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Evolvability signatures of generative encodings:
beyond standard performance benchmarks

Danesh Tarapore and Jean-Baptiste Mouret∗

Evolutionary robotics is a promising approach to au-
tonomously synthesize machines with abilities that resem-
ble those of animals, but the field suffers from a lack
of strong foundations. In particular, evolutionary sys-
tems are currently assessed solely by the fitness score their
evolved artifacts can achieve for a specific task, whereas
such fitness-based comparisons provide limited insights
about how the same system would evaluate on different
tasks, and its adaptive capabilities to respond to changes in
fitness (e.g., from damages to the machine, or in new situa-
tions). To counter these limitations, we introduce the con-
cept of “evolvability signatures”, which picture the post-
mutation statistical distribution of both behavior diver-
sity (how different are the robot behaviors after a muta-
tion?) and fitness values (how different is the fitness after
a mutation?). We tested the relevance of this concept by
evolving controllers for hexapod robot locomotion using
five different genotype-to-phenotype mappings (direct en-
coding, generative encoding of open-loop and closed-loop
central pattern generators, generative encoding of neural
networks, and single-unit pattern generators (SUPG)). We
observed a predictive relationship between the evolvabil-
ity signature of each encoding and the number of genera-
tions required by hexapods to adapt from incurred dam-
ages. Our study also reveals that, across the five inves-
tigated encodings, the SUPG scheme achieved the best
evolvability signature, and was always foremost in recov-
ering an effective gait following robot damages. Over-
all, our evolvability signatures neatly complement exist-
ing task-performance benchmarks, and pave the way for
stronger foundations for research in evolutionary robotics.

1 Introduction

Evolutionary robotics (ER) is a promising approach to
achieve one of the prominent long-term goals of artificial in-
telligence research: creating machines with the adaptive and
cognitive abilities of animals. Since the eighties, the ER field
has made amazing progress to both design sophisticated
artifacts and to endow machines with impressive adaptive
abilities. For instance, it allows for the automated construc-
tion of modular, three-dimensional, physically locomoting
robots, (Hornby et al., 2003), to synthesize neural networks
to control robot behaviors (e.g., Lehman and Stanley (2011b);
Mouret and Doncieux (2012); Kubota (2005); Santos et al.
(2001)), and discover a multitude of walking gaits for mul-
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tilegged robots following unforeseen mechanical damages
(Bongard et al., 2006; Koos et al., 2013; Cully and Mouret,
2013). However, even the most advanced evolved artifacts
are still far behind the state of the art in mainstream robotics
(Kajita and Espiau, 2008; Bongard, 2013): conventionally en-
gineered robots are capable of operating successfully in a
wide variety of indoor and outdoor environments (e.g., lo-
comotion with the BigDog quadruped robot, Raibert et al.
(2008)), whereas the best evolved robots are still only capa-
ble of simplistic behaviors (e.g., walking in a straight line
on a flat terrain, or avoiding obstacles in an enclosed in-
door arena). To progress further, ER needs to go beyond
the mere “stamp collecting” of proofs of concept, evident in
the infancy of many scientific fields (Hayes, 2004), and build
strong theoretical and methodological foundations for future
research. The objective of the present study is to move in this
direction.

In most ER studies, fitness comparison is the main instru-
ment used to compare different evolutionary systems and
assess their progress. Such a benchmark-based comparative
approach has led to incremental improvements in the robot’s
performance in specific tasks (e.g., for multilegged robot lo-
comotion, the inclusion of evolved gaits on the commercial
release of Sony’s AIBO Hornby et al. (2005); Valsalam and
Miikkulainen (2008), and the progressive improvements in
walking speed of the QuadraBot Yosinski et al. (2011); Lee
et al. (2013)), and is sufficient if excelling at the given func-
tion is the ultimate goal for the robot. Nonetheless, if the
evaluated task is treated as a tool to compare different evo-
lutionary systems, and as a stepping stone to harder prob-
lems, then a mere comparison of performance does not suf-
fice. This is because such a methodology of comparison only
provides a very limited amount of information about the be-
havior of the system. In particular, it does not provide any
insights on, (i) how efficiently does the evolutionary process
explore the search space (e.g., can it also lead to solutions
for other similar tasks, or is it biased to the type of solutions
useful only for a very specific task?), and (ii) what capabil-
ities are provided to the evolved population to respond to
novel situations (e.g., an unexpected breakage of the multi-
legged robot’s limbs, or changes to its weight distribution).
Furthermore, while adaptive evolutionary systems utilize a
variety of population-diversity maintenance methods to op-
erate in changing environments Jin and Branke (2005), they
are mostly concerned with numerical optimization prob-
lems (e.g., Morrison and De Jong (1999)), and constrained
to fitness-based indices to evaluate available approaches We-
icker (2002). In summary, there is a need for additional met-
rics when comparing evolutionary systems, especially if one
is interested in the adaptive abilities provided by evolution.
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In benchmark-based comparative approaches, the fitness
value in an evolutionary system is often used as a proxy
for the evolvability provided by the system Gruau (1994);
Komosiński and Rotaru-Varga (2001); Hornby et al. (2003);
Clune et al. (2009a) — the capacity of the evolved popula-
tion to rapidly adapt to novel environments Hu and Banzhaf
(2010). However, such a fitness-based proxy provides lit-
tle information on the potential of the evolutionary sys-
tem to generate novel phenotypes, and consequently rapidly
adapt to new, untested environments. While fitness land-
scape models can provide interesting insights on search diffi-
culty in the Genotype-to-Fitness map (Provine, 1989; Wright,
1932), the models 3D landscape can be deceptive when an-
alyzing highly multidimensional genotypes (Kaplan, 2008;
Gavrilets, 1997; McCandlish, 2011). Additionally, in NK fit-
ness landscape models (Kauffman, 1993; Tomassini et al.,
2008), the value of K that controls the degree of epistasis
is not easily transferable to more complex and open-ended
Genotype-to-Fitness mappings. Also, the individual solu-
tions in all these models are positioned in the landscape
solely based on their measured fitness. In the present paper,
to counter the limitations of the fitness measure, we intro-
duce a new evolvability metric that features both the qual-
ity and quantity of phenotypic variation following genetic
change. With this new metric, we can visualize evolvability
in the behavior-diversity/performance space and predict the
performance of the population in previously untested envi-
ronments1. Such predictive insights on the adaptive char-
acteristics of evolved individuals is particularly important,
since it is difficult if not impossible to consider and evaluate
a priori every possible scenario the robot may encounter dur-
ing its operation. We employ our new approach to “signa-
turize” evolvability to compare many different encodings of
controllers extracted from the literature. Numerous encod-
ings have been proposed in ER, taking inspiration from nat-
ural developmental processes, in particular, to evolve con-
trol systems for robots (e.g., Gruau (1994); Kodjabachian and
Meyer (1998); Clune et al. (2009a); Cheney et al. (2013); Lee
et al. (2013); Lewis et al. (1992); Morse et al. (2013)). Given
the multitude of available encodings, it is crucial to compare
them and understand their differences, so that the ER com-
munity can focus on the most promising ones. In the selec-
tion of encodings investigated in our study, both direct and
generative schemes are considered. Direct encodings encom-
pass a one-to-one mapping between genes and phenotypic
traits, and are the simplest form of encoding thus serving as
a reference for comparison (e.g., Koos et al. (2013)). We also
evaluate the more complex generative encodings character-
ized by a one-to-many mapping between genes and pheno-
typic traits, i.e., a single gene describes several phenotypic
traits (Stanley and Miikkulainen, 2002; Stanley, 2007). These
state of the art encodings are expected to exploit geomet-
ric information of the robot morphology to generate regular
and modular phenotypic patterns (e.g., (Stanley et al., 2009;
Clune et al., 2011; Morse et al., 2013)).

Overall, we investigate five encodings for the classical
ER problem of legged robot locomotion Lewis et al. (1992);
Gruau (1994); Hornby et al. (2005); Clune et al. (2009a); Bon-
gard et al. (2006); Clune et al. (2009b, 2011); Yosinski et al.
(2011); Koos et al. (2013); Lee et al. (2013): (1) open-loop cen-
tral pattern generator (CPG) evolved with a direct encoding,

1A preliminary study on our approach to visualize evolvability is pub-
lished in a conference paper Tarapore and Mouret (2014).

(2) open-loop CPG based on non-linear oscillators Crespi
et al. (2013), evolved with a Compositional Pattern Genera-
tor (CPPN) Stanley (2007), (3) closed-loop CPG evolved with
a CPPN, (4) artificial neural network (ANN) evolved with
CPPN, inspired by HyperNEAT Stanley et al. (2009); Clune
et al. (2011), and (5) the recently introduced single-unit pat-
tern generator (SUPG) Morse et al. (2013). For all these en-
codings, the pertinent questions are the same: are these en-
codings facilitating evolvability, and are the encoded indi-
viduals capable of adapting rapidly to novel situations? Fur-
thermore, does the inclusion of a sensory feedback mecha-
nism improve the evolvability provided, and the adaptive
capabilities of the individual? To both answer these ques-
tions and evaluate the relevance of our measure of evolvabil-
ity, our experiments are divided into two phases: first, we
compare the evolvability signature obtained with each en-
coding, and consequently predict their adaptability to novel
scenarios, then we evaluate the accuracy of our predictions
by analyzing the ability of each encoding to effectively deal
with the new scenarios (here, when some of the robot’s legs
are damaged).

