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THIS HDR manuscript presents research work at the interface between
Computational Neuroscience and Cognitive Robotics. The main scien-
tific issue at stake is to understand how animals and robots can display
behavioral adaptation capabilities in their partially unknown and chan-
ging environment. The objective is two-fold : on the one hand, contribu-
ting to better understanding behavioral and neural correlates of learning
processes ; on the other hand, taking inspiration from biology to design
autonomous robots able to learn from their own observations and errors.
This work is built on previous evidence that the mammalian brain com-
bines different memory systems which enable parallel learning processes
for efficient behavioral adaptation. Within the instrumental conditioning
paradigm, this is reflected by initial goal-directed learning observed in
animals which seem to build and use an internal model of their envi-
ronment, followed by the progressive expression of habits that have been
slowly learned in parallel. In computational terms, this can be formalized
as a progressive shift from model-based (MB) to model-free (MF) reinfor-
cement learning (RL). In the navigation paradigm, this is reflected through
the alternation between different navigation strategies, which can also be
categorized into MB and MF RL processes. The manuscript presents work
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performed with collaborators — among whom supervised PhD students
— to contribute to : 1) Proposing computational solutions for the coordi-
nation of parallel learning processes to explain animal behavior during
conditioning and navigation paradigms ; 2) Using learning models to ana-
lyze behavioral dynamics and neural activities recorded in animals during
behavioral adaptation; 3) Implementing neuro-inspired learning models
in robots to make them work in the real world. An emphasis is put on the
add-ons and gains produced by these exchanges between disciplines and
approaches. In particular, the manuscript highlights (i) how computational
models can help better formalize and quantify information processes that
may underlie animal behavior and brain activity ; (ii) how neuro-inspired
models can constitute a complementary and fruitful approach to classical
Robotics work ; (iii) in return how Robotics implementations can help im-
prove neurocomputational models by testing their robustness in the real
world, by discovering new properties of these models in such conditions,
and by raising new questions and hypotheses concerning the necessary
coordination between learning processes to properly work in a physical
body. Finally, a discussion of possible future directions of investigations is
proposed in order to plan a research program for the forthcoming years.

SCIENTIFIC CONTEXT

Different machine learning algorithms

In the field of Machine Learning, learning algorithms can be roughly
categorized into three main groups, depending on the feedback that the
learner receives :

— Supervised Learning, where the feedback tells exactly which target

output the learner should have generated in response to the input.
This type of learning is typically used when a neural network model
learns to recognize handwritten characters and is corrected when its
guess is different from the known true character at a given trial.

— Reinforcement Learning, where the feedback does not tell what the
target output was but just says whether the output generated by
the learner is good, bad or neutral. This is typically concerned with
situations where an agent has to learn how to act in an environment
in order to maximise some notion of reward.

— Unsupervised Learning, where no feedback is received by the lear-
ner. In this case, the learner typically has to learn the data structure,
e.g. learning that some elements are always associated together, or
learning the regular temporal contiguity between a couple of events.

In an influential Computational Neuroscience paper in 2000, Kenji
Doya made the proposition that different brain regions, namely the Ce-
rebellum, the Basal Ganglia, and the Cortex, are each mainly involved
in one among these three different types of learning processes (Fig. [1.1).
Although quite schematic, this view is still highly relevant today. Recent
computational models of cerebellar function still emphasize the predo-
minant role of supervised learning in this structure (Kawato et al.||2011).
Reinforcement learning continues to play a central role in basal ganglia
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(BG) models (Dayan and Niv| 2008, Maia and Frank 2011, Keramati and
Gutkin/ 2013). And the associative nature of cortical networks makes un-
supervised learning a key process in many models of the cortex’s role in
decision-making (Hasselmo|2005, Martinet et al.[2011) or in other cognitive
functions (Fix et al.[[2007).

Unsupervised learning
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FIGURE 1.1 — Proposition of a decomposition of neural structures involved in different
types of learning processes (Doya| (2000a) with permissions)

The work presented in this manuscript mostly focuses on reinforce-
ment learning (RL) and unsupervised learning (UL) processes, and on
their corresponding neural substrates in the basal ganglia and cortex. The
motor control part is not addressed, which means that the computational
models presented are most of the time simplified by manipulating abs-
tract actions without wondering how sequences of muscle activations are
learned and organized for the execution of these actions. Incorporating the
motor control part in the models would also require a proper coordination
of learning processes by itself (i.e. between supervised learning and other
learning processes). This has been left aside for the moment. Nevertheless
a first step in this direction is sketched in the long-term research project
presented at the end of this manuscript (Section [5.2).

The present work addresses the question of how to coordinate dif-
ferent RL processes together and how to coordinate RL and UL processes
together in order to produce efficient and biologically realistic behavioral
adaptation abilities. In the case of animal and robot learning, UL processes
are important to learn an internal model which incorporates information
about the structure of the environment or of the task. For instance a cog-
nitive map containing topological links between diferent locations within
the environment and enabling to plan the shortest path towards a goal po-
sition. Or a graph of transitions between states of an instrumental condi-
tioning task, enabling to plan a sequence of decisions until a desired state,
and permitting to avoid sequences of actions that lead to a long-term un-
desired state (e.g. a devalued outcome). Throughout the manuscript, a dis-
tinction will often be mentioned between model-based reinforcement learning
(MBRL) — when the learning process includes the build-up and the use
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of such an internal model — and model-free reinforcement learning (MFRL) —
when the learning process occurs without access to such a model. These
two subclasses of RL processes will be more precisely and formally de-
fined in the forthcoming sections (e.g. see equations and schemes in the
paper Khamassi and Humphries| (2012) presented in Section [2.1.1). The
important thing to remember at this stage is that this distinction will be
determinant to characterize different types of learning behaviors and their
underlying neural substrates.

Reinforcement learning and animal behavioral adaptation

Animals’ ability to learn from their own experience and errors, in par-
ticular in the context of sparse reward and punishment signals, crucially
relies on reinforcement learning processes. The most central theory cur-
rently considers that such learning relies on : 1) the competition between
actions, resulting in action selection as a function of the actions’ relative
probabilities ; 2) the anticipation of the value of rewards and punishments
that could follow the execution of the action; 3) the computation of a re-
ward prediction error comparing what was expected with what is actually
obtained ; 4) the use of such a reward prediction error as a feedback (i.e.
positive, negative or null reinforcement signal) to update either the pro-
bability of the performed action or the predictive value associated to the
action and to the stimuli present in this context (Sutton and Barto 1998).

This formalism can be seen as an extension of the Rescorla-Wagner
model (Rescorla and Wagner |1972) in which learning requires prediction
errors to explain various properties of associative learning during animals
classical conditioning. Prediction errors can indeed explain the blocking
phenomenon — when a stimulus B cannot be associated with a reward if it
is presented together with a stimulus A which is already fully predictive
of the reward —, and cases of overexpectation — when the concomittant pre-
sentation of two reward predictive stimuli influences behavior as if they
were adding up, to form a stronger prediction.

A particular subgroup of RL algorithms implementing what is cal-
led Temporal-Difference (TD) learning extend the Rescorla-Wagner model
in that prediction error signals contain three terms rather than two. The
Rescorla-Wagner indeed compares past expectation with present outcome
(e.g. reward). The TD learning rule adds to this comparison a term re-
presenting future expectations of reward (see equations in the paper Kha-
massi and Humphries|(2012) presented in Section[2.1.1). As a consequence,
a reinforcement signal can be computed even before the reward is attai-
ned by comparing temporally consecutive expectations of reward — hence
the term Temporal-Difference : e.g. when an action leads to a situation or
state where reward expectations are higher than previous ones, this action
should be reinforced.

Applications to Neuroscience

Since nearly twenty years, this theory has provided Neuroscientists
with formal tools which contributed to important breakthroughs in the
understanding of neural correlates of learning. Reinforcement Learning
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models turned out to be able to explain a wide range of adaptive beha-
viors experimentally observed both in humans (Rushworth and Behrens
2008, [Frank et al.|2009, Balleine and O’Doherty| 2010, Collins and Koechlin
2012) and in non-human animals (e.g. [Yin and Knowlton| (2006)). This for-
malism also enabled to explain a variety of neural correlates of learning
(Schultz et al. 1997, Yin et al.|2008). The most striking example and pro-
bably the most central in the field is the observation that phasic responses
of dopaminergic neurons follow the profile of reward prediction errors as
they are formalized by the RL theory : an increase in activity when the
outcome of action is better than expected; a decrease in activity when it
is worse than expected ; an absence of response when it meets the expec-
tations (Schultz et al.|1997, Bayer and Glimcher||2005, [Morris et al.| 2006,
Roesch et al.|2007, Matsumoto and Hikosaka/2009).

The accumulation of neurophysiological results corroborated by this
computational theory has also enabled to establish that the learning of re-
ward values and action values depends on plasticity in projections from
the cortex to the basal ganglia (BG; in particular to the striatum), and that
these adjusments depend on dopaminergic signals sent from the substan-
tia nigra pars compacta (SNc) and the ventral tegmental area (VTA) (Houk
et al.|1995, Schultz et al.|1997, Doya|2000a, [Reynolds et al. 2001, O’Doherty
et al.| 2004, [Samejima et al|2005| Faure et al.|2005) |Pessiglione et al.|2006,
Shen et al.|2008| [Humphries and Prescott |2010, van der Meer and Redish
2011). Numerous computational models of the basal ganglia (BG) were
derived from these experimental results (Houk et al||1995| Schultz et al.
1997, Doyal[2000a, Joel et al.||2002, [Baldassarre 2002} Frank|[2005), and were
built on the central assumption that the BG play a critical role in action
selection (Redgrave et al.|1999, Gurney et al.|2001).

My PhD work (Khamassi| 2007) contributed in showing that ventral
striatal single-unit activity in behaving rats is coherent with the RL theory
(Khamassi et al. 2008) and in constraining BG RL models to make them
physiologically and anatomically plausible as well as efficient in realistic
continuous simulations of laboratory tasks (Khamassi et al.|2005; 2006). I
have also been recently collaborating with Mark D. Humphries and Kevin
Gurney to propose a more recent RL model of the BG which incorporates
a role for tonic dopamine in the regulation the exploration-exploitation
trade-off for action selection (Humpbhries et al. |2012).

The application of the RL theory to Neuroscience also favored the de-
velopment of a method for model-based analysis of experimental data (Daw
et al. 2006, Corrado and Doyal[2007, [Brovelli et al.|2008, |[to and Doyal|2009,
Palminteri et al. 2009, |[Daw| 2011, [Collins and Koechlin|2012). In this ap-
proach, a computational model is parametrized in order to fit subjects’
observed behavior during the task with a Bayesian maximum likelihood
criterion. Then hidden model variables are used as regressors of the recor-
ded neural activity to test the assumption that this activity reflects com-
putations similar to those performed by the model to solve the task.

Chapter [3|in this HDR manuscript presents two studies using such a
method for model-based analyses of neurophysiological data : one star-
ted during my postdoctoral training with Emmanuel Procyk and Peter
F. Dominey (Khamassi et al.|2014) ; the other done by Jean Bellot, a PhD
student that I co-supervise with Benoit Girard, in collaboration with Oli-
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vier Sigaud, Geoffrey Schoenbaum and Matthew R. Roesch (Bellot et al./in
preparation).

Nevertheless, the results obtained through the application of the RL
theory to Neuroscience remain fragmentary and incomplete for several
reasons. First, the laboratory tasks employed are most of the time very
simple, involving only a few different stimuli and actions. Second, these
tasks most of the time involve single-step decisions performed at each
trial, while the RL theory has been designed to deal with multiple steps of
decision-making and reward predictions. Finally, these studies — including
some of ours — most of the time use a single computational model to
explain behavior (but see |Gladscher et al.| (2010), Daw et al|(2011)), while
there is more and more evidence that subjects” behavior during decision-
making tasks involve the coordination of multiple learning systems (Daw
et al.|2005).

Coordination of multiple learning modules

Rodents put in an instrumental conditioning paradigm — where they
have to learn to press a lever in response to a cue in order to get reward
— initially display flexible learning behavior and progressively develop
habits that are long and difficult to break (Dickinson|1985). After moderate
training, changes in contingencies of the task or devaluation of the reward
— for instance by pairing it with illness — result in relatively fast behavioral
adaptation : the animal quickly stops pressing the lever. In contrast, after
extensing training animals persist in pressing the lever in this context no
manner if the task contingencies have changed or if the reward has been
devalued.

Such behavioral flexibility and automaticity are associated with two
separate learning systems : the goal-directed and habit learning systems
(Balleine and O’Doherty||2010). These systems are mediated by separate
cortico-striatal networks, namely the associative and sensorimotor fronto-
striatal loops, respectively. The associative loop includes the lateral and
medial prefrontal cortices and the dorsomedial striatum of the basal gan-
glia, whereas the sensorimotor circuit includes sensorimotor and premo-
tor areas that project to the dorsolateral striatum (Yin and Knowlton| 2006,
Graybiel 2008, |Ashby et al.|2010). Such dual-system hypothesis conforms
the notion that frontal cortex activity is organised according to a rostro-
caudal gradient based on the abstractness of action representations (Koe-
chlin et al.||2003} Badre and D’Esposito||2009), assigning goal-directed ac-
tions to anterior portions of the frontal lobe and stimulus-response habits
to sensorimotor areas.

At the theoretical level, the reinforcement learning theory (Sutton and
Barto [1998) is providing a coherent mathematical framework to forma-
lize goal-directed and habit learning computations (Dayan and Balleine
2002, Daw et al. 2005, Ito and Doyal 2011). In particular, Daw and col-
leagues (Daw et al||2005) proposed that a dual learning system invol-
ving model-based and model-free reinforcement learning algorithms, the
former employing "effortful”" computations in a model of the world (i.e.,
goal-directed learning), the latter producing reactive behaviors based on
stimulus-response associations (i.e., habit learning). Model-based RL me-
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chanisms are good models of goal-directed behavior because they involve
a model of long-term consequences of actions which enable to plan ahead
and to avoid sequences of actions that lead to non-desired goals (e.g. deva-
lued goals). They thus produce flexible behavior in response to changes in
the environment because a single exposure to changes in the goal permits
a change in subsequent decision-making. However, such planning with
the model-based system before acting produces slow reaction times and is
computational costly. In contrast, model-free RL mechanisms explain ha-
bit learning in that Temporal-Difference learning algorithms slowly propa-
gate value information from the end of the action sequence (i.e. where the
agent gets reward) to the beginning of the sequence. Hence the slowness
to acquire a habit and the even longer time required to break a habit — be-
cause the negative value associated to a devalued reward will first need to
decrease the positive values associated to each elements within the action
sequence before properly being able to propagate negative values to the
whole sequence. However, making a decision with the model-free system
is much quicker and thus produces slow reaction times because one "just"
needs to compare a small set of cached values associated to the actions in
competition['}

Interestingly, a recent paper suggests that habit learning may be bet-
ter modeled by a chunking mechanism — automatizing the selection of
frequently repeated sequences of actions — rather than by a classical TD-
learning algorithm (Dezfouli and Balleine 2012). Although this is some-
thing we started to investigate in Robotics by comparing the behavioral
properties produced by both systems in realistic continuous situations,
this work is preliminary and will not be presented in this manuscript.
Nevertheless, this shows that the debate concerning the precise nature
and computational mechanisms underlying habit learning is still vivid.
There is also an important debate concerning the possible mechanisms
underlying the coordination of reinforcement learning systems. |Daw et al.
(2005) proposed an uncertainty-based mechanism for this coordination :
the system that computes reward values with the lowest uncertainty takes
over behavior. However, this method requires costly calculations of the
uncertainty in the two systems — while the capacity to learn habits may
have emerged through evolution to enable computation saving by avoi-
ding to systematically use the goal-directed system (Killcross and Coutu-
reau 2003). Moreover the complexity of uncertainty computation within
the model-based system makes it exponentially explode with the number
of states. In the simple task with six states simulated by |Daw et al.| (2005),
this is not a problem. But in more realistic situations with a large num-
ber of states, this computation becomes problematic. To cope with this
issue, the model of Keramati et al.| (2011) proposes to only compute the
less expensive uncertainty of the model-free system, and to avoid using
the model-based system when this uncertainty is low. On the one hand
this model enables to save computation time and to explain a substan-
tial set of experimental data. On the other hand, this model relies on the
simplied assumption that the model-based system is always more reliable

1. It is worthy of note that Robotic experiments with continuous action spaces show
that in such a case the comparison between action values is much more difficult and slower
(Peters and Schaal|2006, van Hasselt and Wiering|[2007).
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and less uncertain than the model-free system, which is not always the
case in more realistic and embodied situations such as the robotic expe-
riments presented in Chapter [4] of this manuscript. Depending on noise,
uncertainty and characteristics of the environment and of the robot’s per-
ceptual equipment, it turns out that most of the time the model-based
system is more efficient than the model-free one in some parts of the envi-
ronement and vice-versa in other parts. It appears thus promising to use
system coordination criteria without too many priors and with rather the
ability to automously detect which system is the most appropriate in each
circumstance.

Several contributions on the modelling of the coordination of learning
systems are presented in this HDR manuscript. In Chapter [2| two papers
are presented showing that the model-based / model-free dichotomy is
also relevant (i) to categorize different navigation strategies observed in ro-
dents and the activity of their underlying neural substrates (work done in
collaboration with Mark D. Humphries, Khamassi and Humphries|(2012)),
(ii) and to explain inter-individual differences in rats” behavior during
Pavlovian conditioning — differences in behaviors called goal-tracking ver-
sus sign-tracking — as well as differences in dopamine activity observed in
these rats (work done by Florian Lesaint, a PhD student that I co-supervise
with Olivier Sigaud, in collaboration with Shelly B. Flagel and Terry E.
Robinson, Lesaint et al. (2014)). Besides, Chapter |4 shows robotic imple-
mentations of a model-based / model-free computational model (Dollé
et al. |2008; 2010; submitted) for robot navigation (work done by Ken Ca-
luwaerts, a Master student that I co-supervised with Agnes Guillot and
Christophe Grand, Caluwaerts et al|(2012b)). This model has the advan-
tage of having a memory of which learning system was the most efficient
in each subpart of the environment, which can produce faster recovery of
the most reliable system at each moment, and which property was absent
from previous computational models of the coordination of model-based
/ model-free systems.

Meta-learning and cognitive control

Interestingly, the question of how to efficiently coordinate multiple
learning systems is the subject of investigations within the Machine Lear-
ning literature, within a subfield called meta-learning (Schmidhuber et al.
1997, Doya 2002, Giraud-Carrier et al.|2004). It is a concept originally deve-
loped within the domain of Cognitive Psychology which means learning
to learn. In Machine Learning the term refers to applications of learning
algorithms to meta-data in order to find out what mechanisms and prin-
ciples can reveal flexible and general enough to solve different kinds of
problems.

A major issue in Machine Learning is indeed concerned with algorithm
parametrization, often performed specifically for the task to solve, thus
enabling little generalization to different tasks (Lavesson and Davidsson
2006)). Within the context of Markov Decision Problems (MDP) — where an
agent has to learn a behavioral policy in order to maximize a given reward
function —, the parameters tuned enable the tested reinforcement learning
algorithms to solve a particular condition do not permit rapid behavioral
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adaptation once the task conditions are changed (Sutton and Barto| 1998).
There is thus a need for meta-heuristics enabling to dynamically optimise
the parameters of the algorithms, and to permit simulated agents to take
appropriate decisions and learn in unprepared, changing environments.
Some existing methods such as evolutionary algorithms enable off-line
optimization in the sense that the latter does not occur during the lifetime
of the agent (Doncieux et al.|2011). However, if the goal is to enable on-line
incremental adaptation, meta-learning solutions can be appropriate.

From a mechanistic point of view, the interesting thing is that meta-
learning methods not only have been proposed (i) to select the appro-
priate model for action selection in the case of the coordination of mul-
tiple learning systems (Brazdil|1998), but also (ii) to dynamically regulate
parameters of learning (e.g. update rate, temporal scale and exploration
parameters, Auer et al.| (2002), Ishii et al.| (2002)). So the computational me-
chanisms underlying animals” behavioral flexibility and adaptivity could
be both investigated in terms of learning module coordination and dyna-
mic regulation of learning parameters.

During my post-doctoral work in collaboration with Emmanuel Procyk
and Peter F. Dominey, we have drawn a parallel between meta-learning
principles proposed in Machine Learning and cognitive control processes
described in Neuroscience — i.e. how to regulate the appropriate level of
control to solve a given task — (Khamassi et al.|2011b;2013). Recent reviews
of neurobiological data have indeed highlighted cognitive control mecha-
nisms for the high-level coordination of executive systems in the primate
prefrontal cortex (Miller and Cohenl 2001, Koechlin and Summerfield|2007,
Samejima and Doyal|[2007). The cognitive control loop theory describes the
modulation of the control level enabling shifting from routine behaviors
in a known context requiring little attention and concentration, to more
flexible behaviors involving rapid and active control. The level of control
is based on a monitoring process of variations of the environment and
of the agent’s own performance. It also implies learning the association
between particular tasksets and the contexts in which they are relevant.

During my PhD work in collaboration with Sidney I. Wiener, Fran-
cesco P. Battaglia, Adrien Peyrache, Karim Benchenane, Yves Gioanni and
Patrick L. Tierney, I contributed to electrophysiological recordings in the
Hippocampus-Prefrontal Cortex network in rats performing a decision-
making task in a Y-maze, with regularly changing task rules. We found
that the activity of cell assemblies within this network reflected a learning
process of which task-rule (i.e. taskset) is currently appropriate to solve the
task, these activities being related to an increase in the coherence between
Hippocampus and Prefrontal Cortex activities at decision time when the
current task-rule has been discovered by the animal, and being replayed
during sleep, putatively enabling a consolidation of this knowledge (Bat-
taglia et al.| 2008, Peyrache et al. 2009; 2010a;b, Benchenane et al. |2010).
These data provide us with some clues about the possible mechanisms
underlying the prefrontal cortex’s involvment in cognitive control.

Thus a fruitful approach can consist in both (i) investigating whether
some meta-learning principles can be useful to model animal adaptive
behavior and underlying brain activity, (ii) in turn, when the machine



10

Chapitre 1. Introduction

1.1.6

learning algorithms reach their limits, taking inspiration from known cog-
nitive control mechanisms to improve these algorithms.

A simple heuristic proposed by |Schweighofer and Doya (2003) consists
in dynamically regulating RL parameters as a function of the agent’s per-
formance — i.e. as a function of the agent’s current averaged obtained re-
ward : at the beginning of the simulation, performance starts at a low level
(the average reward is low), and thus the model starts with a high level of
exploration ; while the agent progressively improves its performance, the
exploration parameter is tuned so that there is less and less exploration;
as soon as a task change occurs, the average reward obtained by the agent
drops, and thus the exploration parameter is reset to a high level. During
my post-doctoral work in collaboration with Emmanuel Procyk and Peter
E. Dominey, we have proposed a computational model for adaptive explo-
ration regulation in the monkey prefrontal cortex (Khamassi et al./[2011a).
We have shown that the model implemented on a humanoid robot can
both (i) reproduce monkey performance in a problem-solving task with
frequent task changes, (ii) enable the robot to display adaptive explora-
tion regulation in an extended human-robot interaction game. The model
was further used to draw a set of experimental predictions on prefrontal
cortex activity that we later tested. The results are presented in a paper in
press (Khamassi et al.|2014), included in Chapter

However, this first stage of application of meta-learning principles to
computational models of executive functions in primate relied on several
simplifications, such as assumptions of reduced and stable environmental
uncertainty. Further improvements could be done by taking inspiration
from the way the brain uses volatility information to dynamically tune the
learning rate parameter (Behrens et al.2007) and performance at multiple-
time scales to tune the discount factor (Tanaka et al.|[2004).

Nevertheless, in addition to helping better understand brain functions,
formalizing heuristics for the dynamical regulation of learning parameters
and choice of the learning mode could be useful for Robotics, enabling
robots to better cope with unexpected environmental changes and thus to
display higher adaptivity and flexibility.

State of the art of decision-making and learning in Robotics

Major progress has been accomplished in several aspects of robotics :
perception, navigation, localization, motion and action planning, manipu-
lation, human-robot interaction (Siciliano and Khatib|2008). However most
of the current results apply to restricted, pre-defined and well-known si-
tuations where robots’ decisions only apply to quite simple problems. Mo-
reover, robots learning abilities are still very limited, which requires the
injection of prior knowledge by the human in the robot’s decision-making
system.

There have been applications of RL algorithms to robotics (e.g. [Mori-
moto and Doyal (2001), Smart and Kaelbling| (2002), |Alexander and Sporns
(2002), Krichmar and Edelman| (2002), |Arleo et al. (2004))), some of which
being neuro-inspired. But many of these studies — including ours (Kha-
massi et al.|2005; 2006) — produced limited progresses, due to applications
to quite simple problems, with a small number of states and actions, to
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slowness in learning and to systematic instability observed throughout
the learning process. More recent applications of RL to robotics have per-
mitted to deal with more complex and continuous action spaces, enabling
to learn efficient sensori-motor primitives (Peters and Schaal 2008, [Sigaud
and Peters 2010, [Kober and Peters 2011, [Stulp and Sigaud|2013). But none
of these approaches have attempted to equip robots with an ability to auto-
nomously coordinate different learning systems through self-supervision
and to decide which system should have the control over behavior at any
given moment, as the mammalian brain does.

Besides, most of robotic decision-making algorithms are based on plan-
ning processes which take into account a great number of information,
states, locations and actions (e.g. |Chatila et al| (1992), |Alami et al. (2006),
Minguez et al| (2008), Kanoun et al.| (2011))). Such approach to decision-
making could be seen as similar to what we called the model-based sys-
tem, except that there is most of the time no learning in the system : the in-
ternal model is given to the robot and only the planning, decision-making
and execution parts have been addressed. Moreover, such an approach
raises the issue of having to deal with high-dimensional state spaces, due
to the combinatory explosion in large-scale applications. Another issue
which is worthy of note is the long computation time imposed by the
planning system, especially since there are systematic replanning of se-
quences of actions each time the robot is in the same situation and has to
decide how to act. In contrast, mammals are able to use routines in fami-
liar environments, controlled by their habit system which is in competition
with their planning (model-based) system. The coordination of the plan-
ning system and low-level reactive routines is one the goals of cognitive
architectures developed in Robotics (Alami et al.| 1998, Volpe et al.||2001).
Such architectures thus appear as a good direction of research for the
coordination of decision-making systems in robots and to autonomously
decide which system should take over the robot’s behavior at each mo-
ment (Likhachev et al.[2002). Most of these architectures are built on the
subsumption principle (Brooks |1986) in which different decisional layers
are superposed in increasing order of complexity, each trying to control
the robot’s behavior, and superior layers being able to transiently take over
(hence the term subsumption) inferior layers when it is appropriate. Howe-
ver, these architectures still lack efficient learning abilities and can thus not
produce efficient behavioral adaptation in non-stationary environments.

Another field of robotics which is relevant for this HDR work and
which in some cases include reinforcement learning algorithms is the
study of robot navigation. In this paradigm, the objective of the agent is to
reach a particular goal localized within the environment where the agent
can receive a reward. The agent has to build a representation of space (i.e.
a map enabling it to localize itself) and to learn how to reach the goal in
the most efficient (quickest and safe) manner. In Robotics, map-based na-
vigation in an a priori unknown environment is subject to several issues.
First, in order to move along an appropriate trajectory, the system needs
to autonomously build a relevant representation/map of the environment
(which is the mapping step), to be able to know what is the robot’s current
location (localization step), and to be able to determine a path from point A
to point B (planning step). While the planning step requires the other parts
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to have been completed, the localization and mapping steps are mutually
dependent : in order to localize oneself, it is necessary to recognize cues
and features which characterize a particular place and which have pre-
viously been perceived and stored. Moreover, to build a reliable map and
correctly situate features within it, the robot needs to be able to localize it-
self relative to these features (Angeli et al.|2008). These two steps thus have
to be realized simultaneously, which gave the name to the central robotic
problem of Simultaneous Localization and Mapping (SLAM) (Moutarlier
and Chatilal|1985).

The SLAM problem has been widely studied and numerous "engi-
neering" solutions have been developed, in particular through three main
paradigms : methods based on extended kalman filters (EKF, Smith et al.
(1990)), graphical SLAM (Folkesson and Christensen|2004), and particule
filters (Montemerlo et al.|2002). While numerous SLAM algorithms use the
robot’s laser to measure distances, there also exist SLAM algorithms ba-
sed on camera vision. However, a major difficulty that SLAM algorithms
face is the loop closure problem : recognizing places that the robot has
already visited in order to obtain information which enables to correct es-
timation errors that have been accumulated with odometry. While some
SLAM algorithms can work correctly without loop closure detection, the
work of |Angeli et al| (2008) shows that taking into account this aspect
of navigation dramatically increases SLAM’s results. Besides SLAM algo-
rithms have difficulties to remain efficient when they are simulated for a
long time. This is because the longer the robot navigates, the lesser true
is becoming the hypothesis of a static world on which SLAM is anchored.
Some promising solutions exist, for instance by using dynamical maps (Bi-
ber and Duckett|2005). But the issue is not solved yet. Finally, while SLAM
algorithms focus on the localization and mapping aspects, they do not tell
anything about how to make correct decisions using this information, nor
how to adapt the robot’s decisions through learning.

Neurorobotics approaches

Interestingly, several research groups have adopted a biomimetic ap-
proach to tackle some of these issues, with a two-fold objective : on the
one hand, taking inspiration from the computational principles under-
lying mammals” behavioral flexibility to contribute to the improvement of
current robots” autonomy and adaptivity (Frezza-Buet et al.|2001, Pfeifer
et al.| 2007, Meyer and Guillot/|2008). On the other hand, using the robot
as a platform to test the robustness of current biological hypotheses about
cognitive functions, beyond perfectly controlled simulations, and try to
learn more about the computational mechanisms at stake by analyzing
which solutions enabled the model to work on a physical robot (Arbib
et al.[2008).

In the particular case of robot navigation, several bio-inspired models
of navigation have been tested in recent years, mostly inspired by rodent
navigation. However, to our knowledge, none of these previous studies
have addressed the issue of coordinating multiple decision and learning
systems for navigation.

Arleo and Gerstner| (2000) developed a computational model of place
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cells - neurons located in the hippocampus whose activity encode an esti-
mation of the animal’s current position - and head-direction cells - neurons
selective for the estimated orientation of the animal’s head. With this mo-
del, they enabled a Khepera robot to navigate in a small arena, using a
navigation strategy where learned associations between places and direc-
tions of movement — what is called a place-recognition triggerred response
(PRTR) strategy and which can be learned with model-free RL. Fleischer,
Krichmar and colleagues showed how prospective and retrospective co-
ding at the level of place cells’ activity can enable a robot to efficiently
solve a spatial memory task (Krichmar et al. 2005, [Fleischer et al.|[2007);
here also, navigation was performed by a PRTR strategy. Barrera and Weit-
zenfeld proposed a hybrid PRTR strategy using a graph, where the choice
of the next action took into account the next three actions in a prospective
manner (Barrera et al.|[2011). Their robot could solve discretized imple-
mentations of various rodent laboratory mazes (T and radial mazes). Gio-
vanangeli and Gaussier developed a model of another navigation strategy
consisting in planning routes toward the goal in a topological graph ("cog-
nitive map") of the environment — hence a "model-based" approach. Their
model produced efficient navigation in both indoor and outdoor environ-
ments (Giovannangeli and Gaussier [2008). More recently, the RatSLAM
algorithm has been implemented as a neural network inspired by the rat’s
hippocampus in order to perform efficient, continuous and long duration
simultaneous localization and mapping (SLAM) on a robotic platform put
in a large non-stationary environment (Milford and Wyeth|2010). Planning
is also used here to perform navigation.

These different studies show efficient simulations of single navigation
strategies, relying on a single learning system. The work presented in
Chapter |4/ shows how taking inspiration from mammals” ability to coordi-
nate different navigation strategies, each equipped with specific learning
mechanisms - namely model-based and model-free navigation strategies - can
enable a robot to exploit the advantages of each strategy (work done by
Ken Caluwaerts, a Master student that I co-supervised and whose work
has already been mentioned above, Caluwaerts et al. (2012bja)).

Other research groups have adopted similar bio-inspired approaches
to study robotic cognitive functions or to more generally improve robots’
adaptivity and autonomy. In particular, the Developmental Robotics ap-
proach attempts to mimick children’s ability to learn sensori-motor af-
fordances based on their intrinsic motivation to explore the environment
(Lungarella et al. 2004, Oudeyer and Kaplan|2007). The Biomimetics ap-
proach concerns novel technologies developed through the transfer of
function from biological systems (Lepora et al.||2013). In particular, this
approach has made great advances in taking inspiration from animals’
body properties and sensors which are not common in robotics, such as
the rat’s whiskers (Mitchinson et al. 2011, [N'Guyen et al.|2011).

Based on this state of the art in neuro-inspired robotics, we fur-
ther argue that incorporating bio-inspired meta-learning principles could
enable robots to coordinate different learning systems through self-
supervision in order to decide which system is the most efficient at a given
time and in a given situation. This could help improve robots’ flexibility
and autonomy in decision-making.
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1.2

OB]ECTIVES AND GENERAL APPROACH

The main scientific issue addressed in this work is to understand how
animals and robots can display behavioral adaptation capabilities in their
partially unknown and changing environment. The objective is two-fold :
on the one hand, contributing to better understanding behavioral and neu-
ral correlates of learning processes ; on the other hand, taking inspiration
from biology to design autonomous robots able to learn from their own
observations and errors.

As sketched in the introduction of the scientific context above, the work
is built on previous evidence that the mammalian brain combines different
memory systems which enable parallel learning processes for efficient be-
havioral adaptation — in particular processes called model-based and model-
free Reinforcement Learning. Thus the goal of the work presented in this
manuscript is to propose accurate computational models for the coordi-
nation of learning and decision-making systems observed in animals, and
see whether these models can help better understand underlying brain
activities as well as improving robots” adaptivity and autonomy.

1.2.1 Methodology and implementation

7 A

Engineering Computational
science neuroscience

Autonomous Brain models
robots

FIGURE 1.2 — [llustration of the cross-disciplinary approach adopted in this research work
(designed by Jean-Baptiste Mouret for the AMAC team at ISIR, UPMC-CNRS)

The methodology implemented in this research work studying cog-
nitive processes and their underlying neural structures is principally ba-
sed on the conception of computational models. These models are then
evaluated within the disembodied framework of Computational Neuros-
cience — i.e. comparison with electrophysiological, anatomical, behavioral
data — and within the embodied framework of Cognitive Robotics — i.e.
assessment of the efficiency of resulting controllers in the real world, com-
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parison with engineering methods to evaluate the add-on of using neuro-
inspired methods, new comparison with behavioral data and evaluation
of the add-on compared to model simulations.

Such a research approach requires a strong interaction between Engi-
neering Science and Computational Neuroscience (Fig. [1.2). The former
brings machine learning algorithms, optimization tools, principles for ro-
botic control systems. The latter brings the formalism and methodology of
computational modelling, as well as methods for model comparison and
model-based analyses on behavioral and neural data.

Although I have been trained to perform animal behavioral experi-
ments and electrophysiological recordings — alongside computational mo-
delling and robotic experiments — during my PhD work co-supervised by
Sidney 1. Wiener and Agnés Guillot (Khamassi 2007), the methodology
adopted for this HDR research project does not include the realization
of biological experiments myself anymore. It mostly relies on collabora-
tions with experimentalists outside ISIR to design experiments enabling
to address precise model predictions, to perform model-based analyses
of biological data, and to extract principles from the results that can help
improve computational models and robotic implementations.

Organization of the research work

Cross-disciplinarity interactions required for this research work are
enabled within the Architectures and Models for Adaptation and Cognition
(AMAC) team, coordinated by Stéphane Doncieux at the Institute of In-
telligent Systems and Robotics (ISIR, CNRS-UPMC) and through external
collaborations with experimentalists, theoreticians and roboticists.

The AMAC team gathers thirteen permanent researchers, with Compu-
tational Neuroscience, Computer Science and Robotics backgrounds, and
is organized into five different research groups. I contribute to two of these
groups : (i) the Computational Neuroscience of Executive Functions group in
which Bruno Delord and Benoit Girard also participate; (ii) the Learning for
Robotic Command and Decision-making group in which Raja Chatila, Vincent
Padois and Olivier Sigaud also participate. The local research environment
of this work also includes a LABEX — a regrouping of research laboratories
and institutes related to UPMC — called SMART and supported by French
State funds managed by the ANR within the Investissements d’Avenir
programme under reference ANR-11-IDEX-0004-02. Within this LABEX, I
participate to one of the research programs aiming at modelling human
learning abilities and I collaborate with the machine learning group of
the Laboratory of Computer Science of UPMC (LIP6) with whom I co-
supervise a PhD student (see Table|[1.1).

Within this research environment, I currently co-supervise five PhD
students (Table — and have in addition and in total participated to
the supervision of eight Master students, five Engineering students, and
one external PhD student having performed a six-months research inter-
nship at ISIR. The firstly recruted PhD student, Florian Lesaint, has the
goal of proposing a new multiple learning systems computational model
accounting for behavioral phenomena involving the interaction between
Pavlovian and Instrumental Conditioning, as well as dopamine activity
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] Name | Period | Main discipline | Co-supervision with |
Florian Lesaint | 2011-2014 | Comp. Neuro. Olivier Sigaud (ISIR)
Jean Bellot 2011—2014 | Comp. Neuro. Benoit Girard (ISIR)
Erwan Renaudo | 20122015 Cog. Robot. Raja Chatila (ISIR)
Nassim Aklil | 2013—2016 Cog. Robot. Ludovic Denoyer (LIP6)
Guillaume Viejo | 2013—2016 | Comp. Neuro. Benoit Girard (ISIR)

TABLE 1.1 — Co-supervised PhD students

recorded by our collaborators during these experimental paradigms. The
second PhD student, Jean Bellot, has the goal of proposing a new com-
putational model of dopamine signalling in the basal ganglia and analy-
zing whether this model accounts for the information carried by dopamine
neurons’ activities recorded by our collaborators. The third PhD student,
Erwan Renaudo, has the goal of implementing and testing a robotic ar-
chitecture coordinating MB and MF reinforcement learning to enable ro-
bots to autonomously acquire behavioral habits, and see if the robot can
constitute a good model of human habit learning in real-world continuous
situations. The fourth PhD student, Nassim AKklil, has the goal of impro-
ving the coordination of learning systems within our current robotic mul-
tiple navigation strategy architecture with recent online budgeted learning
techniques from the Machine Learning literature. The fifth PhD student,
Guillaume Viejo, has the goal of proposing a new computational model
for the coordination of learning systems to explain human behavior in
tasks involving the interaction between reinforcement learning and wor-
king memory processes.

