∙ 𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞 − 𝜃), hence: 

 

             𝜏𝑎 − 𝜏𝑑 = −𝐺𝑆𝑚
𝑇𝑃(𝑆𝑚𝑞 − 𝑆𝑚𝑞𝑑 − 𝜃 + 𝜃𝑑)         (18) 

 

           |𝜏𝑎 − 𝜏𝑑| ≤  ‖𝐺𝑆𝑚
𝑇𝑃‖‖𝑆𝑚𝑞−𝑆𝑚𝑞𝑑 − 𝜃 + 𝜃𝑑‖      (19) 

 

By the triangle inequality: 

 

|𝜏𝑎 − 𝜏𝑑| ≤  ‖𝐺𝑆𝑚
𝑇𝑃‖ (‖𝑆𝑚𝑞−𝑆𝑚𝑞𝑑‖ + ‖𝜃 − 𝜃𝑑‖) 

 

  |𝜏𝑎 − 𝜏𝑑| ≤  ‖𝐺𝑆𝑚
𝑇𝑃‖ (‖𝑆𝑚‖ ‖𝑞 − 𝑞𝑑‖ + ‖𝜃 − 𝜃𝑑‖)   (20) 

 

while squaring both sides yields: 

 

   |𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝐺𝑆𝑚

𝑇𝑃‖2 (‖𝑆𝑚‖ ‖𝑞 − 𝑞𝑑‖ + ‖𝜃 − 𝜃𝑑‖)
2  (21) 

 

Since: 

 

2‖𝑆𝑚‖‖𝑞 − 𝑞𝑑‖‖𝜃 − 𝜃𝑑‖
≤ ‖𝑞 − 𝑞𝑑‖

2 + ‖𝑆𝑚‖
2‖𝜃 − 𝜃𝑑‖

2           (22) 
we have: 

 
(‖𝑆𝑚‖ ‖𝑞 − 𝑞𝑑‖ + ‖𝜃 − 𝜃𝑑‖)

2 

             ≤ (‖𝑆𝑚‖
2 + 1)( ‖𝑞 − 𝑞𝑑‖

2 + ‖𝜃 − 𝜃𝑑‖
2)                (23) 

 

Thus: 

 

|𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝐺𝑆𝑚

𝑇𝑃‖2 (‖𝑆𝑚‖
2 + 1)( ‖𝑞 − 𝑞𝑑‖

2

+ ‖𝜃 − 𝜃𝑑‖
2) 

 

        |𝜏𝑎 − 𝜏𝑑|
2 ≤ ‖𝐺𝑆𝑚

𝑇𝑃‖2  (‖𝑆𝑚‖
2 + 1)( ‖𝑞𝐸‖

2)       (24) 
 

Finally ‖𝑆𝑚‖ = √𝑛𝑚𝑎𝑥, with 𝑛𝑚𝑎𝑥 = max
1≤i≤j

(ni): 

 

                           ‖𝑞𝐸‖
2 ≥

1

𝑛𝑚𝑎𝑥 + 1
(
|𝜏𝑎 − 𝜏𝑑|

‖𝐺 ∙ 𝑆𝑚
𝑇𝑃‖

)

2

            (25) 

 

Additionally, the following statement holds true: 

 

                               ‖𝑞𝐸
𝑇𝑇𝐷𝑞𝐸‖ ≥ 𝜆𝑚𝑖𝑛(𝑇𝐷)‖𝑞𝐸‖

2                 (26) 
 

hence leading to the expression: 

 

  ‖
1

2
𝑞𝐸
𝑇𝑇𝐷𝑞𝐸‖ ≥

1

2(𝑛𝑚𝑎𝑥 + 1)
𝜆𝑚𝑖𝑛(𝑇𝐷) (

|𝜏𝑎 − 𝜏𝑑|

‖𝐺 ∙ 𝑆𝑚
𝑇𝑃‖

)

2

 (27) 

 

Since the 𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑) + 𝑞𝐸
𝑇 [
𝜏𝑔(𝑞𝑑)

0
] terms have thus far 

been neglected in the analysis, it shall now be proven that 

these are smaller than 
1

2
𝑞𝐸
𝑇𝑇𝐷𝑞𝐸 . Alternatively, it could be 

assumed that 𝑈𝑔(𝑞) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑚 ∙ 𝑔 ∙ 𝑍𝐶 , resulting in 

an LIPM with a fixed CoM height, although such an 

assumption shall not be made here. Recalling the following 

property of the potential energy: 