2 Related work

The section reviews the different Genotype-to-Phenotype
mapping schemes implemented in evolutionary computa-
tion studies. We also review the functional characteristics
of encodings that facilitate evolvability both in natural and
artificial systems, and the empirical methods available to es-
timate evolvability. The encodings compared in this study
are described in detail in Sec. 5.

2.1 Encoding schemes

A mapping from the Genotype-to-Phenotype is a model of
the process that “develops” an individual’s phenotype from
the information available in the genotype (Johannsen, 1911).
In natural organisms, the elaborate and intricate develop-
mental systems comprise intra-cellular mechanisms of tran-
scription and translation of proteins (Freeland and Hurst,
1998; Novozhilov et al., 2007) and regulation of gene expres-
sion (Alberts et al., 1994), and the inter-cellular mechanisms
of cell differentiation and specialization (Michod and Roze,
2001; Grosberg and Strathmann, 2007). Furthermore, these
complex developmental processes are a result of billions of
years of natural selection (Javaux et al., 2010).

Many different genetic encodings have been implemented
in the field of evolutionary computation, from the early
deterministic and fixed Genotype-to-Phenotype mappings
(Friedberg, 1959; Koza, 1992), to the recent, plastic and
more naturalistic schemes (Stanley, 2007; Tonelli and Mouret,
2013). In this review, we broadly classify the available en-
codings based on their degree of genotypic reuse, i.e., the ex-
tent to which genes are allowed to be reused in developing
the phenotype, into direct encodings, and generative or de-
velopmental encodings (for detailed review see Stanley and
Miikkulainen (2003)).

2.1.1 Direct encodings

Direct encodings are characterized by the complete absence
of any genotypic reuse, wherein each gene of the genotype
is utilized at most once to determine the phenotype (Hornby
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and Pollack, 2002). Such a mapping has been used since the
advent of evolutionary computation and genetic program-
ming research (Friedberg, 1959), and is the most widely used
encoding scheme in the field. Moreover, direct encodings
are easy to implement, and have been applied successfully
for the evolution of various robot behaviors such as loco-
motion gaits for multilegged and tensegrity platforms (e.g.,
Lewis et al. (1992); Téllez et al. (2006); Koos et al. (2013); Iscen
et al. (2013)), navigation and obstacle avoidance for wheeled
robots (e.g., Nolfi and Floreano (2001)), body-brain evolution
in artificial life systems (Hornby and Pollack, 2002), and co-
operative foraging in robot swarms (e.g., Waibel et al. (2009);
Dorigo et al. (2005); Kernbach (2013)).

Researchers in evolutionary robotics have recently sought
to evolve increasingly complex artifacts (Eiben, 2014). How-
ever, in using the direct encoding scheme, as the size of the
genotype grows linearly, the possible combination of allelic
values for the genotype (the solution search space) grows
exponentially (Yao, 1999). The consequent scalability prob-
lem prevents the usage of a direct Genotype-to-Phenotype
mapping to evolve solutions for complex problems. For ex-
ample, the human brain consists of approximately 86 billion
neurons and 100 trillion neural connections (Azevedo et al.,
2009), and therefore successfully evolving a directly encoded
in silico brain-like cognitive device is almost surely impossi-
ble.

2.1.2 Generative encodings

Natural systems are much more sophisticated than the state
of the art solutions from artificial evolution. Inspired by the
complexity of biological systems (Lipson, 2007), researchers
have abstracted the underlying developmental processes,
to formulate generative or developmental Genotype-to-
Phenotype maps for artificial systems (e.g., Bongard and
Pfeifer (2001); Komosiński and Rotaru-Varga (2001); Gruau
(1994); Hornby and Pollack (2002); Stanley (2007); Mouret
et al. (2010); Devert et al. (2011)). The generative encodings
can be broadly defined as, encodings that map the genotype to
the phenotype through a process of growth from a simple geno-
type in a low-dimensional search space to a complex phenotype
in a high-dimensional space. These encodings have been ap-
plied successfully to various application problems, from al-
lowing a computer to design antennas for satellites (Hornby
et al., 2006), designing tables (Hornby, 2005, 2004) and cre-
ating tessellating tile shapes (Bentley and Kumar, 1999), to
evolving locomotion gaits for both soft robots (e.g., Ch-
eney et al. (2013)) and conventional multilegged robots (e.g.,
Clune et al. (2009a)).

The many implemented generative encodings are all com-
monly characterized by a one-to-many mapping between an
element of the genotype and many elements of the pheno-
type. In the resulting Genotype-to-Phenotype mappings,
each gene of the genotype encodes for many phenotypic
traits, thus allowing for genotype reuse. Consequent to the
capability of the encoding to reuse parts of the genotype to
affect different phenotypes, generative encodings in compar-
ison to direct encodings, (i) exhibit higher efficiency in repre-
senting complex phenotypes, (ii) operate in a more tractable
solution search space, (iii) scale well to large phenotypic
spaces, and (iv) are capable of generating regular and mod-
ular control architectures (Stanley and Miikkulainen, 2003;
Clune et al., 2009b; Stanley et al., 2009). However, while di-
rect encodings are easy to implement, generative encodings

follow more complex implementations, determined by their
level of abstraction of development.

Existing generative encodings model the underlying nat-
ural developmental processes at several different levels of
abstraction, ranging from the low-level cell chemistry sim-
ulations to the high-level grammatical approaches (Stanley,
2007). The cell chemistry methods simulate the local intra-
cellular and inter-cellular interactions between genes and
protein products, modulated by signals from a gene regu-
latory network (e.g., Furusawa and Kaneko (1998)). These
microscopic approaches are based on the philosophy that the
vital functions that allow development to assemble complex
phenotypes are located in the low-level cellular interactions
occurring in a developing embryo. By contrast, the gram-
matical approaches simulate development with a set of high-
level symbol replacement rules (e.g., Mjolsness et al. (1991)).
These approaches grow a final structure from a single seed
symbol, by the repeated application of grammar rules on
specified target symbols. Consequently, local interactions
and temporal unfolding control the phenotype development
through the grammars (Stanley and Miikkulainen, 2003).

In most studies comparing encoding schemes, the gener-
ative encoded individuals frequently outperform their di-
rectly encoded counterparts for a range of diverse tasks
such as, designing 3D objects (e.g., Hornby (2005); Clune
and Lipson (2011)), game playing (e.g., Reisinger and Mi-
ikkulainen (2007); Gauci and Stanley (2010)), pattern match-
ing (e.g., Clune et al. (2011)), and multilegged robot lo-
comotion (e.g., Hornby and Pollack (2002); Seys and Beer
(2007)). The generatively encoded individuals achieve
a better task performance, and a faster rate of evolu-
tion (e.g., see Gruau (1994); Komosiński and Rotaru-Varga
(2001)). Furthermore, generative encodings also attain a
higher proportion of beneficial genetic mutations (e.g., Clune
et al. (2009a); Reisinger and Miikkulainen (2007)), and are
capable of exploring a larger range of phenotypes from ge-
netic change (e.g., Reisinger et al. (2005); Lehman and Stan-
ley (2013)).

2.2 Evolvability

The process of evolution in natural systems comes from the
cooperation of, (i) exploratory genotypic variation, (ii) the
corresponding phenotypic variation, and (iii) selection op-
erators that preserves the improvements in heritable pheno-
typic traits over previous generations. The crucial coordina-
tion between these three forces yields the evolvability of an
evolutionary system (Alberch, 1991; Hu and Banzhaf, 2010;
Pavlicev and Wagner, 2012).

The first formal definition of evolvability stems from re-
search in computer science. In experiments with opti-
mization algorithms using genetic programming, Lee Al-
tenberg defined evolvability as “the ability of a population
to produce variants fitter than any yet existing” (Altenberg,
1994). In natural evolutionary systems, Kirschner and Ger-
hart (Kirschner and Gerhart, 1998) describe evolvability, also
called evolutionary adaptability, as “the capacity to generate
heritable, selectable phenotypic variation”. Marrow (Mar-
row et al., 1999) considers evolvability as a characteristic
relevant to both artificial and natural evolutionary systems,
and viewed as the capability of a population to evolve. In a
summary of results from both evolutionary biology and evo-
lutionary computer science, Wagner and Altenberg (Wag-
ner and Altenberg, 1996) view evolvability as “the ability
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of random variations to sometimes produce improvements”.
These incremental improvements are critically dependent on
the Genotype-to-Phenotype encoding. Mappings facilitating
evolvability, confer on the individual a robustness to lethal
mutations, and exhibit a modular architecture wherein genes
preferably only affect traits with the same function (Pavlicev
and Wagner, 2012).

Although the concept of evolvability is still very much un-
der discussion, for our study we adopt the definition pertain-
ing to adaptability, and the generation of major phenotypic
breakthroughs Pigliucci (2008); Clune et al. (2013): Evolvabil-
ity is the capability of a population to rapidly adapt to novel and
challenging environments.