My research project is also made possible through external collabora-
tions with experimentalists, theoreticians and roboticists, mostly in France,
but also in other European Countries (United Kingdom, Italy, Switzerland,
The Netherlands), in the United States of America, in Japan and in Tuni-
sia. In particular, collaborators participating to the projects involving the
PhD students I co-supervise or having contributed to the papers included
in this manuscript comprise :

— The group of Mark D. Humphries, at Manchester University, UK,
who designs computational models of action selection and performs
model-based analyses of neurophysiological data (see Chapter [2).

— The groups of Terry E. Robinson and Shelly B. Flagel, at Michigan
University, USA, who perform animal learning experiments, phar-
macological manipulations and electrophysiological recordings du-
ring Pavlovian conditioning experiments (see Chapter [2).

— The group of Kenji Doya, at Okinawa Institute of Science and Tech-
nology, Japan, who performs animal learning experiments, compu-
tational models and robotics implementations of learning models
(see perspectives in Chapter [2).

— The group of Andrea Brovelli, at CNRS in Marseille, who performs
brain imaging in human experiments involving reinforcement lear-
ning, working memory and motor control processes (see perspec-
tives in Chapter [2).

— The groups of Emmanuel Procyk and Peter F. Dominey, at INSERM
in Lyon, who do electrophysiological recordings of monkey prefron-



1.2. Objectives and general approach

17

tal cortex single-unit activity and local field potential during be-
havioral adaptation, and robotic implementations of neuromimetic
models of cognitive functions (see Chapter 3).

The groups of Geoffrey Schoenbaum and Matthew R. Roesch, at
Maryland University, USA, who perform animal learning experi-
ments, pharmacological manipulations and electrophysiological re-
cordings during decision-making tasks (see Chapter [3).

The group of Etienne Coutureau and Alain Marchand, at CNRS
in Bordeaux, who do animal learning experiments and pharmaco-
logical manipulations during instrumental conditioning tasks (see
perspectives in Chapter [3).

The group of Rachid Alami, at CNRS in Toulouse, who works on
shared action plans during human-robot interaction tasks (see pers-
pectives in Chapter [4).

The group of Philippe Gaussier, at Cergy-Pontoise University, who
works on neuromimetic models of perception, navigation and social
interaction (see perspectives in Chapter [4).

The group of Patrick Gallinari and Ludovic Denoyer, at UPMC
in Paris, who designs machine learning algorithms for large and
structured dataset analyses with budget — i.e. computation time and
cost — constraints (see perspectives in Chapter [4).

OUTLINE OF THE PRESENTED WORK

Presentation of the research work is organized as follows :

Chapter |2| presents computational modelling work done to contri-
bute in the formalization of principles underlying animals behavio-
ral adaptation abilities. The work is presented under the form of
two published journal papers (Khamassi and Humpbhries| 2012} |Le-
saint et al.|2014). The first one has been performed with Mark D.
Humphries and shows the relevance of using the model-based /
model-free reinforcement learning computational framework to ca-
tegorize navigation strategies in rodents and their underlying neural
substrates. The second one presents the work of PhD student Florian
Lesaint and shows that a computational model for the coordination
of MB and MF RL enables to reproduce inter-individual behavio-
ral and neurophysiological differences observed in rats called sign-
trackers and goal-trackers in a Pavlovian conditioning paradigm.

Chapter 3| presents work employing the model-based analysis of
neurophysiological data approach. The work is presented under the
form of two journal papers, one in press (Khamassi et al.|2014), the
other about to be submitted (Bellot et al. [in preparation), aiming at
testing model predictions about hypothesized neural activities un-
derlying behavioral adaptation, and using the computational models
to more precisely measure information related to particular compu-
tational mechanisms in neural activity. The first one has been perfor-
med with Emmanuel Procyk, Peter F. Dominey, René Quilodran and
Pierre Enel and shows neural substrates of adaptive regulation of
reinforcement learning parameters in the prefrontal cortical network
during monkey behavioral adaptation. The second one presents the
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work of PhD student Jean Bellot and shows model-based analyses of
dopamine neurons’ single-unit recordings during a decision-making
task in rats.

— Chapter l4| presents robotic implementations of neuro-inspired mo-
dels of the coordination of MB and MF RL. The work is presented
under the form of two papers, one published in a journal (Calu-
waerts et al.|2012b), the other in the proceedings of an international
conference (Renaudo et al.|[2014), aiming at testing the ability of such
neurocomputational models to improve robots’ flexibility and adap-
tivity in real-world applications, and in return getting new insights
into the properties of these computational models when tested in
these more realistic conditions. The first one has been mainly per-
formed by a previously supervised Master student, Ken Caluwaerts,
and shows that the coordination of MB and MF learning systems
for multiple-strategy-based navigation enables the robot to autono-
mously learn to exploit the advantages of each strategy in each sub-
part of the environment. The second one presents the work of PhD
student Erwan Renaudo and shows that the coordination of MB and
MF RL also enables to exploit the advantages of each system du-
ring a habit learning task in a humanoid robot. Both robotic studies
shows that MB and MF systems do not behave exactly as expected
by previous computational model simulations when they are inter-
acting during embodied real-world applications.

Other published papers with supervised PhD students are not inclu-
ded in this manuscript, but will be discussed in relation to the presented
work. These include (i) a paper presented at the Simulation of Adaptive
Behavior Conference comparing the ability of different RL algorithms in
reproducing dopamine activity (Bellot et al.|2012) ; (ii) a paper presented
at the Living Machines Conference showing how extensions of the model-
free learning system to take into account multiple landmarks within the
environment can enable efficient coordination of MF and MB navigation
strategies in a rat robot (Caluwaerts et al.|2012a); (iii) a paper submitted
to a journal showing extensions of a MB / MF RL computational model
to account for new Pavlovian conditioning data and draw a precise list of
experimentally testable model predictions (Lesaint et al.submitted).
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THIS chapter presents computational modelling work done to contri-
bute in the formalization of principles underlying animals behavioral
adaptation abilities. The work is presented under the form of two publi-
shed journal papers (Khamassi and Humphries|2012, Lesaint et al.|2014).

The first one has been performed with Mark D. Humphries and shows
the relevance of using the model-based / model-free reinforcement lear-
ning computational framework to categorize navigation strategies in ro-
dents and their underlying neural substrates. The proposed computatio-
nal framework suggests that navigation strategies can be categorized as
model-based or model-free, depending on the usage of information ra-
ther than on the type of information (e.g. cue versus place) as previous
taxonomies propose. It moreover proposes that the Ventral Striatum (VS)
participates to the model-building part of the involved computational pro-
cesses.

The second one presents the work of PhD student Florian Lesaint and
shows that a computational model for the coordination of MB and MF RL
enables to reproduce inter-individual behavioral and neurophysiological
differences observed in rats called sign-trackers and goal-trackers in a Pav-
lovian conditioning paradigm. The simulations suggest that the behavior
of both types of animals is the result of a weighted sum of MB and MF
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2.1

2.1.1

learning systems, with sign-trackers’ behavior relying on a stronger weigh-
ting of the MF system while goal-trackers’ behavior can be reproduced by
a stronger weighting of the MB system. The model also explains why
learning in goal-trackers has been experimentally shown to be dopamine-
independent while this is not the case in sign-trackers.

PARALLEL NAVIGATION STRATEGIES

Khamassi and Humphries (2012) Frontiers in Behavioral Neuros-
cience
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Behavior in spatial navigation is often organized into map-based (place-driven) vs. map-free
(cue-driven) strategies; behavior in operant conditioning research is often organized into
goal-directed vs. habitual strategies. Here we attempt to unify the two. We review one
powerful theory for distinct forms of learning during instrumental conditioning, namely
model-based (maintaining a representation of the world) and model-free (reacting to
immediate stimuli) learning algorithms. We extend these lines of argument to propose
an alternative taxonomy for spatial navigation, showing how various previously identified
strategies can be distinguished as “model-based” or “model-free” depending on the
usage of information and not on the type of information (e.g., cue vs. place). We argue that
identifying “model-free” learning with dorsolateral striatum and “model-based” learning
with dorsomedial striatum could reconcile numerous conflicting results in the spatial
navigation literature. From this perspective, we further propose that the ventral striatum
plays key roles in the model-building process. We propose that the core of the ventral
striatum is positioned to learn the probability of action selection for every transition
between states of the world. We further review suggestions that the ventral striatal core
and shell are positioned to act as “critics” contributing to the computation of a reward

prediction error for model-free and model-based systems, respectively.

Keywords: reinforcement learning, habit, stimulus-response, action-outcome, nucleus accumbens

1. INTRODUCTION

A vast morass of neuroscience data addresses the problem of
how voluntary behavior is underpinned by the anatomical and
physiological substrates of the forebrain. Principles or frame-
works to organize this data are essential. A consensus is growing
around the potentially useful organizing principle that we can
make a division of the forebrain striatum into three domains
on both anatomical (Joel and Weiner, 1994, 2000; Voorn et al.,
2004) and functional (Yin and Knowlton, 2006; Yin et al., 2008;
Bornstein and Daw, 2011; Ito and Doya, 2011; van der Meer et al.,
2012) grounds. From this “striatal eye-view” we can make sense
of the wider cortical, hippocampal, amygdala, and basal gan-
glia networks in which they sit, and the role of these networks
in different forms of voluntary behavior. Both the spatial nav-
igation and instrumental conditioning literatures have adopted
this perspective, recognizing the functional division of striatum
into dorso-lateral (DLS), dorso-medial (DMS), and ventral stria-
tum (VS) !, belonging to different parallel cortico-basal ganglia
loops (Alexander et al., 1990; Middleton and Strick, 2000), with
each striatal domain having established functional roles within
those broader behavioral distinctions. How do these functional

IWe use VS throughout, rather than nucleus accumbens, to emphasize the con-
tiguous nature of the striatum through its dorsolateral to ventro-medial extent
(Voorn et al., 2004; Humphries and Prescott, 2010).

distinctions map between the two literatures? And what might we
learn by comparing the two?

While some links have been drawn between the approaches
of the two literatures (Redish, 1999; Yin et al., 2004, 2008;
Khamassi, 2007), their primary theories for the strategies under-
pinning behavior are, we suggest, orthogonal: the conditioning
literature distinguishes goal-directed and habitual behavior in a
task, whereas the navigation literature distinguishes place and
response strategies for solving a task. However, there is mount-
ing evidence that the place/response distinction is unable to
account for the effects of lesions on navigation behavior. Our
main hypothesis is that strategies for navigation, similar to strate-
gies for instrumental conditioning (Daw et al., 2005), can be
reconciled as either model-free or model-based—we define these
terms below. At root, the key distinction is that it is the use
of information in building a representation of the world, rather
than the type of information about the world, that defines the
different computational processes and their substrates in the
striatum. We argue that explicitly identifying the DLS as a cen-
tral substrate for model-free learning and expression, and the
DMS as a central substrate for model-based learning and expres-
sion (Yin and Knowlton, 2006; Thorn et al., 2010; Bornstein
and Daw, 2011; van der Meer et al., 2012) can help rec-
oncile numerous conflicting results in the spatial navigation
literature.
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With this hypothesis in hand, we can see how work on spatial
navigation gives us a second hypothesis, useful to understanding
instrumental conditioning. We propose that the VS is a central
substrate—in collaboration with the hippocampus—for a collec-
tion of functions that we informally term the “model-builder”. On
the one hand, the core of the VS acting as the locus of actions
necessary to build a model; and on the other hand the shell of
the VS acting to evaluate predicted and achieved outcomes in the
model. These are clearly not the only roles of the multi-faceted
VS (Humphries and Prescott, 2010); nonetheless, they may prove
a further useful organizing principle.

With this sketch in mind, we address first the different forms
of behavioral strategies that have separately been identified in the
spatial navigation and instrumental conditioning literatures. We
take a striatal-centric view here as an organizing principle, not
as a claim that striatal domains are exclusive substrates for dif-
ferent forms of learning and navigation. Each striatal domain is
one locus in a broader basal ganglia network that computes its
output using information gathered by the striatum (Houk and
Wise, 1995; Mink, 1996; Redgrave et al., 1999; Humphries et al.,
2006; Leblois et al., 2006; Girard et al., 2008); and each network
is in turn one locus in a broader basal ganglia-thalamo-cortical
loop. Nonetheless, the striatum’s consistent intrinsic microcir-
cuit across the dorsolateral to ventro-medial axis (Bolam et al.,
2006), its integration of cortical, thalamic, hippocampal, and
amygdala input, and its position as the primary target of the mid-
brain dopaminergic system, makes it a natural vantage point from
which to attempt to unify the disparate strands of navigation and
conditioning.

2. STRATEGY DISTINCTIONS IN SPATIAL NAVIGATION

2.1. TAXONOMY OF SPATIAL NAVIGATION FORMS

Evidence for different navigation strategies in the rat comes from
behavioral studies showing that they are able to rely on differ-
ent information to localize themselves in the environment and
to reach a certain location in space (Krech, 1932; Reynolds et al.,
1957; O’Keefe and Nadel, 1978). Existing classifications of naviga-
tion strategies (O’Keefe and Nadel, 1978; Gallistel, 1990; Trullier
et al., 1997; Redish, 1999; Franz and Mallot, 2000; Arleo and
Rondi-Reig, 2007) point out a series of criteria, some of them
overlapping, to differentiate navigation strategies: the type of
information required (sensory, proprioceptive, internal), the ref-
erence frame (egocentric vs. allocentric), the type of memory at
stake (procedural vs. declarative memory) and the time necessary
to acquire each strategy (place-based strategies generally being
more rapidly acquired than cue-guided strategies; Honzik, 1936;
O’Keefe and Nadel, 1978; Packard and McGaugh, 1992, 1996;
Redish, 1999). Moreover, it has been observed that in normal ani-
mals, a shift from a place strategy to a response strategy occurs
in the course of training (Packard, 1999). This has led to the
proposition of a strong distinction between two main categories
of strategies:

e Response strategies, where a reactive behavior results from
learning direct sensory-motor associations (like heading
toward a visual cue or making an egocentric turn at the cross-
roads of a maze). This category includes target-approaching,

guidance, cue-guided, and praxic 2 navigation, and can be

further elaborated in the form of a sequence or chaining of
Stimulus-Response (S-R) associations when new cues result
from the previous displacement (O’Keefe and Nadel, 1978;
Trullier et al., 1997; Arleo and Rondi-Reig, 2007).

e Place strategies, which rely on a spatial localization process,
and can imply a topological or metric map of the environ-
ment (Tolman, 1948)—the term map being defined by Gallistel
(1990) as “a record in the central nervous system of macro-
scopic geometric relations among surfaces in the environment
used to plan movements through the environment”.

2.2. SUBSTRATES IN THE STRIATUM

This strong strategy distinction has been mapped onto a strong
distinction in underlying neural systems. It has been found
that lesions of the hippocampal system impair place strate-
gies while sparing response strategies (Morris, 1981; Packard
et al, 1989; Devan and White, 1999). In contrast, lesions
of the DLS produce the opposite effect: impairing or reduc-
ing the expression of response strategies while sparing place
strategies (Potegal, 1972; Devan and White, 1999; Adams
et al.,, 2001; Packard and Knowlton, 2002; Martel et al.,
2007). Thus, it is common to speak of place and response
strategies as being, respectively, “hippocampus-dependent” and
“hippocampus-independent” (White and McDonald, 2002).
Some theories propose that the “hippocampus-dependent” sys-
tem expresses its output via the VS (Redish and Touretzky,
1997; Albertin et al., 2000; Arleo and Gerstner, 2000; Johnson
and Redish, 2007; Penner and Mizumori, 2012). Other studies
have also highlighted a role for the DMS in the “hippocampus-
dependent” system (Whishaw et al., 1987; Devan and White,
1999; Yin and Knowlton, 2004), by finding that lesions of the
DMS promote response strategies, implying the loss of place
strategies. The behavioral strategies are often equated directly
with learning systems: that is, separate systems that learn a partic-
ular cue-guided and/or place-guided set of strategies for a given
environment. However, the simple mapping between VS-DMS
vs. DLS onto place vs. response strategies is not consistent with
mounting evidence from lesion studies.

2.3. KNOWN PROBLEMS WITH TAXONOMY AND SUBSTRATES

Response strategies are not solely dependent on the DLS. Chang
and Gold (2004) reported that DLS-lesioned rats were only
unable to express a response strategy on a T-maze in the absence
of extra-maze cues; in cue-rich conditions the DLS-lesioned rats
did not differ from controls in their ratio of using response
or place strategies. Both Yin and Knowlton (2004) and De
Leonibus et al. (2011) also found no significant decrease in the
use of response strategies by DLS-lesioned rats running a T-maze.
Moreover, Botreau and Gisquet-Verrier (2010) not only replicated
this result but also ran a second separate cohort of DLS-lesioned
rats to confirm it; further, they showed that the DLS-lesioned
rats using a response strategy were really doing so: they con-
tinued to use that strategy to solve a new task on the T-maze.

2praxic normally refers to internally-generated sequences of movement
independent of position information.
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We conclude that the response learning system—including cue-
guided and praxic strategies—cannot be simply associated with
the DLS.

Place strategies are not solely dependent on the DMS. When
learning to navigate to a hidden platform in the Morris water
maze, rats with DMS lesions were able to learn the platform’s
location just as well as controls or DLS-lesioned rats, as indicated
by their similar escape latencies (Whishaw et al., 1987; Devan
and White, 1999); consistent impairment—shown by a lack of
improvement over trials—only occurred if the fornix-fimbria?
was cut (Devan and White, 1999). Botreau and Gisquet-Verrier
(2010) reported that DMS-lesioned rats did not differ from con-
trols or DLS-lesioned rats in their ratio of using response and
place strategies in a probe test in the water-maze. We conclude
that the place learning system cannot be simply associated with
the DMS.

The precise role of VS in particular navigation strategies is
even less clear (see Humphries and Prescott, 2010; Penner and
Mizumori, 2012 for recent reviews). VS lesions impair place-
based learning (Sutherland and Rodriguez, 1989; Ploeger et al.,
1994; Setlow and McGaugh, 1998; Albertin et al., 2000). For
instance, lesions of the medial shell of the VS impair the rat in
learning and recalling the location of sites associated with larger
rewards (Albertin et al., 2000). However, more recent studies
reveal that VS function may not be restricted to place strategies.
For instance, De Leonibus et al. (2005) report that VS lesions
impair the acquisition of both allocentric and egocentric strate-
gies in a task requiring the detection of a spatial change in the
configuration of four objects placed in an arena.

The clean distinction between rapidly learnt place strate-
gies and slowly learnt response strategies is also problematic.
Several authors have reported rapidly learned response strate-
gies (Pych et al., 2005; see Willingham (1998) and Hartley and
Burgess (2005) for reviews including rodent data). Conversely,
while place strategies have most of the time been found highly
flexible and more rapidly acquired than response strategies
(Packard and McGaugh, 1996), after extensive training place
strategies can also become inflexible and persist in leading
animals toward the previous goal location after a reversal, as
if not relying on a cognitive map (Hannesson and Skelton,
1998; see also rat behavioral data in a Y-maze described in
Khamassi, 2007).

These data suggest that the simple distinction between place
vs. response strategies might be too broad to explain the dif-
ferent roles of VS-DMS vs. DLS in navigation. Several authors
have highlighted that this classification of navigation strategies
lends too much importance to the type of information involved
(i.e., place vs. cue) and thus to the spatial localization process
(Trullier et al., 1997; Sutherland and Hamilton, 2004). We suggest
that considering the type of learning involved—and measurable
in terms of behavioral flexibility—might better account for the
specific involvement of VS, DMS, or DLS in navigation. To see

3This fiber pathway brings hippocampal information to the VS, but is also
the source of brainstem inputs to the hippocampus, so may disrupt either
transmission of place information by hippocampus or the encoding of place
in hippocampus.

this, let us first consider the taxonomy of learning in instrumental
conditioning.

3. STRATEGY DISTINCTIONS IN INSTRUMENTAL
CONDITIONING
3.1. GOAL-DIRECTED BEHAVIORS vs. HABITS
A long line of conditioning research has elaborated two oper-
ationally defined forms of instrumental behavior in the rat:
goal-directed in which the animal is able to modify its behavior
in response to changes in outcome and habitual in which the
animal does not respond to changes in outcome (it perseveres
with its previous action— hence “habit”) (Dickinson, 1985; Yin
etal., 2008). This definition is “operational” because it can only be
safely defined in retrospect— i.e., after extinction. Experimenters
typically use a test in extinction to discriminate between these
two behavioral modes after a reward devaluation or change in
contingency between behavior and reward. If during this extinc-
tion test the animal quickly stops producing the now irrelevant
conditioned response (e.g., pressing a lever) it is said to be goal-
directed; if the animal persists it is said to be habitual (Balleine and
Dickinson, 1998). The inference is then drawn that goal-directed
animals have access to action-outcome contingencies to guide
behavioral choice, and that changes in outcome consequently
change action choice, whereas habitual animals make behavioral
choices based on S-R pairings (Dickinson, 1985).

3.2. SUBSTRATE EVIDENCE FOR DMS’ GOAL-DIRECTED AND DLS’
HABITUAL ROLES IN LEARNING

During the course of a conditioning task animals’ behavior pro-
gressively shifts from expressing awareness of action-outcome
contingencies to expressing habits. In particular, after extensive
training or overtraining animals’ behavior is most often habitual
(Yin et al., 2004). It turns out that this natural progressive shift can
be perturbed by lesions of different parts of the striatum, point-
ing to a possible double-dissociation between DLS and DMS: the
former being required for acquisition and maintenance of habits,
and the latter being required for learning and expression of goal-
directed behaviors (Balleine, 2005; Yin and Knowlton, 2006; Yin
et al., 2008).

There is a strong consensus that the dorsolateral striatum is
necessary for habitual behavior: lesions of either the DLS (Yin
et al., 2004), or disruption of dopamine signaling within it (Faure
et al., 2005), prevent habit formation in extinction. Animals
with such lesions thus appear to maintain goal-directed behav-
ior throughout a task. Correspondingly, there is a re-organization
of the DLS’ single neuron activity during habit formation (Barnes
et al.,, 2005; Tang et al., 2007; Kimchi et al., 2009). Consequently,
the dorsolateral striatum has been proposed as central to the
learning of habits (Yin and Knowlton, 2006; Yin et al., 2008).

There is a strong consensus that the dorsomedial striatum is
necessary for goal-directed behavior: lesions of the DMS (Yin
et al., 2005b), or blockade of NMDA receptors within it (Yin
et al., 2005a), putatively preventing synaptic plasticity, prevent
sensitivity to devaluation or contingency changes in extinction.
Animals with such lesions thus appear to obtain habitual behav-
ior from the outset. Correspondingly, there is a re-organization of
the DMS’ single neuron activity after changes in action-outcome
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contingencies (Kimchi and Laubach, 2009; Kimchi et al., 2009).
Consequently, the dorsomedial striatum has been proposed as
central to goal-directed learning (Yin and Knowlton, 2006; Yin
et al., 2008).

A caveat is that the anterior part of DMS (aDMS) may escape
from this functional scheme. To our knowledge, only the pos-
terior DMS (pDMS) has been clearly shown as involved in the
acquisition of goal-directed behaviors (Yin et al., 2005b) and
in place-based navigation (Yin and Knowlton, 2004). Lesions of
aDMS do not affect either of these processes. They even increase
the number of rats classified as place-responders both during
initial and late phases of learning (Yin and Knowlton, 2004),
and seem to increase the sensitivity to contingency degradation
(compared to sham-lesioned rats) (Yin et al., 2005b). Ragozzino
and Choi (2004) showed that inactivating aDMS does not affect
learning of a T-maze task or acquisition of a place strategy; but
inactivation during reversal learning did affect performance, thus
suggesting that aDMS is involved in switching between strate-
gies, not in learning per se. Contrary to these data, Moussa et al.
(2011) showed that a rat’s impairment in learning an alternating-
arm T-maze task correlated with volume of DMS damage, not
with the location of the lesion. Nonetheless, it remains possi-
ble that the aDMS is not part of the goal-directed or habitual
systems.

3.3. THE VENTRAL STRIATUM IN CONDITIONING

While dorsal parts of the striatum are important for the expres-
sion of learned S-R contingencies, their acquisition may require
intact VS (Atallah et al., 2007). The VS is indeed located at a
crossroads between limbic and motor structures which places
it in a privileged position to integrate reward, motivation, and
action (Mogenson et al., 1980; Groenewegen et al., 1996). In the
instrumental conditioning literature, the VS is also considered
particularly important for Pavlovian influences over voluntary
behavior (Balleine and Killcross, 1994; Dayan and Balleine, 2002;
Yin et al., 2008; van der Meer and Redish, 2011). It has been
attributed roles as both a locus of Pavlovian conditioning—
learning to associate outcomes to different stimuli or states—and
the locus of Pavlovian-instrumental transfer—the use of those
learnt stimulus-outcome associations to motivate the learning
and expression of instrumental actions in the presence of those
stimuli (Yin et al., 2008). Further, while the functional subdivi-
sion of VS into core and shell might be oversimplified (Heimer
et al., 1997; Tkemoto, 2002; Voorn et al., 2004; Humphries and
Prescott, 2010), it may account for distinct influences of reward
values on habitual performance and goal-directed behavior,
respectively. For instance, Corbit and Balleine (2011) found that
shell lesions impair outcome-specific [putatively goal-directed
as noted by Bornstein and Daw (2011)] Pavlovian-instrumental
transfer while core lesions impair general (putatively habitual)
Pavlovian-instrumental transfer.

These data suggest that the differences in the learning pro-
cess controlling the progressive influence of rewards on actions
may determine the functional roles of striatal domains in var-
ious behavioral strategies: DLS being involved in learning and
expression of habitual behaviors; DMS being involved in learn-
ing and expression of goal-directed behaviors; VS controlling the

influence of reward values on these two processes during learning.
Computational work has brought great advances in formalizing
the differences between these learning processes.

3.4. MODEL-BASED vs. MODEL-FREE LEARNING PROCESSES
Machine-learning research into formal algorithms for reinforce-
ment learning has developed a basic distinction between two
forms of such algorithms. Common to both is the idea that we
can represent the world as a set of states S, that the agent could
take one of a set of actions A in each state (including no action
at all), and that the outcome of taking action a in state s is the
next state s’ and a possible reward r (Sutton and Barto, 1998).
Distinguishing the two is whether or not the dependencies in the
world representation are explicitly modeled (Figure 1).

In the model-free forms of algorithm, each state has associ-
ated with it a distribution of the values of each possible action,
learnt iteratively using a prediction error to minimize the dif-
ference between the values of actions in consecutive states. This
set includes most well-known forms of reinforcement learn-
ing algorithms—including Temporal Difference (TD) learning,
Actor-Critic, and Q-Learning. Each state thus has an associated
distribution of cached action-values Q(s, a) over all available
actions. The action to execute is then simply chosen based on this
cached value distribution. Such behavior is called reactive in that
it is state-driven—e.g., stimulus-driven—and does not rely on the
inference of possible outcomes of the action.

In the model-based forms of algorithm, direct use is made
of the state information about the world. With each state s is
still associated a reward r, each action is still assigned a value
Q(s, a), and action selection is based on those values. However,
model-based algorithms explicitly store the state transitions after
each action: they can then simulate off-line the consequence
of action choices on transitions between states before choosing
the next action appropriately (Sutton and Barto, 1998; Johnson
and Redish, 2005). Thus in this case the agent will infer pos-
sible future outcomes of its decisions before acting. In simple
decision-making tasks in which each action leads to a different
state, such a process is naturally captured by a branching decision
tree (Figure 1); in more natural situations states may be re-visited
during ongoing behavior, and thus the transitions between states
may have periodic structure. Sophisticated model-based algo-
rithms explicitly compute a separate transition matrix T(s, 4, s)
for the probability of ending up in each next state s, given the
current state s and each possible action choice a in A (Daw et al.,
2005, 2011; Glascher et al., 2010).

Daw et al. (2005) proposed the formal mapping that goal-
directed behavior results from model-based learning and that
habitual behavior results from model-free learning® They fur-
ther proposed that both learning systems operate in parallel, with

4They used a model-based algorithm that explicitly computed the transi-
tion matrix. It seems feasible that simpler model-based algorithms, without
explicit computation of the transition matrix, could also equally account for
the sensitivity to devaluation and contingency changes in goal-directed learn-
ing, as their repeated internal simulation after such outcome manipulations
would result in more rapid changes in overt behavior. To our knowledge, no
one has examined the possibility. Intriguingly, Johnson and Redish (2005)
showed that such an internal-simulation model, emulating hippocampal
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FIGURE 1| Model-based and model-free learning and controllers.
Model-based and model-free controllers represent the world as a set of
states Sy ...Sy and actions A ... Ay within those states. They learn the
values of each action in a given state, here indicated by the thickness of each
circle, based on available rewards R. What distinguishes them is their
representation of the links between those states. A model-based controller
(centre) also represents the transitions between states and the action(s) that
cause the transition (indicated by the multiple arrows). For a known current
state, specified by current sensory information, the model can be traversed
to find the likely outcome of simulated actions in each state—one such
trajectory is given by the orange arrows. Each trajectory can then be used to
update the predicted value of each action. Finally, after a number of
trajectories through the model, an overt action is selected based on their

g
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updated values in the current state. A model-free controller (right) vastly
reduces the representational and computational demands by essentially
externalizing the world-model. Sensory information specifies the state at
time t1; an action is chosen based on its current value. Updated sensory
information resulting from that action then specifies the state at time t,.
Learning is then based on the prediction error between expected and
resulting values of the action taken at t;. A model-free controller can also be
trained by a model-based controller, and thus represent an abstraction of that
model. Irrespective of whether model-free or model-based, a common set of
information needs to be learnt to construct and use the controller (left) to
specify the set of current relevant states in the world; to learn actions
available within them and the transitions those actions cause; and to learn
the reward function—which state(s) contain reward(s).

[Sensory
[ Motor

the system chosen for current behavioral control based on hav-
ing the least uncertainty in its prediction of the outcome. Using
stylized examples of simple conditioning tasks, they showed how
this mapping can explain the sensitivity to devaluation and con-
tingency degradation in extinction early in training when the
model-based controller is dominant, and how that sensitivity is
lost when the model-free controller becomes dominant with over-
training. The underlying explanation is that the model-based
controller directly represents action-outcome contingencies, and
is thus able to quickly propagate changes in reward through the
world-model; by contrast, the model-free controller, while able
to reduce the uncertainty in its predictions with over-training,
requires further extensive training for the change in reward to
propagate through the independent state-action representations.
This formal mapping onto computational substrates has proven
a very useful and fruitful guide to the understanding of these
operationally-defined forms of behavior and their inferred learn-
ing systems (Ito and Doya, 2011; Bornstein and Daw, 2011;
van der Meer et al., 2012).

This computational mapping is also assumed to follow the
same substrate mapping (Daw et al., 2005; Bornstein and Daw,

replay of previous trajectories through a maze, could indeed reduce the onset
of habit-like stereotypy in the paths taken through the maze.

2011; Tto and Doya, 2011). Thus, as DLS is central to the
habit-learning system, so, by extension, it is considered central
to the model-free learning system in instrumental conditioning
(Daw et al., 2005). Similarly, as DMS is central to the goal-
directed system, it is thus natural to propose that DMS is central
to the model-based learning system in instrumental conditioning
(Bornstein and Daw, 2011).

4. UNIFICATION: NAVIGATION STRATEGIES ARE

MODEL-FREE OR MODEL-BASED
Superficially, the model-free/model-based dichotomy strongly
resembles the dichotomous taxonomy defined in the spatial
navigation literature between flexible map-based place strate-
gies and automatic map-free response strategies. However, the
two approaches are orthogonal: one is defined by information
use in a world representation (model-free/based), the other by
information type (place/cue).

Our hypothesis is that we may similarly distinguish model-
free and model-based navigation strategies by their use of
information (Figure2), no matter if the state is represented
by a spatial location or a visual stimulus. Within these two
top-level strategies, we may further differentiate strategies
defined by their reference frame and modality of processed
stimuli:
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A Action selection process

Inflexible, slow to acquire Flexible, rapidly learned
Strategy [RACES
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(S-R associations) (cognitive graph)
B
Inflexible, slow to acquire Flexible, rapidly learned
(model-free) (model-based)

Place strategies
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FIGURE 2 | New taxonomy of navigation strategies based on
model-based/model-free reinforcement learning. (A) Previous
taxonomies highlight the distinction between flexible rapidly acquired
map-based strategies and inflexible slowly acquired S-R strategies.

(B) New taxonomy highlighting model-free and model-based place
strategies as well as model-free and model-based response strategies.
PRTR, place-recognition triggered response strategies as classified by
Trullier et al. (1997).

e egocentric reference frame, relying on idiothetic (praxic), or
allothetic (cue-guided) stimuli;

e allocentric reference frame, relying on idiothetic and/or allo-
thetic stimuli (places).

Our hypothesis thus naturally extends to proposals for the striatal
substrates of model-free and model-based strategies in naviga-
tion: that the DLS is central to the model-free navigation system
and DMS is central to the model-based navigation system.

This combined conceptual (model-free vs. model-based) and
substrate (DLS vs DMS) hypothesis raises four implications that
each explain some troubling or inconsistent data for the place vs.
response dichotomy in navigation. First, that we can conceive of a
model-free strategy based on place information alone supported
by the DLS. Second, that, correspondingly, we can conceive of a
model-based “response” strategy based on cues alone supported
by the DMS. Third, that, following the model-based/model-free
mapping in conditioning (Daw et al., 2005), model-based and
model-free control of navigation could be distinguished behav-
iorally by whether or not the animal reacts to changes in the
value or contingencies of rewards, and by lesions to the DLS and
DMS. Fourth, that both place and cue information should be
available to both the model-based and model-free navigation sys-
tems, and thus should be detectable within both the DMS and
DLS. We consider each of these in turn, then discuss the key
role of the hippocampal formation as the likely source of state
information.

4.1. DLS AND (MODEL-FREE) PLACE STRATEGIES

Model-free navigation strategies based on place information
alone have been called “Place-Recognition Triggered Response
(PRTR)” strategies by Trullier et al. (1997) who emphasized that

such a strategy produces inflexible behavior because it needs to re-
learn sequences of place-response associations in case of a change
in goal location. This type of learning was prominent in early
models of hippocampus-dependent navigation (Burgess et al.,
1994; Brown and Sharp, 1995; Arleo and Gerstner, 2000; Foster
et al., 2000).

Following the same DLS vs. DMS double-dissociation logic as
was used for goal-directed and habitual learning then, if DMS
is the substrate for place strategies, lesions of the DMS should
impair place strategies and lesions of the DLS should not affect
them. However, there is evidence against this dissociation and
indirect evidence in favor of a place strategy supported by DLS.
Lesions of the DMS slow but do not prevent the learning of a
hidden platform in a water maze, which putatively requires a
place-based strategy (Devan and White, 1999). More compelling,
Botreau and Gisquet-Verrier (2010) tested control, DLS-lesioned,
and DMS-lesioned rats learning a hidden platform water maze
task; after learning, a probe trial was used where the rats were
started in a different location for the first time: they found that
rats were divided into the same ratio of “place” and “response”
groups on the probe trial irrespective of whether they were con-
trol, DLS-lesioned, or DMS-lesioned rats. Recently, Jacobson et al.
(2012) tested rats on an alternating strategy plus-maze, which
required the use of either a response-based or place-based strat-
egy on each trial as signaled by an extra-maze cue: they found
that post-training DLS lesions impaired use of both the response
and place strategies. Thus, there is evidence that intact DLS is
important for using place strategies.

4.2. DMS AND (MODEL-BASED) RESPONSE STRATEGIES

The proposal of a model-based response strategy is just the claim
that we can conceive of states in a spatial navigation task as
being defined by the position of intra- or extra-maze cues rel-
ative to the animal. In such a model, different states would not
necessarily correspond to different spatial position. Rather, we
can conceive of an example task where distinct states s; and s
correspond to the same spatial location and differ on whether
a light is turned on or off. Then a model-based system can
learn the transitions between these states and search the model
to proceed with action selection—e.g., reward may be delivered
only when the light is on. Thus, whereas others have explic-
itly identified a response strategy—e.g., a strategy guided by the
light—with habitual behavior (e.g., Yin and Knowlton, 2004), we
are proposing that the two are orthogonal.

Again we may follow the same double-dissociation logic: if
DLS is the sole substrate for response strategies, then lesions of
the DLS should impair response strategies and lesions of the DMS
should not affect them. There is evidence against this dissoci-
ation, and in favor of DMS involvement in response-strategies.
As noted in section 2.3, lesions of the DLS do not impair the
use of response strategies on probe trials, suggesting that intact
DMS is sufficient to support the use of response strategies (Chang
and Gold, 2004; Yin and Knowlton, 2004; Botreau and Gisquet-
Verrier, 2010; De Leonibus et al., 2011). Chang and Gold (2004)
further reported that the DLS lesions only effectively impaired the
use of response strategies when there were no extra-maze cues.
This suggests that model-based (and putatively DMS-based) use
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of cues was sufficient to maintain a response strategy in the cue-
rich conditions; but that a model-free (and putatively DLS-based)
praxic response strategy was necessary in the cue-deficient condi-
tions (that is, in the absence of sufficient cues, learning a sequence
of turns was required).