 

‖
𝜕2𝑈𝑔(𝑞)

𝜕𝑞2
‖ < 𝛼 

 

which implies the following inequality, as shown in [23] : 

 

    ‖𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑) + 𝑞𝐸
𝑇 [
𝜏𝑔(𝑞𝑑)

0
]‖ ≤  

1

2
𝛼‖𝑞 − 𝑞𝑑‖

2   (28) 

 
leads to: 

 

         ‖𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑) + 𝑞𝐸
𝑇 [
𝜏𝑔(𝑞𝑑)

0
]‖ ≤  

1

2
𝛼‖𝑞𝐸‖

2      (29) 

 

 ∴   ‖𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑) + 𝑞𝐸
𝑇 [
𝜏𝑔(𝑞𝑑)

0
]‖ ≤  

𝛼‖𝑞𝐸
𝑇𝑇𝐷𝑞𝐸‖

2𝜆𝑚𝑖𝑛(𝑇𝐷)
   (30) 

 

For an arbitrary equilibrium point 𝑞𝐹𝑑, the potential energy 

function 𝑉𝑃(𝑞𝐹) is given as: 

 

  𝑉𝑃(𝑞𝐹) =
1

2
𝑞𝐸
𝑇𝑇𝐷𝑞𝐸 + 𝑈𝑔(𝑞) − 𝑈𝑔(𝑞𝑑) + 𝑞𝐸

𝑇 [
𝜏𝑔(𝑞𝑑)

0
] (31) 

 

By then using (30), we obtain: 

 

                       𝑉𝑃 ≥ (1 −
𝛼

𝜆𝑚𝑖𝑛(𝑇𝐷)
)
‖𝑞𝐸
𝑇𝑇𝐷𝑞𝐸‖

2
                  (32) 

 



  

It is noted that: 

 

                                             
𝛼

𝜆𝑚𝑖𝑛(𝑇𝐷)
< 1                               (33) 

Using (27) and simplifying, we obtain: 

 

     𝑉𝑃 ≥
1

2(𝑛𝑚𝑎𝑥 + 1)
(𝜆𝑚𝑖𝑛(𝑇𝐷) − 𝛼) (

|𝜏𝑎 − 𝜏𝑑|

‖𝐺 ∙ 𝑆𝑚
𝑇𝑃‖

)

2

    (34) 

 

By then considering the total energy, through the addition of 

the positive (unless �̇�𝐹 = 0) 
1

2
�̇�𝐹
𝑇𝑀(𝑞)�̇�𝐹  term to the 

potential energy function, it is inferred that: 

 

𝑉𝑇 ≥ 𝑉𝑃   
 

⇒          𝑉𝑇 ≥
1

2(𝑛𝑚𝑎𝑥 + 1)
𝛿 (
|𝑋𝐶𝑜𝑃 − 𝑋𝐶𝑜𝑃𝑑| ∙ 𝑚𝑇𝑔

‖𝐺 ∙ 𝑆𝑚
𝑇𝑃‖

)

2

           

 

where 

 

                                𝛿 = (𝜆𝑚𝑖𝑛(𝑇𝐷) − 𝛼) > 0                        (35) 
 

The following expression is therefore acquired: 

 

       |𝑋𝐶𝑜𝑃 − 𝑋𝐶𝑜𝑃𝑑| ≤
√2(𝑛𝑚𝑎𝑥 + 1)‖𝐺 ∙ 𝑆𝑚

𝑇𝑃‖

√𝛿 ∙ 𝑚𝑇𝑔
√𝑉𝑇      (36) 

 

A relationship between the total energy and the 𝑋𝐶𝑜𝑃 has 

thus been established, while a number of calculations allow 

one to conclude the soundness of the units.  