The measurement of evolvability conferred by an encod-
ing is a complex and difficult problem. Phenotypic fitness or
task performance is a directly observable measure, and a cri-
teria for selection. However, the potential to generate a better
fitness, evolvability, is a less tangible type of observable and
is more difficult to measure (Hu and Banzhaf, 2010). While
a formal method to quantify evolvability has not yet been
agreed upon in the literature, some empirical methods have
been proposed notwithstanding.

In Gerhart and Kirschner’s theory of facilitated variation
Gerhart and Kirschner (2007), which unifies most earlier
findings of cellular and developmental processes with char-
acteristics of evolvability, the capacity of an individual to
evolve is considered to have two functional components:
(i) to curtail the proportion of lethal mutations; and (ii) to
decrease the number of mutations necessary to evolve di-
verse or novel phenotypes. Nonetheless, most studies mea-
suring evolvability focus mainly on one only of these two
aspects. Most comparisons estimate evolvability solely as
the proportion of mutations that are beneficial to an individ-
ual (e.g., Hornby et al. (2003); Clune et al. (2011); Hornby
and Pollack (2002); Clune et al. (2009a); Reisinger and Mi-
ikkulainen (2007)), and irrespective of the phenotypic nov-
elty of the resultant offspring. In other work, Ibáñez-Marcelo
and Alarcón Ibáñez-Marcelo and Alarcón (2014) characterize
evolvability as the number of viable mutations required to
reach different phenotypes, but do not take into account the
novelty or the amount of diversity between the different phe-
notypes. By contrast, Lehman and Stanley (2011b); Reisinger
et al. (2005); Lehman and Stanley (2013) quantify evolvabil-
ity only on the basis of the amount of phenotypic diversity
resulting from genetic change, usually without considering
the quality of the change. However, both factors are essen-
tial to quantify evolvability, to discount for, (i) mutations that
generate very diverse phenotypes, but prove lethal to the or-
ganism, and (ii) mutations resulting in small increments in
performance that improve on a trait, but may not be able to
generate novel phenotypes. Therefore, for our comparison
between encodings, evolvability is visualized by characteriz-
ing both the nature of the genetic mutation, and the quantity
of generated phenotypic variation.

3 Evolvability signature

In this study, the evolvability provided by a Genotype-to-
Phenotype mapping is described by a distinct signature fea-
turing information on the effect of genetic mutations on
both, the quality of mutated individuals (their viability), and
the quantity of generated phenotypic variation. Our signa-
ture pictures these two features as a statistical distribution

of fitness (quality-feature) and behavior diversity (quantity-
feature), following multiple independent, randomly sam-
pled mutations. The two features are treated separately in-
stead of being combined into a single quantitative measure
of evolvability, to consider the trade-offs between them in
their individual influence on evolvability Deb (2001).

Feature 1: Deleteriousness of mutations. The first feature
in our signature of evolvability is computed as the propor-
tion decrease in the fitness of a mutated individual.

For an individual i and the mutant i′, we have,

f1 =
F ′i − Fi

Fi
(1)

where Fi and F ′i , are the fitness values before and after the
application of a random genetic mutation, respectively.

The feature f1 reflects the behavior quality following ben-
eficial (f1 > 0), neutral (f1 ≈ 0), and deleterious (f1 < 0)
genetic change. Additionally, mutations that prove lethal are
associated with f1 values less than −1, reflecting a 100% or
larger decrease in individual fitness.

Feature 2: Diversity of behaviors. Following the theory of
facilitated variation Gerhart and Kirschner (2007), the sec-
ond feature in our signature of evolvability evaluates the
diversity of phenotypes than can be reached from a given
individual. The phenotype can here be understood in two
ways: in an evolutionary biology perspective, the phenotype
can describe both morphological traits and behaviors Arnold
(1992); Dawkins (1999), whereas in a evolutionary robotics
perspective, only morphological traits are considered to be
parts of the phenotype (e.g., the parameters and the topology
of an evolved networks form the phenotype) Stanley and Mi-
ikkulainen (2003). The distinction between phenotype and
behaviors avoids potential confusions when working on de-
velopmental encodings (genotype-phenotype maps), which
focus on morphological traits, or when working on selective
pressures, which often focus more on the behavior than on
the representation Doncieux and Mouret (2014).

In the present study, we focus on the diversity of behav-
iors, as done in evolutionary biology, because it best dis-
tinguishes promising individuals from the poor perform-
ers when evolving robot controllers Lehman and Stanley
(2011a); Mouret and Doncieux (2012). For instance, all the
neural-networks that are not connected to the robot’s actu-
ators lead to the same stopped-robot behavior, whereas the
morphological traits (synaptic parameters and topology of
the neural-network) can be widely different. A second ad-
vantage of looking at behaviors instead of morphological
traits is that the behavior representation can be independent
of the implementation of the controller, thus allowing us to
compare the evolvability of very different controllers like
CPGs, neural networks, and SUPG controllers.

Measuring behavioral differences recently received a lot
of attention in evolutionary robotics because several exper-
iments showed that explicitly encouraging the diversity of
evolved behaviors helps to mitigate the issue of premature
convergence Mouret (2011); Mouret and Doncieux (2012);
Doncieux and Mouret (2013, 2014). It is also the main driv-
ing force in the Novelty Search algorithm, which leads to
high-performing individuals in deceptive domains by only
searching for novel behaviors and disregarding task-fitness
values Lehman and Stanley (2011a). Following this interest
in measuring behavioral differences, many behavioral diver-
sity metrics have been proposed, ranging from task-specific
metrics (e.g., difference between end points of a robot’s tra-
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jectory), to more task-agnostic measures (e.g., differences in
the robot sensory-motor flow), and various information the-
oretic measures (detailed review in Doncieux and Mouret
(2014) and in Mouret and Doncieux (2012)).

Among the investigated measures, the mutual informa-
tion diversity metric provides a general approach to com-
pute a non-linear, non-monotonic relationship between be-
haviors, that is applicable to numerical and symbolic behav-
ioral representations, both in the continuous and discrete do-
mains Cover and Thomas (1991); Kraskov et al. (2004). For
our signature of evolvability, we compute the behavioral di-
versity as the normalized mutual information between be-
haviors of an individual, before and after its genome is mu-
tated.

Assuming that the behavior of an individual i can be rep-
resented as a discrete vector Bi (details in Mouret and Don-
cieux (2012)), for the behaviorsBi andB′i, of individual i and
mutant i′, we have:

H(Bi) = −
∑

bi∈Bi

p(bi) log p(bi) (2a)

H(Bi, B
′
i) = −

∑
bi∈Bi

∑
b′i∈B

′
i

p(bi, b
′
i) log p(bi, b

′
i) (2b)

f2 = 1− H(Bi) +H(B′i)−H(Bi, B
′
i)

max(H(Bi), H(B′i)
(2c)

where H(Bi) is the entropy of the behavior Bi comprising
the individual states bi with probability p(bi), H(Bi, B

′
i) is

the joint entropy between behaviors Bi and B′i with joint
probability density function p(bi, b

′
i), and f2 denotes the in-

verse of the normalized mutual information between the two
behaviors.

The entropy and joint entropy are computed by first ap-
proximating p(bi) and p(bi, b′i), by counting the number of in-
stances of each behavior state. Systematic errors in the prob-
ability estimates, consequent to the limited number of avail-
able data samples, is compensated for by adding a corrective
term E to the computed entropy: E = (Si − 1) /2T (where
T is the size of the temporal window over which the en-
tropy is computed, and Si is the number of states for which
p(bi) 6= 0), and E = (Si + Si′ − Si,i′ − 1) /2T to the joint en-
tropy (where Si, Si′ , Si,i′ , and T have an analogous meaning
to the previous case). These corrective terms compensate for
the systematic and random errors in the observed entropy
of a series, that systematically bias downwards the expected
value of the observed entropy from the true entropy (derived
in Roulston (1999)). Integrating the corrective term to the
equations for entropy and joint entropy, we have:

H(Bi) = −
∑

bi∈Bi

p(bi) log p(bi) +
Si − 1

2T
(3a)

H(Bi, B
′
i) = −

∑
bi∈Bi

∑
b′i∈B

′
i

p(bi, b
′
i) log p(bi, b

′
i) +

Si + Si′ − Si,i′ − 1

2T

(3b)

Estimates of the corrected entropy (eq. 3a) and joint en-
tropy (eq. 3b) are then used to update the mutual informa-
tion distance between behaviors. The resulting feature f2
represents the quantity of behavioral variation following ge-
netic change, and is indicative of the ability of the evolution-
ary system to produce novel behaviors.

(a) Hexapod robot (b) Kinematic scheme

Figure 1: (a) Snapshot of an 18-DOF simulated hexapod
robot walking on a horizontal surface, with con-
tacts simulated. (b) Kinematic scheme of the robot,
with cylinders representing actuated pivot joints.
The three servos on each leg, s1, s2 and s3, are la-
beled in increasing order of distance to robot torso.