Moussa et al. (2011) tested the effects of DLS and DMS lesions
on the ability of rats to learn a return-arm T-maze in which the
rats were required to alternate their choice of visited arm (left or
right) to obtain reward, but were free to run at their own pace.
The task is a seemingly simple response strategy but requires a
minimal model to achieve rewards above chance level. At the
choice point of the T-maze, a model-free learning system would
assign equal value to turning left or turning right as both would
be rewarded on (approximately) half the visits. To achieve better,
a minimal model would be needed to at least link the previ-
ous choice of arm to the current choice, chaining at least two
(state, action) pairs in a loop—which corresponds to a model-
based process. Moussa et al. (2011) found that DMS lesions, and
not DLS lesions, impaired learning of this task irrespective of
the amount of training. Their data thus suggest a model-based
response strategy role for DMS.

4.3. VALUE-SENSITIVITY IN NAVIGATION AND ITS ALTERATION BY
DMS BUT NOT DLS LESIONS
If the prediction of Daw et al. (2005) is correct, then model-based
and model-free control of action can be distinguished behav-
iorally by whether or not the animal reacts to changes in the value
or contingencies of rewards. Thus, under our hypothesis, such
sensitivity to value or contingency changes in spatial navigation
should be reflected in both place and response strategies if using
a model-based controller and in neither place nor response strat-
egy if using a model-free controller. Similar to the goal-directed to
habitual transfer observed in instrumental conditioning (Yin and
Knowlton, 2006), we might expect that this outcome sensitivity
would disappear with over-training on a sufficiently determinis-
tic task, reflecting the transfer from a model-based to a model-free
controller for navigation. Also similarly, our hypothesis is that this
transfer is from the DMS to the DLS-based systems; so lesions
to those systems should differentially affect how changes in value
subsequently change behavior.

Whereas above we reviewed evidence in favor of their breaking
the place vs response dichotomy, here we consider evidence more
directly in favor of the association of DMS with a model-based
system and DLS with a model-free system. De Leonibus et al.
(2011) recently provided intriguing evidence from devaluation in
favor of both (1) the existence of model-based and model-free
response strategies and (2) their dissociable modulation by DMS
and DLS lesions. Further, Moussa et al. (2011) provided evidence
from extinction during navigation for both. We consider these
studies in turn.

Figures 3A,B outlines De Leonibus et al. (2011) dual-solution
plus-maze task and experimental design. Key to the design was
separately training “early” and “late” groups of rats for, respec-
tively, 26 and 61 days before the first probe trial, which established
the strategy they were using to locate the reward (Figure 3B).
Both “early” and “late” groups preferentially used the response
strategy on the first probe trial (Figures 3C,F), replicating earlier

results (Devan and White, 1999; Yin and Knowlton, 2004).
However, the response strategy sub-group for both “early” and
“late” were then split, with approximately half receiving a devalu-
ation regime for the food reward in the maze. On the subsequent
second probe trial, only the “early” group showed awareness of
the devaluation, through a significant drop in their use of a
response strategy (Figure 3D). There was no change in the use
of response strategy by the devalued “late” group (Figure 3G).
Thus, while both “early” and “late” groups of rats preferentially
used a response strategy, only the early group modified use of
that strategy after change in the value of reward, evidence of a dis-
tinction between a model-based and model-free form of response
strategy.

De Leonibus et al. (2011) then separately tested the effects
of pre-training sham and DMS lesions on a new “early” group,
and of pre-training sham and DLS lesions on a new “late” group.
They found that the DMS lesion prevented the devaluation from
changing the proportion of “early” group rats using a response
strategy (Figure 3E). This is consistent with the loss of DMS pre-
venting value updates from propagating through the model-based
system. Conversely, they found that the DLS lesion now permit-
ted the devaluation to change the proportion of “late” group rats
using a response strategy (Figure 3H). This is consistent with the
loss of DLS preventing transfer to the model-free system, and
subsequently value updates continued to propagate through the
model-based system. Together, these results support the double
dissociation of DMS as part of a model-based and DLS as part of
a model-free system for navigation.

Moussa et al. (2011) found results consistent with this pic-
ture from rats tested in extinction on a navigation task. As noted
above, they tested rats on an alternating arm T-maze task, thus
requiring rats to maintain a memory of the previously visited
arm. As the rats ran at their own pace, Moussa et al. (2011) were
unusually also able to test the effects of extinction on navigation
tasks by leaving the arms unbaited in the final 10-min session.
They found that control rats did decrease their laps of the maze
over the 10-min period, so that extinction effects were detectable.
Moreover, though DLS lesions had no effect on learning the task,
they did lead to significantly faster extinction of maze running.
These data are thus consistent with lesions of DLS removing the
putative model-free navigation substrate, thus leaving intact the
putative model-based substrate in DMS that was subsequently
faster to respond to the outcome devaluation.

4.4. PLACE AND CUE INFORMATION IS AVAILABLE TO BOTH
MODEL-BASED AND MODEL-FREE SYSTEMS

If the DLS and DMS are indeed, respectively, substrates for

model-free and model-based navigation systems, and not the

response and place systems, then cue- and place-based correlates

of movement should appear in the activity of both.

DLS activity is consistent with the development of cue-based
correlates of movement. Jog et al. (1999) showed that develop-
ing DLS activity over the course of a T-maze task stabilized to
just the start and end positions in the maze once the rats had
reached operationally “habitual” behavior. van der Meer et al.
(2010) showed that decoding of position information from dorsal
striatal activity consistently improved over experience, and that its
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FIGURE 3 | Evidence for model-based and model-free navigation in data
reported by De Leonibus et al. (2011). (A) Dual-solution plus-maze task
used by De Leonibus et al. (2011). On training trials, rats always start from
the same arm (south) and have to learn the location of the reward in a
consistently baited arm (e.g., east). After training, a probe trial starting in the
opposite arm is used to ascertain the rat's strategy for locating the reward

(a food pellet): a “response” strategy based on direction of turn, or a “place”
strategy based on location of reward with respect to extra-maze cues.

(B) The experimental design of De Leonibus et al. (2011). Rats were in two
broad categories, designated “early” and “late” with respect to the first
probe trial (day 27 or day 62). All “response” rats from that trial were taken
forward to the second stage, and split approximately evenly into devaluation
and control (value) groups. Both groups had free access to food pellet reward
for 15 min immediately after training for each of five days; the devaluation
group received an injection of LiCl immediately afterwards, the control group

Devalued

DLS

Sham

Sham DLS

received a saline injection. The devaluation group developed a taste aversion
to the pellets, but no reduction in completed trials (De Leonibus et al., 2011).
(C-E): data from “early” group; (F-H) data from the “late” group.

(C) Proportion of “early” group rats using each strategy on first probe trial.
(D) From the second probe trial, the proportion of rats continuing to use a
“response” strategy after devaluation compared to controls. (E) From the
second probe trial, the proportion of rats continuing to use a response
strategy after devaluation and pre-training DMS lesion, compared to controls
for both. (F) Proportion of “late” group rats using each strategy on first probe
trial. (G) From the second probe trial, the proportion of “late” group rats
continuing to use a “response” strategy after devaluation, compared to
controls. (H) From the second probe trial, the proportion of rats continuing to
use a response strategy after devaluation and pre-training DLS lesion,
compared to controls for both. An x indicates a significant difference of at
least p < 0.05—see De Leonibus et al. (2011) for details.

activity peaked only at choice points in the maze, consistent with
a slow learning model-free system that learnt to associate differ-
entiable intra-maze states with actions (Graybiel, 1998; Yin and
Knowlton, 2006). DLS activity is also selectively correlated with
position: Schmitzer-Torbert and Redish (2008) found that dorso-
lateral striatal electrophysiological activity correlated with place
when the task required knowledge of spatial relationships, but no
correlation when the task was non-spatial.

DMS is clearly in receipt of place information in that activity
is correlated with actions or rewards in particular locations, but
not correlated with the location alone (Wiener, 1993; Berke et al.,
2009). Furthermore, lesions of posterior DMS prevent execution

of place-based strategies (Yin and Knowlton, 2004) as does loss of
dopamine from that region (Lex et al., 2011). Its input from the
prefrontal cortex (PFC), particularly medial PFC which receives
considerable direct input from the CA1 place cells, is one of the
most likely sources of place information; there is clear evidence
that medial PFC supports place representation [e.g., Hok et al.
(2005)]. Nonetheless, there is also evidence for DMS’ receipt of
cue-information. Devan and White (1999) reported that asym-
metric lesions (unilateral hippocampus and contralateral DMS)
produced mild retardation of acquisition of both cue-based and
place-based learning. Correspondingly, recording studies report
that the largest changes in DMS neural activity occur in the

Frontiers in Behavioral Neuroscience

www.frontiersin.org

November 2012 | Volume 6 | Article 79 | 8



Khamassi and Humphries

Model-free/model-based navigation strategies

middle stages of learning during cue-guided (both with auditory
and tactile cues) navigation (Thorn et al., 2010).

4.5. HIPPOCAMPAL INPUT TO MODEL-BASED AND MODEL-FREE
SYSTEMS

For spatial navigation the primary candidate for generating the
states and the relationship between them is the hippocampal for-
mation. Although hippocampus has been largely associated with
spatial encoding (O’Keefe and Nadel, 1978), it could be more
broadly involved in learning (and planning in) a model or graph
of possible transitions between states, no matter if these states
are spatial or not (van der Meer et al., 2012). Consistent with
this, hippocampal place cells are also sensitive to non-spatial
information (e.g., the presence of a certain object or the color
of the walls), this non-spatial information modulating or re-
mapping the place representation (Wiener et al., 1989; Redish,
1999). Similarly, hippocampal place cells re-map on maze tasks
following a change of context, such as the change of rewarded
arm in a plus-maze (Smith and Mizumori, 2006). Thus, within
our proposal, the role of the hippocampus would be both to sup-
ply spatial information to a model-free system and to contribute
to a model-based system by building the model—in interaction
with the VS as argued later—and planning actions within this
model. This view is similar to ideas that the hippocampus pro-
vides contextual information to some aspects of learning such as
contextual fear conditioning (Rudy, 2009) and spatial planning
information to other aspects of learning (Banquet et al., 2005;

Hasselmo, 2005; Dollé et al., 2010; Martinet et al., 2011). It is also
similar to points made by Redish and Touretzky (1998) that one
can both store sequences and do location-recall in hippocampal
attractor networks without interfering with each other (see also
Redish, 1999).

Consequently, lesions of the hippocampus should affect both
model-free and model-based systems through loss of spatial
information, but transient interference with its activity should
affect only the model-based system through loss of the use of the
model. Figure 4 illustrates how our proposition may account for
the recent results obtained by Jadhav et al. (2012). In this study,
rats experienced a W-track spatial alternation task: they alternated
between “inbound” trials where they had to go to the center start-
ing from either the left or the right arm and “outbound” trials
where they had to go from the central arm to the arm (left or
right) that they did not visit on the previous trial (Figure 4A).
Outbound trials present a higher degree of difficulty in that they
require linking past experience—the previously experienced side
of the maze—with current location in order to make an appropri-
ate decision. Strikingly, lesion of the hippocampus impaired both
inbound and outbound learning (Kim and Frank, 2009) while
disruption of awake hippocampal replay only impaired outbound
learning (Jadhav et al., 2012).

We show on Figure4B (resp. C) how a model-free (resp.
model-based) system dependent on hippocampal input could
explain the results. A model-free system learning the association
between a spatial state (i.e., left arm, right arm, or central arm)

/3N

go left center go right

/3N

go left center go right

previous transition:

go left center go right

previous transition:

center —» right

/3N

go left center go right

FIGURE 4 | Model-based/model-free framework applied to a spatial
alternation task requiring both inbound and outbound learning.

(A) W-shaped maze experienced by rats, adapted from Kim and Frank (2009).
Hippocampal lesions impair both inbound and outbound learning (Kim and
Frank, 2009) while disruption of awake hippocampal replay only impairs

A reward reward reward reward
left —» center right —» center center — left center — right
inbound trial inbound trial outbound trial outbound trial
B (model-free)
state: left state: right state: center

C (model-based)

/ 1\

go left center go right

previous transition:

go left center go right

previous transition:

go left center go right

outbound learning (Jadhav et al., 2012). (B) A model-free system associating
places with actions can learn inbound trials but would face high uncertainty
during outbound trials. (C) A model-based system associating previous
transitions with actions can associate past experience with current location
and is thus able to learn both inbound and outbound trials.
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and an action would be able to learn inbound trials but not
outbound trials. This is because the “center” state is half of the
time followed by rewarded trials on the left and half of the
time followed by rewarded trials on the right, thus producing a
situation with high uncertainty. In contrast, a model-based sys-
tem learning to associate previous state transitions with actions
can solve both inbound and outbound trials (Figure 4C). Thus,
within our proposal, hippocampal lesions impair both inbound
and outbound learning because they suppress spatial information
required by both place-based model-free and model-based sys-
tems. By contrast, disruption of hippocampal awake replay would
impair only the model-based system, potentially by blocking the
storage of transitions in the model (Gupta et al., 2010), sparing
the model-free system to still learn inbound trials.

5. VENTRAL STRIATUM—MODEL BUILDER?

What, then, might be the role of the VS in model-free and model-
based navigation? Ventral striatal recordings and lesion studies
have provided strong evidence for an evaluative role, either as
part of the “critic” contributing to the calculation of the reward
prediction error (O’Doherty et al., 2004; Khamassi et al., 2008),
or as the locus for general Pavlovian-instrumental transfer where
rewarded stimuli act to motivate future action (Corbit et al., 2001;
Yin et al., 2008; Corbit and Balleine, 2011). The actor/critic archi-
tecture is a variant of the model-free reinforcement algorithms,
which conceptually splits the value learning and action selection
components (Sutton and Barto, 1998): the critic learns the value
of every state, and uses those values to compute the reward pre-
diction error after each state transition s to s, given any reward
obtained; the prediction error is used by the actor to change
the probability of selecting each action in state s, thus reflecting
the outcome. The existing evidence that dorsal striatum supports
action selection while the VS supports stimulus-outcome asso-
ciation has led to proposals that they respectively subserve the
actor and critic roles (Joel et al., 2002; O’Doherty et al., 2004;
Khamassi et al., 2005, 2008; Daw et al., 2011; van der Meer and
Redish, 2011). The primary candidate for transmitting the reward
prediction error is the phasic activity of the midbrain dopamine
neurons (Schultz et al., 1997; Bayer and Glimcher, 2005; Cohen
et al., 2012); further strengthening the proposed identification of
the VS with the critic is that it is the major source of inputs to
the dopamine neurons (Watabe-Uchida et al., 2012) that in turn
project to the dorsal striatum (Maurin et al., 1999; Haber et al.,
2000) (see Figure 6).

We sketch an account here that finesses this view, extending
previous proposals (Yin et al., 2008; Bornstein and Daw, 2011)
for separately considering the core and shell. We first argue that
in addition to being useful for the “critic” in model-free pro-
cesses, reward information encoded by the VS also contributes
to model-based processes such as the building of a reward func-
tion. Second, from the perspective of navigation tasks, we find
evidence that the core of the VS is a key locus for learning the
correct sequences of actions in a task. A useful consequence of
considering this proposed model-based/model-free dichotomy in
both conditioning and navigation is that, whereas the core of
the VS is often ascribed a purely evaluative role in the con-
ditioning literature (Yin and Knowlton, 2006; Yin et al., 2008;

Bornstein and Daw, 2011), the literature on core involvement
in navigation clearly points to a major role in the direct con-
trol of locomotion. For the shell of the VS, we discuss further
the suggestion that it is a key locus of the critic that signals the
reward prediction error for the model-based system (Bornstein
and Daw, 2011)% we also discuss the possibility that it acts
as a critic that signals a state prediction error in the predicted
and actual state transitions. As these functions of the core and
shell are essential for correct assemblage of the “model” of
the world, we informally label the VS as part of the “model-
builder”.

5.1. VENTRAL STRIATUM AS SUBSTRATE FOR BUILDING THE REWARD
FUNCTION

In the machine learning literature, one of the requirements for
model-based algorithms is to build the so-called “reward func-
tion” which relates states to rewards [see Figure 1; (Sutton and
Barto, 1998)]. In spatial tasks, this consists of memorizing the
places in which reward is found. This is crucial information
for deliberative decision-making where inference of future out-
comes within the estimated world model—e.g., the tree-search
process—requires reaching a terminal state where a reward can
be found. The reward function is also important for off-line
simulations within the world model to consolidate trajectories
leading to reward—see for instance the DynaQ algorithm (Sutton
and Barto, 1998). Indeed, such mental simulations should be
informed when the agent has virtually reached a state contain-
ing a reward, although the agent is not necessarily physically
experiencing such reward.

Interestingly, sequences of hippocampal place cell activations
that occur while an animal is running a track in search for reward
are known to be replayed during subsequent sleep (Euston et al.,
2007) or during awake resting periods (Foster and Wilson, 2006;
Gupta et al., 2010). These replay events have been hypothesized to
participate in the consolidation of relevant behavioral sequences
that lead to reward. Of particular interest for this review are recent
reports of off-line synchronous replay between ventral striatal and
hippocampal activity (Lansink et al., 2009). Lansink et al. (2009)
found pairs of hippocampus—VS neurons that were reactivated
during awake fast forward replay preferentially if: the hippocam-
pal cell coded for space, the ventral striatal cell coded for reward,
and the hippocampal cell was activated slightly before the ventral
striatal cell during the task. The reactivation occurred 10 times
faster than the sequence of activity during the task execution, pos-
sibly complying with physiologically plausible eligibility timing.
The ventral striatal cells were predominantly in the core—but
also included the shell. By illustrating possible neural mecha-
nisms for the off-line consolidation of place-reward associations,
these results provide striking examples of activity that could
underly the building of the “reward function”, which relates states
to rewards.

5This relates to the notion, in the machine learning literature, that some
model-based algorithms such as Dyna-Q can update their state-action values
through a reward prediction error (RPE), although other model-based algo-
rithms based on so-called value iteration processes do not rely on a RPE: they
instead propagate value information from each state to other proximal states
(Sutton and Barto, 1998).
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Of course, it is plausible that such replay events could at the
same time be used to update value estimations and action proba-
bilities in the model-free system, consistent with the hypothesized
critic role of part of the VS (O’Doherty et al., 2004; Khamassi
et al., 2008; Bornstein and Daw, 2011). But if the ventral stri-
atal part engaged during these replay events was only dedicated to
model-free reinforcement learning, all ventral striatal cells encod-
ing reward predictions in any location—not only in the reward
location—should be reactivated in correspondence with the hip-
pocampal cells coding for their associated states, which is not
the case here. These results thus emphasize that the VS’s eval-
uative role and its involvement in encoding reward information
may also contribute to model-based processes. In support of this
view, McDannald et al. (2011) recently showed in rats experi-
encing an unblocking procedure that VS not only incorporates
information about reward value but also about specific features
of the expected outcomes. Along with the orbitofrontal cortex, VS
was indeed found to be required for learning driven by changes in
reward identity, information only relevant for model-based pro-
cesses but not for model-free ones which only work with value
information.

Now where does the information which is replayed off-line
between VS and hippocampus come from? One possibility is
that relevant place-reward associations experienced during task
performance are tagged in order to be preferentially replayed
during subsequent sleep or awake resting periods. In support of
this proposition, van der Meer and Redish (2010)’s synchronous
recordings of VS and hippocampus in a T-maze disentangled pos-
sible mechanisms underlying the binding of hippocampal place
representations and ventral striatal reward information during
task performance. They found a ventral striatal phase precession
relative to the hippocampal theta rhythm. This phase precession
was found in ventral striatal ramp neurons preferentially receiving
input from those hippocampal neurons that were active lead-
ing up to reward sites. This phenomenon was accompanied by
increased theta coherence between VS and the hippocampus, pos-
sibly underlying the storage of relevant place-reward associations
that should be tagged for subsequent consolidation.

5.2. VENTRAL STRIATAL CORE AS SUBSTRATE FOR BUILDING THE
ACTION MODEL
Yin et al. (2008) proposed that one of the core’s primary functions
is to learn stimulus-outcome associations that drive preparatory
behavior such as approach. Bornstein and Daw (2011) proposed
in turn that, as preparatory behavior is value-agnostic, this is con-
sistent with the core playing the role of the critic in a model-free
controller: that it either computes directly or conveys the values
of current and reached state to midbrain dopamine neurons (Joel
et al., 2002), which in turn signal the reward prediction error to
targets in the striatum and PFC (Schultz et al., 1997; Dayan and
Niv, 2008). This proposal naturally extends to the core playing the
role of model-free critic in navigation as well as conditioning.
However, it is equally clear that the core has a role in direct
control of motor behavior, and may even serve as an action selec-
tion substrate separate from the dorsal striatum (see Pennartz
et al., 1994; Nicola, 2007; Humphries and Prescott, 2010 for
reviews). These dual roles for the core are not in conflict: the

separate populations of core neurons that either project to the
dopaminergic neurons of the midbrain or project to the other
structures of the basal ganglia could, respectively, fulfill the eval-
uative and motor control roles (Humphries and Prescott, 2010).
Here we focus on how the latter role may fit into a putative model-
based/model-free separation of navigation based on the dorsal
striatum.

It has long been known that core application of NMDA,
AMPA, or dopamine agonists, or of drugs of abuse
(amphetamine, cocaine), induces hyperlocomotion in rats,
and that intact output of the core through the basal ganglia is
necessary for this hyperlocomotion to occur (Pennartz et al.,
1994; Humphries and Prescott, 2010). The phasic activity of indi-
vidual core neurons also correlates with the onset of locomotion
during self-administration of cocaine (Peoples et al., 1998).
During behavioral tasks, the activity of individual neurons in
the core correlates with the direction of upcoming movement,
irrespective of the properties of the cue used to prompt that
movement (Setlow et al., 2003; Taha et al., 2007). Moreover,
when rats navigate a maze, the activity of core neurons correlates
with the direction of movement in specific locations (Shibata
et al., 2001; Mulder et al., 2004). Together, these data suggest that
the core not only directly controls movement, but also receives
spatial information on which to base that control.

In addition, the core is necessary for correctly learning
sequences of motor behaviors. Blocking NMDA receptors in
the core, which putatively prevents synaptic plasticity, degrades
performance on many spatial tasks: rats cannot learn paths to
rewards (Kelley, 1999), learn spatial sequences (in this case, of
lever presses) to achieve reward (Bauter et al., 2003), or locate a
hidden platform in a Morris water maze when encoded by dis-
tal cues alone (Sargolini et al., 2003). Lesioning hippocampal
afferents to VS by cutting the fornix/fimbra pathway results in
numerous spatial navigation problems. Whishaw and colleagues
have shown that rats with such lesions have intact place responses,
but great difficulty in constructing paths to them (Whishaw et al.,
1995; Gorny et al., 2002). In a Morris water maze, lesioned rats
can swim to a pre-lesion submerged platform location, but not
to a new one (Whishaw et al., 1995); in open-field exploration,
lesioned rats do not show path integration trips to their homebase
(Gorny et al., 2002). Data from these studies has to be interpreted
with care, but are consistent with the NMDA blockade studies.
Together these data point to a key role for ventral striatal core in
linking together sequential episodes of behavior.

So what is the motor control part of the core doing within
the model-based/model-free framework? A general proposition
is that the core is the route via which hippocampal sequencing of
states reaches the motor system, a finessing of the long-recognized
position of the core at the limbic-motor interface (Mogenson
et al., 1980). We sketch a proposal here that its specific compu-
tational role is to learn and represent the probability of action
selection within the transition model of the model-based system.

5.2.1. Actions in the transition model

Consider the transition model T(s, a, s), giving the probabil-
ity of arriving in state s’ given action a and current state s;
which we can also write p(s'|a, s). The model has two uses: for
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off-line learning, it is used to sample trajectories through the
world model, and update the values of each state accordingly
(Sutton and Barto, 1998; Johnson and Redish, 2005); for on-line
action selection, it can be queried for the probability that each
action will lead to the desired transition from state s to s'. To
achieve this dual use it might be advantageous to decompose
the transition model p(s'|a, s) using Bayes theorem into repre-
sentations of the state transitions and of the probability of action
selection:

, _apals, s
p(sla,s) = p(s |5)7p(a|s) ,

where we assume that current state s is known. The first-term
p(s'|s) is then just the probability model for state transitions, the
second term is just the probability p(als, s) that each action will
cause that transition, normalized by the probability p(a|s) of ever
taking that action in state s. Consequently, off-line learning is a
product of the two terms, whereas on-line action selection can be
based on the second term only.

Such a decomposition in turn suggests a decomposition into
neural substrates. The hippocampal formation has long been
proposed to represent potential state transitions (Poucet et al.,
2004), and so is a natural candidate for representing p(s'|s) in the
simultaneous activity of current (s) and adjacent (s') place cells.
Alternatively, neural network modeling of hippocampal forma-
tion functions in spatial navigation has even suggested that the
directional-specificity of many place fields could be interpreted
not as place cells but rather as “transition” cells, representing the
possible transitions between the current and next “states” in the
environment (Gaussier et al., 2002). In this account, each cell is a
candidate for directly encoding p(s'|s).

The ventral striatal core is then a potential substrate for repre-
senting the transition-conditioned probability of action selection
p(als’, s). A plausible network implementation is that hippocam-
pal outputs representing s and s' converge on neuron groups
in the core, whose consequent activity is then proportional to
p(als’, s). Learning this action component p(als’, s) of the tran-
sition model is then equivalent to changes in the synaptic weights
linking the two state representations in hippocampus to the neu-
ron group in the core. Over all known state transitions from the
current state s, the activity in the core then encodes a probability
distribution over potential actions; the selection of action based
on this distribution is then done by the core’s corresponding basal
ganglia circuit (see Redgrave et al., 1999; Nicola, 2007; Humphries
and Prescott, 2010; Humphries et al., 2012 for detailed models of
this process).

This decomposition into substrates suggests that core neurons
should thus show activity correlated with both off-line model
search and on-line action selection. The latter we have already
discussed: core activity is correlated with specific actions; in par-
ticular, the studies of Shibata et al. (2001) and Mulder et al.
(2004) showing a set of core neurons with motor-related activ-
ity only in specific places within a maze (such as an arm),
and then only when the rats move in a particular direction
in that place (e.g., toward the arm end), are consistent with
the encoding of action probability conditioned on a transition

between states. This substrate decomposition also suggests that
hippocampal formation and the core should be synchronized
throughout free exploration, as continually changing states repre-
sented in hippocampus should have a corresponding recruitment
of changing action selection probabilities in the core—just such
an exploration-specific synchronization in local-field potentials
between hippocampus and the core has been reported by Gruber
et al. (2009). More electrophysiological studies will be required
to confirm this hypothesis and precisely identify the underlying
mechanisms.

Recent neurophysiological studies also support the existence
of neural activity consistent with off-line model use for decision-
making in the core. In a multiple T-maze, van der Meer and
Redish (2009) found that neurons in the core which fired at
either reward site also fired at the maze’s decision point, just
where hippocampal activity correlates of forward planning have
been previously found (Johnson and Redish, 2007). Such activity
at decision points occurred before reward was actually experi-
enced, and thus before error correction. This activity appeared
only during initial stages and disappeared after additional train-
ing producing behavioral automation. Such activity could thus
reflect a search process related to the early use of model-based
processes for decision-making by providing signals for the evalua-
tion of internally generated possible transitions considered during
navigation (van der Meer and Redish, 2009).

5.3. VENTRAL STRIATAL SHELL AS CRITIC(S) IN THE MODEL-BUILDER:
ONE SYSTEM AMONGST MANY

More than any other region of the striatum, the ventral stri-
atal shell is a complex intermingling of multiple separate systems
(Humphries and Prescott, 2010), which may include control of
approach and aversive behaviors (Reynolds and Berridge, 2003),
hedonic information, outcome evaluation, memory consolida-
tion, and appetitive control (Kelley, 1999). Consequently, we can-
not meaningfully speak of a role for the shell; not least because,
as we noted in Humphries and Prescott (2010), the lateral and
medial shell are themselves easily distinguished entities in terms
of their afferent and efferent structures—we will return to this
distinction below.

Yin et al. (2008) proposed that the shell’s primary function
is to learn stimulus-outcome associations that drive consumma-
tory behavior. Bornstein and Daw (2011) argued that this role
in consummatory behavior requires a sensitivity to the values
of the outcome, and thus makes the shell a natural candidate
for subserving a role equivalent to the “critic” for the model-
based system. While strictly speaking the actor/critic algorithm
is a model-free system, the model-based system still may rely on
the computation of a prediction error to update the values of
each state (van der Meer and Redish, 2011), whether during off-
line model search or on-line update after each performed action.
Recently, Daw et al. (2011) tested human subjects on a multi-stage
decision task that separated model-based and model-free pre-
diction errors, and found that the model-based prediction error
correlated with the fMRI BOLD signal in VS.

Against this idea, earlier work has shown that the shell appears
not to be required for knowledge of the contingency between
instrumental actions and their outcomes: lesioning the shell does
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not stop devaluation or contingency changes from changing
behavioral choice (Balleine and Killcross, 1994; Corbit et al.,
2001). Consequently, the shell could appear not to be neces-
sary for establishing goal-directed learning—or, by extension,
model-based learning.

However, a closer reading of the lesion studies allows us
to refine that conclusion. In “shell” lesion studies, only the
medial shell is targeted (see, for example, Figure 1 of Corbit
et al., 2001)—not a flaw in experimental design but a limitation
imposed by anatomy, as attempts to lesion the lateral shell would
undoubtedly also damage the overlying lateral core (Ikemoto,
2002). Consequently, the lateral shell remains intact, and is thus
a prime candidate for a model-based critic that leaves the animal
sensitive to outcome devaluation and contingency changes.

Moreover, as we detailed in Humphries and Prescott (2010),
lateral and medial shell are separable entities: medial shell receives
extensive input from hippocampal field CAl and subiculum,
while lateral shell receives scant hippocampal input; and both
have separate “direct” and “indirect” pathways through the basal
ganglia to separate populations of midbrain dopaminergic neu-
rons (Figure 5A). As we show in Figures 5B,C, the dual pathways
are a plausible candidate for computing a prediction error based
on comparing the forebrain inputs to the two pathways; con-
sequently both medial and lateral shell could support different
“critic” roles (Humphries and Prescott, 2010).

Which leaves the question of the role of the medial shell, if it is
indeed in a position to compute a prediction error. In Humphries
and Prescott (2010) we proposed the idea that the projections
from hippocampal formation and PFC to the “direct” and “indi-
rect” pathways could, respectively, represent the expected and

achieved state after a transition. Consequently, the medial shell
would be in a position to compute a state prediction error, that
adjusts the transition probability p(s'|s) based on model predic-
tions, rather than on simply counting the occurrences of each
transition.

Lesioning the medial shell would then be predicted to show
subtle deficits in tasks that require building a world model: in suf-
ficiently simple tasks, the mere construction of the links between
a limited number of states, whose values are correctly learnt,
may be sufficient to solve the task and respond to subsequent
changes in the value of those states. Consequently, the intact
sensitivity to devaluation by medial shell-lesioned rats (Balleine
and Killcross, 1994; Corbit et al., 2001) suggests that these were
sufficiently simple tasks. That task complexity is a factor is sug-
gested by the data of Albertin et al. (2000). They trained rats on
a plus-maze on which a currently lit arm-end contained reward
in the form of water drops; each day the rats experienced a new
sequence of lit arms, and each day one of the arms was chosen
to contain six drops and the others contained one drop. A probe
trial was then run in which every arm was lit, allowing the rat
to choose which arm to visit. Albertin et al. (2000) found that
lesioning the medial shell prevented rats from correctly remem-
bering which maze arm contained the high value reward on a
probe trial, but did not impair their ability to learn to visit the
lit arm in the sequence during training. Such a task plausibly
requires each day building anew a world model and querying it on
the probe trial to recall which available state-transition contained
the high reward on that day. If damage to the medial shell pre-
vented correct learning of the transition model, then this would
selectively impair querying of the model, while leaving intact the
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FIGURE 5 | Dual pathways from shell to ventral tegmental area (VTA)
potentially support prediction error computation. (A) The medial and
lateral shell both support a dual pathway circuit that converges on
dopaminergic neurons in the VTA: a direct pathway originating from a
population of D1 receptor expressing striatal projection neurons, and an
indirect pathway originating from a mixed population of D1 and D2 receptor
expressing striatal projection neurons [see (Humphries and Prescott, 2010)
for review]. This arrangement is consistent with the shell’s role as a “critic”:
the pathways support the computation of a prediction error between the
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prediction transmitted by the direct pathway and the actual outcome
transmitted by the indirect pathway (PPn, pedunculopontine nucleus; VR
ventral pallidum). (B) Simulation of neural population activity showing how a
greater outcome (indirect pathway) than predicted (direct pathway) drives a
phasic increase in VTA activity, signaling a positive prediction error.

(C) Simulation of neural population activity showing how a lower outcome
(indirect pathway) than predicted (direct pathway) drives a phasic dip in VTA
activity, signaling a negative prediction error. Simulation details given in
Humphries and Prescott (2010).
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ability to do simple light-reward association in the model-free
system.

Glascher et al. (2010) searched for correlates of a state pre-
diction error in the fMRI BOLD signal recorded from humans
learning a decision-tree of stimulus choices in the absence of
reward, which was subsequently used as the basis for a rewarded
task. Encouragingly, subjects’ behavior during the learning stage
was well-fit by a reinforcement learning model incorporating a
state prediction error; moreover, the BOLD signal in lateral PFC
and intra-parietal sulcus correlated with the state prediction error
in the model. The equivalent regions in rat are known afferents
of the shell (Uylings et al., 2003; Humphries and Prescott, 2010).
However, they reported that the ventral striatal BOLD signal cor-
related only with the fitted model-free reward prediction error
during the rewarded task stage, and not the state prediction error.
It is not clear, though, whether something computed by a set of
neurons as small as the proposed sub-set in medial shell could be
resolved by the voxel-size used, a problem compounded by the
conservative multiple-comparison corrections used in searching
for BOLD signal correlates.

6. CONCLUSIONS

In this paper, we have proposed a functional distinction between
parts of the striatum by bridging data about their respective
involvement in behavioral adaptation taken from both the spatial
navigation literature and the instrumental conditioning litera-
ture. To do so, we have first formally mapped taxonomies of
behavioral strategies from the two literatures to highlight that
navigation strategies could be relevantly categorized as either
model-based or model-free. At root, the key distinction is that it is
the use of information in building a world representation, rather
than the fype of information (i.e., place vs. cue), that defines the
different computational processes at stake and their substrates
in the striatum. Within this framework, we explicitly identified
the role for dorsolateral striatum in learning and expression of
model-free strategies, the role of dorsomedial striatum in learn-
ing and expression of model-based strategies, and the role of
“model-builder” for the VS—most probably in conjunction with
the hippocampus (Lansink et al, 2009; van der Meer et al.,
2010; Bornstein and Daw, 2012). Our scheme is summarized in
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FIGURE 6 | Striatal-domain substrates of model-free and model-based
controllers. The proposed organization of navigation strategies and
potential control of learning across the three striatal domains. The
identification of the shell and core as “critics” for the model-based and
model-free controllers in dorsal striatum partly rests on the “spiral” of
striatal-dopamine-striatal projections (Maurin et al., 1999; Haber et al.,
2000; Haber, 2003), originating in the shell of the VS (the spiral is
indicated by the thicker lines) and on the permissive role dopamine plays
in plasticity at cortico-striatal synapses (Reynolds et al., 2001; Shen et al.,
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2008). There are also closed loop links between dopamine cell populations
and each striatal region. Abbreviations: Mb, model-based; Mf, model-free;
PPn, pedunculopontine nucleus; SNc, substantia nigra pars compacta; VP,
ventral pallidum; VTA, ventral tegmental area. Note that the “inhibitory”
and “excitatory” labels refer to the dominant neurotransmitter of the
connection, not the effect that connection may have on the target nucleus
as a whole (e.g., basolateral amygdala input to VS neurons can suppress
other excitatory inputs despite using glutamate, which is an “excitatory”
neurotransmitter).
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The hypothesis that two decision-making systems (i.e., model-
based and model-free) are processed in parallel in DMS and
DLS while VS is important for the acquisition of the model
seems to well explain the results of Atallah et al. (2007). In a
forced-choice task in a Y-maze requiring rats to learn the asso-
ciation between two odors and two actions (go left or right),
they found that transient inactivation of DLS® did not prevent
a covert learning process which became visible as soon as the
DLS was released. Although this task is typically interpreted as
a habit learning task (van der Meer et al., 2012), the absence
of over-training in the animals—60 trials performed in total—
suggests that model-based learning in the DMS was still playing
an important role at this stage and was unaffected by DLS inac-
tivation. Moreover, Atallah et al. (2007) found that inactivation
of VS mostly impaired acquisition and only partially affected per-
formance, consistent with the proposed role of VS in building the
model used by the model-based system.