This may be viewed as the first proof demonstrating that for 

a specific low-level joint controller, CoP positions can be 

bounded by values that are proportional to the square root of 

a Lyapunov function (the total closed-loop energy). This 

property leads to the existence of critical energy values, 

below which it is certain that the CoP position is to forever 

remain within the support region, provided the absence of 

future external perturbations (i.e. energy injections). The 

analysis can be extended by considering any equilibrium 

point since its validity is not restricted to the 𝑞𝐹𝑑 = 0 

configuration. Equation (36) can be used to compute the 

trigger energy values based on the 𝑋𝐶𝑜𝑃 values 

corresponding to the support polygon’s limits. This provides 

a systematic approach to obtaining Regions of Trust, as 

opposed to defining them arbitrarily [25]. Although we have 

only considered a double support model in this work, it is 

evident that the same formulae can be applied to the single 

support phase with minor modifications. Due to the 

Lyapunov function’s inclusion of the kinetic energy terms of 

all the joints, this method’s applicability is not restricted to 

ankle strategies. Furthermore, for every energy value 

corresponding to a balanced state in terms of the CoP value, 

the controller will also ensure that the robot is 

asymptotically stable at the joint level, and as a result, this 

will also imply that the CoP converges to the desired 

equilibrium position. It should be pointed out that there is 

absolutely no difficulty in computing the numerical values of 

the variables constituting the final expression (36), i.e. 𝛿, 𝐸, 

‖𝐺 ∙ 𝑆𝑚
𝑇𝑃‖, and 𝑛𝑚𝑎𝑥.  

B. Stepping Algorithm 

Prior to presenting a succinct version of our algorithm, it is 

important to state that for a given push, there will be two 

distinct positive energy values pertaining to the CoP’s 

position in either the frontmost or rearmost sections of the 

support polygon. If the robot were agnostic to the direction 

of the push, it would then utilize the smallest of these two 

positive values to trigger a step. Since however our robot is 

equipped with FT sensors at the feet, these are used to 

measure the CoP position and hence the robot’s direction of 

motion at a given point in time. Nevertheless, there is still a 

need for the observance of the center of pressure velocity, 

�̇�𝐶𝑜𝑃, that could be crucial in certain situations, such as ones 

in which the robot is moving towards a point that is close to 

either of the CoP limits and is then perturbed in the direction 

opposite to that of its current motion. The energy function 

itself would be agnostic to the fact that the velocity due to 

the disturbance was in fact a stabilizing one (i.e. returning it 

back to 𝑋𝐶𝑜𝑃 = 0) and would require further directional 

information, that could be directly provided by the �̇�𝐶𝑜𝑃. 

Hence, a prerequisite for the selection of a trigger energy is 

the 𝑋𝐶𝑜𝑃’s and �̇�𝐶𝑜𝑃’s possession of equal signs. Having 

elucidated these aspects of our strategy, we may now 

summarize the energy computation and balance monitoring 

algorithm: 

1. The 𝐸𝐹  and 𝐸𝐵 energies required to drive the CoP to the 

front and rear edges of the support polygon can be 

computed either by using theoretical upper bounds 

given by equation (36), or through experimental means. 

2. The 𝐸𝐹  and 𝐸𝐵 values are both set as trigger energies 

whose selection is dependent upon the x-axis CoP 

measurements read by the force/torque sensors and the 

corresponding CoP velocities. 

3. The energy value is monitored in real-time using (10), 
hence serving as an indicator of the humanoid’s state of 

balance.  

The 𝐸𝐹  and 𝐸𝐵 values may differ significantly, in accordance 

with the dimensions of the support polygon, although in the 

majority of cases, including the one considered in this paper, 

the 𝐸𝐹  value will tend to be larger.    

V. BALANCE MONITORING AND STEPPING EXPERIMENTS 

A. Balance Monitoring Experiments 

The propounded method was corroborated through 

experimental means that involved the lower body of the 

COMAN [26][27][28] being placed on the floor and 

subjected to a series of perturbations. 

The first set of tests served the purpose of demonstrating the 

validity of (36) by moving the robot’s waist to arbitrary 

locations while it was in a double support stance. The 

force/torque sensors mounted on the robot’s foot soles 

enabled the acquirement of x-axis force readings that 

indicated the direction from which the push had been applied 



  

and thus the energy limit to be utilized for signaling whether 

or not the robot was stable. Fig. 2 displays the pertinent 

results, wherein it is evident that the real CoP (𝑋𝐶𝑜𝑃𝑟𝑒𝑎𝑙) is 

always confined within the limits defined by the value of the 

theoretical bound (𝑋𝐶𝑜𝑃𝑇ℎ), as described by (36), thus 

allowing us to conclude that the estimate is a conservative 

one guaranteeing that the CoP will reside within a safe 

region of operation at all times. Additionally, an imperative 

aspect of these results is that both the energy and the CoP 

asymptotically converge towards the equilibrium point, as 

described by (36).  Moreover, Figs. 4 and 5 portray the 

evolution of the energy and the CoP throughout the course of 

the frontal pushing experiments, while the orange lines on 

each plot denote the actual energy (𝐸𝐹𝐸 , 𝐸𝐵𝐸  in Table I) and 

CoP limits, and the green line represents the theoretical 

energy limits (𝐸𝐹𝑇 , 𝐸𝐵𝑇  in Table I). 