4 Hexapod robot locomotion problem

The evolution of locomotion gaits for multilegged robots
is a classical problem in evolutionary robotics, addressed
in many studies utilizing both direct and generative en-
codings, on bipedal (e.g., Liu and Iba (2004)), quadrupedal
(e.g., Clune et al. (2011); Hornby et al. (2005); Risi and Stan-
ley (2013); Téllez et al. (2006); Valsalam and Miikkulainen
(2008)), and hexapedal robots (e.g., Valsalam and Miikku-
lainen (2008); Zykov et al. (2004); Barfoot et al. (2006)) – em-
ployed here for the comparison of different encodings. In
most existing studies on evolved locomotion gaits, the per-
formance of an individual is analyzed solely by its walk-
ing speed and the required number of generations of evo-
lution. The rate of evolution and evolved performance has
also been linked to evolvability provided by the encoding
scheme, wherein controllers achieving a higher task fitness
and requiring fewer generations to evolve are considered
more evolvable (e.g., see Hornby et al. (2003); Clune et al.
(2009a); Gruau (1994); Komosiński and Rotaru-Varga (2001)).
While these approaches provide interesting insights on the
performance of the Genotype-to-Phenotype mapping, they
largely ignore its capabilities to generate viable phenotypic
variations (diverse gaits in case of legged robots). However,
the diversity of evolved walking gaits is important for the
legged robot to recover rapidly from faults such as, the loss
of one or more limbs, or motor malfunctions (Koos et al.,
2013), and for the robot to adapt to previously unencoun-
tered environmental changes. Furthermore, an efficient re-
covery is particular relevant for hexapedal legged robots,
wherein the probability of component failure is high, con-
sequent to the large number of moving parts.

Hexapod platform details: The hexapod robot is simu-
lated on a flat, horizontal surface (Fig. 1a), with the Open
Dynamics Engine2 (ODE) physics simulator. The robot has
18 Degrees of Freedom (DOF), 3 for each leg (Fig. 1b), and
each DOF is actuated by a single servo. The first servo on
each leg (s1) actuates the horizontal orientation of the leg
within range [−π/8, π/8] radians. The second (s2) and third
(s3) servos control the leg elevation and extension, respec-
tively, each within the range of [−π/4, π/4] radians.

Angular positions are sent to the 18 servos once every

2http://www.ode.org
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15 ms. Furthermore, in order to maintain the last subseg-
ment of each leg vertical (for enhanced stability), the control
signal for the third servo (s3) is always in antiphase to that
of the second servo (s2). Consequently, the robot is reduced
to a 12 DOF system, despite being actuated by 18 motors.

Hexapod gait representation: The behavioral diversity in
our signature of evolvability corresponds to the inter-gait di-
versity in the hexapod robot locomotion problem. For this
diversity, a hexapod gait is represented using a gait dia-
gram (Kajita and Espiau, 2008, p. 379), comprising a binary
matrix C of leg-surface contacts:

Ctl =

{
1 if leg i makes surface contact at time-step t,
0 otherwise.

where t ∈ {0 . . . T}, the gait is evaluated for T time-steps,
and the hexapod legs l ∈ {0 . . . 5}.

The hexapod gait for an individual i is represented by bi-
nary vector Bi, comprising the contacts in C concatenated in
row-major order, Bi = [C00, C10 . . . CT5]. Diversity between
two gaits is measured as the normalized mutual information
between the corresponding gait vectors (eq. 2c).

5 Encoding schemes analyzed

Generative encodings for evolving our hexapod locomo-
tion controllers are based on CPPNs (Stanley, 2007). The
CPPN abstracts the processes of embryonic development by
determining the attributes of phenotypic components as a
function of their geometric location in the individual, in-
stead of simulating complex inter-cellular interactions and
chemical morphogen gradients to determine component lo-
cation (Carroll, 2005). In nature, cells differentiate them-
selves into different lineages, influenced by their immedi-
ate environment (the epigenetic landscape, Goldberg et al.
(2007)). Analogously, the CPPN genome outputs the fate of
an organismal component as a function of its geometric co-
ordinates in the individual.

The CPPN genome is represented as a directed graph,
comprising a set of Sine, Gaussian, Sigmoid, and Linear type of
nodes, connected by weighted links. The node type indicates
the activation function applied to the sum of its weighted in-
puts, to compute the node output. Selected activation func-
tions can succinctly encode a wide variety of phenotypic
patterns, such as symmetry (e.g., a Gaussian function) and
repetition (e.g., a Sine function), that evolution can exploit.
Mutations to the CPPN genome can change the connection
weights and node type, and add or remove nodes from the
graph. Consequently, the topology of the CPPN is uncon-
strained, open-ended, and can represent any possible rela-
tionship between the input coordinates of the phenotypic
component and its output attributes (see details in Stanley
(2007)).

In this study, the CPPN genotype is mapped to four
very different phenotypes to control hexapod locomotion,
open-loop CPGs, closed-loop CPGs, ANNs (minimal Hyper-
NEAT), and SUPGs (summarized in Table 1). The SUPG is a
new type of macro-neuron introduced by Morse et al. Morse
et al. (2013) to genetically encode spatio-temporal oscillatory
patterns.

5.1 Encoding CPGs with CPPNs

A CPG is a biological neural network, comprising a dis-
tributed array of neurons located along the spinal cord of
vertebrates (Frigon and Rossignol, 2006). The spinal neural
centers exhibit rhythmic activity, generating complex high-
dimensional signals for the control of coordinated periodic
movements required for animal locomotion. In recent years,
bio-inspired engineering approaches have led researchers
to model these CPGs as coupled dynamical oscillatory sys-
tems (Ijspeert, 2008), to generate locomotion control policies
for biped (Aoi and Tsuchiya, 2005; Taga, 1994), quadruped
(Righetti and Ijspeert, 2008, 2006; Fukuoka et al., 2003) and
hexapod robots (Ren et al., 2014), as well as modular (Sproe-
witz et al., 2008) and swimming/walking salamander-like
robots (Ijspeert et al., 2007; Crespi et al., 2013).

The design of CPG-based control policies for robot loco-
motion offers many advantages (Ijspeert, 2008). The main
advantage of using such controllers is the stable limit cycle
behaviors of the coupled dynamical system. Additionally,
the CPGs maintain a smooth transient response to changes
to external inputs (e.g., from sensory feedback). Another ad-
vantage of CPGs is the intrinsic properties of inter-oscillator
synchronization, allowing for coordinated interactions be-
tween the robot and its environment. Finally, using CPGs for
generating coordinated policies reduces the search space of
the control problem, as opposed to using other approaches
such as continuous-time recurrent neural networks (Beer
and Gallagher, 1992).

In most studies investigating CPGs for robot locomotion,
the parameters of the model are hand-tuned by the designer
(e.g., Aoi and Tsuchiya (2005); Righetti and Ijspeert (2008);
Crespi et al. (2013)). While such an approach does provide
interesting coordinated robot movements, the system is un-
able to autonomously explore a rich diversity of different lo-
comotion gaits. Furthermore, the parameters of the model
are required to be re-tuned in response to changes in the en-
vironment, or to damages incurred by the robot. To over-
come these issues, we seek to evolve parameters of gener-
atively encoded CPGs, thus combining the advantages of
CPG models with that of generative encodings. The follow-
ing two CPPN-encoded CPG models are investigated: (i) an
open-loop model wherein the control policies are not influ-
enced by any sensory feedback; (ii) a closed-loop model,
with sensory feedback from touch sensors on each of six
hexapod legs influencing the resultant gait.

5.1.1 Open-loop CPG

The open-loop generatively encoded CPG system is com-
prised of 12 coupled amplitude-controlled phase oscilla-
tors (Ijspeert et al., 2007), governing the actuation of the 12
servos (s1 and s2, on each of 6 robot legs). Each oscillator is
modeled by the following set of ordinary differential equa-
tions:

θ̇i = 2πFi +
∑
j

αjwi,j sin (θj − θi − φi,j) (4a)

α̈i = β

(
β

4
(Ai − αi)− α̇i

)
(4b)

γi = αi cos (θi) (4c)

where αi and θi denote the amplitude and phase of the os-
cillator i, Ai represents its intrinsic amplitude (in radians),
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Table 1: Summary of encoding schemes to evolve controllers for hexapod robot locomotion.
Encoding Signal generator Feedback Summary References

Open-loop CPG Phase oscillator 7

An amplitude-controlled phase oscillator is used to gener-
ate locomotion gaits. The 12 amplitude parameters, and 11
inter-oscillator phase bias parameters of the oscillator, are
generatively encoded with a CPPN.

Ijspeert et al. (2007); Righetti and Ijspeert
(2006); Crespi et al. (2013); Ijspeert (2008)

Closed-loop CPG Phase oscillator 3

A generatively encoded amplitude-controlled phase oscilla-
tor is extended with the inclusion of a phase resetting mech-
anism. The extension introduces a sensory feedback mecha-
nism that modulates the oscillations produced by the CPG,
adapting the oscillation period depending on the locomo-
tion gait and terrain.

Aoi and Tsuchiya (2005); Fukuoka et al. (2003);
Righetti and Ijspeert (2008)

HyperNEAT ANN 7

A widely used generative encoding scheme, used to evolve
large-scale ANNs. The weights of the neural network are en-
coded with a CPPN. Evolved ANNs have been successfully
deployed to generated symmetric and coordinated gaits for
both simulated and physical quadruped robots.