6.1. COMPUTATIONS BY THE STRIATUM

Our proposed division of function between different parts of
the striatum preserves the classical hypothesis that striatal ter-
ritories all contribute to behavioral regulation but mainly differ
in function because of their different afferents (Alexander et al.,
1990; Joel and Weiner, 1994; Middleton and Strick, 2000)—a
common division of cortical afferents among the striatal terri-
tories is illustrated in Figure 6. Throughout its dorso-lateral to
ventro-medial extent, the striatum has a consistent micro-circuit
dominated by GABAergic projection neurons controlled by at
least three classes of interneurons (Tepper et al., 2004; Bolam
et al., 2006; Humphries and Prescott, 2010). Such a consistent
micro-architecture points to common operational principles for
how striatum computes with its afferent inputs. Moreover, the
cortex-basal ganglia-thalamus-cortex anatomical loop involving
the ventral striatal core respects the same organization princi-
ples as loops involving the dorsal striatum: thus DLS, DMS, and
VS core are all involved in complete basal ganglia circuits com-
posed of direct and indirect pathways (Humphries and Prescott,
2010). Since numerous computational studies have shown that
this basal ganglia circuitry is efficient for performing a selec-
tion process (Houk and Wise, 1995; Mink, 1996; Redgrave et al.,
1999; Humphries et al., 2006; Leblois et al., 2006; Girard et al.,
2008), it has been proposed that loops involving different striatal
territories could perform different levels of selection influencing
behavior. One such scheme envisions a hierarchy running from
course-grained selection of overall goal or strategy to achieve a
goal, through actions toward a goal, to fine-grained movement
parameters of each action (Redgrave et al., 1999; Ito and Doya,
2011).

6 Although the injection site was referred to as the central part of the dorsal
striatum by the authors (see Supplementary Figures 3 and 4 of their original
paper), the great majority of injections were located outside the dorsal stri-
atal region receiving projections from the prelimbic cortex [see Figure 3 in
Voorn et al. (2004)], and thus outside the zone called dorsomedial striatum
and related to goal-directed behaviors and model-based learning [see Figure 1
in Yin et al. (2008) and Figure 1 in Bornstein and Daw (2011)]. Thus, the
injections seem to have mostly reached the dorsolateral striatum related to
model-free habit learning.

The model-based/model-free dichotomy would respect such
a general principle of common selection operation: that striatal
territories receiving state transition information (i.e., p(s'|s) cor-
responding to the probability of transition from state s to state
', no matter if these states are spatial or determined by a percep-
tual cue) would be involved in model-based action selection while
striatal territories receiving simple state information (i.e., p(s), no
matter if state s represents a spatial position or the perception of a
stimulus) would be involved in model-free action selection. As we
discussed throughout the text, in contrast to DLS, VS and DMS
receive direct projections from the hippocampal system as well
as medial PFC which place them in a good situation to process
hippocampal state transition information (Gaussier et al., 2002;
Poucet et al., 2004) and hence to participate in the model-based
action selection. Correspondingly, the dominant projections of
sensorimotor cortices to DLS may thus convey current state infor-
mation, whether originating from the periphery or from higher
cortical areas (Haber, 2003), and hence the DLS participates in
model-free action selection.

6.2. OPEN QUESTIONS

The account here provides concrete proposals for the dorsolat-
eral and dorsomedial striatum’s role in spatial navigation, while
introducing new but comparatively speculative ideas about the
VS’s roles in the model-free and model-based systems. As such,
our account is of course incomplete; so let us conclude with the
primary open questions:

e We have drawn a distinction between place/response strategies
and model-based/model-free use of those strategies. To the best
of our knowledge, we lack good evidence for the existence of a
model-free place strategy.

e The observations of a place-to-response strategy shift with
over-training (Dickinson, 1980; Packard and McGaugh, 1996
Pearce et al., 1998; Chang and Gold, 2003) underpinned the
existing idea that a response strategy is by nature habitual. Our
hypothesis postulates that the central mechanism underlying
all these observed behavioral shifts is a shift from model-
based to model-free rather than from place-based to either
cue-guided or praxic behaviors; but why then is the shift
often (but not always Yin and Knowlton, 2004; Botreau and
Gisquet-Verrier, 2010) from model-based place to model-free
response?

e What is anterior DMS doing? Ragozzino and Choi (2004) pro-
posed a role for it in strategy selection, as lesions caused a
selective deficit in reversal learning, but not in initial acquisi-
tion. Alternatively, perhaps DMS is divided into sub-territories
differentially involved in place, cue, and praxic model-based
systems.

e Lesion data on the core provide conflicting accounts of its
roles. For example, the results of Corbit et al. (2001) dis-
agree with evaluation: for why, if the core forms part of the
transition model, does lesioning it not then prevent outcome
devaluation from affecting behavior? By contrast, McDannald
et al. (2011) found that lesions of core affected responding
to both changes in outcome value and changes in outcome
identity, emphasizing its involvement in model-based learning.
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From our account, it is not surprising that conflicting data arise
if core lesions interfere with both evaluative and action selec-
tion systems; however, it is not clear what task designs would
be sufficient to tease apart the selective effects of core lesions
on its evaluative and action selection roles.

e Do the striatal domains underpin a common computation?
Our focus has been on the algorithmic-level distinctions
between behavioral strategies, and the striatal substrates within
the neural systems implementing those algorithms. As noted
throughout, this computation may be action selection: the
resolution of competing inputs at the striatal level into one
(or a few) selected signals at the output of the basal gan-
glia. Based on our proposals here, we may speculate that
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Abstract

Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired
behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the
form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis
that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free
system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned
stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself — a lever - more
and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation.
Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers
does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor
the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for
such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can
account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to
individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be
observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other
behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model
makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We
suggest that further investigation of factored representations in computational neuroscience studies may be useful.
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Introduction Of significant interest, learning in Model-Free systems relies on a

computed reinforcement signal, the reward prediction error

Standard Reinforcement Learning (RL) [1] is a widely used
normative framework for modelling conditioning experiments
[2,3]. Different RL systems, mainly Model-Based and Model-Free
systems, have often been combined to better account for a variety
of observations suggesting that multiple valuation processes coexist
in the brain [4-6]. Model-Based systems employ an explicit model
of consequences of actions, making it possible to evaluate
situations by forward inference. Such systems best explain goal-
directed behaviours and rapid adaptation to novel or changing
environments [7-9]. In contrast, Model-Free systems do not rely
on internal models and directly associate values to actions or states
by experience such that higher valued situations are favoured.
Such systems best explain habits and persistent behaviours [9-11].

PLOS Computational Biology | www.ploscompbiol.org

(RPE). This signal parallels the observed shift of dopamine
neurons’ response from the time of an initially unexpected reward
— an outcome that is better or worse than expected — to the time of
the conditioned stimulus that precedes it, which, in Pavlovian
conditioning experiments, is fully predictive of the reward [12,13].

However recent work by Flagel et al. [14], raises questions
about the exclusive use of classical RL Model-Free methods to
account for data in Pavlovian conditioning experiments. Using an
autoshaping procedure, a lever-CS was presented for 8 seconds,
followed immediately by delivery of a food pellet into an adjacent
food magazine. With training, some rats (sign-trackers; STs)
learned to rapidly approach and engage the lever-CS. However,
others (goal-trackers; GT's) learned to approach the food magazine

February 2014 | Volume 10 | Issue 2 | e1003466



Author Summary

Acquisition of responses towards full predictors of rewards,
namely Pavlovian conditioning, has long been explained
using the reinforcement learning theory. This theory
formalizes learning processes that, by attributing values
to situations and actions, makes it possible to direct
behaviours towards rewarding objectives. Interestingly,
the implied mechanisms rely on a reinforcement signal
that parallels the activity of dopamine neurons in such
experiments. However, recent studies challenged the
classical view of explaining Pavlovian conditioning with a
single process. When presented with a lever whose
retraction preceded the delivery of food, some rats started
to chew and bite the food magazine whereas others chew
and bite the lever, even if no interactions were necessary
to get the food. These differences were also visible in brain
activity and when tested with drugs, suggesting the
coexistence of multiple systems. We present a computa-
tional model that extends the classical theory to account
for these data. Interestingly, we can draw predictions from
this model that may be experimentally verified. Inspired by
mechanisms used to model instrumental behaviours,
where actions are required to get rewards, and advanced
Pavlovian behaviours (such as overexpectation, negative
patterning), it offers an entry point to start modelling the
strong interactions observed between them.

upon CS presentation, and made anticipatory head entries into it.
Furthermore, in STs, phasic dopamine release in the nucleus
accumbens, measured with fast scan cyclic voltammetry, matched
RPE signalling, and dopamine was necessary for the acquisition of
a sign-tracking CR. In contrast, despite the fact that GT's acquired
a Pavlovian conditioned approach response, this was not
accompanied with the expected RPE-like dopamine signal, nor
was the acquisition of a goal-tracking CR blocked by administra-
tion of a dopamine antagonist (see also [15]).

Classical dual systems models [16-19] should be able to account
for these behavioural and pharmacological data, but the physio-
logical data are not consistent with the classical view of RPE-like

A

close to Magazine

Lever (CS) —

Modelling Individual Differences in Pavlovian CRs

dopamine bursts. Based on the observation that STs and GTs
focus on different stimuli in the environment, we suggest that the
differences observed in dopamine recordings may be due to an
independent valuation of each stimulus. In classical RL, valuation
is usually done at the state level. Stimuli, embedded into states —
snapshots of specific configurations in time —, are therefore hidden
to systems. In this case, it would prevent dealing separately with
the lever and the magazine at the same time. However, such data
may still be explained by a dual systems theory, when extended to
support and benefit from factored representations; that is, learning
the specific value of stimuli independently from the states in which
they are presented.

In this paper, we present and test a model using a large set of
behavioural, physiological and pharmacological data obtained
from studies on individual variation in Pavlovian conditioned
approach behaviour [14,20-25]. It combines Model-Free and
Model-Based systems that provide the specific components of the
observed behaviours [26]. It explains why inactivating dopamine
in the core of the nucleus accumbens or in the entire brain results
in blocking specific components and not others [14,25]. By
weighting the contribution of each system, it also accounts for the
full spectrum of observed behaviours ranging from one extreme —
sign-tracking — to the other [26] — goal-tracking. Above all, by
extending classical Model-Free methods with factored representa-
tions, it potentially explains why the lever-CS and the food
magazine might acquire different motivational values in different
individuals, even when they are trained in the same task [22]. It
may also account for why the RPE-like dopaminergic responses
are observed in STs but not GTs, and also the differential
dependence on dopamine [14].

Results

We model the task as a simple Markov Decision Process (MDP)
with different paths that parallel the diverse observed behaviours
ranging from sign-tracking — engaging with the lever as soon as it
appears — to goal-tracking — engaging with the magazine as soon
as the lever-CS appears — (see Figure 1).

The computational model (see Figure 2) consists of two learning
systems, employing distinct mechanisms to learn the same task: (1)

Food (US)

Figure 1. Computational representation of the autoshaping procedure. (A) MDP accounting for the experiments described in [14,21,22,26].
States are described by a set of variables: L/F - Lever/Food is available, cM/cL - close to the Magazine/Lever, La - Lever appearance. The initial state is
double circled, the dashed state is terminal and ends the current episode. Actions are engage with the proximal stimuli, explore, or go to the
Magazine/Lever and eat. For each action, the feature that is being focused on is displayed within brackets. The path that STs should favour is in red.
The path that GTs should favour is in dashed blue. (B) Time line corresponding to the unfolding of the MDP.

doi:10.1371/journal.pcbi.1003466.9g001

PLOS Computational Biology | www.ploscompbiol.org

February 2014 | Volume 10 | Issue 2 | e1003466



Model

Modelling Individual Differences in Pavlovian CRs

Integration w

V) v} )

!
»

N
[y
~—

Y |¥ |9
S [ |
[\ w H~

~— I~ ]~

SoftMax [ X

1&

Figure 2. General architecture of the model and variants. The model is composed of a Model-Based system (MB, in blue) and a Feature-Model-
Free system (FMF, in red) which provide respectively an Advantage function .4 and a value function V values for actions «; given a state s. These
values are integrated in P, prior to be used into an action selection mechanism. The various elements may rely on parameters (in purple). The impact
of flupentixol on dopamine is represented by a parameter f that influences the action selection mechanism and/or any reward prediction error that

might be computed in the model.
doi:10.1371/journal.pcbi.1003466.9002

a Model-Based system which learns the structure of the task from
which it infers its values; (2) a Feature-Model-Free system where values
for the relevant stimuli (lever-CS and the food magazine) are directly
learned by trial and error using RPEs. The respective values of each
system are then weighted by an @ parameter before being used in a
classical softmax action-selection mechanism (see Methods).

An important feature of the model is that varying the systems
weighting parameter @ (while sharing the other parameter values
of the model across subgroups) is sufficient to qualitatively
reproduce the characteristics of the different subgroups of rats
observed experimentally during these studies.

To improve the matching of the following results with the main
experimental data, a different set of parameter values was used for
each subgroup (ST, GT and IG). The values were retrieved after
fitting autoshaping data only (see Methods, Table S1). Simulated
results on other behavioural, physiological and pharmacological
data are generated with the same parameter values. While it might
result in a weaker fitting of the other experimental data, this
permits a straightforward comparison of results at different levels
for the same simulation. Moreover, it confirms that the model can
reproduce behavioural, physiological and pharmacological results
with a single simulation per subgroup.

On each set of experimental data, we compare different variants
of the computational model in order to highlight the key
mechanisms that are required for their reproduction. Simulation
results on each data subset are summarized in Figure 3. The role
of each specific mechanism of the model in reproducing each
experimental data is detailed in Figure 4.

PLOS Computational Biology | www.ploscompbiol.org

Behavioural data

Autoshaping. The central phenomenon that the model is
meant to account for is the existence of individual behavioural
differences in the acquisition of conditioned approach responses in
rats undergoing an autoshaping procedure; that is, the develop-
ment of a sign-tracking CR, a goal-tracking CR, or an
intermediate response.

Based on their engagement towards the lever, Flagel et al. [21]
divided rats into three groups (see [26] for a more recently defined
criterion). At lever appearance, rats that significantly increased
their engagement towards it (top 30%) were classified as ST,
whereas rats that almost never engaged with the lever (bottom
30%) were classified as GT's (these latter animals engaged the food
magazine upon CS presentation). The remaining rats, engaging in
both lever and magazine approach behaviours were defined as the
Intermediate Group (IGs) (see Figure 5 A, B). STs and GTs
acquired their respective CRs at a similar rate over days of training
[22].

The current model is able to reproduce such results (see Figure 5
C, D). By running a simulation for each group of rats, using
different parameters (mainly varying the w parameter) the model
reproduces the different tendencies to engage with the lever
(0=0.499), with the magazine (w=0.048) or to fluctuate between
the two (@=0.276). A high @ strengthens the influence of the
Feature-Model-Free system, which learns to associate a high
motivational value to the lever CS, and a sign-tracking CR
dominates. A low  increases the influence of the Model-Based
system, which infers the optimal behaviour to maximize reward,

February 2014 | Volume 10 | Issue 2 | e1003466
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Model-Based / Feature-Model-Free .
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Figure 3. Summary of simulations and results. Each line represents a different model composed of a pair of Reinforcement Learning systems.
Each column represents a simulated experiment. Experiments are grouped by the kind of data accounted for: behavioural (autoshaping [14,21], CRE
[22], Incentive salience [23,24]), physiological [21] and pharmacological (Flu post-NAcC [25], Flu pre-systemic [21]). Variant 4 (i.e. Model-based/Model-

Free without features) is not included as it failed to even reproduce the autoshaping behavioural results and was not investigated further.

doi:10.1371/journal.pcbi.1003466.g003

and goal-tracking is favoured. When both systems are mixed, i.e.
with an intermediate , the behaviour is more likely to oscillate
between sign- and goal-tracking, representative of the intermediate
group.

These results rely on the combination of two systems that would
independently lead to ‘pure’ sign-tracking or goal-tracking CRs.
Three tested variants of the model could reproduce these
behavioural results as well (see Figure S1): a combination of
Feature-Model-Free systems and simple Model-Free system
(Variant 1); a multi-step extension of Dayan 2006’s model [16]
giving a Pavlovian impetus for the lever (Variant 2); and a

symmetrical version of this last model with two impetuses, one for
the lever, and one for the magazine (Variant 3) (see Methods).
Interestingly, a combination of Model-Based and classical Model-
Free (not feature-based : Variant 4) fails in reproducing these
results (see Figure S8). This is because both systems are proven to
converge to the same values and both would favour pure goal-
tracking, such that varying their contribution has no impact on the
produced behaviours.

Thus, at this stage, we can conclude that several computational
models based on dual learning systems can reproduce these
behavioural results, given that the systems favour different

phys. pharma.

Model Based (no ¢)

Model Free (d)

| Features RL

I I [ [

| Modelling ITI : w7y

Flupentixol: impact on softmax

Flupentixol: impact on &
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Figure 4. Summary of the key mechanisms required by the model to reproduce experimental results. Each line represents a different
mechanism of the model. Each column represents a simulated experiment. For each mechanism, it states in which experiment and for which
behaviour - sign-tracking (red), goal-tracking (blue) or both (+) - it is required. Note however that all mechanisms and associated parameters have, to
a certain extent, an impact on any presented results.

doi:10.1371/journal.pcbi.1003466.g004
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Figure 5. Reproduction of sign- versus goal-tracking tenden-
cies in a population of rats undergoing an autoshaping
experiment. Mean probabilities to engage at least once with the
lever (A,C) or the magazine (B,D) during trials. Data are expressed as
mean + SEM. and illustrated in 50-trial (2-session) blocks. (A,B)
Reproduction of Flagel et al. [21] experimental results (Figure 2 A,B).
Sign-trackers (ST) made the most lever presses (black), goal-trackers
(GT) made the least lever presses (white), Intermediate group (IG) is in
between (grey). (C,D) Simulation of the same procedure (squares) with
the model. Simulated groups of rats are defined as STs (w=0.499;
£=0.239; «=0.031; y=0.996; u;y=0.027, Qi(s1,g0L)=0.844;
Qi(s1,exp)=0.999; Q;(s1,g0M)=0.538; n=14) in red, GTs (0=0.048 ;
£=0.084;, «=0.895 v=0.727, wu;y=0.140;  Q;(s1,g0L)=1.0;
Qi(s1,exp)=0.316; Q;(s1,20M)=0.023; n=14) in blue and IGs
(w=0.276; £=0.142; a=0.217; 7=0.999; urrr =0.228;
Qi(s1,g0L)=0.526; Q;(s1,exp)=0.888; Q;(s1,g0M)=0.587; n=14) in
white. The model reproduces the same behavioural tendencies. With
training, STs tend to engage more and more with the lever and less
with the magazine, while GTs neglect the lever to increasingly engage
with the magazine. IGs are in between.
doi:10.1371/journal.pcbi.1003466.g005

behaviours (see Figure S1). However, Variants 1, 2 and 3 fail to
reproduce other behavioural, pharmacological and physiological
data characteristic of STs and GTs (see following sections).
Incentive salience. The results in Figure 5 only represent the
probability of approach to either the lever-CS or the food
magazine. Thus, they do not account for the specific ways rats
engage and interact with the respective stimuli. In fact, if food is
used as the US, rats are known to chew and bite the stimuli on
which they are focusing [23,24] (see Figure 6 A). Importantly, both
STs and GTs express this consumption-like behaviour during the
CS period, directed towards the lever or the food magazine,
respectively. It has been argued that this behaviour may reflect the

PLOS Computational Biology | www.ploscompbiol.org
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Figure 6. Possible explanation of incentive salience and
Conditioned Reinforcement Effect by values learned during
autoshaping procedure. Data are expressed as mean + S.E.M.
Simulated groups of rats are defined as in Figure 5. (A) Number of
nibbles and sniffs of preferred cue by STs and GTs as a measure for
incentive salience. Data extracted from Mabhler et al. [23] from Figure 3
(bottom-left). (B) Reproduction of Robinson et al. [22] experimental
results (Figure 2 B). Lever contacts by STs and GTs during a conditioned
reinforcer experiment. (C) Probability to engage with the respective
favoured stimuli of STs and GTs at the end of the simulation (white,
similar to the last session of Figure 5 C for STs and D for GTs)
superimposed with the contribution in percentage of the values
attributed by the Feature-Model-Free system in such engagement for
STs (red) and GTs (blue). We hypothesize that such value is the source of
incentive salience and explains why STs and GTs have a consumption-
like behaviour towards their favoured stimulus. (D) Probability to
engage with the lever versus exploring when presented with the lever
and no magazine for STs (red), GTs (blue) and a random-policy group
UN (white), simulating the unpaired group (UN) of the experimental
data. Probabilities were computed by applying the softmax function
after removing the values for the magazine interactions (see Methods).
STs would hence actively seek to engage with the lever relatively to GTs
in a Conditioned Reinforcement Effect procedure.
doi:10.1371/journal.pcbi.1003466.9006

degree to which incentive salience is attributed to these stimuli,
and thus the extent to which they become “wanted” [23,24,27].

In an RI-like framework, incentive salience attribution can be
represented as a bonus mechanism for interacting with stimuli.
The Feature-Model-Free system in the model realizes such a
function, providing a specific bonus for each stimulus in any
simulated rat. Such bonus was inspired by the Pavlovian impetus
mechanism of Dayan 2006’s model [16]. Figure 6 C shows the
percentage of Feature-Model-Free value that contributed to the
computation of the probability to engage with the respective
favoured cues of STs and GTs at the end of the simulation.

The presence of the magazine in the inter-trial interval (ITT),
and the necessary revision of the associated bonus at a lower value

February 2014 | Volume 10 | Issue 2 | e1003466



when exploring, makes the associated bonus smaller than that of
the lever (see Methods). This results in a even smaller contribution
of this bonus in GT's behaviour (blue bar in Figure 6 C) compared
to STs (red bar in Figure 6 C). Although it is not straightforward to
interpret how the probability of engagement (white bars in Figure 6
C) in the model might be translated into a consumption-like
behaviour from a computational point of view, we propose that
the different contributions of bonuses could explain the slightly
smaller number of nibbles and sniffs of preferred cue observed
experimentally in GTs compared to STs (Figure 6 A, adapted
from [23]). This may also explain why other studies have observed
a smaller proportion of nibbles on the magazine in GTs [24] and
less impulsiveness [28] in GT's compared to STs. We come back to
this issue in the discussion.

Variants 1 and 3 also realize such function by providing bonuses
for actions leading to both stimuli (see Figure S2). Only providing
bonus for sign-tracking behaviour — as in Dayan’s model (Variant
2) — does not fit well with the attribution of incentive salience to
both stimuli. It would suggest that we should not observe incentive
salience towards the magazine in any rats, which is in discrepancy
with the experimental data. Thus, the important mechanism here
is that stimuli are not processed differently. Any stimulus is
attributed with its respective bonus, which is pertinent in regard to
the attribution of incentive salience.

Conditioned Reinforcement Effect (CRE). An important
question about the difference in observed behaviours is about the
properties acquired by the lever that makes it more attractive to
STs than to GTs. To answer this question, Robinson and Flagel
studied the dissociation of the predictive and motivational
properties of the lever [22]. Part of their results involves asking
whether the Pavlovian lever-CS would serve as a conditioned
reinforcer, capable of reinforcing the learning of a new instru-
mental response [29,30]. In a new context, rats were presented
with an active and an inactive nose port. Nose poking into the
active port resulted in presentation of the lever for 2 seconds
without subsequent reward delivery, whereas poking into the
inactive one had no consequence. The authors observed that while
both STs and GTs preferred the active nose port to an inactive
one, STs made significantly more active nose pokes than GTs (see
Figure 6 B, see also [31]). This suggests that the lever acquired
greater motivational value in STs than in G'Ts.

Without requiring additional simulations, the model can explain
these results by the value that has been incrementally learned and
associated with approaching the lever in the prior autoshaping
procedure for STs and GTs. In the model, ST attribute a higher
value to interacting with the lever than GTs and should actively
work for its appearance enabling further engagement. Figure 6 D
shows the probabilities of engagement that would be computed at
lever appearance after removing the magazine (and related
actions) at the end of the experiment. Indeed, even though the
lever is presented only very briefly, upon its presentation in the
conditioned reinforcement test, STs actively engage and interact
with it [22]. Any value associated to a state-action pair makes this
action in the given state rewarding in itself, favouring actions (e.g.
nosepokes) that would lead to such state. Repeatedly taking this
action without receiving rewards should eventually lead to a
decrease of this value and reduce the original engagement.

Physiological data

Not only have Flagel et al. [14] provided behavioural data but
they also provide physiological and pharmacological data. This
raises the opportunity to challenge the model at different levels, as
developed in the current and next sections.

PLOS Computational Biology | www.ploscompbiol.org

Modelling Individual Differences in Pavlovian CRs

Sign-Trackers Goal-Trackers

Experimental data
A B

~30 =30
= _|®cCs S |# cs
;’/25 _é_ US * . ;25 _é_ US
220 220
@ ®©
S 15 S 15
S 10 S 10
%5 %
] [
[=% 0! Q
12 3 456 12 3 456
Sessions Sessions
Simulation data
C D
1.0 1.0
# CS # CS
0.8{# US 0.8{4# US
506 Lo6
[ [
£04 £04 }'ﬁ:
£S5 S
0.2 0.2
0'0123456 0'0123456
Sessions Sessions

Figure 7. Reproduction of patterns of dopaminergic activity of
sign- versus goal-trackers undergoing an autoshaping exper-
iment. Data are expressed as mean + S.E.M. (A,B) Reproduction of
Flagel et al. [14] experimental results (Figure 3 d,f). Phasic dopamine
release recorded in the core of the nucleus accumbens in STs (light
grey) and GTs (grey) using Fast Scan Cyclic Voltammetry. Change in
peak amplitude of the dopamine signal observed in response to CS and
US presentation for each session of conditioning (C,D) Average RPE
computed by the Feature-Model-Free system in response to CS and US
presentation for each session of conditioning. Simulated groups of rats
are defined as in Figure 5. The model is able to qualitatively reproduce
the physiological data. STs (blue) show a shift of activity from US to CS
time over training, while GTs develop a second activity at CS time while
maintaining the initial activity at US time.
doi:10.1371/journal.pcbi.1003466.g007

Using Fast Scan Cyclic Voltammetry (FSCV) in the core of the
nucleus accumbens they recorded the mean of phasic dopamine
(DA) signals upon CS (lever) and US (food) presentation. It was
observed that depending on the subgroup of rats, distinct
dopamine release patterns emerge (see Figure 7 A,B) during
Pavlovian training. STs display the classical propagation of a
phasic dopamine burst from the US to the CS over days of
training and the acquisition of conditioned responding (see
Figure 7 A). This pattern of dopamine activity is similar to that
seen in the firing of presumed dopamine cells in monkeys reported
by Schultz and colleagues [12] and interpreted as an RPE
corresponding to the reinforcement signal 6 of Model-Free RL
systems [1]. In G'T's, however, a different pattern was observed.
Initially there were small responses to both the CS and US, of
which the amplitudes seemed to follow a similar trend over
training (see Figure 7 B).

By recording the mean of the RPEs ¢ computed in the Feature-
Model-Free system during the autoshaping simulation (i.c. only
fitted to behavioural data), the model can still qualitatively
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reproduce the different patterns observed in dopamine recordings
for STs and GTs (see Figure 7 C,D). For STs, the model
reproduces the progressive propagation of ¢ from the US to the
CS (see Figure 7 Q). For GTs, it reproduces the absence of such
propagation. The RPE at the time of the US remains over
training, while a J also appears at the time of the CS (see Figure 7
D). In the model, such discrepancy is explained by the difference
in the values that STs and GT's use for the computation of RPEs at
the time of the CS and the US. STs, by repeatedly focusing on the
lever, propagate the total value of food to the lever and end up
having a unique 6 at the unexpected lever appearance only. By
contrast, by repeatedly focusing on the magazine during the lever
appearance but, as all rats, also from time to time during ITI, GT's
revise the magazine value multiple times, positively just after food
delivery and negatively during ITI. Such revisions lead to a
permanent discrepancy between the expected and observed value,
i.e. a permanent 0, at lever appearance and food delivery, when
engaging with the magazine.

The key mechanism to reproduce these results resides in the
generalization capacities of the Feature-Model-Free system. Based
on features rather than states, feature-values are to be used, and
therefore revised, at different times and states of the experiment,
favouring the appearance of RPEs. Variants 2, 3 and 4 relying on
classical Model-Free systems are unable to reproduce such results
(see Figure S3). By using values over abstract states rather than
stimuli, it makes it impossible to only revise the value of the
magazine during I'TI. Therefore, given the deterministic nature of
the MDP, we observe a classical propagation of RPEs in all
pathways up to the appearance of the lever.

Pharmacological data

Effects of systemic flupentixol administration on the
learning of sign- and goal-tracking behaviours. FIlagel et
al. [14] also studied the impact of systemic injections of the non
specific dopamine antagonist, flupentixol, on the acquisition of
sign-tracking and goal-tracking CRs. The authors injected
flupentixol in rats prior to each of 7 sessions and observed the
resulting behaviours. Behaviour during the 8" session was
observed without flupentixol.

Systemic injections of flupentixol in STs and GTs (Flu groups,
black curves in Figure 8 A,B) blocked expression of their respective
behaviours during training. Saline injections (white curves in
Figure 8 A,B) left their performances intact. The crucial test for
learning took place on the 8 day, when all rats were tested
without flupentixol. STs failed to approach the lever, and
performed as the saline-injected controls did on the first day of
training.

Thus, in STs flupentixol blocked the acquisition of a sign-
tracking CR (see Figure 8 A). Interestingly, on the flupentixol-free
test day GTs did not differ from the saline-injected control group,
indicating that flupentixol did not block the acquisition of a goal-
tracking CR (see Figure 8 B). Thus, acquisition of a sign-tracking
CR, but not a goal-tracking CR, is dependent on dopamine (see
also [13]).

The model reproduces these pharmacological results (see
Figure 8 C,D). As in the experimental data, simulated GT's and
STs do not show a specific conditioned response during the first 7
sessions under flupentixol. On the 8™ session, without flupentixol,
we observe that STs still do not show a specific conditioned
response while GTs perform at a level close to that of the saline-
injected control group (see Figure 8 C,D).

The absence of specific conditioned response in the whole
population for the first 7 sessions is first due to the hypothesized
[32] impact of flupentixol on action selection (see Methods). With
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enough flupentixol, the elevation of the selection temperature
leads to a decrease of the influence of learned values in the
expressed behaviour, masking any possibly acquired behaviour.

The absence of a specific conditioned response in STs is due to
the blockade of learning in the second system by flupentixol, since
it is RPE-dependent. Therefore almost no learning occurs in the
system (see Figure 8).

In contrast, with the first system being RPE-independent,
flupentixol has no effect on learning, because it is Model-Based
rather than Model-Free [33]. The expression of behaviour is
blocked at the action selection level, which does not make use of
values learned by the Model-Based system. Thus, GTs, relying
mainly on the first system, learn their CR under flupentixol but are
just not able to express it until flupentixol is removed. The lower
level of goal-tracking in the Flu group relative to the saline-injected
control group on the 8" session is due to the lack of exploitation
induced by flupentixol injection during the previous 7 sessions. By
engaging less with the magazine, the Flu group ends up associating
a lower value to the magazine (i.e. the value did not fully converge
in 7 sessions) to guide its behaviour.

Interestingly, if the model had been constituted of Model-Free
systems only — as in Variants 1, 2 and 3 — it would not have been
able to reproduce these results, because both systems would have
been RPE-dependent and thus sensitive to the effect of flupentixol
(see Figure S4).

Effects of local flupentixol administration on the
expression of sign- and goal-tracking behaviours. In a
related experiment, Saunders et al. [25] studied the role of
dopamine in the nucleus accumbens core in the expression of
Pavlovian-conditioned responses that had already been acquired.
After the same autoshaping procedure as in [20], they injected
different doses of flupentixol in the core of the nucleus accumbens
of rats and quantified its impact on the expression of sign-tracking
and goal-tracking CRs in an overall population (without distin-
guishing between STs and GTj).

They found that flupentixol dose dependently attenuated the
expression of sign-tracking, while having essentially no effect on goal-
tracking (see Figure 9 A, B). Along with the Flagel et al. [14] study,
these results suggest that both the acquisition and expression of a sign-
tracking CR is dopamine-dependent (at least in the core) whereas the
acquisition and expression of a goal-tracking CR is not.

Given the assumption that the Feature-Model-Free system
would take place in or rely on the core of the nucleus accumbens,
this model reproduces the main experimental result: the decreased
tendency to sign-track in the population (see Figure 9 C). Note that
in the previous experiment, the injection of flupentixol was
systemic, and assumed to affect any region of the brain relying on
dopamine, whereas in the present experiment it was local to the
core of the nucleus accumbens. Therefore, we modelled the
impact of flupentixol differently between the current and previous
simulations (see Methods). In the model, the tendency to sign-track
is directly correlated with a second operational system. Any
dysfunction in the learning process (here by a distortion of RPEs)
reduces this trend.

The model successtully reproduced the absence of reduction of
goal-tracking, in contrast to the reduction of sign-tracking.
However, it was unable to reproduce the invariance in goal-
tracking (see Figure 9 D) and rather produced an increase in goal-
tracking. This is due to the use of a softmax operator for action
selection, as this is the case in the vast majority of computational
neuroscience RL models [16-19,32,34-36], which automatically
favours goal-tracking when sign-tracking is blocked (see Limita-
tions). We did not attempt to cope with this limitation because our
focus here was the absence of reduction of goal-tracking.
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Figure 8. Reproduction of the effect of systemic injections of flupentixol on sign-tracking and goal-tracking behaviours. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Flagel et al. [14] experimental results (Figure 4 a,d). Effects of flupentixol on the probability to
approach the lever for STs (A) and the magazine for GTs (B) during lever presentation. (C,D) Simulation of the same procedure (squares) with the
model. Simulated groups of rats are defined as in Figure 5. (C) By flattening the softmax temperature and reducing the RPEs of the Feature-Model-
Free system, to mimic the possible effect of flupentixol, the model can reproduce the blocked acquisition of sign-tracking in STs (red), engaging less
the lever relatively to a saline-injected control group (white). (D) Similarly, the model reproduces that goal-tracking was learned but its expression
was blocked. Under flupentixol (first 7 sessions), GTs (blue) did not express goal-tracking, but on a flupentixol-free control test (8t session) their

engagement with the magazine was almost identical to the engagement of a saline-injected control group (white).

doi:10.1371/journal.pcbi.1003466.9008

Besides, the model could, after re-learning, reproduce the
selective impact of intra-accumbal flupentixol injections observed
in sign-tracking but not in goal-tracking, because such injections
affected the learning process in the Feature-Model-Free system
only.

Discussion

We tested several mechanisms from the current literature on
modelling individual variation in the form of Pavlovian condi-
tioned responses (ST vs GT) that emerge using a classical
autoshaping procedure, and the role of dopamine in both the
acquisition and expression of these CRs. Benefiting from a rich set
of data, we identified key mechanisms that are sufficient to account
for specific properties of the observed behaviours. The resulting
model relies on two major concepts: Dual learning systems and
factored representations. Figure 4 summarizes the role of each
mechanism in the model.

Dual learning systems

Combining Model-Based and Model-Free systems has previ-
ously been successful in explaining the shift from goal-directed to
habitual behaviours observed in instrumental conditioning [17—
19,33,34]. However, few models based on the same concept have

PLOS Computational Biology | www.ploscompbiol.org

been developed to account for Pavlovian conditioning [16]. While
the need for two systems is relevant in instrumental conditioning
given the distinct temporal engagement of each system, such a
distinction has not been applied to Pavlovian phenomena (but see
recent studies on orbitofrontal cortex [37-39]). The variability of
behaviours and the need for multiple systems have been masked
by focusing on whole populations and, for the most part, ignoring
individual differences in studies of Pavlovian conditioning. The
nature of the CS is especially important, as many studies of
Pavlovian conditioned approach behaviour have used an auditory
stimulus as the CS, and in such cases only a goal-tracking CR
emerges in rats [40,41].

As expected from the behavioural data, combining two learning
systems was successful in reproducing sign- and goal-tracking
behaviours. The Model-Based system, learning the structure of the
task, favours systematic approach towards the food magazine, and
waiting for food to be delivered, and hence the development of a
goal-tracking CR. The Feature-Model-Iree system, directly
evaluating features by trials and errors, favours systematic
approach towards the lever, a full predictor of food delivery, and
hence the development of a sign-tracking CR. Moreover, utilizing
the Feature-Model-Free system to represent sign-tracking behav-
iour yields results consistent with the pharmacological data.
Disrupting RPEs, which reflects the effects of flupentixol on
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Figure 9. Reproduction of the effect of post injections of
flupentixol in the core of the nucleus accumbens. Data are
expressed as mean + S.E.M. (A,B) Reproduction of Saunders et al. [25]
experimental results (Figure 2 AD). Effects of different doses of
flupentixol on the general tendency to sign-track (A) and goal-track (B)
in a population of rats, without discriminating between sign- and goal-
trackers. (C,D) Simulation of the same procedure with the model. The
simulated population is composed of groups of rats defined as in
Figure 5. By simulating the effect of flupentixol as in Figure 8, the model
is able to reproduce the decreasing tendency to sign-track in the overall
population by increasing the dose of flupentixol.
doi:10.1371/journal.pcbi.1003466.g009

dopamine, blocks the acquisition of a sign-tracking CR, but not a
goal-tracking CR. The model does not make a distinction between
simple approach behaviour versus consumption-like engagement,
as reported for both STs and GTs [23,24]. However given that
such engagement results from the development of incentive
salience [23,24], the values learned by the Feature-Model-Free
system to bias behaviour towards stimuli attributed with motiva-
tional value are well-suited to explain such observations. The
higher motivational value attributed to the lever by ST relative to
GTs can also explain why the lever-CS is a more effective
conditioned reinforcer for STs than for GTs [22].

Importantly, none of the systems are dedicated to a specific
behaviour, nor rely on a priori information to guide their processes.
The underlying mechanisms increasingly make one behaviour
more pronounced than the other through learning. Each system
contributes to a certain extent to sign- and goal-tracking
behaviour. This property is emphasized by the weighted sum
integration of the values computed by each system before applying
the softmax action-selection mechanism. The variability of
behaviours in the population can then be accounted for by
adjusting the weighting parameter o from 1 (i.e. favouring sign-
tracking) to 0 (i.e. favouring goal-tracking). This suggests that the
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rats’ actions result from some combination of rational and
impulsive processes, with individual variation contributing to the
weight of each component.