During the tests, the robot lost its balance at the instances 

when the energy exceeded the 𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑎𝑙  and 𝑋𝐶𝑜𝑃𝑟𝑒𝑎𝑙  

values, hence signifying that the limits were accurately 

calculated. Fig. 5 also displays the energy decrease that 

occurs once the robot loses balance, and this is attributed to 

the fact that the humanoid was held in place and manually 

moved back to the equilibrium position once the energy limit 

was exceeded, in order to prevent it from hitting the floor 

and damaging its structure. 

A similar experiment entailing the application of rear-side 

disturbances also permitted the observation that the robot’s 

balance was lost once the energy threshold was exceeded, as 

depicted in Figs. 6 and 7.  

Fig. 8 was acquired during experiments that involved getting 

hold of the robot’s pelvis and moving it rapidly, in a 

reciprocating manner, leading to the generation of relatively 

higher joint velocities as compared to those seen in the 

above figures. Consequently, the discrepancy between the 

overall and potential energies is perspicuous, thus 

highlighting the importance of the kinetic energy in 

dynamical cases, as is to be expected.  
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Figure 2. CoP response during handling test.  
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Figure 3. Energy response during handling test. 

5 10 15 20
0

.05

.1

.15

.2

.25

Time (sec)

Po
si

tio
n 

(m
)

 

 
Xcop

Th
Xcop

real

0

 

Figure 4. CoP motion during rear-side perturbation test. 
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Figure 5. Energy responses during rear-side perturbation test.  
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Figure 6. CoP motion during frontal perturbation test. 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Time (sec)

En
er

gy

 

 
Energy

real

 

Figure 7. Energy response during frontal perturbation test.  
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Figure 8. Energy response during robot’s reciprocating motion. 
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                                         TRIGGER ENERGY VALUES 

 
 

 

 
 

 

 
 

B. Stepping Recovery Experiments 

In order to demonstrate the practicability of the trigger 

energy values in terms of aiding in the balance maintenance  

Variable Value  

𝐸𝐹𝐸  1.96 

𝐸𝐹𝑇  1.03 

𝐸𝐵𝐸   0.71 

𝐸𝐵𝑇  0.34 



  

of the system, a stepping recovery experiment was carried 

out, involving the COMAN being pushed while standing in 

an upright position and then using the trigger energy to 

perform a step, as shown in the video attachment.    
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VII. CONCLUSIONS 

A balance monitoring strategy for humanoid robots was 

presented in the paper and experimentally validated on the 

COMAN. The main concept behind the proposed method 

was the use of a closed-loop energy function aimed at 

accurately describing bounds on the robot’s state of stability 

at a given point in time. A mathematical proof pertaining to 

the validity of the proposed approach has been provided, by 

establishing a relationship between the CoP and the closed-

loop energy, thus also attesting the fact that for certain 

energy values, the CoP can only remain within the support 

polygon. This can be viewed as an extension of the 

Lyapunov Stability Margin concept that was initially 

propounded in [19]. Hence, our approach addresses the 

critical problem of robot balance in a mathematically sound 

way, and it proves that it is actually possible to compute 

Lyapunov Stability Margins that are not overly conservative, 

even when considering a complex control law that takes the 

passive elements of the robot actuation into account. In 

situations where the robot could perform various types of 

motion, tuning values becomes a feeble, impractical option. 

In such a context, the possibility of swiftly computing 

Lyapunov Stability Margins will enhance the degree of the 

robot's balance awareness, and its ability to make sound 

decisions based on the circumstances. Additionally, as safety 

becomes an increasingly important topic in robotics, the 

mathematical proofs associated with these Lyapunov 

Stability Margins will be invaluable in terms of certifying 

that a robot will always behave as expected. 
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