Stanley et al. (2009); Clune et al. (2011); Yosin-
ski et al. (2011); Lee et al. (2013)

SUPG CPPN 3

A recently developed encoding scheme, wherein a CPPN en-
codes the attributes of a SUPG. The SUPG is a macro-neuron,
that upon receiving an external trigger, produces a single cy-
cle of an oscillatory signal. Repeated triggering of the SUPG
generates a periodic gait for a multilegged robot. In previous
work, the SUPG outperformed HyperNEAT encodings in
evolving locomotion gaits for a simulated quadruped robot,
thus encouraging further study.

Morse et al. (2013)

Direct Phase oscillator 7

A simple locomotion controller, used as reference for com-
parison between encoding schemes. The robot is controlled
with a amplitude controlled phase oscillator, the 12 ampli-
tude parameters, and 11 inter-oscillator phase bias parame-
ters, are directly encoded.

Koos et al. (2013); Cully and Mouret (2013)
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Figure 2: Encoding CPGs with CPPNs. The intrinsic ampli-
tude Ai of each oscillator is encoded by the CPPN
as a function of its position in the substrate. Phase
biases φi,j of inter-oscillator couplings are deter-
mined by querying the CPPN with the coordinates
of every pair of adjacent source (xi, yi) and target
(xj , yj) oscillators. For every pair of adjacent oscil-
lators, the query is made only once as φi,j = −φj,i.

and Fi the intrinsic frequency (in Hz). The oscillator am-
plitude αi converges to the intrinsic amplitude Ai at a rate
determined by positive constant β (set to 10 rad/s for rapid
convergence). Couplings between oscillators are defined by
weights wi,j , and phase biases φi,j . The coupling weights
define the strength of the coupling, and influence the time to
synchronize between oscillators (all weights prefixed at 20
to enable rapid inter-oscillator synchronization). The phase
bias φi,j determines the phase difference between the oscil-
lators i and j. The output of the oscillator is denoted by γi,
and is computed using the Euler integration method with a
step-size of 20 ms.

Oscillator equations (eq. 4a,b and c) were designed such
that the output of the oscillator γi exhibits a limit cycle be-
havior, producing a stable periodic output. The first equa-
tion (eq. 4a) determines the time evolution of the phase θi of

the oscillators. In this study, all 12 oscillator of the CPG have
the same frequency (Fi = 1 Hz), and the bidirectional cou-
pling between oscillators is such that φi,j = −φj,i. Further-
more, we ensure that the sum of all the phase biases in every
closed loop of inter-oscillation couplings is a multiple of 2π,
so that all the phase biases in a loop are consistent. In such
a parameter regime, the oscillator phases grow linearly at a
common rate Fi and with an inter-oscillator phase difference
of φi,j . The second equation (eq. 4b) is a critically damped
second order linear differential equation, with Ai as the sta-
ble fixed point. Therefore, from any initial condition the os-
cillator amplitude αi will asymptotically and monotonically
converge to the intrinsic amplitude Ai, allowing the ampli-
tude to be smoothly modulated. Finally, utilizing the ampli-
tude and the phase of the oscillator (eq. 4c), the output of the
oscillator γi governs servo actuation.

In this first generative encoding evaluated, a CPPN en-
codes the intrinsic amplitudes Ai and inter-oscillator phase
biases φi,j of 12 oscillators of the CPG (Fig. 2a). The oscilla-
tors are placed in a 2-D Cartesian grid termed the substrate,
so that each oscillator has a distinct (x, y) coordinate, and so
as to reflect the hexapod robot morphology (Fig. 2b). The in-
trinsic amplitude of each oscillator i is obtained by inputting
to the CPPN the coordinates (xi, yi), and setting the inputs
(xj , yj) to 0. Amplitudes output are scaled to the allowable
angular range of the corresponding motors. In the CPG, ad-
jacent oscillators are coupled together (Fig. 2b). The phase
bias for every pair of adjacent oscillators i and j is obtained
by querying the CPPN with inputs (xi, yi) and (xj , yj), and
scaling the output to range [0, 2π]. Furthermore, the follow-
ing two constraints are introduced: (i) couplings are bilater-
ally symmetrical, i.e., φi,j = −φj,i. For every pair of adjacent
oscillators, the phase bias is queried only once; (ii) phase bi-
ases φ2,1, φ2,3, φ7,4, φ9,6, φ10,11 and φ12,11 are not queried, but
computed such that the sum of phase biases in every closed
loop of the CPG is a multiple of 2π (oscillators numbered in
Fig. 2b). Therefore, the total number of CPG parameters gen-
eratively encoded by the CPPN is 23 (12 intrinsic amplitude
and 11 phase bias parameters).
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Figure 3: An illustration of the normal and actual phase θi of oscillator i over time. The phase of an oscillator governing leg
horizontal orientation (servo s1) is reset to θAEP following a signal from the touch sensor, resulting in changes to
the step cycle.

5.1.2 Closed-loop CPG

The second generative encoding scheme evaluated is an ex-
tension of the open-loop scheme (see Sec. 5.1.1). While the
generatively encoded CPG parameters and the CPPN en-
coding remains the same as in the open-loop model (Fig. 2),
the modification introduced is a sensory feedback mecha-
nism that modulates the oscillations produced by the CPG.
In this closed-loop encoding scheme, feedback signals from
the touch sensors attached to each of the six legs of the hexa-
pod trigger a phase-resetting mechanism Aoi and Tsuchiya
(2005), that adapts the oscillation period depending on the
gait and the terrain. For the phase-resetting mechanism, two
extreme positions of the horizontal orientation of the robot
leg are introduced with respect to the robot trunk, (i) the an-
terior extreme position (AEP), where the swing phase tran-
sitions to the stance phase, and (ii) the posterior extreme po-
sition (PEP), where the stance phase transitions to the swing
phase.

The phase of the oscillator at the AEP, θAEP is determined
by the following equations.

β =
TST

TST + TSW

θAEP = 2π (1− β)

where TSW is the duration of the swing phase, TST is the
duration of the stance phase, and β (0 < β < 1) is the duty
ratio, i.e., the ratio between the stance phase duration and
the total step cycle (Kajita and Espiau, 2008). In this study, β
is prefixed at 0.5, resulting in θAEP to be at π.

Utilizing θAEP for the oscillators governing horizontal ori-
entation on each of six legs of the robot (oscillators i ∈
{4, 5 . . . 9}, see Fig. 2), the phase equation (eq. 4a) is modi-
fied while keeping the equations for the amplitude (eq. 4b)
and the oscillator output (eq. 4c) unchanged.

θ̇i = 2πFi +
∑
j

αjwi,j sin (θj − θi − φi,j) + gi (5a)

gi =
(
θAEP − θi (mod 2π)

)
δ
(
tlandi − t

)
(5b)

where tlandi is the time when the foot of the leg being hor-
izontally oriented by oscillator i lands on the ground, and
δ (·) is the Dirac delta function ([·] : R → [0,∞)) defined as 0
for all arguments except at the origin, where it is 1. The func-
tion gi resets the phase θi of oscillator i to the normal value
θAEP instantaneously when the foot of the leg lands on the
ground.

When the foot touches the ground, the phase of the corre-
sponding oscillator is reset to θAEP , the normal phase value
where the transition from the swing phase to the stance
phase is supposed to occur. Consequently, in the oscilla-
tor’s step cycle the actual duration of the swing phase is not
fixed, but is dependent on the timing of the foot touching the
ground (see Fig. 3), and the resulting oscillator’s step cycle is
thus modulated by sensory feedback.

5.2 Encoding ANNs with CPPNs (minimal
HyperNEAT)

The third generative encoding scheme evaluated is a simpli-
fied version of HyperNEAT indirect encoding3 In previous
work, the CPPN has been used successfully to evolve modu-
lar and regular patterns in the connection space of the ANN,
resulting in symmetric and coordinated gaits for both sim-
ulated and physical quadruped robots (Stanley et al., 2009;
Clune et al., 2011; Yosinski et al., 2011; Lee et al., 2013). The
results encourage us to include the HyperNEAT encoding in
our comparative study.

The CPPNs encode the weights of a fixed topology, single-
layer feedforward ANN, featuring 2-D Cartesian grids of in-
puts, hidden and output neurons (Fig. 4). Neurons of the
ANN are positioned in the substrate, in accordance with the
hexapod robot morphology. Using the encoding, the CPPN
is iteratively queried the positions of all source (x1, y1) and
target (x2, y2) neurons in proximal layers, along with a con-
stant bias, and it outputs the corresponding weights of the
input-hidden and hidden-output neuron connections.

The ANN receives as input the previously requested an-
gles (actual angles unknown) for each of the 12 pivot joints
of the hexapod robot (s1 and s2, for 6 legs). In addition,
sine and cosine waves of frequency 1 Hz are also input to
the ANN, to facilitate periodic oscillations at the output neu-
rons. The output from the ANN at each time-step are 12
numbers (one for each of s1 and s2, on each of 6 legs) in in-
terval [−1, 1], that are scaled to the allowable angular range
of the corresponding motors, and indicate the next position
of each motor.