The integration mechanism is directly inspired by the work of
Dayan et al. [16] and as the authors suggest, the parameter w may
fluctuate over time, making the contribution of the two systems
vary with experience. In contrast to their model, however, the
model presented here does not assign different goals to each
system. Thus, the current model is more similar to their previous
model [17], which uses another method for integration.

A common alternative to integration when using multiple
systems [17,18,35] is to select at each step, based on a given
criterion (certainty, speed/accuracy trade-off, energy cost), a single
system to pick the next action. Such switch mechanism does not fit
well with the present model, given that it would be interpreted as if
actions relied sometimes only on motivational values (i.e. Feature-
Model-Free system) and sometimes only on a rational analysis of
the situation (i.e. Model-Based system). It also does not fit well with
pharmacological observation that STs do not express goal-tracking
tendencies in the drug-free test session following systemic-
injections of flupentixol [14], as Flagel et al. stated, “[sign-
tracking| rats treated with flupentixol did not develop a goal-
tracking CR”.

Factored representations

Classical RL algorithms used in neuroscience [16-18,35],
designed mainly to account for instrumental conditioning, work
at the state level. Tasks are defined as graphs of states, and
corresponding models are unaware of any similarity within states.
Therefore, any subsequent valuation process cannot use any
underlying structure to generalize updates to states that share
stimuli. Revising the valuation process to handle features rather
than states per se, makes it possible to attribute motivational values
to stimuli independently of the states in which they are presented.

Recent models dedicated to Pavlovian conditioning [36,42-46]
usually represent and process stimuli independently and can be
said to use factored representations, a useful property to account
for phenomena such as blocking [47] or overexpectation [48]. In
contrast to the present model, while taking inspiration from RL
theory (e.g. using incremental updates), these models are usually
far from the classical RL framework. Of significant difference with
the present study, most of these models tend to describe the
varying intensity of a unique conditioned response and do not
account for variations in the actual form of the response, as we do
here. In such models, the magazine would not be taken into
account and/or taken as part of the context, making it unable to
acquire a value for itself nor be the focus of a particular response.

In RL theory, factorization is mainly evoked when trying to
overcome the curse of dimensionality [49] (i.e. standard algorithms
do not scale well to high dimensional spaces and require too much
physical space or computation time). Amongst methods that
intend to overcome this problem are value function approxima-
tions and Factored Reinforcement Learning. Value function
approximations [35,50,51] attempt to split problems into orthog-
onal subproblems making computations casier and providing
valuations that can then be aggregated to estimate the value of
states. Factored Reinforcement Learning [52-54] attempts to find
similarities between states so that they can share values, reducing
the physical space needed and relies on factored Markov Decision
Processes. We also use factored Markov Decision processes, hence
the “factored” terminology. However, our use of factored
representations serves a different purpose. We do not intend to
build a compact value-function nor infer the value of states from
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values of features but rather make these values compete in the
choice for the next action.

Taking advantage of factored representations into classical RL
algorithms is at the very heart of the present results. By
individually processing stimuli within states (ie. in the same
context, at the same time and same location) and making them
compete, the Feature-Model-Free system favours a different policy
— oriented towards engaging with the most valued stimuli — (sign-
tracking) than would have been favoured by classical algorithms
such as Model-Based or Model-Free systems (goal-tracking).
Hence, combining a classical RL algorithm with the Feature-
Model-Free system enables the model to reproduce the difference
in behaviours observed between STs and GTs during an
autoshaping procedure. Moreover, by biasing expected optimal
behaviours towards cues with motivational values (incentive
salience), it is well suited to explain the observed commitment to
unnecessary and possibly counter-productive actions (see also
[16,55,56]). Most of all, it enables the model to replicate the
different patterns of dopamine activity recorded with FSCV in the
core of the nucleus accumbens of STs and GTs. The independent
processing of stimuli leads to patterns of RPE that match those of
dopamine activity for STs — a shift of bursts from the US to the
CS; and in GTs — a persistence of bursts at both the time of the US
and the CS.

A promising combination

By combining the two concepts of dual learning systems and
factored representations in a single model, we are able to
reproduce individual variation in behavioural, physiological and
pharmacological effects in rats trained using an autoshaping
procedure. Interestingly, our approach does not require a deep
revision of mechanisms that are extensively used in our current
field of research.

While Pavlovian and instrumental conditioning seem entangled
in the brain [57], the two major concepts on which rely their
respective models, dual learning systems and factored representa-
tions, have to our knowledge never been combined into a single
model in this field of research.

This approach could contribute to the understanding of
interactions between these two classes of learning, such as CRE
or Pavlovian-Instrumental Transfer (PIT), where motivation for
stimuli acquired via Pavlovian learning modulates the expression
of instrumental responses. Interestingly, the Feature-Model-Free
system nicely fits with what would be expected from a mechanism
contributing to general PIT [58]. It is focused on values over
stimuli without regard to their nature [58], it biases and interferes
with some more instrumental processes [55,56,58] and it is
hypothesized to be located in the core of the nucleus accumbens
[58]. It would thus be interesting to study whether future
simulations of the model could explain and help better formalize
these aspects of PIT.

We do not necessarily imply that instrumental and Pavlovian
conditioning might rely on a unique model. Rather, we propose
that if they were the results of separated systems, they should
somehow rely on similar representations and valuation mecha-
nisms, given the strength of the observed interactions.

Theoretical and practical implications

The proposed model explains the persistent dopamine response
to the US in GTs over days of training as a permanent RPE due to
the revision of the magazine value during each ITI. Therefore, a
prediction of the model is that shortening the I'TI should reduce
the amplitude of this burst (i.e. there should be less time to revise
the value and reduce the size of the RPE); whereas increasing the
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ITT should increase the amplitude of this burst. Removing the food
dispenser during I'TI, similar to theoretically suppressing the I'TI,
should make this same burst disappear. Studying physiological
data by grouping them given the duration of the preceding I'TI
might be sufficient, relatively to noise, to confirm that its duration
impacts the amplitude of dopamine bursts. In the current
experimental procedure, the ITT is indeed randomly picked in a
list of values with an average of 90 sec. Moreover, reducing I'TI
duration should lead to an increase of the tendency to goal-track in
the overall population. Indeed, with a higher value of the food
magazine, the Feature-Model-Free system would be less likely to
favour sign-tracking over goal-tracking CR. The resulting decrease
in sign-tracking in the overall population would be consistent with
findings of previous works [59-62], where a shorter I'TI reduces
the observed performance in the acquisition of sign-tracking CRs.
Alternatively, it would also be interesting to examine the
amplitude of dopamine bursts during the ITT (especially when
exploring the food magazine), to determine whether or not
physiological responses during this period affect the outcome of
the conditioned response.

It would be interesting to split physiological data not only
between STs and GTs but also between the stimuli on which the
rats started and/or ended focusing on during CS presentation at
cach trial. This would help to confirm that the pattern of
dopamine activity is indeed due to a separate valuation of each
stimuli. We would predict that at the time of the US, dopamine
bursts during engagement with the lever should be small relatively
to dopamine bursts during engagement with the magazine.
Moreover, comparing dopamine activity at the time of the CS
when engaging with the lever versus the magazine could help
clucidate which update mechanism is being used. If activity differs,
this would suggest that the model should be revised to use SARSA-
like updates, ie. taking into account the next action in RPE
computation. Such a question has already been the focus of some
studies on dopamine activity [63-65].

There is no available experimental data for the phasic
dopaminergic activity of the intermediate group. The model
predicts that such a group would have a permanent phasic
dopamine burst, i.e. RPE, at US and a progressively appearing
burst at CS (see Figure S6). Over training, the amplitude of the
phasic dopamine burst at US should decrease until a point of
convergence, while at the mean time the response at CS should
increase until reaching a level higher than the one observed at US.
However, one must note, that the fitting of the intermediate group
is not as good as for STs or GTs, as it regroups behaviours that
range from sign-tracking to goal-tracking, such that this is a weak
prediction.

There is the possibility that regularly presenting the magazine or
the lever could, without pairing with food, lead to responses that
are indistinguishable from CRs. However, ample evidence
suggests that the development of a sign-tracking or goal-tracking
CR is not due to this pseudoconditioning phenomenon, but rather
a result of learned CS-US associations. That is, experience with
lever-CS presentations or with food US does not account for the
acquisition of lever-CS induced directed responding [22,66].
Nonetheless, it should be noted that the current model cannot
distinguish between pseudoconditioning CR-like responses and
sign-tracking or goal-tracking behaviours. This would require us to
introduce more complex MDPs that embed the I'TT and can more
clearly distinguish between approach and engagement.

Limitations

The Feature-Model-Free system presented in this article was
designed as a proof of concept for the use of factored
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representations in computational neuroscience. In its present form
it updates the value of one feature (the focused one) at a time, and
this is sufficient to account for much of the experimental data. It
does not address whether multiple features could be processed in
parallel, such that multiple synchronized, but independently
computed, signals would update distinct values relative to the
attention paid to the associated features. Further experiments
should be performed to confirm this hypothesis. Subsequently,
using factored representations in the Model-Based system was not
necessary to account for the experimental data and the question
remains whether explaining some phenomena would require it.

While using factored representations, our approach still relies on
the discrete-time state paradigm of classical RL, where updates are
made at regular intervals. Although such simplification can explain
the set of data considered here, one would need to extend this to
continuous time if one would like to also model experimental data
where rats take more or less time to initiate actions that can vary in
duration [14]. The present model, which does not take timing into
consideration, cannot account for the fact that STs and GT's both
come to approach their preferred stimuli faster and faster as a
function of training nor does it make use of the variations of I'TI
duration. Our attempt to overcome this limitation using the MDP
framework was unsuccessful. Focusing on features, it becomes
more tempting to deal with the timing of their presence, a property
that is known to be learned and to have some impact on
behaviours [61,67-69].

Moreover, in the current model, we did not attempt to account
for the conditioned orienting responses (i.c. orientation towards
the CS) that both ST's and GT's exhibit upon CS presentation [25].
However, we hypothesize that such learned orienting responses
could be due to state discrimination mechanisms that are not
included in the model, and would be better explained with partial
observability and actions dedicated to collect information. This is
beyond the scope of the current article, but is of interest for future
studies.

As evident by the only partial reproduction of the flupentixol
effects on the expression of sign- and goal-tracking behaviours, the
model is limited by the use of the softmax action-selection
mechanism, which is widely used in computational neuroscience
[16-19,32,34-36]. In the model, all actions are equal — there is no
action with a specific treatment — and the action-selection
mechanism necessarily selects an action at each time step. Any
reduction in the value of one action favours the selection of all
other actions in proportion to their current associated values. In
reality, however, blocking the expression of an action would
certainly lead mainly to inactivity rather than necessarily picking
the alternative and almost never expressed action. One way of
improving the model in this direction could be to replace the
classical softmax function by a more realistic model of action
selection in the basal ganglia (e.g. [70]). In such a model, no action
is performed when no output activity gets above a certain
threshold. Humphries et al. [32] have shown that changing the
exploration level in a softmax function can be equivalent to
changing the level of tonic dopamine in the basal ganglia model of
Gurney et al. [70]. Interestingly, in the latter model, reducing the
level of tonic dopamine results in difficulty in initiating actions and
thus produces lower motor behaviour, as is seen in Parkinsonian
patients and as can be seen in rats treated with higher doses of
flupentixol [14]. Thus a natural sequel to the current model would
be to combine it with a more realistic basal ganglia model for
action selection.

We simulated the effect of flupentixol as a reduction of the RPE
in the learning processes of Model-Free systems to parallel its
blockade of the dopamine receptors. While this is sufficient to
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account for the pharmacological results previously reported [14], it
fails to account for some specific aspects that have more recently
emerged. Mainly, it is unable to reproduce the instant decreased
engagement observed at the very first trial after post-training local
injections of flupentixol [25]. Our current approach requires re-
learning to see any impact of flupentixol. A better understanding
of the mechanisms that enable instant shifts in motivational values,
by shifts in the motivational state [71] or the use of drugs [14,25],
might be useful to extend the model on such aspects.

We also tried to model the effect of flupentixol on RPEs with a
multiplicative effect, as it would have accounted for an instant
impact on behaviour. However, it failed to account for the effects
of flupentixol on learning of the sign-tracking CRs, as a
multiplicative effect only slowed down learning but did not disrupt
it. How to model the impact of flupentixol, and dopamine
antagonists or drugs such as cocaine remains an open question
(e.g. see [72,73]).

Finally, our work does not currently address the anatomical
counterpart of w at the heart of the model, nor the regions of the
brain that would match the current Model-Based system and the
Feature-Model-Free system. Numerous studies have already
discussed the potential substrates of Model-Based/Model-Free
systems in the prefrontal cortex/dorsolateral striatum [74], or the
dorsomedial and dorsolateral striatum [33,75-78]. The weighted
sum integration may suggest a crossed projection of brains regions
favouring sign- and goal-tracking behaviours (Model-Based and
Feature-Model-Free systems) into a third one. We postulate there
is a difference in strength of “connectivity” between such regions
in STs vs GTs [79]. Further, one might hypothesize that the core
of the nucleus accumbens contributes to the Feature-Model-Free
system. The integration and action selection mechanisms would
naturally fit within the basal ganglia, stated to contribute to such
functions [32,80-82].

Conclusion

Here we have presented a model that accounts for variations in
the form of Pavlovian conditioned approach behaviour seen
during autoshaping in rats; that is, the development of a sign-
tracking vs goal-tracking CR. This works adds to an emerging set
of studies suggesting the presence and collaboration of multiple RL
systems in the brain. It questions the classical paradigm of state
representation and suggests that further investigation of factored
representations in RL models of Pavlovian and instrumental
conditioning experiments may be useful.

Methods

Modelling the autoshaping experiment

In the classical reinforcement learning theory [1], tasks are
usually described as Markov Decision Processes (MDPs). As the
proposed model is based on RL algorithms, we use the MDP
formalism to computationally describe the Pavlovian autoshaping
procedure used in all simulations.

An MDP describes the interactions of an agent with its
environment and the rewards it might receive. An agent being
in a state § can execute an action @ which results in a new state §'
and the possible retrieval of some reward r. More precisely, an
agent can be in a finite set of states S, in which it can perform a
finite set of discrete actions A, the consequences of which are
defined by a transition function 7 : S x A—-TI(S), where I1(S) is
the probability distribution P(s'|s,a) of reaching state s" doing
action a in state 5. Additionally, the reward function R : S x 4 >R
is the reward R(s,a) for doing action @ in state s. Importantly,
MDPs should theoretically comply with the Markov property: the
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probability of reaching state 5" should only depend on the last state
s and the last action a. An MDP is defined as episodic if it includes
at least one state which terminates the current episode.

Figure 1 shows the deterministic MDP used to simulate the
autoshaping procedure. Given the variable time schedule (30—
150s) and the net difference observed in behaviours in inter-trial
intervals, we can reasonably assume that each experimental trial
can be simulated with a finite horizon episode.

The agent starts from an empty state (o) where there is nothing
to do but explore. At some point the lever appears (s1) and the
agent must make a critical choice: It can either go to the lever (s2)
and engage with it (s5), go to the magazine (s4) and engage with it
(s7) or just keep exploring (s3,56). At some point, the lever is
retracted and food is delivered. If the agent is far from the
magazine (s5,57), it first needs to get closer. Once close (s7), it
consumes the food. It ends in an empty state (s9) which symbolizes
the start of the inter-trial interval (ITI): no food, no lever and an
empty but still present magazine.

The MDP in Figure 1 is common to all of the simulations and
independent of the reinforcement learning systems we use. STs
should favour the red path, while GTs should favour the shorter
blue path. All of the results rely mainly on the action taken at the
lever appearance (s1), when choosing to go to either the lever, the
magazine, or to explore. Exploring can be understood as not going
to the lever nor to the magazine.

To fit with the requirements of the MDP framework, we
introduce two limitations in our description, which also simplify
our analyses. We assume that engagement is necessarily exclusive
to one or no stimulus, and we make no use of the precise timing of
the procedure — the ITI duration nor the CS duration — in our
simulations.

Inter-trial interval (ITI). While the MDP does not model
the I'TL, the results regarding physiological data rely partially on its
presence. Extending the MDP with a set of states to represent this
interval would increase the complexity of the MDP and the time
required for simulations. The behaviour that could have resulted
from such an extension is easily replaced by applying the following
formula at the beginning of each episode:

where the parameter 0 <u;rr <1 reflects the interaction with the
magazine that occurred during the ITL. A low w7y —0 symbolizes
a low interaction and therefore a low revision of the value
associated to the magazine. A high uyr;—1 symbolizes a strong
exploration of the magazine during the inter-trial interval and
therefore a strong decrease in the associated value due to
unrewarded exploration.

Model

The model relies on the architecture shown in Figure 2. The
main idea is to combine the computations of two distinct
reinforcement learning systems to define what behavioural
response is chosen at each step.

Model-Based system (MB). The first system is Model-Based
[1], and classically relies on a transition function 7" and a reward
function R which are learned by experience given the following
rules:

(1—0)xT(s,a,5")+o
(1—0)x7T(s,a,5")

if '=s"
T (s,a,5')« .
otherwise

2)

PLOS Computational Biology | www.ploscompbiol.org

Modelling Individual Differences in Pavlovian CRs

R(s,a)«R(s,a)+a(r — R(s,a)) (3)
where the learning rate 0 <o <1 classically represents the speed at
which new experiences replace old ones. Using a learning rate
rather than counting occurrences is a requirement for accordance
with the incremental expression of the observed behaviours. This
can account for some resistance or uncertainty in learning from
new experiences.

Given this model, an action-value function Q can then be
computed with the following classical formula:

A(s,a)—R(s,a)+ v Z T(s')s,a) max a(s,a') 4)

where the discount rate 0<y<1 classically represents the
preference for immediate versus distant rewards. The resulting
Advantage function A [83,84], the output of the first system, is
computed as follows:

A(s,a) < Q(s,a) — max A(s,d) (5)

It defines the (negative) advantage of taking action a in state s
relatively to the optimal action known. The optimal action
therefore has an advantage value of 0.

In terms of computation, the advantage function could be
replaced by the action-value function without changing the
simulation results (we only compare A—values over the same
state and therefore max, Q(s,a’) is constant whatever the action).
It has been used in preceding works dealing with interactions
between instrumental and Pavlovian conditioning [16,84] and we
kept it for a better and more straightforward comparison with
variants of the model that were directly inspired by these
preceding works.

Feature-Model-Free system (FMF). A state is generally
described by multiple features. Animals, especially engaged in a
repetitive task, might not pay attention to all of them at once. For
example, when the lever appears and a rat decides to engage with
the magazine, it focuses primarily on the magazine while ignoring
the lever, such that it could update a value associated to the
magazine but leave intact any value related to the lever (see
Figure 10 A). Although this could be related to an attentional
process that bias learning, we do not pretend to model attention
with such a mechanism.

Relying on this idea, the second system is a revision of classical
Model-Free systems which is based on features rather than states.
It relies on a value function V : C—R based on a set of features C,
which is updated with an RPE:

V(c(s,a))«<V(c(s,a)) +ad (6)

o—r+y max V(c(s',a')) —V(c(s,a))

where ¢: Sx A—C is a feature-function that returns the feature
c(s,a) the action a was focusing on in state s (see Table S2; Figure 1
also embeds the features returned by ¢ for each action and state).
One could argue that this feature-function, defined a prior,
introduces an additional requirement relative to classical Model-
Free systems. This is a weak requirement since this function is
straightforward when actions, instead of being abstractly defined,
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Figure 10. Characteristics of the Feature-Model-Free system. (A) Focusing on a particular feature. The Feature-Model-Free system relies on a
value function V based on features. Choosing an action (e.g. goL, goM or exp), defines the feature it is focusing on (e.g. Lever, Magazine or nothing
). Once the action is chosen (e.g. goM in blue), only the value of the focused feature (e.g. V(M)) is updated by a standard reward prediction error,
while leaving the values of the other features unchanged. (B) Feature-values permit generalization. At a different place and time in the episode, the
agent can choose an action (e.g. goM in blue) focusing on a feature (e.g. M) that might have already been focused on. This leads to the revision of the

same value (e.g. V(M)) for two different states (e.g. s; and sp). Values of features are shared amongst multiple states.

doi:10.1371/journal.pcbi.1003466.g010

are described as interactions towards objects in the environment.
This function simply states that, for example, when pressing a
lever, the animal is focusing on the lever rather than on the
magazine. Similar to Q—learning, we assume that the future
action to be chosen is the most rewarding one. Therefore, the
value chosen for the reached state s, in the computation of the
RPE, is the highest value reachable by any possible future action
maxyV(c(s',a')).

Classical Model-Free systems do not permit generalization in
their standard form: even when two states share most of their
features, updating the value of one state leaves the value of the
other untouched. This new system overcomes such limitation (see
Figure 10 B). In Feature-Model-Free Reinforcement Learning,
multiple states in time and space can share features and their
associated values. For example, while in I'TI, rats tend from time
to time to explore the magazine [22,26], which might lead them to
revise any associated value, which can also be used when the lever
appears. Therefore, actions in I'TTs might impact the rest of the
experiment.

In the simulated experiment (see Figure 1), this generalization
phenomenon happens as follows: Assuming that the simulated rat
was engaging the magazine (eng) before food delivery (from s4 to
s57), then the value V of c(ss,eng)=M is updated with the
following 0 =0+ ymax,V(c(s7,a’))—V(M). As the best subse-
quent action (and, for simplification, the only possible one) is to
consume the food (in s7), it results in a positive 6 =yV(F) —V(M).
During ITI (which in the MDP is simulated by the usry
parameter), if the simulated rat checks the magazine (goM) and
finds no food, then V(M) is revised with a negative
0=yV()— V(M) (Figure 10 B). The value V(M) is therefore
revised at multiple times in the experiment and, for example, a
decrease of value during ITI has an impact on the choice of
engaging with the magazine (goM) at lever appearance.

Processing features rather than states and the generalization that
results from it is a key mechanism of the presented model. It makes
the system favour a different path than the one favoured by
classical reinforcement learning systems.

Contrary to what the system suggests, it is almost certain that
rats might handle multiple features at once and could simulta-
neously update multiple values. We present here a version without
such capacity since it is not required in the simulated experiments
and simplifies its understanding.
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Integration. The Feature-Model-Free system accounts for
motivational bonuses V that impact values A computed by the
Model-Based system. The integration of these values is made
through a weighted sum:

P(s,a)=(1—w)A(s,a) + wV(c(s,a)) (7)
where 0<w<1 is a combination parameter which defines the
importance of each system in the overall model. w is equivalent to
the responsibility signal in Mixture of Experts [35,85]. We want to
emphasize that the two systems are not in simple competition, and
it is not the case that there is a unique system acting at a time.
Rather, they are both active and take part in the decision
proportionally to the fixed parameter w. A simple switch between
systems would not account for the full spectrum of observed
behaviours ranging from STs to GTs [26].

We use a softmax rule on the integrated
values P to compute the probability to select an action 4 in state s:

Action selection.

PEAB

pla=A)= 7211/ e

(8)

where >0 is the selection temperature that defines how
probabilities are distributed. A high temperature (f—c0) makes
all actions equiprobable, a low one makes the most rewarding
action almost exclusive.

Impact of flupentixol. When simulating the pharmacological
experiments, namely the impact of flupentixol, a parameter 0 <f <1 is
used to represent the impact of flupentixol on parts of the model.

As a dopamine receptor antagonist, we model the impact of
flupentixol on phasic dopamine by revising any RPE J used in the
model given the following formula:

if >0

o—f
0

o—f
5/'<— 0

©)

otherwise

where J7 is the new RPE after flupentixol injection. The impact is

S5—
filtered (Tf >0) such that flupentixol injection could not lead to

negative learning when the RPE was positive, but at most block it
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(i.e. the sign of 6y cannot be different from the one of §). With a
low f'—=0, the RPE is not affected (6y —9). A high f'—1 reduces the
RPE, imitating a blockade of dopamine receptors.

Various studies (e.g. [32]) also suggest that tonic dopamine has
an impact on action selection such that any decrease in dopamine
level results in favouring exploration over exploitation. We
therefore simulated the effect of flupentixol on action selection
by revising the selection temperature given the following formula:

brets (10)
where f; is the new selection temperature, and 0<f <l
represents the strength of the flupentixol impact. A strong f—1,
which represents an effective dose of flupentixol, favours a high
temperature fy— 00 and therefore exploration. A low =0, i.c. a
low dose or an absence of flupentixol, leaves the temperature
unaffected: ff,—p.

For the first pharmacological experiment (Effects of systemic
flupentixol administration on the learning of sign- and goal-
tracking behaviours) both the impact on the softmax and on the
RPE were activated, as the flupentixol was injected systemically
and assumed to diffuse in the whole brain. For the second
experiment (Effects of local flupentixol administration on the
expression of sign- and goal-tracking behaviours) only the impact
on the RPE was activated, as the flupentixol was injected locally in
the core of the nucleus accumbens. We hypothesize that the
Feature-Model-Free system relies in the core of the nucleus
accumbens whereas the selection process (softmax) does not.

Initialization. In the original experiments [14,20], prior to
the autoshaping procedure, rats are familiarized with the Skinner
box and the delivery of food into the magazine. While the MDP
does not account for such pretraining, we can initialize the model
with values (Q;(s1,g0L), Q;(s1,g0M) and Q;(s),exp)) that reflect it
(see the estimation of the model parameters). These initial values
can be seen as extra parameters common to the model and its
variants.

Variants

Given the modular architecture of the model, we were able to
test different combinations of RL systems. Their analysis
underlined the key mechanisms required for reproducing each
result (see Figures S1, S2, S4 and S5). Figure 11 (B, C and D)
schematically represents the analysed variants.

Most of the results rely on the action taken by the agent at the
lever appearance. The action taken results from the values
P(s1,goL), P(s1,goM) and P(s1,exp), the computation of which
differs in each of the variants described below.

Variant 1 : Model-Free/Feature-Model-Free. Variant 1|
was tested to assert the necessity of the Model-Based system as part
of the model to reproduce the results. Thus in Variant 1, the
Model-Based system is replaced by a classical Model-Free system,
Advantage learning [83,84], while the Feature-Model-Free system
remains unchanged (see Figure 11 B).

In such a Model-Free system, the action-value function QpF is
updated online according to the transition just experienced. At
each time step the function is updated given an RPE J that
computes the difference between the observed and the expected
value, as follows:

OmF(s,a) < QmF(s.a) +ad (11)

PLOS Computational Biology | www.ploscompbiol.org

Modelling Individual Differences in Pavlovian CRs

S0r+ymax Qmr(s,a’) — Qmr(s,a)

Computation of the associated Advantage function Apmr follows
Equation (5). This model computes integrated values as follows:

P(s,a) = (1 — w) Amr(s,a) + oV(c(s,a)) (12)

It is important to note that while Equation (12) looks similar to
Equation (7), the Advantage function is computed by a Model-
Based system in the model (A) and a Model-Free system in this
variant (Amr), leading to very different results on pharmacological
experiments.

Variant 2 : Asymmetrical. Inspired by a work from Dayan
et al. [16], Variant 2 combines a classical Advantage learning
system [83,84] with some Bias system taking its values directly
from the other system (see Figure 11 C). This system computes the
integrated values as follows:

V(s)
0 otherwise

if a=goL

P(s,a)=(1—w) xAMF(s,a)+<u{ (13)

It asymmetrically gives a bonus to the path that should be taken
by STs. In slight discrepancy with the original model, it uses the
maximum value over action-value function Qur as the value
function Vmr used to compute the advantage function. Hence,
there is a single RPE computed at each step.

Variant 3 : Symmetrical. In the same line as Variant 2,
Variant 3 symmetrically gives a bonus to both paths using a
classical Advantage learning system in combination with a
Pavlovian system. This system computes the integrated values as
follows:

V(s) ifa=goL
Pl.a)=Aur(sa)+{ (1—o)(s)  ifa=goM (14)
0 otherwise

This model does not exactly fit Equation (7) of the general
architecture. It is based on 3 systems, where the real competition is
between the two bias systems, whereas the Model-Free system is
mainly used to compute the values used by the two others (see
Figure 11 D). The rest of the architecture is not impacted.

Variant 4 : Model-Based/Model-Free. Variant 4 was
developed to confirm the necessity of a feature-based system. It
combines two advantage functions computed from a Model-Based
(A) and a Model-Free (Amr) system.

P(s,a)=(1 —w)A(s,a) + o Amr(s,a) (15)

While computed differently, both advantage functions will
eventually converge to the same optimal values [1] making both
systems favouring the same optimal policy. Note that u;7; cannot
be used in this variant as there exists no value over the magazine
itself. While varying the parameters might slow down learning or
make the process more exploratory, this could never lead to sign-
tracking as both systems, whatever the weighting, would favour
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Model 1 Variant 1
(1—w) MB W FMF (1 —w) MF + W FMF
R\ — — —\
T_»A 6 51 AMF (52 V
C . D .
Variant 2 Variant 3
(1—w) MF W BS
/A
1) AMF lﬂ'ST

Figure 11. Systems combined in the model and the variants. Variants of the model rely on the same architecture (described in Figure 2) and
only differ in the combined systems. Colours are shared for similar systems. (A) The model combines a Model-Based system (MB, in blue) and a
Feature-Model-Free (FMF, in red) system. (B) Variant 1 combines a Model-Free system (MF, in green) and a Feature-Model-Free system. (C) Variant 2
combines a Model-Free system and a Bias system (BS, in grey), that relies on values from the Model-Free system. (D) Variant 3 combines a Model-Free
system and two Bias systems, that rely on values from the Model-Free system. Variant 4 is not included as it failed to even reproduce the autoshaping

behavioural results.
doi:10.1371/journal.pcbi.1003466.9011

goal-tracking. As such, Variant 4 is unable to even account for the
main behavioural results in the autoshaping procedure (see Figure S8).

Given that all the subsequent simulated results relies on a
correct reproduction of the default behaviours, this variant was not
investigated further and is not compared to the other variants in
supplementary results figures.

Estimating the model parameters

The model relies on model-specific parameters (o, ff, o« and )
and experience-specific parameters (ur7, Q;(s1,g0L), Q;(s1,go0M)
and Q;(s1,)). If the model were used to simulate a different
experiment, the model-specific parameters would be the same
while different experience-specific parameters might be required.
For an ecasier analysis and a simpler comparison between the
model and its variants, we reduce the number of parameters by
sharing parameters with identical meanings amongst systems (i.e.
both systems within the model share values for their learning rates
o and discount rates v, rather than having independent parameter
values).

Due to the number of parameters, finding the best values to
qualitatively fit the experimental data cannot be done by hand.
Using a genetic algorithm makes it possible to optimize the search
of suitable values for the parameters.

Parameter values were retrieved by fitting the simulation of the
probabilities to engage either the lever or the magazine with the
experimental data of one of the previous studies [21]. No direct
fitting was intended on other experimental data. Hence, a single
set of values was used to simulate behavioural, physiological and
pharmacological data.

If for a variant, the optimization algorithm fails to fit the
experimental data, it suggests that whatever the values, the
mechanisms involved cannot explain the behavioural data

(Variant 4).
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Probabilities to engage the lever or the magazine were taken
as independent objectives of the algorithm, since fitting sign-
tracking probabilities is easier than fitting goal-tracking
probabilities. For each objective, the fitness function is
computed as the least square errors between the experimental
and simulated data. Parameter optimization is done with the
multi-objective genetic algorithm NSGA-II [86]. We used the
implementation provided by the Sferes 2 framework [87]. All
parameters required for reproducing the behavioural data were
fitted at once.

For NSGA-II, we arbitrarily use a population of 200 individuals
and run it over 1000 generations. We use a polynomial mutation
with a rate of 0.1, and simulate binary cross-overs with a rate of
0.5. We select the representative individual, to be displayed in
figures, from the resulting Pareto front by hand, such that it best
visually fits the observed data.

To confirm that w is the key parameter of the model, we
additionally tried to fit the whole population at once (i.e. sharing
all parameter values in agents but @) and we were still able to
reproduce the observed tendencies of sign- and goal-tracking in
the population (see Figure S7 A,B) and the resulting different
phasic dopaminergic patterns (see Figure S7 C,D).

It is however almost certain that each subgroup does not express
the exact same values for the other parameters. Removing such
constraint by fitting each subgroup separately, indeed provides
better results. Results presented in this article are based on such
separate fitting.

Supporting Information

Figure S1 Comparison of variants of the model on
simulations of autoshaping experiment. Legend is as in
Figure 5 (C,D). Simulation parameters for STs (red), GTs (blue)
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and IGs (white) in the model (A), Variant 1 (B), Variant 2 (C) and
Variant 3 (D) are summarized in Table S1. All variants reproduce
the spectrum of behaviours ranging from sign-tracking to goal-

tracking.
(TIFF)

Figure S2 Comparison of variants of the model on
incentive salience and Conditioned Reinforcement Ef-
fect intuitions. Legend is as in Figure 6. Simulation parameters
for STs (red), G'T's (blue) and IGs (white) are summarized in Table
S1. Variant 2 (C) relying on asymmetrical bonuses given only to
sign-tracking cannot reproduce the attribution of a motivational
value by the second system to both the lever and the magazine.
Others (A,B,D) attribute values to both stimuli and parallels the
supposed acquisition of motivational values by stimuli, i.e.
incentive salience. All variants are able to account for a
Conditioned Reinforcement Effect more pronounced in STs than
in GTs.

(TTFF)

Figure S3 Comparison of variants of the model on
simulations of patterns of dopaminergic activity. Legend
is as in Figure 7 (C,D). Simulation parameters for STs (left) and
GTs (right) are summarized in Table S1. The model (A) and
Variant 1 (B) can reproduce the difference observed in
dopaminergic patterns of activity in STs versus GTs. Other
variants (G,D) fail to do so, given that the classical Model-Free
system propagates the RPE from food delivery to lever appearance
on all pathways of the MDP.

(TIFF)

Figure S4 Comparison of variants on simulations of the
effect of systemic injections of flupentixol. Legend is as in
Figure 8 (C,D). Simulation parameters for STs (left) and GTs
(right) are summarized in Table S1. Only the Model (A) can
reproduce the difference in response to injections of flupentixol
observed in STs versus GTs. All variants (B,C,D) fail to do so,
given that they only rely on Model-Free, i.e. RPE-dependent,
mechanisms that are blocked by flupentixol.

(TIFF)

Figure S5 Comparison of variants on simulations of the
effect of post injections of flupentixol. Legend is as in
Figure 9 (C,D). Simulation parameters for groups of rats
composing the population are summarized in Table S1. Variants
2 (C) and 3 (D), accounting for sign- and goal-tracking using a
single set of values, have a similar impact of flupentixol on both
behaviours, leaving relative probabilities to engage with lever and
magazine unaffected. Variant 1 (B) uses different systems, thus
flupentixol impacts sign-tracking in the model in the same way as it
does in experimental data. However, given that both systems rely
on RPE-dependent mechanisms, the impact is not as visible as in
the model (A).

(TTFT)

Figure S6 Prediction of the model about expected
patterns of dopaminergic activity in intermediate
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groups. Data are expressed as mean + S.E.M. Average RPE
computed by the Feature-Model-Free system in response to CS
and US presentation for each session of conditioning in the
intermediate group. Simulated group is defined as in Figure 5.
(TIFF)

Figure S7 Behavioural and physiological simulations of
autoshaping with shared parameter values across STs,
GTs and IGs. (A,B) Legend is as in Figure 5 (C,D).
Reproduction of the respective tendencies to sign- and goal-track
of STs (w=0.5), IGs (@=0.375) and GTs (w=0.05)) using a
single set of parameters (x=0.2, y=0.8, f=0.09, u;y=0.2,
Qi(s1,g0L)=0.0, Q;(s1,exp)=0.5 and Q;(s1,goM)=0.5). (C,D)
Legend is as in Figure 7 (C,D). Reproduction of the different
patterns of phasic dopaminergic activity in STs and GT's using the
same single set of parameters. By simply varying the @ parameter,
the model can stll qualitatively reproduce the observations in
experimental data.

(TIFF)

Figure S8 Simulation of autoshaping experiment for
Variant 4. Legend is as in Figure 5 (C,D). Simulation for
parameters STs (red), GTs (blue) and IGs (white) in the Variant 4
are summarized in Table S1. Variant 4 is not even able to
reproduce the main behavioural data.

(TIFF)

Table S1 Summary of parameters used in simulations.
Parameters retrieved by optimisation with NSGA-II and used to
produce the results presented in this article for the model and its
variants. Parameters for STs, GTs and IGs were optimized
separately (A,B,C,D,E). To confirm that  is the key parameter of
the model, we also optimized parameters for STs, GTs and IGs by
sharing all but the w parameter (F) to produce Figure S7.

(TIFF)

Table S2 Definition of feature-function c. Stimuli (Lever,
Magazine, Food or ) returned by the feature-function c for each
possible state-action pair {s,a) in the MDP described in Figure 1.
The feature-function simply defines the stimulus that is the focus of
an action in a particular state.

(TIFF)
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Figure S1. Comparison of variants of the model on simulations of autoshaping
experiment. Legend is as in Figure 5 (C,D). Simulation parameters for STs (red), GTs (blue) and IGs
(white) in the Model (A), Variant 1 (B), Variant 2 (C) and Variant 3 (D) are summarized in Table
S1. All variants reproduce the spectrum of behaviours ranging from sign-tracking to goal-tracking.
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bonuses given only to sign-tracking cannot reproduce the attribution of a motivational value by the
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parallels the supposed acquisition of motivational values by stimuli, i.e. incentive salience. All variants
are able to account for a Conditioned Reinforcement Effect more pronounced in STs than in GTs.
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Figure S3. Comparison of variants of the model on simulations of patterns of
dopaminergic activity. Legend is as in Figure 7 (C,D). Simulation parameters for STs (left) and GTs
(right) are summarized in Table S1. The Model (A) and Variant 1 (B) can reproduce the difference
observed in dopaminergic patterns of activity in STs versus GTs. Other variants (C,D) fail to do so,
given that the classical Model-Free system propagates the RPE from food delivery to lever appearance
on all pathways of the MDP.
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Figure S4. Comparison of variants on simulations of the effect of systemic injections of
flupentixol. Legend is as in Figure 8 (C,D). Simulation parameters for STs (left) and GTs (right) are
summarized in Table S1. Only the Model (A) can reproduce the difference in response to injections of
flupentixol observed in STs versus GTs. All variants (B,C,D) fail to do so, given that they only rely on
Model-Free, i.e. RPE-dependent, mechanisms that are blocked by flupentixol.



36

Model v Variant1
A Approach to lever Approach to magazine B Approach to lever Approach to magazine
0.6 0.6 0.6 0.6
£ £
204 0.4 204 0.4
[s] ©
Qo o]
<] <]
Q0.2 0.2 Q0.2 0.2
0.0 0.0 0.2 04 0.8 0.0 0.0 0204 0.8 0.0 0.00.204 0.8 0.0 0.00.2 04 0.8
FLU impact (arb. unit) FLU impact (arb. unit) FLU impact (arb. unit) FLU impact (arb. unit)
Variant2  x Variant 3 x
C Approach to lever Approach to magazine D Approach to lever Approach to magazine
0.6 0.6 0.6 0.6
£ £ [ I
204 0.4 204 0.4
@®© ®©
Kol Kol
<] <]
Q0.2 0.2 0.2 0.2
0.0 0.0 0.2 0.4 0.8 0.0 0.0 0.2 0.4 0.8 0.0 0.0 0.2 0.4 0.8 0.0 0.0 0.2 0.4 0.8
FLU impact (arb. unit) FLU impact (arb. unit) FLU impact (arb. unit) FLU impact (arb. unit)

Figure S5. Comparison of variants on simulations of the effect of post injections of
flupentixol. Legend is as in Figure 9 (C,D). Simulation parameters for groups of rats composing the
population are summarized in Table S1. Variants 2 (C) and 3 (D) accounting for sign- and
goal-tracking using a single set of values have a similar impact of flupentixol on both behaviours leaving
relative probabilities to engage with lever and magazine unaffected. Variant 1 (B) uses different
systems, thus flupentixol impacts sign-tracking in the model in the same way as it does in experimental
data. However, given that both systems rely on RPE-dependent mechanisms, the impact is not as
visible as in Model 1 (A).
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Figure S6. Prediction of the Model about expected patterns of dopaminergic activity in
intermediate groups. Data are expressed as mean + S.E.M. Average RPE computed by the
Feature-Model-Free system in response to CS and US presentation for each session of conditioning in
the intermediate group. Simulated group is defined as in Figure 5.
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Figure S7. Behavioural and Physiological simulations of autoshaping with shared
parameter values across STs, GTs and IGs. (A,B) Legend is as in Figure 5 (C,D). Reproduction
of the respective tendencies to sign- and goal-track of STs (w = 0.5), IGs (w = 0.375) and GTs

(w = 0.05)) using a single set of parameters (o = 0.2, v = 0.8, 5 = 0.09, urr; = 0.2, Q;(s1,g90L) = 0.0,
Q;(s1,exp) = 0.5 and Q;(s1,goM) =0.5). (C,D) Legend is as in Figure 7 (C,D). Reproduction of the
different patterns of phasic dopaminergic activity in STs and GTs using the same single set of
parameters. By simply varying the w parameters, the model can still qualitatively reproduce the
observations in experimental data.
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Figure S8. Simulation of autoshaping experiment for Variant 4. Legend is as in Figure 5
(C,D). Simulation for parameters STs (red), GTs (blue) and IGs (white) in the variant 4 are
summarized in Table S1. Variant 4 is not even able to reproduce the main behavioural data.

Table S1. Summary of parameters used in simulations

| Version [ Type| w | B8 | o | v | wrr | Qi(si,L) | Qi(s1,0) | Qi(s1, M) |
A: Model ST |0.499 | 0.239 | 0.031 | 0.996 | 0.027 0.844 0.999 0.538
IG | 0.276 | 0.142 | 0.217 | 0.999 | 0.228 0.526 0.888 0.587
GT | 0.048 | 0.084 | 0.895 | 0.727 | 0.140 1.0 0.316 0.023

B: Variant 1 | ST | 0.994 | 0.145 | 0.018 | 0.999 | 0.995 0.278 0.999 0.676
IG |0.350 | 0.095 | 0.023 | 0.971 | 0.904 | 0.398 0.675 0.712

GT |0.003 | 0.002 | 0.906 | 0.508 | 0.263 0.147 0.419 0.520
C: Variant 2 | ST | 0.788 | 0.367 | 0.055 | 0.996 0 0.153 0.133 0.151
IG |0.843 | 0.046 | 0.779 | 0.999 0 0 0.532 0.593
GT ]0.211 | 0.130 | 0.109 | 0.445 0 0 1 0.095

D: Variant 3 | ST | 0.295 | 0.189 | 0.070 | 0.999 0 0.057 0.054 0
IG |0.333 ] 0.027 | 0.926 | 0.674 0 0.011 0.444 0.747
GT |0.166 | 0.047 | 0.093 | 0.417 0 0 0.476 0.229
E: Variant 4 | ST | 0.643 | 0.136 | 0.763 1 - 0.325 0.713 0.094
IG | 0.277 | 0.175 | 0.748 | 0.999 - 0.273 0.784 0.986
GT |0.529 | 0.077 | 0.617 | 0.695 - 0.102 0.635 0.962
E: Model ST | 0.500 | 0.090 | 0.20 | 0.800 | 0.200 0.000 0.400 0.400
(shared) IG |0.375]0.090 | 0.20 | 0.800 | 0.200 0.000 0.400 0.400
GT ] 0.050 | 0.090 | 0.20 | 0.800 | 0.200 0.000 0.400 0.400

Parameters retrieved by optimisation with NSGA-II and used to produce the results presented in this
article for the model and its variants. Parameters for STs, GTs and IGs were optimized separately
(A,B,C,D,E). To confirm that w is the key parameter of the model, we also optimized parameters for
STs, GTs and IGs by sharing all but the w parameter (F) to produce Figure S7.
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Table S2. Definition of feature-function ¢

S So S1 S1 S1 So S3 S4 Sy S6 S
a exp goL exp goM eng 0 eng goM | goM eat
c(s,a) 0 L 0 M L 0 M F F F

Stimuli (Lever, Magazine, Food or @) returned by the feature-function ¢ for each possible state-action
pair (s,a) in the MDP described in Figure 1. The feature-function simply defines the stimulus that is
the focus of an action in a particular state.
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THIS chapter presents work employing the model-based analysis of neu-

rophysiological data approach. The work is presented under the form
of two journal papers, one in press (Khamassi et al.|2014), the other about
to be submitted (Bellot et al.|in preparation), aiming at testing model pre-
dictions about hypothesized neural activities underlying behavioral adap-
tation, and using the computational models to more precisely measure
information related to particular computational mechanisms in neural ac-
tivity.

The first one has been performed with Emmanuel Procyk, Peter F. Do-
miney, René Quilodran and Pierre Enel and shows neural substrates of
adaptive regulation of reinforcement learning parameters in the prefrontal
cortical network during monkey behavioral adaptation. The results show
differences in activity response patterns between the Anterior Cingulate
Cortex (ACC) and Lateral Prefrontal Cortex (LPFC) suggesting a role of
ACC in integrating reinforcement-based information to regulate decision
functions in LPFC under varying control levels, which could be interpre-
ted in terms of varying levels of the exploration parameter in the reinfor-
cement learning model.

The second one presents the work of PhD student Jean Bellot and
shows model-based analyses of dopamine neurons’ single-unit recordings
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Chapitre 3. Model-based analyses of biological data

3.1

3.1.1

during a decision-making task in rats. The work shows that in contrast
to previous reports, dopamine activity in this task only partially reflects
the computation of a reward prediction error and also incorporates infor-
mation about the value function. Moreover, the dynamics of this signal
appears to be partly disconnected from the dynamics of observed beha-
vioral adaptation, suggesting that behavior in this task is not influenced
by a single learning system.

MONKEY PREFRONTAL CORTEX ACTIVITY DURING BEHAVIO-
RAL ADAPTATION

Khamassi, Quilodran, Enel, Dominey, Procyk (2014) Cerebral Cor-
tex
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Behavioral regulation and the modulation of information
coding in the lateral prefrontal and cingulate cortex

M. Khamassi, R. Quilodran, P. Enel, P.F. Dominey, E. Procyk

To explain the high level of flexibility in primate decision-making, theoretical models often invoke
reinforcement-based mechanisms, performance monitoring functions, and core neural features
within frontal cortical regions. However, the underlying biological mechanisms remain unknown.
In recent models, part of the regulation of behavioral control is based on meta-learning principles,
e.g. driving exploratory actions by varying a meta-parameter, the inverse temperature, which
regulates the contrast between competing action probabilities. Here we investigate how
complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate
cortex (dACC) implement decision regulation during exploratory and exploitative behaviors.
Model-based analyses of unit activity recorded in these two areas in monkeys first revealed that
adaptation of the decision function is reflected in a covariation between LPFC neural activity and
the control level estimated from the animal's behavior. Second, dACC more prominently encoded a
reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-
based analyses also revealed higher information integration before feedback in LPFC, and after
feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based
information to regulate decision functions in LPFC. Our results thus provide biological evidence on

how prefrontal cortical subregions may cooperate to regulate decision-making.

INTRODUCTION

When searching for resources, animals can adapt their choices by reference to the recent history
of successes and failures. This progressive process leads to improved predictions of future outcomes
and to the adjustment of action values. However, to be efficient, adaptation requires dynamic
modulations of behavioral control, including a balance between choices known to be rewarding
(exploitation), and choices with unsure, but potentially better, outcome (exploration).

The prefrontal cortex is required for the organization of goal-directed behavior (Miller and Cohen
2001; Wilson et al. 2010) and appears to play a key role in regulating exploratory behaviors (Daw N.
D. et al. 2006; Cohen J. D. et al. 2007; Frank et al. 2009). The lateral prefrontal cortex (LPFC) and the
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dorsal anterior cingulate cortex (dACC, or strictly speaking the midcingulate cortex, (Amiez et al.
2013)) play central roles, but it is unclear which mechanisms underlie the decision to explore and how
these prefrontal subdivisions participate.

Computational solutions often rely on the meta-learning framework, where shifting between
different control levels (e.g. shifting between exploration and exploitation) is achieved by dynamically
tuning meta-parameters based on measures of the agent’s performance (Doya 2002; Ishii et al. 2002;
Schweighofer and Doya 2003). When applied to models of prefrontal cortex’s role in exploration
(McClure et al. 2006; Cohen J. D. et al. 2007; Krichmar 2008; Khamassi et al. 2011), this principle
predicts that the expression of exploration is associated with decreased choice-selectivity in the LPFC
(flat action probability distribution producing stochastic decisions) while exploitation is associated
with increased selectivity (peaked probability distribution resulting in a winner-take-all effect).
However, such online variations during decision-making have yet to be shown experimentally.
Moreover, current models often restrict the role of dACC to conflict monitoring (Botvinick et al. 2001)
neglecting its involvement in action valuation (MacDonald et al. 2000; Kennerley et al. 2006;
Rushworth and Behrens 2008; Seo and Lee 2008; Alexander W.H. and Brown 2010; Kaping et al.
2011). dACC activity shows correlates of adjustment of action values based on measures of
performance such as reward prediction errors (Holroyd and Coles 2002; Amiez et al. 2005;
Matsumoto et al. 2007; Quilodran et al. 2008), outcome history (Seo and Lee 2007), and error-
likelihood (Brown and Braver 2005). Variations of activities in dACC and LPFC between exploration
and exploitation suggest that both structures contribute to the regulation of exploration (Procyk et al.
2000; Procyk and Goldman-Rakic 2006; Landmann et al. 2007; Rothe et al. 2011).

The present work assessed the complementarity of dJACC and LPFC in behavioral regulation. We
previously developed a neurocomputational model of the dACC-LPFC system to synthesize the data
reviewed above (Khamassi et al. 2011; Khamassi et al. 2013). One important feature of the model was
to include a regulatory mechanism by which the control level is modulated as a function of changes in
the monitored performance. As reviewed above such a regulatory mechanism should lead to changes
in prefrontal neural selectivity. This work thus generated experimental predictions that are tested
here on actual neurophysiological data.

We recorded LPFC single-unit activities and made comparative model-based analyses with these
data and dACC recordings that had previously been analyzed only at the time of feedback (Quilodran
et al. 2008). We show that information related to different model variables (reward prediction errors,
action values, and outcome uncertainty) are multiplexed in different trial epochs both in dACC and
LPFC, with higher integration of information before the feedback in LPFC, and after the feedback in

dACC. Moreover LPFC activity displays higher mutual information with the animal’s choice than dACC,
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supporting its role in action selection. Importantly, as predicted by prefrontal cortical models, we
observe that LPFC choice selectivity co-varies with the control level measured from behavior. Taken
together with recent data (Behrens et al. 2007; Rushworth and Behrens 2008), our results suggest
that the dACC-LPFC diad is implicated in the online regulation of learning mechanisms during
behavioral adaptation, with dACC integrating reinforcement-based information to regulate decision

functions in LPFC.

MATERIAL & METHODS

Monkey housing, surgical, electrophysiological and histological procedures were carried out
according to the European Community Council Directive (1986) (Ministere de I’Agriculture et de la
Forét, Commission nationale de I'expérimentation animale) and Direction Départementale des
Services Vétérinaires (Lyon, France).

Experimental set up. Two male rhesus monkeys (monkeys M and P) were included in this
experiment. During recordings animals were seated in a primate chair (Crist Instrument Company
Inc., USA) within arm’s reach of a tangent touch-screen (Microtouch System) coupled to a TV
monitor. In the front panel of the chair, an opening allowed the monkey to touch the screen with one
hand. A computer recorded the position and accuracy of each touch. It also controlled the
presentation via the monitor of visual stimuli (colored shapes), which served as visual targets
(CORTEX software, NIMH Laboratory of Neuropsychology, Bethesda, Maryland). Eye movements
were monitored using an Iscan infrared system (Iscan Inc., USA).

Problem Solving task. We employed a Problem Solving task (PS task; Fig. 1A) where the subject
has to find by trial and error which of four targets is rewarded. A typical problem started with a
Search period where the animal performed a series of incorrect search trials (INC) until the discovery
of the correct target (first correct trial, CO1). Then a Repetition period was imposed where the animal
could repeat the same choice during a varying number of trials (between 3 and 11 trials) to reduce
anticipation of the end of problems. At the end of repetition, a Signal to Change (SC; a red flashing
circle of 8 cm in diameter at the center of screen) indicated the beginning of a new problem, i.e. that
the correct target location would change with a 90% probability.

Each trial was organized as follows: a central target (lever) is presented which is referred to as trial
start (ST); the animal then touches the lever to trigger the onset of a central white square which
served as fixation point (FP). After an ensuing delay period of about 1.8 s (during which the monkey is
required to maintain fixation on the FP), four visual target items (disks of 5mm in diameter) are
presented and the FP is extinguished. The monkey then has to make a saccade towards the selected

target. After the monkey has fixated on the selected target for 390 ms, all the targets turn white (go
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signal), indicating that the monkey can touch the chosen target. Targets turn grey at touch for 600ms

and then switch off. At offset, a juice reward is delivered after a correct touch. In the case of an

incorrect choice, no reward is given, and in the next trial the animal can continue his search for the
correct target. A trial is aborted in case of a premature touch or a break in eye fixation.

Behavioral data. Performance in search and repetition periods was measured using the average
number of trials performed until discovery of the correct target (including first correct trial) and the
number of trials performed to repeat the correct response three times, respectively. Different types
of trials are defined in a problem. During search the successive trials were labeled by their order of
occurrence (indices: 1, 2, 3, ..., until the first correct trial). Correct trials were labeled CO1, CO2, ... and
COn. Arm reaction times and movement times were measured on each trial. Starting and ending
event codes defined each trial.

Series of problems are grouped in sessions. A session corresponds to one recording file that
contain data acquired for several hours (during behavioral sessions) to several tens of minutes (during
neurophysiological recordings corresponding to one site and depth).

Electrophysiological recordings. Monkeys were implanted with a head-restraining device, and a
magnetic resonance imaging-guided craniotomy was performed to access the prefrontal cortex. A
recording chamber was implanted with its center placed at stereotaxic anterior level A+31. Neuronal
activity was recorded using epoxy-coated tungsten electrodes. Recording sites labeled dACC covered
an area extending over about 6 mm (anterior to posterior), in the dorsal bank and fundus of the
anterior part of the cingulate sulcus, at stereotaxic levels superior to A+30 (Fig. 1B). This region is at
the rostral level of the mid-cingulate cortex as defined by Vogt and colleagues (Vogt et al. 2005).
Recording sites in LPFC were located mostly on the posterior third of the principal sulcus.

Data analyses

All analyses were performed using Matlab (The Mathworks, Natick, MA).

Theoretical model for model-based analysis. We compared the ability of several different
computational models to fit trial-by-trial choices made by the animals. The aim was to select the best
model to analyze neural data. The models tested (see list below) were designed to evaluate which
among several computational mechanisms were crucial to reproduce monkey behavior in this task.
The mechanisms are:

a) Elimination of non-rewarded targets tested by the animal during the search period. This
mechanism could be modeled in many different ways, e.g. using Bayesian models or
reinforcement learning models. In order to keep our results comparable and includable within
the framework used by previous similar studies (e.g. Matsumoto et al., 2007; Seo and Lee, 2009;

Kennerley and Walton, 2011), we used reinforcement learning models (which would work with
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high learning rates — i.e. close to 1 — in this task) while noting that this would be equivalent to
models performing logical elimination of non-rewarded targets or models using a Bayesian
framework for elimination. This mechanism is included in Models 1-10 in the list below.

b) Progressive forgetting that a target has already been tested. This mechanism is included in
Models 2-7 and 9-10.

c) Reset after the Signal to Change. This would represent information about the task structure and
is included in Models 3-12. Among these models, some (i.e. Models 4,6-10) also tend not to
choose the previously rewarded target (called ‘shift’” mechanism), and some (i.e. Models 5-10)
also include spatial biases for the first target choice within a problem (called ‘bias’ mechanism).

d) Change in the level of control from search to repetition period (after the first correct trial). This
would represent other information about the task structure and is included in Models 9 and 10

(i.e. GQLSB2B and SBnoA2p).

List of tested models:

1. Model QL (Q-learning)

We first tested a classical Q-learning (QL) algorithm which implements action valuation based on
standard reinforcement learning mechanisms (Sutton and Barto 1998). The task involving 4 possible
targets on the touch screen (upper-left: 1, upper-right: 2, lower-right: 3, lower-left: 4, Fig. 1C), the
model had 4 possible action values (i.e. Q;, Q,, Q3 and Q4 corresponding to the respective values
associated with choosing target 1, 2, 3 and 4 respectively).

At each trial, the probability of choosing target a was computed by a Boltzmann softmax rule for

action selection:

- _exp(p0, (1)
TS exp(0, (1) W

where the inverse temperature meta-parameter B (0 < B) regulates the exploration level. A small
leads to very similar probabilities for all targets (flat probability distribution) and thus to an
exploratory behavior. A large B increases the contrast between the highest value and the others
(peaked probability distribution), and thus produces an exploitative behavior.

At the end of the trial, after choosing target a;, the corresponding value is compared with the

presence/absence of reward so as to compute a Reward Prediction Error (RPE) (Schultz et al. 1997):
St+1)=rt+1)-0,(t) (2)
where r(t) is the reward function modeled as being equal to 1 at the end of the trial in the case of

success, and -1 in the case of failure. The reward prediction error signal 6(t) is then used to update

the value associated to the chosen target:
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0,(t+1)=0,(t)+as(t+1) (3)
where a is the learning rate. Thus the QL model employs 2 free meta-parameters: a and B.

2. Model GQL (Generalized Q-learning)

We also tested a generalized version of Q-learning (GQL) (Barraclough et al. 2004; Ito and Doya
2009) which includes a forgetting mechanism by also updating values associated to each non chosen
target b according to the following equation:

0,(t+1)=0,(® +(1-x)Q, -0, (1) )
where « is a third meta-parameter called the forgetting rate (O<K<1), and Qq is the initial Q-value.

3. Model GQLnoSnoB (GQL with reset of Q values at each new problem; no shift, no bias)

Since animals are over-trained on the PS task, they tend to learn the task structure: the
presentation of the Signal to Change (SC) on the screen is sufficient to let them anticipate that a new
problem will start and that most probably the correct target will change. In contrast, the two above-
mentioned reinforcement learning models tend to repeat previously rewarded choices. We thus
tested an extension of these models where the values associated to each target are reset to [0 0 0 0]
at the beginning of each new problem (Model GQLnhoSnoB).

4. Model GQLSnoB (GQL with reset including shift in previously rewarded target; no bias)

We also tested a version of the latter model where, in addition, the value associated to the
previously rewarded target has a probability Ps of being reset to 0 at the beginning of the problem, Ps
being the animal’s average probability of shifting from the previously rewarded target as measured
from the previous session (0.85<PS <O.95)(Fig. 2A- middle). This model including the shifting
mechanism is called GQLSnoB and has 3 free meta-parameters.

5. Model GQLBnoS (GQL with reset based on spatial biases; no shift)

In the fifth tested model (Model GQLBnoS), instead of using such a shifting mechanism, target Q-
values are reset to values determined by the animal’s spatial biases measured during search periods
of the previous session; for instance, if during the previous session, the animal started 50% of search
periods by choosing target 1, 25% by choosing 2, 15% by choosing target 3 and the rest of the time
by choosing target 4, target values were reset to [0 ; 0, ; 05 ; (1-6,-0,-65)] where 6,=0.5, 6,=0.25 and
0;=0.15 at each new search of the next session. In this manner, Q-values are reset using a rough
estimate of choice variance during the previous session. These 3 spatial bias parameters are not
considered as free meta-parameters since they were always determined based on the previous
behavioral session because they were found to be stable across sessions for each monkey (Fig. 2A-
right).

6. Model GQLSB (GQL with reset including shift in previously rewarded target and spatial biases)
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We also tested a model which combines both shifting mechanism and spatial biases (Model
GQLSB ) and thus has 3 free meta-parameters.

7. Model SBnoA (Shift and Bias but the learning rate a is fixed to 1)

Since the reward schedule is deterministic (i.e. choice of the correct target provides reward with
probability 1), a single correct trial is sufficient for the monkey to memorize which target is rewarded
in a given problem. We thus tested a version of the previous model where elimination of non-
rewarded target is done with a learning rate a fixed to 1 — i.e. no degree of freedom in the learning
rate in contrast with Model GQLSB. This meta-parameter is usually set to a low value (i.e. close to 0)
in the Reinforcement Learning framework to enable progressive learning of reward contingencies
(Sutton and Barto 1998). With a set to 1, the model SBnoA systematically performs sharp changes of
Q-values after each outcome, a process which could be closer to working memory mechanisms in the
prefrontal cortex (Collins and Frank 2012). All other meta-parameters are similar as in GQLSB,
including the forgetting mechanism (Equation 4) which is considered to be not specific to
Reinforcement Learning but also valid for Working Memory (Collins and Frank, 2012). Model SBnoA
has 2 free meta-parameters.

8. Model SBnoF (Shift and Bias but no a and no Forgetting)

To verify that the forgetting mechanism was necessary, we tested a model where both a and k are
set to 1. This model has thus only 1 meta-parameter: .

9. Model GQLSB2B (with distinct exploration meta-parameters during search and repetition

trials: resp. Bs and Bg)

To test the hypothesis that monkey behavior in the PS Task can be best explained by two distinct
control levels during search and repetition periods, instead of using a single meta-parameter 3 for all
trials, we used two distinct meta-parameters Bs and Br so that the model used Bs in Equation 1
during search trials and B in Equation 1 during repetition trials. We tested these distinct search and
repetition Bs and Br meta-parameters in Model GQLSB2B which thus has 4 free meta-parameters
compared to 3 in Model GQLSB.

10. Model SBnoA2B (with distinct exploration meta-parameters during search and repetition

trials: resp. Bs and Bg)

Similarly to the previous model, we tested a version of Model SBnoA which includes two distinct

Bs and Br meta-parameters for search and repetition periods. Model SBnoA2B thus has 3 free

meta-parameters.

11. and 12. Control models: ClockS (Clockwise search + repetition of correct target); RandS

(Random search + repetition of correct target)
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We finally tested 2 control models to test the contribution of the value updating mechanisms
used in the previous models for the elimination of non-rewarded target (i.e. Equation 3 with a used
as a free meta-parameter in model GQLSB or set to 1 in Model SBnoA). Model ClockS replaces such
mechanism by performing systematic clockwise searches, starting from the animal’s favorite target —
as measured in the spatial bias —, instead of choosing targets based on their values, and repeats the
choice of the rewarded target once it finds it. Model RandS performs random searches and repeats

choices of the rewarded target once it finds it.

Theoretical model optimization. To compare the ability of models in fitting monkeys’ behavior
during the task, (1) we first separated the behavioral data into 2 datasets so as to optimize the
models on the Optimization dataset (Opt) and then perform an out-of-sample test of these models
on the Test dataset (Test), (2) for each model, we then estimated the meta-parameter set which
maximized the log-likelihood of monkeys’ trial-by-trial choices in the Optimization dataset given the
model, (3) we finally compared the scores obtained by the models with different criteria: maximum
log-likelihood (LL) and percentage of monkeys’ choice predicted (%) on Opt and Test datasets, BIC,
AIC, Log of posterior probability of models given the data and given priors over meta-parameters

(LPP).

1. Separation of optimization (Opt) and test (Test) datasets

We used a cross-validation method by optimizing models’ meta-parameters on 4 behavioral
sessions (2 per monkey concatenated into a single block of trials per monkey in order to optimize a
single meta-parameter set per animal; 4031 trials) of the PS task, and then out of sample testing
these models with the same meta-parameters on 49 other sessions (57336 trials). The out of sample
test was performed to test models’ generalization ability and to validate which model is best without

complexity issues.

2. Meta-parameter estimation
The aim here was to find for each model M the set of meta-parameters 8 which maximized the

log-likelihood LL of the sequence of monkey choices in the Optimization dataset D given M and 6:

6,,,=argmaxiLod Ao, o)) (5)
Ll@pfnlga)dLog(P(DlMﬂ))} (6)

We searched for each model’s LL,,x and B,,c on the Optimization dataset with two different

methods:
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We first sampled a million different meta-parameters sets (drawn from prior distributions over
meta-parameters such that o,k are in [0;1], B,Bs,Br are in -10log([0;1])). We stored the LL,,: score
obtained for each model and the corresponding meta-parameter set Bpt.

We then performed another meta-parameter search through a gradient-descent method using
the fminsearch function in Matlab launched at multiple starting points: we started the function from
all possible combinations of meta-parameters in o,k in {0.1;0.5;0.9}, B,Bs,Br in {1;5;35}. If this method
gave a better LL score for a given model, we stored it as well as the corresponding meta-parameter
set. Otherwise, we kept the best LL score and the corresponding meta-parameter set obtained with

the sampling method for this model.

3. Model comparison

In order to compare the ability of the different models to accurately fit monkeys’ behavior in the
task, we used different criteria. As typically done in the literature, we first used the maximized log-
likelihood obtained for each model on the Optimization dataset (LL.,) to compute the Bayesian
Information Criterion (BIC,,) and Akaike Information Criterion (AIC,,). We also looked at the
percentage of trials of the Optimization dataset where each model accurately predicts monkeys’
choice (%qpt). We performed likelihood ratio tests to compare nested models (e.g. Model SBnoF and
Model SBnoA).

To test models’ generalization ability and to validate which model is best without complexity
issues, we additionally compared models’ log-likelihood on the Test dataset given the meta-
parameters estimated on the Optimization dataset (LLs), as well as models’ percentage of trials of
the Test dataset where the model accurately predicts monkeys’ choice given the meta-parameters

estimated on the Optimization dataset (%;est)-

Finally, because comparing the maximal likelihood each model assigns to data can result in
overfitting, we also computed an estimation of the log of the posterior probability over models on
the Optimization dataset (LPP,,:) estimated with the meta-parameter sampling method previously
performed (Daw N.D. 2011). To do so, we hypothesized a uniform prior distribution over models
P(M); we also considered a prior distribution for the meta-parameters given the models P(8|M),
which was the distributions from which the meta-parameters were drawn during sampling. With this
choice of priors and meta-parameter sampling, LPP, can be written as:

L0y = LodluiD) o [ ot o Lo 3o

(7)

10
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where N is the number of samples drawn for each model. To avoid numerical issues in Matlab

when computing the exponential of large numbers, LPP,,: was computed in practice as:

LPP,, = Lo{;exl{loélj(QM, 9))—Ll,0pt)]—Log(N)+lept (8)

Estimating models’ posterior probability given the data can be seen as equivalent as computing a
“mean likelihood”. And it has the advantage of penalizing both models that have a peaked posterior
probability distribution (i.e. models with a likelihood which is good at its maximum but which
decreases sharply as soon as meta-parameters slightly change) and models that have a large number

of free meta-parameters (Daw N.D. 2011).

Neural data analyses
Activity variation between search and repetition. To analyze activity variations of individual
neurons between the search period and the repetition period, we computed an index of activity

variation for each cell:

_@-n) )

° (A+B)

A is the cell mean firing rate during the early-delay epoch ([start+0.1s; start+1.1s]) over all trials of
the search period, and B is the cell’'s mean firing rate in the same epoch during all trials of the
repetition period.

To measure significant increases or decreases of activity in a given group of neurons, we
considered the distribution of neurons’ activity variation index. An activity variation was considered
significant when the distribution had a mean significantly different from 0 using a one-sample t-test
and a median significantly different from zero using a Wilcoxon Mann-Whitney U-test for zero
median. Then we employed a Kruskal-Wallis test to compare the distributions of activity during
search and repetition, corrected for multiple comparison between different groups of neurons
(Bonferroni correction).

Choice selectivity. To empirically measure variations in choice selectivity of individual neurons, we
analyzed neural activities using a specific measure of spatial selectivity (Procyk and Goldman-Rakic
2006). The activity of a neuron was classified as choice selective when this activity was significantly
modulated by the identity/location of the target chosen by the animal (one-way ANOVA, p < 0.05).
The target preference of a neuron was determined by ranking the average activity measured in the
early-delay epoch ([start+0.1s; start+1.1s]) when this activity was significantly modulated by the
target choice. We used for each unit the average firing rate ranked by values and herein named

'preference’ (a, b, ¢, d where a is the preferred and d the least preferred target). The ranking was first

11
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used for population data and structure comparisons. For each cell, the activity was normalized to the
maximum and minimum of activity measured in the repetition period (with normalized activity =
[activity - min]/[max - min]).

Second, to study changes in choice selectivity (tuning) throughout trials during the task, we used
for each unit the average firing rate ranked by values (a, b, ¢, d). We then calculated the norm of a

preference vector using the method of (Procyk and Goldman-Rakic 2006) which is equivalent to
computing the Euclidean distance within a factor of \/5: We used an arbitrary arrangement in a
. [a b .
square matrix c d to calculate the vector norm:
H=(a+c)—(b-+d) and V=(a+b)—(c+d) (10)
norm =H? +V?

For each neuron, the norm was divided by the global mean activity of the neuron (to exclude the
effect of firing rate in this measure: preventing a cell A that has a higher mean firing rate than a cell B
to have a higher choice selectivity norm when they are both equally choice selective).

The value of the preference vector norm was taken as reflecting the strength of choice coding of
the cell. A norm equal to zero would reflect equal activity for the four target locations. This objective
measure allows the extraction of one single value for each cell, and can be averaged across cells.
Finally, to study variations in choice selectivity between search and repetition periods, we computed
an index of choice selectivity variation for each cell:

-0 (1)

* (c+D)

where C is the cell’s choice selectivity norm during search and D is the cell’s choice selectivity norm
during repetition.

To assess significant variations of choice selectivity between search and repetition in a given group
of neurons (e.g. dACC or LPFC), we used: a t-test to verify whether the mean was different from zero;
a Wilcoxon Mann-Whitney U- test to verify whether the median was different from zero; then we
used a Kruskal-Wallis test to compare the distributions of choice selectivity during search and
repetition, corrected for multiple comparison between different groups of neurons (Bonferroni
correction).

To assess whether variations of choice selectivity between search and repetition depended on the
exploration level B measured in the animal’s behavior by means of the model, we cut sessions into
two groups: those where B was smaller than the median of B values (i.e. 5), and those where 3 was
larger than this median. Thus, in these analyses, repetition periods of a session with B < 5 will be
considered a relative exploration, and repetition periods of a session with B > 5 will be considered a

relative exploitation. We then performed two-way ANOVAs (B x task phase) and used a Tukey HSD

12
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post hoc test to determine the direction of the significant changes in selectivity with changing
exploration levels, tested at p=0.05.

Model-based analysis of single-unit data. To test whether single units encoded information
related to model computations, we used the following model variables as regressors of trial-by-trial
activity: the reward prediction error [3], the action value [Q] associated to each target and the
outcome uncertainty [U]. The latter is a performance monitoring measure which assesses the
entropy of the probability over the different possible outcomes (i.e. reward ¥ versus no reward 7)

at the current trial t given the set T of remaining targets:

U(t)=—P(riT)lodP(ﬂT))—P(17|T)104P(7’|T)). At the beginning of a new problem, when there are 4

possible targets, U starts at a low value since there is 75% chance of making an error. U increases trial
after trial during the search period. It is maximal when there remain 2 possible targets because there
is 50% chance of making an error. Then U drops after either the first rewarded trial or the third error
trial — because the fourth target is necessarily the rewarded one — and remains at zero during the
repetition period. We decided to use a regressor with this pattern of change because it is somewhat
comparable to the description of changes in frontal activity previously observed during the PS task
(Procyk et al., 2000; Procyk and Goldman-Rakic, 2006).

We used U as the simplest possible parameter-free performance monitoring regressor for neural
activity. This was done in order to test whether dACC and LPFC single-unit could reflect performance
monitoring processes in addition to responding to feedback and tracking target values. But we note
that the profile of U in this task would not be different from other performance monitoring measures
such as the outcome history that we previously used in our computational model for dynamic control
regulation in this task (Khamassi et al. 2011), or such as the vigilance level in the model of Dehaene
and Changeux (Dehaene et al. 1998) which uses error and correct signals to update a regulatory
variable (increased after errors and decreased after correct trials). We come back to possible
interpretations of neural correlates of U in the discussion.

To investigate how neural activity was influenced by action values [Q], reward prediction errors [3]
as well as the outcome uncertainty [U], we performed a multiple regression analysis combined with a
bootstrapping procedure, focusing our analyses on spike rates during a set of trial epochs (Fig. 1C):
pre-start (0.5 s before trial start); post-start (0.5 s after trial start); pre-target (0.5 s before target
onset); post-target (0.5 s after target onset); the action epoch defined as pre-touch (0.5 s before
screen touch); pre-feedback (0.5 s before feedback onset); early-feedback (0.5 s after feedback
onset); late-feedback (1.0 s after feedback period); inter-trial-interval (ITl; 1.5 s after feedback onset).

The spike rate y(t) during each of these intervals in trial t was analyzed using the following

multiple linear regression model:
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W(0) = po + PO, () + P05 (D) + 305 (1) + 404 (1) + ps6(1) + pUL) (13)
where Q((t),(k € {14}) are the action values associated to the four possible targets at time t, 6(t)

is the reward prediction error, U(t) is the outcome uncertainty, and p,,(ie{l..n}) are the regression

coefficients.

6, Q and U were all updated once in each trial. 6 was updated at the time of feedback, so that
regression analyses during pre-feedback epochs were done using & from the previous trial, while
analyses during post-feedback epochs used the updated 6. Q and U were updated at the end of the
trial so that regression analyses in all trial epochs were done using the Q-values and U value of the
current trial.

Note that the action value functions of successive trials are correlated, because they are updated
iteratively, and this violates the independence assumption in the regression model. Therefore, the
statistical significance for the regression coefficients in this model was determined by a permutation
test. For this, we performed a shuffled permutation of the trials and recalculated the regression
coefficients for the same regression model, using the same meta-parameters of the model obtained
for the unshuffled trials. This shuffling procedure was repeated 1000 times (bootstrapping method),
and the p value for a given independent variable was determined by the fraction of the shuffles in
which the magnitude of the regression coefficient from the shuffled trials exceeded that of the
original regression coefficient (Seo and Lee 2009), corrected for multiple comparisons with different
model variables in different trial epochs (Bonferroni correction).

To assess the quality of encoding of action value information by dACC and LPFC neurons, we also
performed a multiple regression analysis on the activity of each neuron related to Q-values after
excluding trials where the preferred target of the neuron was chosen by the monkey. This analysis
was performed to test whether the activity of such neurons still encodes Q-values outside trials
where the target is selected. Similarly, to evaluate the quality of reward prediction error encoding,
we performed separate multiple regression analyses on correct trials only versus error trials only.
This analysis was performed to test whether the activity of such neurons quantitatively discriminate
between different amplitudes of positive reward prediction errors and between different amplitudes
of negative reward prediction errors. In both cases, the significance level of the multiple regression
analyses was determined with a bootstrap method and a Bonferroni correction for multiple
comparisons.

Finally, to measure possible collinearity issues between model variables used as regressors of
neural activity we used Brian Lau’s Collinearity Diagnostics Toolbox for Matlab

(http://www.subcortex.net/research/code/collinearity-diagnostics-matlab-code (Lau 2014)). We

extracted the variation inflation factors (VIF) computed with the coefficient of determination obtained
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when each regressor was expressed as a function of the other regressors. We also computed the
condition indexes (CONDIND) and variance decomposition factors (VDF) obtained in the same
analysis. A strong collinearity between regressors was diagnosed when CONDIND = 30 and more than
two VDFs > 0.5. A moderate collinearity was diagnosed when CONDIND = 10 and more than two VDFs
> 0.5. CONDIND < 10 indicated a weak collinearity.