In preliminary experiments, the HyperNEAT encoding
evolved ANNs that exhibited high frequency output oscil-
lations (in excess of 20 Hz). In the resultant gaits, the robot
could traverse large distances by vibrating its legs rapidly,
and in unison. Such high frequency pronking gaits would

3The CPPN is evolved with a simple multiobjective evolutionary algo-
rithm, instead of the NEAT method (details in Tonelli and Mouret
(2013)).
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Figure 4: Encoding ANNs with CPPNs (inspired by Clune et al. (2011); Yosinski et al. (2011); Lee et al. (2013)). Inter-neuron
connection weights are encoded as function of the position of source and target neurons of each neural connection.
The CPPN outputs the weights of input-hidden and hidden-output neuron connections, for each source (xi, yi) and
target (xj , yj) neuron in proximal layers. The ANN is input the requested angles of the previous time-step for the
first two servos (s1 and s2) on each leg, and a sine and cosine wave. The output neurons specify the new joint
angles for the current time-step.

clearly not be replicable on the physical robots, and result
in overly taxed servos Yosinski et al. (2011). To resolve this
problem, and as suggested by Lee et al. (2013), we gener-
ated joint angular positions with a time-step of 15 ms, by
averaging over four consecutive pseudo-positions generated
at 3.75 ms intervals. The number of evolved ANN con-
trollers outputting high frequency oscillation was thus re-
duced, with oscillations at 2.44 ± 1.95 Hz (Median±IQR in
20 replicates, with the frequency at each replicate averaged
across 18 servos).

5.3 Encoding SUPGs with CPPNs

In the fourth generative encoding scheme evaluated, the
CPPN encodes the attributes of a SUPG. The SUPG is a
macro-neuron that upon receiving an external trigger, pro-
duces a single cycle of a CPPN encoded oscillatory signal.
Consequently, the repeated triggering of the SUPG generates
a periodic pattern, used to govern the actuation of a multi-
legged robot. In a previous work, the SUPG outperformed
HyperNEAT encodings in evolving locomotion gaits for a
simulated quadruped robot (Morse et al., 2013). The resul-
tant SUPG gaits appeared faster and steadier in extended
evaluations, encouraging us to study the encoding both in
terms of performance, and the evolvability provided.

In this encoding, the CPPN is input the position (x, y)
of the SUPG in the substrate, and the elapsed time since
the SUPG was last triggered (Fig. 5a). The elapsed time
is recorded by an internal timer, individual to each SUPG,
and ramps upwards from an initial value of 0 to a maxi-
mum value of 1, in one period of the SUPG’s output signal
(Fig. 5b). Therefore, the SUPG’s output is a function of both,
its position in the substrate, and the time since its last cycle
was triggered. Applying the SUPGs for hexapod locomo-
tion, the substrate comprises 12 SUPGs positioned to reflect
the robot morphology (Fig. 5c). The outputs of the SUPGs
at each time-step specify the desired angles for the first and
second servos (s1 and s2), on each leg of the robot.

The internal timer of the SUPG can be restarted from 0, fol-
lowing the occurrence of an external trigger event (Fig. 5b).
Consequently, the SUPG cycle does not need to match the
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(a) A single SUPG.

time

Timer

output
0

1

1

Trigger event

(b) Timer of SUPG.
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(c) SUPG substrate.

Figure 5: Encoding SUPGs with CPPNs (inspired by Morse
et al. (2013)). (a) The SUPG output is a function
of its coordinates (x, y) in the substrate, and the
elapsed time since last trigger (output of Timer).
The time of first trigger is determined by an off-
set. (b) Once triggered, the SUPG timer ramps up-
ward linearly from 0 to 1 and stays there, until it
is re-triggered. (c) Positions of the 12 SUPGs in the
substrate, outputting the desired angles for the first
two servos (s1 and s2), on each leg of the hexapod.

length of an optimal robot-walking step. Rather, the oscilla-
tion period can be adjusted depending on the gait and the
terrain by restarting the SUPG whenever its associated foot
touches the ground, thus producing a closed-loop control.
In our hexapod robot, the two SUPGs actuating each leg
(Fig. 5c), are simultaneously triggered by the corresponding
foot touching the ground.

At the start of the simulation, all six legs of the robot are
in contact with the ground, resulting in all the SUPGs be-
ing triggered simultaneously. To avoid the resulting hopping
gaits, the first trigger to each SUPG is delayed by an offset.
The offset output of the CPPN is determined for the s1 SUPG
on each leg by supplying its coordinates as input, and setting
the time input to 0. The same offset value is also applied to
the s2 SUPG on the leg, allowing both the oscillators on each
leg to start simultaneously.
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5.4 Direct encoding

Locomotion controllers evolved with direct encoding are de-
signed to be simple, wherein the actuation along each DOF
of the robot is governed by the periodic signal of an open-
loop amplitude controlled phase oscillator. With this encod-
ing, hexapod leg actuation is governed by the differential
equation model (eq. 4a, b and c). There are 12 evolved pa-
rameters for the intrinsic amplitudes of oscillators, govern-
ing the actuation of the two servos s1 and s2, on each of six
legs of the hexapod. In addition, 11 inter-oscillator phase
bias parameters are also evolved (see Fig. 2b, and Sec. 5.1.1
for details on constraints on phase biases). Consequently, a
directly encoded controller for the hexapod robot is fully rep-
resented by 23 parameters.

6 Experiments

We conducted 8, 000 generations of artificial selection in pop-
ulations consisting of 100 individuals (8, 000 × 100 evalua-
tions). Our aim was to evolve controllers for the hexapod
robot to walk forward, evaluated for a period of 5 s (334 time-
steps). The Nondominated sorting genetic algorithm II (Deb
et al., 2002) was used to simultaneously optimize the follow-
ing three objectives:

Maximize


−Fi

−|Θi|
1
N

∑j=N
j=0 D(Bi, Bj)

(6)

where for individual i in the population, Fi is the fitness
computed as the distance between the final position of i and
a goal located 25 m directly in front of the robot’s initial po-
sition, Θi denotes the angle of the robot’s trajectory with re-
spect to the normal forward walking direction, D(Bi, Bj) is
the hamming distance between the binary gait vectors of in-
dividual i and j, and N is the size of the population.

In eq. 6, the first and second objectives reward individu-
als to walk forward large distances towards a goal, unattain-
able by the robot within the experiment evaluation time.
The third objective is introduced to facilitate the exploration
of diverse solutions and avoid premature convergence to
suboptimal solutions at local minima Mouret and Doncieux
(2012).

Artificial selection was conducted in 20 independent repli-
cates, for the Direct encoding, and the four generative en-
codings, (i) CPG (open-loop controller), (ii) CPG-f/b (closed-
loop controller), (iii) ANN (minimal HyperNEAT), and
(iv) SUPG4. Performance and evolvability analysis are re-
ported for the best individual of each replicate, selected to
have the highest fitness in the population, and with an an-
gle of trajectory in the range of ±1◦ (simulation source code
can be downloaded from http://pages.isir.upmc.
fr/evorob_db.)

6.1 Performance

In all five encodings, the performance of the best indi-
viduals rapidly increased with a quasi-stable equilibrium
being reached with less than 5, 000 generations of selec-
tion (Fig. 6a). Additionally, individuals with evolved CPGs

4A single evolution replicate required about 24h of computational time on
a 8-cores Intel Xeon E5520 at 2.27 Ghz.

(Direct, CPG and CPG-f/b) converged more rapidly as com-
pared to those encoded with the ANN and SUPG schemes
(Fig. S4, generations 0 to 8, 000). After 8, 000 generations,
the performance in forward displacement of the Direct, CPG,
CPG-f/b, ANN and SUPG encodings was 1.92± 0.19, 1.79±
0.08, 1.68 ± 0.13, 2.93 ± 1.60 and 2.78 ± 1.43 m, respectively
(Median±IQR, see Fig. 6b, Kruskal-Wallis test: p < 0.001).
The ANN and SUPG schemes achieved the highest perfor-
mance values across all five encodings (d.f. = 38, all p <
0.001, using Matlab’s Mann-Whitney test, which is the de-
fault statistical test unless otherwise specified), but with no
significant difference in performance between them. Fur-
thermore, amongst the Direct, CPG, and CPG-f/b encodings,
a decrease in performance was detected with a generative
encoding, and with the inclusion of a feedback mechanism
(d.f. = 38, p < 0.001). However, this decrease in perfor-
mance was small, and did not exceed 12% (detailed statisti-
cal comparison provided in Table S1).

Importantly, intrinsic inter-encoding differences existed in
the frequencies of oscillation governing leg actuation. The
frequency of the CPG oscillations was prefixed at 1 Hz, irre-
spective of the sensory feedback provided, and the direct or
generative nature of the encoding. By contrast, the individ-
uals evolved with ANN and SUPG schemes were capable of
expressing higher frequency oscillations (2.44 ± 1.95 Hz for
ANN, and 3.81 ± 0.73 Hz for SUPG), and the frequency of
the gait may itself be under selection. Consequently, an as-
sessment of the encodings solely on the basis of the performance is
biased, and other measures are needed to compare encodings.

6.2 Evolvability analysis

The evolvability provided by the encoding schemes is an-
alyzed by mutating the best individual of each replicate at
generation 8, 000, and reporting the following: (i) The pro-
portion decrease in performance consequent to the muta-
tion (eq. 1); and (ii) The gait diversity, computed as the mu-
tual information between gait vectors of the original and mu-
tated individual (eq. 2c). The individual is mutated at a pre-
determined mutation rate as used during selection, in 1, 000
separate and independent instances. Finally, a kernel den-
sity estimation5 (Scott, 2009) is used to visualize the resul-
tant landscape of 20, 000 data points (1, 000 mutations × 20
replicates), pooled together from all replicates.6

Distinct evolvability signatures were exhibited by the Di-
rect, CPG, CPG-f/b, ANN, and SUPG encoding schemes, af-
ter 8, 000 generations of selection (see Fig. S2). In evolvability
analysis with a direct encoding, a conservative exploration of
the phenotype, limited to solutions close to the unmutated
individuals was found (11.9% and 0.33, median decrement
in performance and gait diversity, respectively). A genera-
tive encoding of the CPG model had only a minor effect on
the evolvability provided (performance decrement of 12.7%
and gait diversity of 0.36). The inclusion of a feedback mech-
anism in the generatively encoded CPG model resulted in
more diverse gaits (0.74), but with not much change in the
performance loss (16.6%) following mutations. By contrast,
the generative encoded ANN and SUPG schemes were much
more aggressive in the exploration of the phenotypic land-

5A commonly used non-parametric technique for the estimation of the
probability density function of a random variable, from a finite data sam-
ple.

6Bivariate density estimation, with Gaussian type kernels over a grid of
100× 100 equidistant points.
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Figure 6: Performance in forward displacement for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes: (a) Me-
dian performance for 8, 000 generations of selection; and (b) Performance of encodings at generation 8, 000.7
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Figure 7: Evolvability signatures for different encodings: Gait diversity and the proportion decrease in performance, fol-
lowing 20, 000 independent mutations of the best individuals, for the Direct, CPG, CPG-f/b, ANN, and SUPG
encoding schemes after 8, 000 generations of selection, pooled from all 20 replicates. In good evolvability signa-
tures, mutations are located in the upper-right corner of the signature space, indicating high gait diversity, and a
robustness to deleterious and lethal mutations.

scape, with the gait diversity of mutated individuals at 0.95
for ANN, and 0.99 for the SUPG encodings. However, differ-
ences existed in the severity of negative effects of mutations
amongst the two encoding schemes. The ANN encoded indi-
viduals were sensitive to the effects of deleterious mutations,
resulting in a 78.9% drop in performance. In comparison, in-
dividuals evolved with the SUPG encoding were much more
resilient to the negative effects of mutations, with a smaller
decrement of 43.1% in performance following mutation.

The evolvability provided by the encodings is further an-
alyzed by computing the number of mutations in the evolv-
ability signature (Fig. S2), that are both non-lethal and result
in diverse locomotion gaits. Mutations are classified as lethal
if they result in performance decrement in excess of 100%
(f1 < −1, see eq. 1), corresponding to the failure of any for-
ward movement by the robot. Similarly, a mutation is con-
sidered to generate a diverse gait, if the inter-gait diversity
exceeds 0.5 (f2 > 0.5, see eq. 2c).

The proportion of viable and diverse-gait generating mu-
tations was affected by the encoding scheme (see Fig. S1 and
Table S2, Kruskal-Wallis test: p < 0.001). Across the five en-
codings, the SUPG scheme was most efficient at generating
such mutations (d.f. = 38, all p < 0.001). Both the ANN
and the CPG-f/b encodings led to an intermediate number
of viable and diversity generating mutations (ANN signifi-
cantly higher than CPG-f/b, and both different from all other
encodings, all p < 0.001). The lowest mutation count was

achieved by the Direct and CPG encoding schemes (not sig-
nificantly different from each other p = 0.03, but different
from the three other encodings, all three p < 0.001). Thus,
across the five encoding schemes, the SUPG approach pro-
vided the highest evolvability, with the capability to explore
very different but viable gaits. Additionally, with a stricter
definition of viable mutants resulting in no more than 50%
drop in performance, the SUPG still achieved the highest
beneficial mutation count (all p < 0.001), with no difference
between the other four encodings (see Fig. S1).

6.2.1 Evolvability under varying mutation intensities

In this section, we study the sensitivity of our signature
of the evolvability provided by the Direct, CPG, CPG-f/b,
ANN and SUPG encodings with respect to the parameters of
the variation operator used to generate mutants. The main
questions are, if and how differences in the mutation opera-
tor affect our conceived signature of evolvability? We ran a
series of experiments to access evolvability, with genetic mu-
tants generated at different intensities. Mutations were con-
sidered at the standard mutation rate and mutation step-size

7On each box, the mid-line marks the median, and the box extends from
the lower to upper quartile below and above the median. Whisker out-
side the box generally indicate the maximum and minimum values, ex-
cept in case of outliers, which are shown as crosses. Outliers are data
points outside of 1.5 times the interquartile range from the border of the
box.

11



Direct CPG CPG−f/b ANN SUPG
0

0.2

0.4

0.6

0.8

1

Encodings

B
eh

av
io

ra
ll

y
 d

iv
er

se
 a

n
d
 v

ia
b
le

 m
u
ta

n
ts

(a) Beneficial mutations generated by different encodings.

Proportion change in performance

G
ai

t 
d

iv
er

si
ty

(b) Shaded region of beneficial muta-
tions.

Figure 8: Proportion of viable mutants with gait diversity in excess of 0.5, from 1, 000 independent mutations of the best
individuals at generation 8, 000 in each of 20 replicates, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding
schemes. These beneficial mutations are counted from the shaded region of each encoding’s evolvability signature.

as used during selection (medium intensity), and at a four-
fold decrease (low intensity) and a four-fold increase (high
intensity) of the standard mutation operator parameters of
both rate and step-size.

In order to analyze the effect of the variation operator
on our signature of evolvability, in Fig. 9 we outline the
perimeter of the evolvability signatures generated from low,
medium and high intensity mutations (see Fig. S2 for interior
of signature). In all five encodings, the distribution of mu-
tants shift towards more diverse gaits and is accompanied by
larger loss in performance, following increments in the mu-
tation intensity. A 16-fold increment in the mutation rate and
step-size (low to high mutation intensity) resulted in a 0.94,
0.96 and 0.98 difference in mutant gait diversity for the Di-
rect, CPG and CPG-f/b encodings respectively (see Fig. S3a,
b and c). By contrast, the ANN and SUPG schemes achieved
highly diverse gaits at the lowest mutation intensity (0.94
for ANN and 0.99 for SUPG), and an increment from low to
high mutation intensity only resulted in a 6.0% for ANN, and
0.4% for SUPG further increase in the mutated gaits diversity
(Fig. S3d and e). The increment from low to high mutation
intensity also resulted in a drop in mutant performance of
63.7%, 90.5%, 93.5%, 98.6% and 54.9%, for the Direct, CPG,
CPG-f/b, ANN, and SUPG encodings respectively (Fig. S3f-
j). In summary, the SUPG encoding facilitates the exploration
of diverse gaits even when mutants are generated at a low
mutation intensity. Furthermore, across all five encodings,
the SUPG scheme provides the most resilience against the
deleterious nature of high intensity mutations.

6.3 Damage recovery

The significance of our evolvability signatures of the Direct,
CPG, CPG-f/b, ANN and SUPG encodings was investigated
by analyzing the adaptation of the evolved robot’s gait, fol-
lowing the removal of one or more of its legs. We expect that
for the encodings registering a better evolvability signature,
the corresponding evolved individuals would require fewer
generations to recover an effective walking gait.

In these experiments, the new (damage recovery) popula-
tions were comprised of 100 mutated individuals of the best
individual of each replicate at generation 8, 000 of selection.

In separate preliminary experiments, the use of the entire
population at generation 8, 000 (instead of the best individu-
als) did not change our results of the adaptability provided
by different encodings. Individuals in the damage recovery
population were mutated at the standard mutation rate and
step size used during selection. A further 10, 000 genera-
tions of artificial selection was conducted on the populations
of amputee hexapods for each of the following three dam-
age scenarios: (i) an asymmetrical damage, following the re-
moval of one leg of the robot (leg 1, Fig. 10a); (ii) a symmet-
rical damage occurs, wherein the two middle legs on either
side of the robot are removed (legs 1 and 4, Fig. 10b); and
(iii) a highly asymmetrical damage occurs consequent to the
removal of the middle leg on one side and the rear leg on the
opposing side of the hexapod (legs 1 and 3, Fig. 10c). The
number of generations required to regain an effective gait
and the proportion of the original performance (undamaged
robot’s performance at generation 8, 000) recovered for each
of the three damage scenarios is analyzed.