Principal component analysis. To determine the degree to which single-unit activity segregated

or integrated information about model variables, we performed a Principal Component Analysis

(PCA) on the 3 correlation coefficients ,O,»,(i 6{4...6}) obtained with the multiple regression analysis
and relating neural activity with the 3 main model variables (reward prediction error §, outcome
uncertainty U, and the action value Qy associated to the animal’s preferred target k). For each trial
epoch, we pooled the coefficients obtained for all neurons in correlation with these model variables.
Each principal component being expressed as a linear combination of the vector of correlation
coefficients of neuron activities with these three model variables, the contribution of different model
variables to each component gives an idea as to which extent cell activity is explained by an
integrated contribution of multiple model variables. For instance, if a PCA on cell activity in the early-
delay period produces three principal components that are each dependent on a different single
model variable (e.g. PC1 = 0.95Q + 0.015 + 0.04U; PC2 = 0.1Q + 0.85 + 0.1U; PC3 = 0.05Q + 0.056 +
0.9U), then activity variations are best explained by separate influences from the information
conveyed by the model variables. If in contrast, the PCA produces principal components which
strongly depend on multiple variables (e.g. PC1 = 0.5Q + 0.496 + 0.01U; PC2 = 0.4Q + 0.1 + 0.5U;
PC3 = 0.2Q + 0.46 + 0.4U), then variations of the activities are best explained by an integrated
influence of such information (see Supplementary Figure S1 for illustration of different Principal
Components resulting from artificially generated data showing different levels of integration
between model variables).

We compared the normalized absolute values of the coefficients of the three principal
components so that a coefficient close to 1 denotes a strong correlation while a coefficient close to 0
denotes no correlation. To quantify the integration of information about different model variables in
single-unit activities, for each neuron k, we computed an entropy-like index (ELI) of sharpness of
encoding of different model variables based on the distributions of regression coefficients between

cell activities and model variables:

ELI, ==Y c;log(c;) (14)

Where ¢; is the absolute value of the z-scored correlation strength p; with model variable i. A

neuron with activity correlated with different model variables with similar strengths will have a high

15



Khamassi et al. Adaptive control in prefrontal cortex

ELI; a neuron with activity highly correlated with only one model variable will have a low ELI. We
compared the distributions of ELIs between dACC and LPFC in each trial epoch using a Kruskal-Wallis
test.

Finally, we estimated the contribution of each model variable to neural activity variance in each
epoch and compared it between dACC and LPFC. To do so, we first normalized the coefficients for
each principal component in each epoch. These coefficients being associated to three model
variables Q, 6 and U, this provided us with a contribution of each model variable to each principal
component in each epoch. We then multiplied them by the contribution of each principal
component to the global variance in neural activity in each epoch. The result constituted a
normalized contribution of each model variable to neural activity variance in each epoch. We finally
computed the entropy-like index (ELI) of these contributions. We compared the set of epoch-specific
ELI between dACC and LPFC with a Kruskal-Wallis test.

Mutual information. We measured the mutual information between monkey's choice at each
trial and the firing rate of each individual recorded neuron during the early-delay epoch ([ST+0.1s;
ST+1.1s]). The mutual information I(S;R) was estimated by first computing a confusion matrix (Quian
Quiroga and Panzeri 2009), relating at each trial t, the spike count from the unit activity in the early-
delay epoch (as “predicting response” R) and the target chosen by the monkey (i.e. 4 targets as
“predicted stimulus” S). Since neuronal activity was recorded during a finite number of trials, not all
possible response outcomes of each neuron to each stimulus (target) have been sufficiently sampled.
This is called the “limited sampling bias” which can be overcome by subtracting a correction term
from the plug-in estimator of the mutual information (Panzeri et al. 2007). Thus we subtracted the
Panzeri Treves (PT) correction term (Treves and Panzeri 1995) from the estimated mutual information
I(S;R) :

BlAS(](S;R)):l{Z(Rx - 1)— (E— 1)]

2N In(2) (4 (15)

Where N is the number of trials during which the unit activity was recorded, R is the number of
relevant bins among the M possible values taken by the vector of spike counts and computed by the
“bayescount” routine provided by (Panzeri and Treves 1996), and R is the number of relevant
responses to stimulus (target) s.

Such measurement of information being reliable only if the activity was recorded during a
sufficient number of trials per stimulus presentation, we restricted this analysis to units that verified
the following condition (Panzeri et al. 2007):

Ny /R>4 (16)

Where N¢ is the minimum number of trials per stimulus (target).
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Finally, to verify that such a condition was sufficiently restrictive to exclude artifactual effects, for
each considered neuron we constructed 1000 pseudo response arrays by shuffling the order of trials
at fixed target stimulus, and we recomputed each time the mutual information in the same manner
(Panzeri et al. 2007). Then we verified that the average mutual information obtained with such
shuffling procedure was close to the PT bias correction term computed with Equation 15 (Panzeri

and Treves 1996).

RESULTS

Previous studies have emphasized the role of LPFC in cognitive control and dACC in adjustment of
action values based on measures of performance such as reward prediction errors, error-likelihood
and outcome history. In addition, variations of activities in the two regions between exploration and
exploitation suggest that both contribute to the regulation of the control level during exploration.
Altogether neurophysiological data suggest particular relationships between dACC and LPFC, but
their respective contribution during adaptation remains unclear and a computational approach to
this issue appears highly relevant. We recently modeled such relationships using the meta-learning
framework (Khamassi et al. 2011). The network model was simulated in the Problem Solving (PS) task
(Quilodran et al., 2008) where monkeys have to search for the rewarded target in a set of four on a
touch-screen, and have to repeat this rewarded choice for at least 3 trials before starting a new
search period (Fig. 1A). In these simulations, variations of the model’s control meta-parameter (i.e.
inverse temperature B) produced variations of choice selectivity in simulated LPFC in the following
manner: a decrease of choice selectivity (exploration) during search; an increase of choice selectivity
(exploitation) during repetition. This resulted in a globally higher mean choice selectivity in simulated
LPFC compared to simulated dACC, and in a co-variation between choice selectivity and the inverse
temperature in simulated LPFC but not in simulated dACC (Khamassi et al. 2011). This illustrates a
prediction of computational models on the role of prefrontal cortex in exploration (McClure et al.

2006; Cohen J. D. et al. 2007; Krichmar 2008) which has not yet been tested experimentally.

Characteristics of behaviors

To assess the plausibility of such computational principles we first analyzed animals’ behavior in
the PS task. During recordings, monkeys performed nearly optimal searches, i.e., rarely repeated
incorrect trials (INC), and on average made errors in less than 5% of repetition trials. Although the
animals' strategy for determining the correct target during search periods was highly efficient, the
pattern of successive choices was not systematic. Analyses of series of choices during search periods

revealed that monkeys used either clockwise (e.g. choosing target 1 then 2), counterclockwise, or
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crossing (going from one target to the opposite target in the display, e.g. from 1 to 3) strategies, with
a slightly higher incidence for clockwise and counterclockwise strategies, and a slightly higher
incidence for clockwise over counterclockwise strategy (Percent clockwise, counterclockwise,
crossing and repeats were 38%, 36%, 25%, 1% and 39%, 33%, 26%, 2% for each monkey respectively,
measured for 9716 and 4986 transitions between two targets during search periods of 6986 and
3227 problems respectively). Rather than being systematic or random, monkeys’ search behavior
appeared to be governed by more complex factors: shifting from the previously rewarded target in
response to the Signal to Change (SC) at the beginning of most new problems (Fig. 2A-middle);
spatial biases i.e. more frequent selection of preferred targets in the first trial of search periods (Fig.
2A-right); and efficient adaption to each choice error as argued above. This indicates a planned and
controlled exploratory behavior during search periods. This is also reflected in an incremental change
in reaction times during the search period, with gradual decreases after each error (Fig. 2B).
Moreover, reaction times shifted from search to repetition period after the first reward (CO1),
suggesting a shift between two distinct behavioral modes or two levels of control (Monkey M:

Wilcoxon Mann-Whitney U-test, p < 0.001; Monkey P: p <0.001; Fig. 2B).

Model-based analyses. Behavioral analyses revealed that monkeys used nearly-optimal strategies
to solve the task, including shift at problem changes, which are unlikely to be solved by simple
reinforcement learning. In order to identify the different elements that took part in monkey's
decisions and adaptation during the task we compared the fit scores of several distinct models to
trial-by-trial choices after estimating each model’s free meta-parameters that maximize the log-
likelihood separately for each monkey (see Methods). We found that models performing either a
random search or a clockwise search and then simply repeating the correct target could not properly
reproduce monkeys' behavior during the task, even when the clockwise search was systematically
started by the monkeys' preferred target according to its spatial biases (Models RandS and ClockS;
Table 1 and Fig. 2D). Moreover, the fact that monkeys most often shifted their choice at the
beginning of each new problem in response to the Signal to Change (SC) (Fig. 2A-middle) prevented
a simple reinforcement learning model (Q-learning) or even a generalized reinforcement learning
model from reproducing monkey's behavior (resp. QL and GQL in Table 1). Indeed, these models
obviously have a strong tendency to choose the previously rewarded target without taking into
account the Signal to Change to a new problem. Behavior was better reproduced with a combination
of generalized reinforcement learning and reset of target values at each new problem (shifting the
previously rewarded target and taking into account the animal's spatial biases measured during the

previous session; i.e. Models GQLSB, GQLSB2[3, SBnoA, SBnoA2p in Figure 2D and Table 1). We tested
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control models without spatial biases, without problem shift, and with neither of them, to show that
they were both required to fit behavior (resp. GQLSnoB, GQLBnoS and GQLnhoSnoB in Table 1). We
also tested a model with spatial biases and shift but without progressive updating of target values
nor forgetting — i.e. @ =1,k =1 (Model SBnoF, which is a restricted and nested version of Model
SBnoA with 1 less meta-parameter) and found that it was not as good as SBnoA in fitting monkeys’
behavior, as found with a likelihood ratio test at p=0.05 with one degree of freedom.

Although Models GQLSB, GQLSB2f, SBnoA, SBnoA2B were significantly better than other tested
models along all used criteria (maximum likelihood [Opt-LL], BIC score, AIC score, log of posterior
probability [LPP], out-of-sample test [Test-LL] in Table 1), these 4 versions gave similar fit
performance. In addition, the best model was not the same depending on the considered criterion:
Model GQLSB2B was the best according to LL, BIC and AIC scores, and second best according to LPP
and Test-LL scores; Model SBnoA2B was the best according to LPP score; Model GQLSB was the best
according to Test-LL score.

As a consequence, the present dataset does not allow to decide whether allowing a free meta-
parameter a (i.e. learning rate) in model GQLSB and GQLSB2B is necessary or not in this task,
compared to versions of these models where a is fixed to 1 (Model SBnoA and SBnoA2p) (Fig. 2D and
Table 1). This is due to the structure of the task — where a single correct trial is sufficient to know
which is the correct target — which may be solved by sharp updates of working memory rather than
by progressive reinforcement learning (although a small subset of the sessions were better fitted
with a e [0.3;0.9] in Model GQLSB, thus revealing a continuum in the range of possible as,
Supplementary Fig. S2). We come back to this issue in the discussion.

Similarly, models that use distinct control levels during search and repetition (Models GQLSB2p
and SBnoA2B) could not be distinguished from models using a single parameter (Models GQLSB and
SBnoA) in particular because of out-of-sample test scores (Table 1).

Nevertheless, model-based analyses of behavior in the PS task suggest complex adaptations
possibly combining rapid updating mechanisms (i.e. a close to 1), forgetting mechanisms and the use
of information about the task structure (Signal to Change; first correct feedback signaling the
beginning of repetition periods). Model GQLSB2B here combines these different mechanisms in the
more complete manner and moreover won the competition against the other models according to
three criteria out of five. Consequently, in the following we will use Model GQLSB2B for model-based
analyses of neurophysiological data and will systematically compare the results with analyses
performed with Models GQLSB, SBnoA, SBnoA2p to verify that they yield similar results.

In summary, the best fit was obtained with Models SBnoA, SBnoA2B, GQLSB, GQLSB2B which

could predict over 80% of the choices made by the animal (Table 1). Figure 2A shows a sample of
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trials where Model SBnoA can reproduce most monkey choices, and illustrating the sharper update
of action values in Model SBnoA (with a = 1) compared to Model GQLSB (where the optimized a =
0.7). When freely simulated on 1000 problems of the PS task — i.e., the models learned from their
own decisions rather than trying to fit monkeys’ decisions —, the models made 38.23% clockwise
search trials, 32.41% counter-clockwise, 29.22% crossing and 0.15% repeat. Simulations of the same
models without spatial biases produced less difference between percentages of clockwise, counter-
clockwise and crossing trials, unlike monkeys: 33.98% clockwise, 32.42% counter-clockwise, 33.53%

crossing and 0.07% repeat.

Distinct control levels between search and repetition. To test whether behavioral adaptation
could be described by a dynamical regulation of the B meta-parameter (i.e. inverse temperature)
between search and repetition, we analyzed the value of the optimized two distinct free meta-
parameters (Bs and Bg) in Models GQLSB2[3 and SBnoA2p (Fig. 2E, 2C and Suppl. Fig. S2). The value of
the optimized Bs and Br meta-parameters obtained for a given monkey in a given session constituted
a quantitative measure of the control level during that session. Such level was non-linearly linked to
the number of errors the animal made. For instance, a Bg of 3, 5, or 10 corresponded to
approximately 20%, 5%, and 0% errors respectively made by the animal during repetition periods
(Fig. 2C).

Interestingly, the distributions of Bs and Bg obtained for each recording session showed
dissociations between search and repetition periods in a large number of sessions. We found a
unimodal distribution for the B meta-parameter during the search period (Bs), reflecting a consistent
level of control in the animal behavior from session to session. In contrast, we observed a bimodal
distribution for the B meta-parameter during the repetition period (Bg; Fig. 2E). In Figure 2E, the
peak on the right of the distribution (large Br) corresponds to a subgroup of sessions where behavior
shifted between different control levels from search to repetition periods. This shift in the level of
control could be interpreted as a shift from exploratory to exploitative behavior, an attentional shift
or a change in the working memory load, as we discuss further in the Discussion. Nevertheless this is
consistent with the hypothesis of a dynamical regulation of the inverse temperature B between
search and repetition periods in this task (Khamassi et al. 2011; Khamassi et al. 2013). The bimodal
distribution for By illustrates the fact that during another subgroup of sessions (small Bg), the animal’s
behavior did not shift to a different control level during repetition and thus made more errors. Such
bimodal distribution of the B meta-parameter enables to separate sessions in two groups and to
compare dACC and LPFC activities (see below) during sessions where decisions displayed a shift and

during sessions where no such clear shift occurred. Interestingly, the bimodal distribution of B is not
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crucially dependent of the optimized learning rate a since a similar bimodal distribution was
obtained with Model SBnoA2B and since the optimized Bs and Bg values in the two models were

highly correlated (N = 277; Bs: r = 0.9, p < 0.001; Bg: r = 0.96, p < 0.001; Supplementary Fig. S2).

Modulation of information coding

To evaluate whether a behavioral change between search and repetition was accompanied by
changes in LPFC activity and choice selectivity, we analyzed a pool of 232 LPFC single-units (see Fig.
1B for the anatomy) in animals performing the PS task, and compared the results with 579 dACC
single-unit recordings which have been only partially used for investigating feedback-related activity
(Quilodran et al. 2008). We report here a new study relying on comparative analyses of dACC and
LPFC responses, the analysis of activities before the feedback — especially during the delay period —,
and the model-based analysis of these neurophysiological data. The results are summarized in
Supplementary Table 1.

Average activity variations between search and repetition. Previous studies revealed differential
prefrontal fMRI activations between exploitation (where subjects chose the option with maximal
value) and exploration trials (where subjects chose a non-optimal option) (Daw N. D. et al. 2006).
Here a global decrease in average activity level was also observed in the monkey LPFC from search to
repetition. For early-delay activity, the average index of variation between search and repetition in
LPFC was negative (mean: -0.05) and significantly different from zero (mean: t-test p < 0.001,
median: Wilcoxon Mann-Whitney U- test p < 0.001). The average index of activity variation in dACC
was not different from zero (mean: -0.008; t-test p > 0.35; median: Wilcoxon Mann-Whitney U- test p
> 0.25). However, close observation revealed that the non-significant average activity variation in
dACC was due to the existence of equivalent proportions of dACC cells showing activity increase or
activity decrease from search to repetition, leading to a null average index of variation (Fig. 3A-B;
17% versus 20% cells respectively). In contrast, more LPFC single units showed a decreased activity
from search to repetition (18%) than an increase (8%), thus explaining the apparent global decrease
of average LPFC activity during repetition. The difference in proportion between dACC and LPFC is
significant (Pearson x* test, 2 df, t = 13.0, p < 0.01) and was also found when separating data for the
two monkeys (Supplementary Fig. S3). These changes in neural populations thus suggest that global
non-linear dynamical changes occur in dACC and LPFC between search and repetition instead of a

simple reduction or complete cessation of involvement during repetition.

Modulations of choice selectivity between search and repetition. As shown in Figure 3A, a higher

proportion of neurons showed a significant choice selectivity in LPFC (155/230, 67%) than in dACC
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(286/575, 50%; Pearson )(2 test, 1 df, t = 20.7, p < 0.001) — as measured by the vector norm in
Equation 10. Interestingly, the population average choice selectivity was higher in LPFC (0.80) than in
dACC (0.70; Kruskal-Wallis test, p < 0.001; see Fig. 3C). When pooling all sessions together, this
resulted in a significant increase in average choice selectivity in LPFC from search to repetition (mean
variation: 0.04; Wilcoxon Mann-Whitney U-test p < 0.01; t-test p < 0.01; Fig. 3C).

Strikingly, the significant increase in LPFC early-delay choice selectivity from search to repetition
was found only during sessions where the model fit dissociated control levels in search and repetition
(i.e. sessions with large Br [Br > 5]; Kruskal-Wallis test, 1df, x* = 6.45, p = 0.01; posthoc test with
Bonferroni correction indicated that repetition > search). Such an effect was not found during sessions
where the model reproducing the behavior remained at the same control level during repetition (i.e.
sessions with small B [Br < 5]; Kruskal-Wallis test, p > 0.98) (Fig. 4-bottom).

Interestingly, choice selectivity in LPFC was significantly higher during repetition for sessions
where Br was large (mean choice selectivity = 0.91) than for sessions where Bz was small (mean
choice selectivity = 0.73; Kruskal-Wallis test, 1df, )(2 = 12.5, p < 0.001; posthoc test with Bonferroni
correction; Fig. 4-bottom). Thus, LPFC early-delay choice selectivity clearly covaried with the level of
control measured in the animal’s behavior by means of the model.

There was also an increase in dACC early-delay choice selectivity between search and repetition
consistent with variations of B, but only during sessions where the model capturing the animal’s
behavior made a strong shift in the control level (B > 5; mean variation = 0.035, Kruskal-Wallis test,
1df, x> = 5.22, p < 0.05; posthoc test with Bonferroni correction indicated that repetition > search; Fig.
4-top). However, overall, dACC choice selectivity did not follow variations of the control level. Two-
way ANOVAs either for (Bs x task phase) or for (Br x task phase) revealed no main effect of g (p > 0.2),
an effect of task period (p < 0.01), but no interaction (p > 0.5). And there was no significant difference
in ACC choice selectivity during repetition between sessions with a large Bz (mean choice selectivity =
0.69) and sessions with a low one (mean choice selectivity = 0.75; Kruskal-Wallis test, 1 df, x* = 3.11, p
> 0.05).

At the population level, increases in early-delay mean choice selectivity from search to repetition
were due both to an increase of single unit selectivity, and to the emergence in repetition of selective
units that were not significantly so in search (Fig. 3A). Importantly, the proportion of LPFC early-delay
choice selective neurons during repetition periods of sessions where Bz was small (55%) was
significantly smaller than the proportion of such LPFC neurons during sessions where Bz was large
(72%; Pearson X’ test, 1 df, t = 7.19, p < 0.01). In contrast, there was no difference in proportion of
dACC early-delay choice selective neurons during repetition between sessions where Bz was small

(38%) and sessions where Br was large (35%; Pearson )(2 test, 1 df, t = 0.39, p > 0.5; Fig. 4B). These
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analyses thus show a significant difference between dACC and LPFC neural activity properties. LPFC
mean choice selectivity as well as LPFC proportion of choice selective cells varied between search and
repetition in accordance with the control level measured in the behavior by means of the
computational model, while such effect was much weaker in dACC. These results are robust since they
could also be obtained with Model SBnoA2B (Supplementary Fig. S4A). Data separated for the two

monkeys also reflected the contrast between the two structures (Supplementary Fig. S4B).

Mutual information between neural activity and target choice. Generally, computational models
of the dACC-LPFC system make the assumption that LPFC is central for the decision output. LPFC
activity should thus be more tightly related to the animal’s choice than dACC activity. Here, in 63
LPFC neurons recorded during a sufficient number of presentations of each target choice (see
Methods), the average mutual information — corrected for sampling bias — was more than twice as
high (I,prc = 0.10 bit) as in 85 dACC cells (Iacc = 0.04 bit; Kruskal-Wallis test, p < 0.001) (Fig. 3D). This
effect appeared to be the result of the activity of a small subset of LPFC activity — in both monkeys
(Supplementary Fig. S3D) — with a high mutual information with choice. To verify that the applied
restriction on the number of sampling trials was accurate, we constructed 1000 shuffled pseudo
response arrays for each single unit and measured the average mutual information obtained with
this shuffling procedure. For the 63 LPFC and 85 dACC selected neurons, the difference between the
averaged shuffled information and the bias correction term was very small (mean=0.01 bit), while it
was high in non-selected neurons (mean=0.08 bit). Thus the difference in estimated information
between dACC and LPFC was not due to a limited sampling bias in the restricted number of analyzed
neurons. We can conclude that, in agreement with computational models of the dACC-LPFC system,
neural recordings show a stronger link between LPFC activity and choice than between dACC activity

and choice.

Neural activity correlated with model variables.

Following model-based analyses of behavior we tested whether single unit activity in LPFC and
dACC differentially reflect information similar to variables in Model GQLSB2p by using the time series
of these variables as regressors in a general linear model of single-unit activity (multiple regression
analysis with a bootstrapping control — see Methods) (Fig. 6). In dACC and LPFC, respectively 397/579
(68.6%) cells and 145/232 (62.5%) cells showed a correlation with at least one of the model's
variables in at least one of the behavioral epochs: pre-start, delay, pre-target, post-target, pre-touch,
pre-feedback, early-feedback, late-feedback, and inter-trial interval (ITl). More precisely, we found a

larger proportion of cells in LPFC than in dACC correlated with at least one model variable in the
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post-target epoch (Fig. 6E; Pearson x* tests, T = 3.89, p < 0.05), and a larger proportion of cells in
dACC than in LPFC correlated with at least one model variable in the early-feedback epoch (Pearson
X’ test, T = 7.90, p < 0.01). Differences in proportions of LPFC and dACC neurons correlated with
different model variables during pre- or post-feedback epochs were also observed for the two
monkeys separately (Supplementary Figure S6), and when the model-based analysis was done with
Models GQLSB, SBnoA or SBnoA2B (Supplementary Figures S5). Collinearity diagnostics between
model variables revealed a weak collinearity in 306/308 recording sessions, a moderate collinearity
in 1 session and a strong collinearity in 1 session (Supplementary Figure S9), thus excluding the

possibility that these results could be an artifact of collinearity between model variables.

Figure 5A shows an example dACC post-target activity negatively correlated with the action
value associated to choosing target #4 (Fig. 5A-top). The raster plot and peristimulus histogram for
this activity show lower firing rate in trials where the animal chose target #4 than in trials where he
chose one of the other targets (Fig. 5A-middle). Plotting the trial-by-trial evolution of the post-target
firing rate of the neuron reveals sharp variations following action value update and distinct from the
time series of the other model variables & and U (Fig. 5A-bottom). The firing rate dropped below
baseline during trials where target #4 was chosen. Strikingly, the firing rate sharply increased above
baseline in trials following non-rewarded choices of target #4. Thus this single unit not only
responded when the animal selected the associated target but also kept track of the stored value
associated with that target. Figure 5B shows a LPFC unit whose activity in the post-target epoch is
positively correlated with the action value associated to choosing target #2. The raster plot illustrates
a higher firing rate for trials where target #2 was chosen (grey histogram and raster, fig. 5B-middle).
Similarly to the previous example, the trial-by-trial evolution of the post-target firing rate reveals
sharp variations from trial to trial (Fig. 5B-bottom), consistent with sharp changes of action values in
the model that best described behavior adaptation in this task (Fig. 2A).

We found 126/145 (87%) LPFC and 227/397 (57%) dACC Q-value encoding cells. The proportion
was significantly greater in LPFC (Pearson X2 test, 1 df, T = 41.30, p < 0.001; Fig. 6A). We next verified
whether the activity of these cells carried Q value information only during trials where the neuron's
preferred target was selected by the monkey, or also during other trials. To do so, we performed a
new multiple regression analysis on the activity of each cell after excluding trials where the cell's
preferred target was chosen. The activity of respectively 18% (23/126) and 13% (29/227) of LPFC and
dACC Q value encoding cells were still significantly correlated with a Q value in the same epoch after
excluding trials where the cell's preferred target was selected by the animal (multiple regression

analysis with Bonferroni correction). Importantly, the difference in proportion of Q cells between LPFC
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and dACC was still significant after restricting to Q cells showing a significant correlation while
excluding trials with their preferred target (LPFC: 23/145, 16%; dACC: 29/397, 7%; Pearson x2 test, 1
df, T=8.97, p < 0.01).

Given the deterministic nature of the task, and thus the limited sampling of options, a question
remains of whether these neurons really encode Q values or whether they participate to action
selection. The control analysis above excluding trials with each cells' preferred target showed that at
least a certain proportion of these cells carried information about action values outside trials where
the corresponding action is selected. But how much information about choice do these neurons carry
and is there a quantitative difference between LPFC and dACC? Interestingly, 43% (54/126) of LPFC Q
cells had high mutual information with monkey choice (I > 0.1) whereas only 33% (75/227) of dACC Q
cells verified such condition. The difference in proportion was marginally significant (Pearson x2
proportion test, 1df, T = 3.37, p = 0.07). Moreover, LPFC Q cells activity contained more information
about monkey choice (mean | = 0.12) than dACC Q cells (mean | = 0.09; Kruskal-Wallis test, 1df, x2 =
3.88, p < 0.05; Posthoc test with Bonferroni correction found that LPFC-Q > dACC-Q) and more than
LPFC non-Q cells (average = 0.09; Kruskal-Wallis test, x2 = 6.65, 1df, p < 0.01; Posthoc test with
Bonferroni correction found that LPFC-Q > LPFC-nonQ). dACC Q cells activity did not contain more
information about monkey choice than LPFC non-Q cells (Kruskal, 1df, x2 = 1.57, p > 0.05). Although
the observed difference in Q-encoding between dACC and LPFC are weak, these results are in line
with the hypothesized dACC role in action value encoding and with the transfer of such information to

LPFC for action selection —the LPFC would encode a probability distribution over possible actions.

Feedback-related activities in dACC and LPFC. A large proportion of neurons had activity
correlated with & during post-feedback epochs (Fig. 6, referred to as d-cells, see examples of such cells
during late-feedback and inter-trial interval in Fig. 7A and 7B; raster plots and correlation with
variable & can be found in Supplementary Fig. S7 for the first cell and in Fig. 9A for the second cell).
Significantly more cells correlated with & in the dACC than in the LPFC: 252/397 (63%) versus 69/145
(48%; Pearson )(2 test, 1 df, T = 11.10, p < 0.001; Fig. 6B and 6C), which confirmed previous
comparisons (Kennerley and Wallis 2009). Consistent with the high learning rate suitable for the task
(due to the deterministic reward schedule of the task), the information about the reward prediction
error 8 from previous trials vanished quickly both in LPFC and dACC compared to other protocols (Seo
and Lee 2007). Few dACC cells (31/285, 10.9%) and LPFC cells (9/116, 7.8%) retained a trace of & from
the previous trial in any of the pre-feedback epochs (Fig. 6B-C). No significant difference was found
between dACC and LPFC proportions (Pearson y° test, T = 0.89, p > 0.3). Interestingly, only few LPFC &

cells (13/69, 18.8%) revealed a positive correlation (8" cells, i.e. neurons responding to unexpected
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correct feedback; Fig. 6B). The great majority of & cells in LPFC had negative correlations (56/69,
81.2%), that is, displayed increased activity after errors (6™ cells; Fig. 6C). In comparison, dACC had a
higher proportion of & cells (101/252 &' cells, 40.1%, and 151/202 & cells, 74.8%; see example of
such cell in Fig. 7E; raster and correlation plots are shown in Supplementary Fig. S8). The difference in
proportion of 5" cells between LPFC and dACC was significant (Pearson x* test, 1 df, T = 10.67, p <
0.01). Thus LPFC activity is much more reactive to negative feedback compared to dACC which
responds equally to positive and negative feedback.

Previous studies have reported quantitative discrimination of positive reward prediction errors in
dACC unit activity (Matsumoto et al. 2007; Kennerley and Walton 2011). dACC feedback-related
activity might also represent categorical information (i.e. correct, choice error, execution error)
rather than quantitative reward prediction errors (Quilodran et al.,, 2008; see discussion). The
present model-based analysis confirms this and also extends it to LPFC feedback-related activity by
finding that only very few cells were still correlated with & when analyzing correct and incorrect trials
separately. 10/159 (6.3%) dACC and 2/57 (3.5%) LPFC &~ cells where still significantly correlated with
& when considering incorrect trials only (multiple regression analysis with bootstrap). These
proportions were not significantly different (Pearson x* test, T = 0.62, p > 0.4). Figures 7A and 7B
illustrate examples of dACC and LPFC neurons which respond to errors without significantly
distinguishing between different amplitudes of modeled negative reward prediction errors. 23/101
(22.8%) dACC and 2/13 (15.4%) LPFC §" cells where still significantly correlated with 5 on COR trials
only. These proportions were not significantly different (Pearson x* test, T = 0.37, p > 0.5). Figure 7E
illustrates the activity of such a cell. In summary, the most striking result regarding feedback-related
activity was the differential properties of dACC and LPFC in coding both positive and negative

outcomes, LPFC activity being clearly biased toward responding after negative outcomes.

Correlates of outcome uncertainty. Hypotheses on the neural bases of cognitive regulation have
been largely inspired by the dynamics of activity variations in dACC and LPFC during behavioral
adaptations (Kerns et al. 2004; Brown and Braver 2005). Functions of the dACC are considered to
enable monitoring of variations in the history of reinforcements (Seo and Lee 2007, 2008), of the
error-likelihood (Brown and Braver 2005), to accordingly adjust behavior. Thus we looked for
correlations between single unit activities and the outcome uncertainty U (which progressively
increases after elimination of possible targets during search and drops to zero after the first correct
trial; see Methods). We observed both positive and negative correlations between dACC neural
activity and U (U-cells): 71.8% were positive correlations — higher firing rate during search periods —

and 28.2% were negative correlations — higher firing rate during repetition. These proportions are
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different from an expected 50%-50% proportion (x* goodness of fit - one sample test, 1 df, x* = 39.32,
p < 0.001). The population activity of these units correlated with U showed gradual trial-by-trial
changes during search, and sharp variations from search to repetition, after the first correct feedback
of the problem (see examples of such cells during the post-start epoch in Fig. 7C, D; see raster and
correlation plots in Supplementary Fig. S7B, C). These patterns of activity were in opposite direction
from changes in reaction times (Fig. 2B). They belonged to a larger group of cells that globally
discriminated between search and repetition (see a different profile of such type of neurons in the
post-target epoch in Fig. 7F; see raster and correlation plots in Supplementary Fig. S8B). Neural data
revealed that U cells were more frequent in dACC (206/397, 52%) than in LPFC (48/145, 33%;
Pearson x’ test, T = 15.05, p < 0.001; Fig. 6D). Importantly, Figure 6 shows that, during trials, U was
decoded from dACC activity mostly just before and after feedback occurrence. By contrast, U was
better decoded during delay (i.e., pre-target epoch) in LPFC. These different dynamics reinforce the
idea of an intimate link between U updating and the information provided by feedback for
performance monitoring in dACC and, in contrast, of an implication of LPFC in incorporation of U into

the decision function in LPFC.

Multiplexed reinforcement-related information. We found that both dACC and LPFC single units
multiplexed information about different model variables, with LPFC activity reflecting more
integration of information than dACC activity. First, in LPFC the great majority of U-cells (81%, 39/48)
were also correlated with one of the model action values while this was true for only 52% (107/206)
of dACC U-cells (Pearson ¥’ test, 1 df, T = 13.68, p < 0.001). Stronger integration was also reflected
through higher correlation strengths with multiple variables of the model, as found by a Principal
Component Analysis (PCA) on regression coefficients for all dJACC and LPFC neurons (Fig. 8). The first
principal component (PC1) obtained with dACC neurons corresponds in all trial epochs to activity
variations mainly related to the outcome uncertainty U and reveals weak links with Q and & (Fig. 8A).
In contrast, the two first components (PC1 and PC2) obtained with LPFC neurons both were
expressed as a combination of Q and U during pre-feedback epochs (Fig. 8A). The PCA also revealed
a strong change in the principal components between pre- and post-feedback epochs both in dACC
and LPFC and reliably in the two monkeys (Fig. 8A), consistent with the post-feedback activity
changes and correlations between model variables reported in the previous analyses.

To quantify differences in multiplexing at the single-unit level, we computed an entropy-like index
(ELI) of sharpness of encoding of different model variables based on the distributions of correlation
strengths between individual cell activities and model variables (see Methods): e.g. a neuron with

activity correlated with different model variables with similar strengths will have a high ELI; a neuron
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with activity highly correlated with only one model variable will have a low ELI (see illustration of
different ELI obtained with artificial data illustrating these cases in Supplementary Fig. S1). We found
a higher ELI in LPFC neurons than in dACC neurons in the pre-touch and pre-feedback epochs
(Kruskal-Wallis test, p < 0.05) and the opposite effect (i.e. dACC > LPFC) in the early-feedback epoch
(Kruskal-Wallis test, p < 0.05; Fig. 8B). These pre- and post-feedback variations in ELI may reflect
different processes: action selection and value updating respectively. Overall, these results reveal
higher information integration in LPFC before the feedback, and higher integration in dACC after the
feedback.

We then measured the contribution of each model variable to each principal component in each
epoch, and combined it with the contribution of each principal component to the global variance in
neural activity in each epoch. We deduced a normalized contribution of each model variable to
neural activity variance in each epoch (see Methods). Strikingly, in dACC the model variable U
dominated (contribution > 50%) in all pre-feedback epochs, while the contribution of & started
increasing in the early-feedback epoch (Fig. 8C). In contrast, in LPFC the model variables Q and U had
nearly equal contributions to variance during pre-feedback epochs, while the contribution of
O started increasing in the late-feedback epoch, thus later than in dACC. The global entropy in the
normalized contributions of model variables to neural activity variance revealed marginally higher in
LPFC than in dACC (Kruskal-Wallis test, p < 0.06) when analyzed with Model GQLSB2B’s variables.
These properties of PCA analyses were also true with Model SBnoA2B (Suppl. Fig. S10), and the
latter effect was found to be even stronger with the latter model (Kruskal-Wallis test, p < 0.01; Suppl.
Fig. $10C), thus confirming the higher information integration in LPFC than in dACC.

Finally, single unit activity could encode different information at different moments in time,
corresponding to dynamic coding. More than half LPFC &-cells (55%, 38/69) — that is, neurons
responding to feedback — showed an increase in choice selectivity at the beginning of each new trial
in repetition, thus reflecting information about the subsequent choice (see a single cell example in
Fig. 9A, and a population activity in Fig. 9C). In contrast, only 33% (84/252) of dACC &-cells showed
such effect. The difference in proportion between LPFC and dACC was statistically different (Pearson
X’ test, 1 df, T = 10.86, p < 0.001; Fig. 9B). Thus, while dACC post-feedback activity may mostly be
dedicated to feedback monitoring, LPFC activity in response to feedback might reflect the onset of

the decision-making process triggered by the outcome.

DISCUSSION
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Interaction between performance monitoring and cognitive control hypothetically relies on
interactions between dACC and LPFC (e.g. Cohen J.D. et al. 2004). Here we described how the
functional link between the two areas might contribute to the regulation of decisions.

In summary, we found that LPFC early-delay activity was more tightly related to monkeys’
behavior than dACC activity, displaying higher mutual information with animals’ choices than dACC,
supporting LPFC's role in action selection. Also, the high choice selectivity in LPFC co-varied with the
control level measured from behavior: decreased choice selectivity during the search period,
putatively promoting exploration; increased choice selectivity during the repetition period, putatively
promoting exploitation. In contrast, this effect was not consistent in dACC. dACC activity correlated
with various model variables, keeping track of pertinent information concerning the animal’s
performance. A calculation of outcome uncertainty (U) correlated with activity changes between
exploration and exploitation mostly in dACC, and dominated the contribution to neural activity
variance in pre-feedback epochs. Moreover, dACC post-feedback activity appeared earlier than in
LPFC and represented positive and negative outcomes with similar proportions while LPFC post-
feedback activity mostly tracked negative outcomes.

Reinforcement-related (Q and J) and task monitoring-related (U) information was multiplexed
both in dACC and LPFC, but with higher integration of information before the feedback in LPFC and
after the feedback in dACC. LPFC unit activity responding to feedback was also choice selective
during early-delay, possibly contributing to decision making, while dACC feedback-related activity —
possibly categorizing feedback per se — showed less significant choice selectivity variations. Taken
together, these elements suggest that reinforcement-based information and performance

monitoring in dACC might participate in regulating decision functions in LPFC.

Mixed information and coordination between areas

Correlations with variables related to reinforcement and actions were found in both structures in
accordance with previous studies showing redundancy in information content, although with some
quantitative biases (Seo and Lee 2008; Luk and Wallis 2009). However, compared to LPFC, dACC
neuronal activity was more selective for outcome uncertainty that could be used to regulate
exploration (Fig. 8). The PCA analysis showed that multiplexing of reinforcement-related information
is stronger in LPFC activity suggesting that this structure receives and integrates these information. In
this hypothesis dACC would influence LPFC computations by modulating an action selection process.
Such interaction have been interpreted as a motivational or energizing function (from dACC) onto
selection mechanisms (in LPFC) (Kouneiher et al. 2009). More specifically, our results support a

recently proposed model in which dACC monitors task-relevant signals to compute action values and
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keep track of the agent’s performance necessary for adjusting behavioral meta-parameters
(Khamassi et al. 2011; Khamassi et al. 2013). In this model, values are transmitted to the LPFC which
selects the action to perform. But the selection process (stochastic) is regulated online based on
dACC's computations to enable dynamic variations of the control level.

This view preserves the schematic regulatory loop by which performance monitoring acts on
cognitive control as proposed by others (Botvinick et al. 2001; Cohen J.D. et al. 2004). We further
suggest a functional structure that reconciles data related to regulatory mechanisms, reinforcement
learning, and cognitive control. In particular we point to the potential role of dACC in using
reinforcement-related information (such as reward prediction error), relayed through the reward
system (Satoh et al. 2003; Enomoto et al. 2011), to regulate global tendencies (formalized by meta-
parameters) of adaptation. Interestingly, human dACC (i.e., mid-cingulate cortex) activation co-varies
with volatility or variance in rewards and could thereby also participate in regulating learning rates for
social or reward-guided behaviors (Behrens et al. 2007; Behrens et al. 2009). Kolling and colleagues
(Kolling et al. 2012) have recently found that dACC encodes the average value of the foraging
environment. This suggests a general involvement of dACC in translating results of performance
monitoring and task monitoring into a regulatory level.

The fact that dACC activity correlated with changes in modeled meta-parameters would suggest a
general function in the global setting of behavioral strategies. It has been proposed that dACC can be
regarded as a filter involved in orienting motor or behavioral commands (Holroyd and Coles 2002), in
regulating action decision (Domenech and Dreher 2010), and that it is part of a core network
instantiating task-sets (Dosenbach et al. 2006). Interestingly, dACC neural activity encodes specific
events that are behaviorally relevant in the context of a task, events that — like the Signal to Change
in our task — can contribute to trigger selected adaptive mechanisms (Amiez et al. 2005; Quilodran et
al. 2008). In line with this, Alexander and Brown recently proposed that dACC signals unexpected
non-occurrences of predicted outcomes, i.e. negative surprise signals, which in their model consist of
context-specific predictions and evaluations (Alexander W. H. and Brown 2011). Their model
elegantly explains a large amount of reported dACC post-feedback activity. But dACC signals related
to positive surprise (Matsumoto et al. 2007; Quilodran et al. 2008), and to other behaviorally salient
events (Amiez et al. 2005), suggest an even more general role in processing information useful to

guide selected behavioral adaptations.

Exploration
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Following a standard reinforcement learning framework, exploratory behavior was here
associated to low B values, which flatten the probability distribution of competing actions in models
and simulations (Khamassi et al. 2011). Although the precise molecular and cellular mechanisms
underlying shifts between exploration and exploitation are not yet known, accumulating evidence
suggest that differential levels of activation of D1 and D2 dopamine receptors in the prefrontal cortex
may produce distinct states of activity: a first state allowing multiple network representations nearly
simultaneously and thus permitting “an exploration of the input space”; a second state where the
influence of weak inputs on PFC networks is shut off so as to stabilize one or a limited set of
representations, which would then have complete control on PFC output and thus promote
exploitation (Durstewitz and Seamans 2008). The consistent variations of LPFC choice selectivity
between search and repetition periods suggest that such mechanism could also underlie exploration
during behavioral adaptation.

However, this should not be interpreted as an assumption that monkeys’ behavior is purely
random during search periods of the task (see model-based analysis of behavior). In fact, animals
often display structured and organized exploratory behaviors as also revealed by our behavioral
analyses. For instance, when facing a new open arena, rodents display sequential stages of
exploration, first remaining around the nest position, second moving along walls and third visiting
the center of the arena (Fonio et al. 2009). Non-human primates also use exploration strategies, such
as optimized search trajectories adapted to the search space configuration (De Lillo et al. 1997),
trajectories that can evolve based on reinforcement history along repeated exposure to the same
environment (Desrochers et al. 2010). In ecological large scale environments search strategies are
best described by correlated random or Levy walks and are modulated by various environmental
parameters (Bartumeus et al. 2005).

One possible interpretation of our results is that decreases of choice selectivity in LPFC during
search could reduce the amount of information about choice and ergo release biases in the influence
on downstream structures such as the basal ganglia. In this way, efferent structures could express
their own exploratory decisions. Consistent with this, it has been recently suggested that variations
of tonic dopamine in the basal ganglia could also affect the exploration-exploitation trade off in
decision-making (Humphries et al. 2012).

The prefrontal cortex might also contribute to the regulation of exploration based on current
uncertainty (Daw N. D. et al. 2006; Frank et al. 2009). Uncertainty-based control could bias decision
towards actions that provide very variable quantities of reward so as to gain novel information and
reduce uncertainty. In our task, outcome uncertainty variations — progressive increase during search

and drop to zero during repetition — can be confounded with other similar performance monitoring

31



Khamassi et al. Adaptive control in prefrontal cortex

measures such as the feedback history (Khamassi et al. 2011) or variations of attentional level.
Nevertheless, they co-varied with the animal’s reaction times and were mostly encoded by dACC
neurons, thus revealing a possible relevance of this information for behavioral control in our task. It
should be noted that outcome uncertainty is distinct from action uncertainty which would be
confounded in our task with other task monitoring variables such as conflict (Botvinick et al. 2001)
and error-likelihood (Brown and Braver 2005). All of them gradually and monotonically decrease
along a typical problem of the PS task and remain low during repetition. We found neurons with such
activity profile (e.g. Fig. 7F), however in about half the proportion of U-cells. More work is required
to understand whether these different task monitoring measures are distributed and coordinated

within the dACC-LPFC system.

Reinforcement learning or working memory?

It has been recently suggested that model-based investigations of adaptive mechanisms often mix
and confound reinforcement learning mechanisms and working memory updating (Collins and Frank,
2012). In particular, rapid improvements in behavioral performance during decision-making tasks can
be best explained by gating mechanisms in computational models of the prefrontal cortex rather
than by slow adaptation usually associated with dopamine-dependent plasticity in the basal ganglia.
In the present study, the fact that Models SBnoA and SBnoA2B (with a high learning rate a fixed to 1)
and Models GQLSB and GQLSB2B (where o is a free-metaparameter between 0 and 1) produce a
non-different fitting score on monkey behavior suggests that behavior in this task might fall into such
a case. Under this interpretation, rapid behavioral adaptations would rely on gating appropriate
flows of information between dACC and LPFC. In fact, the increase of LPFC activity mostly after
negative and not positive outcomes, and the interaction with spatial selectivity, might reflect gating
working memory or planning processes at the time of adaptation, rather than direct outcome-related
responses. An alternative hypothesis that cannot be excluded is that in this type of deterministic task
animals still partly rely on reinforcement learning mechanisms, but would progressively learn to
employ a high learning rate during the long pretraining phase. The fact that a group of behavioral
sessions were better fitted with a between 0.3 and 0.9 when a was not fixed to 1 (i.e. in Model
GQLSB; Supplementary Fig. S2C) reveals a continuum in the range of optimized a values which could
be the result of a progressive but incomplete increase of the learning rate during pretraining. Such
adaptation in rate might have also contributed to the weak quantitative coding of reward prediction
errors. Further investigations will be required to answer this question, in particular by precisely
characterizing monkey behavioral performance during the pretraining phase and the associated

changes in information coding in prefrontal cortical regions.
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Network regulation and decisions in LPFC

We reported new data on the possible functional link between LPFC and dACC. However, we have
no evaluation of putative dynamical and direct interactions between neurons of the two regions.
Functional coordination of local field potentials between LPFC and dACC has been described but
evidence for direct interactions is scarce (Rothe et al. 2011). The schematized modulatory function
from dACC performance monitoring into LPFC decision process could in fact be indirect. For instance,
it has been proposed that norepinephrine instantiates gain (excitability) variations in LPFC, and that
this mechanism would be regulated by dACC afferences to the locus coeruleus (Aston-Jones and
Cohen 2005; Cohen J. D. et al. 2007). Average activity variations in dACC and LPFC observed in our
recordings could be a consequence of such activity gain changes. Gain modulation and biased
competition are two mechanisms by which attentional signals can operate (Wang 2010). Increased
working memory load, higher cognitive control, or attentional selection are concepts widely used to
interpret prefrontal activity modulations dependent on task requirements (Miller and Cohen 2001;
Leung et al. 2002; Kerns et al. 2004). Note that these concepts are closely related and have similar
operational definitions (Barkley 2001; Miller and Cohen 2001; Cohen J.D. et al. 2004).

Recently, Kaping and colleagues have shown that spatial attentional and reward valuation signals
are observed in different subdivisions of the fronto-cingulate region (Kaping et al. 2011). Correlates
of spatial attention selectivity were found in both dACC and LPFC, together with correlates of
valuation, and independently of action plans. These signals would contribute to top-down
attentional control of information (Kaping et al. 2011). Here we also verified that values were coded
independently of choices by showing significant correlation with Q-values even after exclusion of
trials selecting the neuron's preferred target.

The present study revealed two effects of task periods on frontal activity that would reflect
variations in control and decision: an increased average firing rate and changes in recruited neural
populations during exploration in both dACC and LPFC, and an increased spatial selectivity in LPFC
during repetition. The latter would argue against a reduction of control implemented by LPFC during
repetition. This however suggests that transitions between exploration and repetition involve a
complex interplay between global unselective regulations and refined selection functions, and that
qualitative changes in control occurred between search and repetition.

Finally, studies in rodents suggest that adaptive changes in behavioral strategies are also
accompanied by global dynamical state transitions of prefrontal activity (Durstewitz et al. 2010). Our
analyses showed that for both LPFC and dACC the neural populations participating in exploratory

versus exploitative periods of the task differ significantly. We have also previously shown that the
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oscillatory coordination between the two areas changes from one period to the other (Rothe et al.
2011). Hence, a dynamical system perspective might be imperative to explain cognitive flexibility and

its neurobiological substrate with more precision.
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Table 1
Score obtained by each tested theoretical model, models’ characteristics, and model
performances to fit monkey choices for Optimization (Opt) and Test sessions.

Models r R N, Opt Opt Opt Opt Opt Opt Test Test Test

: 3 -t N % -LpP’  BIC/? AIC/?’ -1’ NL® %°
GQLSB2p Y v 4 3290 .5921 83.47 3459 3360 3298 29732  .5830  74.17
SBnoA2p Y N 3 3385 .5831 84.13 3422 3438 3391 | 30901 .5708  73.11
GQLSB Y v 3 3355 .5859 83.80 3502 3408 3361 29539  .5850  73.43
SBnoA Y N 2 3454 5768 84.29 3480 3489 3458 | 30613  .5738  72.59
SBnoF Y N 1 3586 .5648 84.43 3604 3604 3588 | 32169  .5578  71.61
GQLBnoS Y v 3 3721 .5528 78.59 3847 3773 3727 33274 5467  69.47
GQLSnoB Y v 3 3712 .5536 76.66 3843 3764 3718 | 31501  .5646  70.12
GQlnoSnoB |y v 3 4253 5079 69.14 4292 4305 4259 | 35376  .5262  66.60
GaL N Y 3 5590 .4104 65.10 5994 5643 5596 | 49282  .4089  53.20
aL N Y 2 5960 .3869 44.92 7755 5995 5964 | 59734 3382  48.78
Clocks Y N 2 5249 .4333 70.92 5841 5284 5253 | 47504  .4223  58.71
RandsS Y N 1 4607 .4800 69.43 4621 4624 4609 | 39488  .4884  63.73

! Resetting action values at the beginning of each new problem (Yes or No)
2 Reinforcement Learning (RL) mechanisms or not

3 Number of free meta-parameters

* Negative Log Likelihood

> Normalized Likelihood over all trials

8 percentage of trials where the model correctly predicted monkey choice
7 Log of Posterior Probability

8 Bayesian Information Criterion

% Akaike Information Criterion
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FIGURE LEGENDS

Figure 1. Task, recording sites, and trial epochs for analyses. (A) Problem Solving task. Monkeys had
to find by trial and error which target, presented in a set of four, was rewarded. Trial: description of
events in a trial (see methods). A juice reward is delivered if the trial was correct while only a blank
screen is presented for errors. Problem: In each trial the animal could select a target until the solution
was discovered (search period). Each block of trials (or problem) contained a search period and a
repetition period during which the correct response was repeated at least three times. A Signal to
Change (SC) is presented on the screen to indicate the beginning of a new problem. (B) Recording
sites for LPFC (grey spots) and dACC (black spots) for the two monkeys. dACC recordings covered a
region in the dorsal bank of the anterior cingulate sulcus, at stereotaxic levels superior to A+30, i.e.
rostral levels of the mid-cingulate cortex. Recording sites in LPFC were located on the posterior third

of the principal sulcus. (C) Target identifications and definition of epochs used for single unit analyses.

Figure 2. Model-based behavioral analyses. (A-left) lllustration of the trial by trial evolution of action
values after meta-parameters optimization so that the model behaves similarly to the monkey.
Sample data presented for 100 successive trials. The barcode on the top indicates the current correct
target. Each of the 4 targets is associated to one grey level. Head arrows represent the Signal to
Change (SC) presented at the beginning of each new problem. The second barcode indicates the
target selected by the animal in each trial. The third barcode indicates the target selected by the
model based on the feedback obtained by the animal. Variation of action values for each of the 4
targets are represented by curves. The high learning rate (a=0.9) that resulted from the optimization
produced sharp variations of action values. The data are presented for two models (SBnoA and
GQLSB). (A-middle) Proportion of shifts after SC for monkeys M and P. (A-right) Proportion of
selection of each target in the first trial of each problem across sessions of recordings. Each line
represents one target position. (B) Reaction times (RT) measured in two monkeys averaged for typical
optimal problems: those where the monkey made 2 errors (INC1 and INC2) during the search period,
found the correct target (CO1) in the third trial, and repeated the correct choice from 3 to 7 times
(CO2 to CO8), depending on the problem's length, during repetition trials. **: p<0.005, ***:p<0.001.
(C) Percentage of errors made by the animal during the repetition periods against the exploration rate
Br of the repetition periods. One data point per session. (D) Scores obtained by each tested model
during the model comparison analysis (see methods). Opt -LL = negative log-likelihood on the
optimization dataset. -LPP = negative log of posterior probability. BIC = Bayesian Information Criterion.

AIC = Akaike Information Criterion. Test -LL = negative log-likelihood on the test dataset. (E)
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Distribution of exploration meta-parameters obtained after optimization of the model on monkey's

behavior using distinct degrees of freedom during the search period (Bs) and the repetition period

(Br)-

Figure 3. Variations of early-delay activity and choice selectivity. (A-top) Proportions of dACC and
LPFC cells with a higher activity during search or repetition. (A-bottom) Proportions of dACC and LPFC
cells with a higher choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in
grey) in average unit activity between search (Sea) and repetition (Rep). The histograms represent the
distribution of indices of variation of activity from search to repetition computed in the early-delay
epoch with equation (9) in dACC and LPFC neurons. Grey bars represent neurons with significantly
different activity between search and repetition trials (Kruskal-Wallis test, p < 0.05). White bars
represent neurons with non-significantly different activity in search and repetition. (C) Increase of
choice selectivity from search to repetition in the two structures. Stars indicate statistically significant
comparisons *: p<0.05, **: p<0.01. (D) Compared to dACC neurons (grey bars), a higher proportion of
LPFC neurons showed significant mutual information between the early-delay average firing rate and
the animal's choice. Dashed grey and black lines represent the medians for dACC and LPFC

respectively.

Figure 4. Early-delay choice selectivity varies with exploration level. (A). The average choice
selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped
according to the fitted model's exploration meta-parameters for repetition (Bg). The average
population index is measured for search (grey bars) and repetition (white bars) trials in the early-delay
epoch, separately for sessions where Bz was inferior or superior to 5. Stars indicate statistically
significant comparisons. *: p<0.05. (B). Proportion of dACC and LPFC early-delay choice selective
neurons during repetition periods of sessions where BR was small (<5) or large (>5). Only LPFC

revealed a significant change in proportion.

Figure 5. Two examples of action value neurons. (A) dACC unit negatively correlated with the value
of target #4. (Top) plot of single trial activity (black dots) measured in the post-target epoch against
the Q-value, for trials where the animal chose target 4. Large grey dots represent the average for one
decile of the value distribution and are just used for illustration. The dashed line represents the linear
regression computed from single trial data. (Middle) peri-stimulus histograms aligned on target onset
(Target ON) and the corresponding raster plots for trials in which the animal chose target 4 (in black)

and for the other trials (in grey). The post-target epoch is represented in grey on the time line.
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(Bottom) trial by trial evolution of the average activity measured in the post-target epoch during
successive trials in a session. The upper grey barcode represents the correct target to be chosen (4
greys for 4 target positions; corresponding target number is indicated above the bar code). The
second barcode represents the target chosen by the animal in each trial. Below, the graph represents
the average activity for each trial and, the trial by trial evolution of key model variables. Grey areas
represent trials where the animal selected target #4. See main text for details. (B) LPFC neuron with a

positive correlation with the value of target #2 during the post-target epoch. Conventions as in A.

Figure 6. Proportions of dACC and LPFC cells with activity correlated with one of the model
variables (Q, 8, and U) in one of the 9 trial epochs (bars from left to right: pre-start, delay, pre-
target, post-target, pre-touch, pre-feedback, early-feedback, late-feedback, ITl). The white and black
arrow heads indicate touch and feedback respectively. There were more LPFC cells correlated with
one of the action-values (Q, in A). In B and C, 6+ or &- represent respectively positive and negative
correlations with 6. A higher proportion of dACC cells were either positively or negatively correlated
with & (6+ or 6-) compared to LPFC. These cells mostly responded during post-feedback epochs, and
very few cells retained a trace of the previous 6 during the beginning of the next trial (pre-feedback
epochs). There were more U cells in dACC than in LPFC (in D). See text for details. E. Proportion of

cells, for each epoch, showing a significant correlation with at least one model variable.

Figure 7. Six examples (A-F) of unit activity correlated with some of the model's variables. Line
graphs represent average activity aligned on feedback (FB), trial start, or target onset. The grey
intensity of lines corresponds to the different trial types as described in the bar graphs below. The
grey zone on each time axis represents the epoch used for average measures displayed in the bar
graph. Bar graphs represent, for each unit, the average activity measured in the time epoch for the 6
trial types of a typical problem. The trial types in search are: seal (first error trial, black), sea2 (second
error trial, dark grey), sea3 (third trial in search for activity measured before feedback, grey), and CO1
(first correct trial for activity measured after the feedback, grey in A, B, and E). Trial types in repetition
are CO2, CO3, and CO4 (light grey). (A) example of dACC activity negatively correlated with RPE (6-).
(B) example of LPFC activity negatively correlated with RPE (6-). (C) example of LPFC activity
correlated with U. (D) example of dACC activity negatively correlated with U. (E) example of dACC
activity positively correlated with RPE (6+). (F) example of activity discriminating search and repetition

but with a different profile than U.
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Figure 8. Multiplexing of information and variations during epochs in dACC and LPFC. (A) A principal
component analysis was performed on the regression coefficients found for each neuron and for each
model variable (Q: the action value of the animal's preferred target, §, and U; Model GQLSB2pB). The
absolute value of the eigen values for each principal component computed during the early-feedback
epoch are shown in each matrix for one trial epoch. Black denotes strong weights. Data are presented
for each monkey M and P. (B) Evolution of the entropy-like factor on regression coefficients computed
for 2 variables Q and U, and Q and &. A * indicates a statistically significant difference between dACC
(in grey) and LPFC (in black). (C) Proportion of total variance explained by each model variable over

the 3 PCs for dACC and LPFC data along trial epochs. See main text for details.

Figure 9. Variations of choice selectivity in &-cells. (A) Example of a LPFC cell responding after errors
(activity negatively correlated with & in the late-feedback epoch) and showing an increase in choice
selectivity at the beginning of trials. Left: error trials are illustrated in grey, correct trials in black.
Right: trials are grouped by chosen targets. 4 grey curves for 4 target locations. (B) Percentage of
dACC and LPFC 6-cells showing a significant increase in choice selectivity from search to repetition. (C)
Averaged population activity (50 ms bins) of all dACC (left) and LPFC (right) units negatively correlated
with 8. For each cell, the activity was averaged separately for trials in which the animal selected the
cell's preferred target (black plain line), the second preferred target (black dashed line), the third (gray
dashed line) or the least preferred target (gray plain line). The activity is represented in 3s windows
centered on the feedback time (FB, Left) and on the next trial start (ST, Right), for search trials (Top)
and repetition trials (Bottom). In LPFC, negative 6 cells showed an increase in choice selectivity in the

post-start epoch of repetition trials.
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dACC | LPFC

Multiple regression analysis
Q cells 227 (39%) 126 (54%)
RPE cells 252 (44%) 69 (30%)
U cells 206 (36%) 48 (21%)
Cells w. multiple correlates 218 (38%) 75 (32%)
Cells w. single correlates 179 (31%) 70 (20%)
Cells without correlation 179 (31%) 87 (37.5%)

Cells w. correlates without other effect 78 (14%) 20 (9 %)

Mutual Info analysis

Analysis on all cells
Cells with M.l. < 0.1
Cells with M.l. > 0.1

Restrictive analysis (requiring a large number of samples)
Excluded cells (not enough trials)

409 (71%)
167 (29%)

461 (80%)

145 (62.5%)
87 (37.5%)

159 (69%)

Included cells with M.I. < 0.1 111 (19%) 56 (24%)
Included cells with M.I. > 0.1 4 (1%) 17 (7%)
M.1. cells without other effect 0(0%) 0(0%)
SEA-REP activity variation analysis
SEA<REP cells 96 (17%) 20 (9%)
SEA>REP cells 116 (20%) 39 (17%)
Non signif. variation cells 364 (63%) 173 (75%)
SEA<>REP cells without other effect 22 (4%) 4(2%)
SEA-REP choice selectivity analysis
SEA only selective cells 60 (10%) 12 (5%)
REP only selective cells 162 (28%) 83 (36%)
Both SEA and REP selective cells 64 (11%) 60 (26%)
Non selective cells 290 (50%) 77 (33%)
Choice selective cells without other effect 27 (5%) 13 (6%)
Non task-related cells 61(11%) 38 (16%)
TOTAL number single units analysed 576 (100%) 232 (100%)

SUMMARY TABLE




A High covariation between regression coefficients for Q and &
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Figure S1. Simulations testing the effect of covarying variables. 6 ensembles of virtual data were created with covariations of coefficients of
regressions (found with the multiple regression analysis cell x model variables) associated to Q and 8, and for which the coefficients associated
to U are independant and represent a uniform noise (across the entire Z axis). The 6 data sets illustrate (from left to right, and from top to
bottom):
- case of strong covariation between coefficients for Q and 8, and weak reg coefficients associated to U (between 0 and 1)
- case of strong covariation between coefficients for Q and 8, and medium reg coefficients associated to U (between 0 et 100)
- case of strong covariation between coefficients for Qand 8, and strong reg coefficients associated to (between 0 et 1000)
- case of weak covariation between coefficients for Qand 5, and weak reg coefficients associated to U (between Oand 1)
- case of weak covariation between coefficients for Qand 3, and medium reg coefficients associated to U (between 0 et 100)
- case of weak covariation between coefficients for Qand §, and strong reg coefficients associated to (between 0 et 1000)

Foreach of the 6 cases 3 graphs are shown from top to bottom: - distribution of coefficients of regression for each of the 576 simulated
cell data (one point per cell), - a matrix of the Principal Components (PC) for the three model variables (as in figure 8A), - the ELI (entropy-like
index) measured on the absolute value of the Z-scores of the coefficients of regression associated to d and Q.

These analyses show that the strength of correlation with model variables is reflected in the order of the principal components. They
also show that strong covariation between regression coefficients for two different model variables results in principal components expressed
as a function of both variables with nearly equal strength. These are the characteristics that are expected from the Principal Component
Analysis applied to real neural datain dACCand LPFC.
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Figure S2. Distributions of Beta with model SBNoA and comparisons betwen GQLSB and SBnoA. A. Distribution of exploration
meta-parameters obtained after optimization of the model on monkey's behavior using distinct degrees of freedom during the
search period (B;) and the repetition period (B;). B. Comparisons of optimal s obtained with SBnoA and GQLSB for one [ versions,
and 2 B versions. C. Distributions of meta-parameters (a., f3, k) over sesssions as obtained with the two models SBnoA and GQLSB,
with one or 2 f3 as indicated on the figures. Green is for SBnoA, orange for GQLSB. Overall the figures shows the high similarity
between the two modelsin their capacity to describe behaviour.
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Figure S3. Variations of early-delay activity and choice selectivity - data for each monkey (M and P). (A-top) Proportions of dACC and
LPFC cells with a higher activity during search (Sea) or repetition (Rep). (A-bottom) Proportions of dACC and LPFC cells with a higher
choice selectivity during Sea or Rep. (B) Number of cells with significant changes (in grey) in average unit activity between search (Sea)

and repetition (Rep). (C) Increase of choice selectivity from search to repetition in the two structures. Stars indicate statistically
significant comparisons *: p<0.05, **: p<0.01. (D) Mutual information between the early-delay average firing rate and the animal's

choice. Dashed grey and black lines represent the medians for JACC and LPFC respectively.
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Figure S4. A. Choice selectivity and exploration level. Data computed using the SBNoA23 model (Left), and proportion of dACC and
LPFC early-delay choice selective neurons during repetition periods of sessions where B, was small (<5) or large (>5) (obtained with
model SBNoA2f- Right). B. Choice selectivity depending on exploration level using model GQLSB 2 Beta for each monkey (M and
P). The average choice selectivity index is presented for units recorded in dACC (top) and LPFC (bottom), in sessions grouped
according to the fitted model's exploration parameters for search (B;) and repetition (B,). The average population index is measured
for search (grey bars) and repetition (white bars) trials in the early-delay epoch, separately for sessions where B, was inferior or
superior to 5, and for sessions where B, was inferior or superior to 5. Stars indicate statistically significant comparisons. *: p<0.05.
When separating the data for the two monkeys, no significant effect was found in dACC for neither monkeys (Kruskal-Wallis test with
Bonferronicorrection, p >0.05), a significant effect of B, was found in Monkey M LPFC (Kruskal-Wallis test with Bonferroni correction,
p<0.05),and atendency, although non-significant, was found in Monkey P LPFC.
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Figure S5. Proportions of dACC and LPFC cells with activity correlated with one of the model variables (Q, 6, and U) using 4 different
models. The GQLSB model (A), and the SBNoA model (B) with 1 or 2  parameter. (top and bottom). The GQLSB 23 is the model used for
furtheranalyses and presented in main figure 6.
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Figure S7. Three examples of unit activity from figures 7A (A), 7C (B) and 7D (C) correlated with some of the model's variables. (A) example
of dACC activity negatively correlated with RPE (&-). (B) example of LPFC activity correlated with U. (C) example of dACC activity negatively
correlated with U. (Top) plot of single trial activity (black dots) measured in the late feedback (A) and post-Sart (B, C) epochs against RPE and U
values respectively. Large grey dots represent the average for one decile of the value distribution and are just used for illustration. The red line
represents the linear regression computed from single trial data. (Middle) peri-stimulus histograms aligned on feedback (A), Target Onset (B),
and Start (C) and the corresponding raster plots for trial types indicated on the figures. (Bottom) trial by trial evolution of the average activity
measured in the relevant epoch during successive trials in the session. The upper grey barcode represents the correct target to be chosen (4
greys for 4 target positions). The second barcode represents the target chosen by the animal in each trial. Below, the graphs represent the
average activity for each trial and the trial by trial evolution of key model variables.
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Figure S8. The two exemples from figures 7E (A) and 7F (B) correlated with some of the model's variables. (A) example of
dACC activity positively correlated with RPE (6+). (B) example of activity discriminating search and repetition but with a different
profile than U; profile labelled EL for Error Likelihood. (Top) plot of single trial activity (black dots) measured in the early feedback
(A) and post-target (B) epochs against RPE and EL values respectively. Large grey dots represent the average for one decile of the
value distribution and are just used for illustration. The red line represents the linear regression computed from single trial data.
(Bottom) peri-stimulus histograms aligned on feedback (A) and Target Onset (B) and the corresponding raster plots for trial types
indicated on the figures. Other conventions asin FigS7.
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Figure S9. Analyses of colinearity. Evaluation of the degree of collinearity between regressors used in the multiple regression analysis of single-
unit activities as a function of model variables. (Left) Model GQLSB2 with the reward function used throughout the paper (1 in case of
success, -1 in case of failure); (Middle) Control model with randomly generated regressors; (Right) Model GQLSB2f3 with a different reward
function (1 in case of success, 0 in case of failure). For each recording session (308 in total) and for each regressors (7 in total), the figure shows
the degree of collinearity measured when expressing the regressor as a function of the 6 other regressors for that session.

The histograms on top show the variation inflation factors (VIF) computed with the coefficient of determination obtained when each regressor
was expressed as a function of the other regressors. The middle figure shows the condition indexes (CONDIND) obtained in the same analysis.
The bottom figure shows the number of variance decomposition factors (VDF) superior or equal to 0.5 obtained for each recording session.

The figure shows that the GQLSB2f3 model used throughout the paper (Left) displayed a strong collinearity between regressors only for 1/308
session (condind>=30 and more than two VDPs > 0.5) and a moderate collinearity only for 1/308 session (condind>=10 and more than two
VDPs > 0.5). All other sessions showed a weak collinearity between regressors. In contrast, when the same model is used with a reward
function equal to 1 for correct trials and 0 for error trials, collinearity is strong for 5/308 sessions and moderate for 284/308 sessions. As a
control, amodel with randomly generated regressors shows weak collinearity in 100% simulated sessions.
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Figure $10. Multiplexing of information and variations during trials in dACC and LPFC - Data given for model SBNoA2p.
(A) A principal component analysis was performed on the regression coefficients found for each neuron and for each
model variable (Q: the action value of the animal's preferred target, 6, and U). The absolute value of the eigen values for
each principal component computed during the early-feedback epoch are shown in each matrix for one trial epoch. (B)
Top. Proportion of total variance explained by each model variable over the 3 PCs for dACC and LPFC data along trial
epochs. Bottom. Comparison between models GQLSB23 and SBnoA2f of an entropy-like index computed on the set of %
variance explained by each model variable in each trial epoch (data from part A). A kruskal-Wallis test indicated a higher
entropy in LPFC than in dACC (marginal significance for model GQLSB2; strong significance for model SBnoA2p). See
main text for details.
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Abstract

Traditionally, dopamine neurons are hypothesized to encode a reward prediction error which is used in temporal difference
learning algorithms. This hypothesis is based on numerous studies that qualitatively analyzed the activity of dopamine neurons
during learning. However, the exact nature of such signal is still unclear, notably when the task involves multiple choice. In order
to further investigate the parallel between these two information, we simulated standard temporal difference algorithms in a multi
choice task, which has been used for electrophysiological recordings of dopamine neurons, in order to investigate their ability
to reproduce the pattern of previously recorded dopamine signal. We used a quantitative method that enables direct comparison
between simulated reward prediction error signal and dopamine activity. Our results indicate that the dopaminergic signal could not
be accurately reproduced by a pure reward prediction error signal and seems to embody value function information. Furthermore
we show that the information carried out by dopamine neurons seems to be at least partly dissociated from behavioral adaptation.

1. Introduction

During the 90’s, the work of Schultz and colleagues [18, 27,
30, 36] has led to major progress in understanding the neu-
ral mechanisms underlying the influence of feedback on learn-
ing. In these studies, the activity of dopaminergic (DA) neu-
rons exhibited four key properties of the reward prediction er-
ror (RPE) signal used in so-called Temporal Difference (TD)
machine learning algorithms [10, 37, 39]: (1) they responded
to unexpected rewards; (2) they responded to reward predict-
ing cues (conditioned stimuli, CS); (3) they did not respond to
expected rewards; (4) they showed a decrease in activity in re-
sponse to omission of an expected reward. This RPE signal acts
as a teaching signal, allowing TD learning algorithms to learn
to predict future rewards based on current state and action. Us-
ing this signal, algorithms update their prediction of reward and
eventually learn to predict the amount of reward they should get
in the future. Considering the strong connectivity between the
DA system and the basal ganglia known for its action selection
properties [30], DA has thus been thought to be the neural sig-
nal that help us to adapt our behavior based on trials and errors.

This hypothesis has been confirmed and extended by numer-
ous studies showing the relevance of TD learning algorithms
to the mechanisms of action selection and behavioral adapta-
tion involving DA neurons and the basal ganglia [2, 13, 33, 40].
However, the precise information encoded by DA signals re-
mains unclear. One reason for this is that DA activity has been
primarily recorded during tasks where the animal is passive,
thus the results cannot reveal the link between this signal and
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the choice of an action. This is important because different TD
learning algorithms treat the importance of behavior or actions
differently. More recent electrophysiological studies have ad-
dressed this issue, measuring DA activity during multi-choice
tasks. However, these studies arrived at divergent conclusions
concerning which algorithm best explains the influence of ac-
tion on DA activity. One approach found that DA activity re-
flected future choices [31, 32] consistent with predictions of
Sarsa algorithms, while another approach found that DA ac-
tivity reflected the best available option irrespective of future
choices [6, 8, 34], consistent with predictions of Q-learning.
Addition to the confusion, the known anatomy of the basal gan-
glia suggests an architecture closer to the Actor-Critic [20].

In this study, we aimed to resolve these issues by analyz-
ing more precisely and more quantitatively the information en-
coded by DA neurons, using a dataset from one of these above
studies. In this study by Roesch et al. 2007 [34], DA neurons
were recorded in rats cued to choose between two actions lead-
ing to differently delayed and sized rewards (Fig. 1). During
some trials, termed free-choice, two different rewards were ac-
cessible, and the rats had to learn to choose the action leading
to the most attractive reward. After a few trials, rats were able
to choose the immediate or the big reward more often than the
delayed or small reward. Prior analyses of the main character-
istics of DA neurons’ activity averaged over post-learning trials
[34] suggested that the DA signal pattern looked similar to the
RPE computed by the Q-learning algorithm: the amplitude of
response to the cue in free choice trials was the same no matter
the value of the action actually performed by the animal, and
this amplitude was not different from the maximal amplitude
observed during forced choice trials.
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Figure 1: Description of the task of Roesch et al. 2007. A. Each session is
composed of 4 different blocks. Each block has a different contingency and
block changes are unsignalled. The first two blocks are the delay blocks. In
the first one, the short reward is delivered in the left well and the long reward
is delivered in the right well. The second block has the opposite contingency.
Blocks 3 and 4 are the size blocks. In block 3, the big reward is delivered in the
left well and the small reward in the right well. Block 4 has the opposite con-
tingency. B-C. Animal’s behavior recorded during the size and delay reversal
respectively. In grey are represented the trials from which DA activity has been
recorded.

However, a closer examination of the Figures of [34] re-
veals other characteristics that are inconsistent with the RPE
hypothesis: the post-learning DA response to expected reward
is higher than response to the cue (unlike an RPE signal that
would have already converged), and there is no dip in DA re-
sponse to smaller than expected rewards in some trial blocks.
While the main characteristics of DA response seem consis-
tent with an RPE signal, the latter characteristics appear to bet-
ter correspond to a value function. Therefore, in this study,
we performed systematic simulations of the main candidate re-
inforcement learning algorithms and extracted both RPE and
value information in order to test whether DA activity reflects
a pure RPE signal, a pure value signal or a mixture of the two.
Interestingly models with only a pure RPE signal failed to re-
produce the observed DA activity patterns, showing the limit of
the link between DA activity and the RPE signal calculated by
TD learning algorithms.

We also tested the importance of behavior in explaining the
firing of the DA neurons. We found that constraining the al-
gorithms to fit both behavior and DA activity degraded the fit
between the models and the neural activity patterns. In con-
trast, releasing the constraint to fit behavior enabled a mixture
of value and RPE calculated by the Actor-Critic model to fit DA
activity well. Overall these results suggest that a more complex
interaction between learning to predict reward and behavioral
adaptation, such as that proposed in dual learning system mod-
els [7, 22], is required to reproduce the DA activity observed in
Roesch et al. [34] work.

2. Material and methods

2.1. Experimental procedure

In this task, rats perform blocks of trials where they must
learn to choose the best option between two wells delivering
various rewards (see Figure 1). In blocks 1 and 2 called delay
blocks, one well is associated with an immediate reward (short

option), the other one with a delayed reward (long option). In
order to prevent the animal from giving up if it experiences a
sudden high delay, the duration of the long option is progres-
sively increased: 1 sec at the first trial where the animal selects
the long option, 2 sec at the second trial, until 7 sec maximum.
In contrast, if it chooses more than 8 times over the last 10 trials
the path to the short option, then the delay for the long reward
is shortened. In blocks 3 and 4 called size blocks, one well is
associated with a large reward (big option), the other one with a
small reward (small option; see Figure 1). Blocks are organized
so that the best option is alternatively left or right: e.g. left =
short during block 1, left = long during block 2, left = big dur-
ing block 3, left = small during block 4. Block changes are
not signalled, forcing rats to learn to switch their preferred well
from their own errors. Thus, in each block, rats must choose
between the left and the right well, and learn by trial and error
which well conveys the best benefit/cost ratio (i.e. big reward
in the size case and short term reward in the delay case).
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