In the 10, 000 generations of selection, all the five encod-
ings were capable of recovering a majority of their origi-
nal performance in forward displacement, irrespective of the
damage to the hexapod robot (see Fig. S4). After 10, 000
generations post robot damage, the Direct, CPG, CPG-f/b,
ANN and SUPG schemes all recovered the highest propor-
tion of their original performance in the first damage sce-
nario (0.89 ± 0.07, Median±IQR across all encodings), fol-
lowed by an intermediate recovery in the second (0.78±0.07),
and third (0.72 ± 0.05) scenarios (Fig. 11a, b and c, Kruskal-
Wallis test: d.f. = 4, p < 0.001 for first two scenarios, and
p = 0.018 for third scenario). Across all five encodings,
the SUPG was most efficient in recovering its original per-
formance in the first (1.02 ± 0.14) and second (0.99 ± 0.23)
scenarios (for both, all p < 0.001), while in both scenarios no
significant difference in recovery was registered between the
remaining four encodings (Fig. 11a and b). In the third sce-
nario which was the hardest, the SUPG again achieved the
highest performance recovery (0.88 ± 0.3), although perfor-
mance was no longer significantly different between encod-
ings (Fig. 11c).

In order to analyze the time required by damaged
hexapods to recover an effective gait, in Fig. 12 we have plot-
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Figure 9: Contours of the evolvability signature for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes with
mutations generated at low (L), medium (M), and high (H) intensity, of the best individuals at generation 8, 000
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(a) Scenario 1: Removal of right-
middle leg.

(b) Scenario 2: Removal of right-
middle and left-middle legs.

(c) Scenario 3: Removal of right-
middle and left-rear legs.

Figure 10: The three damage scenarios imposed on the hexapod robot (undamaged robot in Fig. 1).

ted the number of generations required to restore 85% of
the original performance in forward displacement. Across
the three robot-damage scenarios, amputee hexapods in the
first scenario achieved the highest recovery rate (13 ± 3.25
of 20 replicates restored performance in 10, 000 generations,
across all encodings), followed by an intermediate recovery
rates in the second (4 ± 7.75 replicates), and third scenarios
(1±8.25 replicates). In the first two scenarios (Kruskal-Wallis
test: d.f. = 4, both p < 0.001), the SUPG encoded individu-
als recovered at least an order of magnitude faster (373 and
957 generations in scenarios 1 and 2, respectively) than in-
dividuals with the Direct, CPG, CPG-f/b and ANN encod-
ings (see Fig. 12a and b, all p < 0.001). In both scenarios,
no significant difference in recovery was registered between
these four encoding schemes. In the third scenario (Kruskal-
Wallis test: d.f. = 4, p < 0.001), the SUPG encoded amputee
hexapods continued to exhibit the fastest recovery (8466.5
generations), although it was no longer significantly differ-
ent from ANN encoded hexapods (see Fig. 12c, p = 0.25).
Furthermore, in this scenario, all three CPG based encodings
(Direct, CPG, and CPG-f/b) performed poorly, with only one
replicate making the 85% mark in the 10, 000 generations
of selection. In summary, across all five encoding schemes,
the SUPG encoded individuals had the fastest recovery, de-
spite being in increasingly difficult robot-damage scenarios
wherein most of the individuals encoded by the other en-
codings failed to recover an effective walking gait (detailed
comparison of damage recovery in Tables S3, S4 and S5).

7 Discussion

In this study, we introduce a methodology to compare ge-
netic encoding schemes, utilizing our novel approach to sig-
naturize evolvability. The evolvability provided by the gen-
eratively encoded CPG, CPG-f/b, ANN (Clune et al., 2011;
Yosinski et al., 2011) and SUPG (Morse et al., 2013) schemes
and a direct encoding, is characterized by quantifying both,
(i) the quality of the genetic mutations, and (ii) the quantity
of behavioral variation generated from genetic change. Our
evolvability based inter-encoding comparison methodology
provides insights on the adaptability of evolved individu-
als to novel scenarios. To this effect, the significance of our
conceived signature of evolvability is evaluated by the indi-
vidual adaptation response to morphological changes previ-
ously unencountered by the hexapod robot.

Our results revealed a direct relationship between the esti-
mated evolvability provided by the encodings, and the capa-
bility of the evolved individuals to adapt to severe changes
in morphology, simulated by the amputation of one or more
of the hexapod legs. Amongst the five encodings evaluated,
the SUPGs (Morse et al., 2013) had the best evolvability sig-
nature, and their encoded individuals were also foremost to
recover following sustained damages. In both the easy and
the intermediate robot-damage scenarios (scenarios 1 and 2),
the SUPG encoded individuals were capable of recovering
85% of their performance on the undamaged robot in all but
two replicates, and did so more than an order of magnitude
faster than the other four encodings. Furthermore, even in
the most difficult robot-damage scenario (scenario 3), the
SUPG scheme achieved the fastest recovery in the majority
of the evaluated replicates.
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(a) Scenario 1: Removal of right-middle leg.
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(b) Scenario 2: Removal of right-middle and
left-middle legs.
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(c) Scenario 3: Removal of right-middle and
left-rear legs.

Figure 11: Proportion of the original performance in forward displacement restored 10, 000 generations after the three dam-
age scenarios, across 20 replicates, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes.
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(a) Scenario 1: Removal of right-middle leg.
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(b) Scenario 2: Removal of right-middle and
left-middle legs.
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(c) Scenario 3: Removal of right-middle and
left-rear legs.

Figure 12: The number of generations of selection required to restore 85% of the original performance of the undamaged
hexapod in forward displacement across 20 replicates, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding
schemes. In replicates unable to attain the 85% mark, the recovery time was set to the upper limit of 10, 000
generations.

The ANN encoding scheme (minimal HyperNEAT) was
capable of producing highly diverse hexapod gaits, follow-
ing genetic mutations. The high behavioral diversity gen-
erated is consistent with the earlier use of this encoding to
evolve gaits for the QuadraBot robot (Clune et al., 2009a,
2011). However, in our ANN implementation, most of ge-
netic mutations producing diverse gaits were highly dele-
terious, and resulted in little forward hexapod movement.
Consequently, an estimate of evolvability solely on the basis
of the generated behavioral diversity (Lehman and Stanley,
2011b; Reisinger et al., 2005; Lehman and Stanley, 2013) is not
reliable, and both the quality (individual viability) and quan-
tity of phenotypic variation consequent to genetic change is
required to characterize evolvability. Furthermore, the poor
evolvability signature for the ANN encoding scheme is re-
flected in its poor recovery from sustained robot damages.

In studies on evolution of multilegged robot locomotion,
the generative encodings exploit the symmetry of the robot
morphology to generate regular and coordinated gait pat-
terns that often outperform gaits evolved with direct encod-
ings (e.g., Clune et al. (2011)). Generative encodings also fa-
cilitate scalability, wherein evolution in the low-dimensional
genetic search space is capable of evolving complex pheno-
types comprising of many more dimensions (Stanley and Mi-
ikkulainen, 2003). However, no difference in performance
was registered between the directly and generatively en-

coded CPGs for our hexapod locomotion problem, perhaps
consequent to the already low-dimensional search space for
the directly encoded locomotion controllers. For example,
our directly encoded CPGs for hexapod locomotion com-
prise 23 amplitude and phase bias parameters, in contrast
to the 800 Fixed-Topology NEAT (FT-NEAT) encoded neu-
ral weight parameters for quadruped locomotion controllers
(Clune et al., 2009a). Thus, the potential benefits of pheno-
typic scalability in utilizing generative encoding schemes are
reduced in our study.

For our signature of evolvability, we mutated the individ-
uals with a predetermined mutation rate, tuned to allow a
speedy convergence of the evolved solutions. This is a criti-
cal consideration as variations to the mutation rate can affect
the viability and gait diversity of generated mutants. A com-
parison of the evolvability provided by encodings at low and
high mutation intensities suggests that with an increase in
mutation rate, the peak of the distribution of mutants shifts
towards more diverse gaits with a larger decrease in task per-
formance. However, the overall shape of the distribution,
highlighting desirable regions of the evolvability landscape,
remained the same for all five encodings. Importantly, across
the five encodings, the SUPG scheme continued to provide
the highest resilience to deleterious genetic change, despite
a 16-fold increase in mutation intensity.

The high evolvability and rapid recovery provided by the
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SUPGs may be consequent to the closed-loop control in-
grained in the encoding scheme. Such a feedback mecha-
nism provides an adaptive period of the SUPG oscillations,
that can be adjusted to the new step size of a gait more ap-
propriate for a four or five legged robot, after the hexapod
has suffered damages. Alternatively, the better performance
of SUPGs may be consequent to the open-ended encoding of
control signals by these oscillators. In contrast to the simple
sinusoidal waves of the CPG-based schemes wherein only
the signal amplitude and phase difference is encoded, no
constrains are imposed on the CPPNs encoding the SUPG
output signals. The resulting unconstrained encoding may
help for example in adjusting the duty ratio for each oscilla-
tor to match the new swing and stance phase durations of the
remaining undamaged hexapod legs. Furthermore, since the
inclusion of feedback in the CPG encoding (CPG-f/b) regis-
tered no improvement in task-performance, evolvability or
damage recovery, a combination of the SUPG closed-loop
system and the open-ended encoding of its oscillatory signal
may be responsible for its high performance and adaptive
capabilities.

In our evolvability signatures, the phenotypic variation
from genetic change was associated with the mutual infor-
mation between hexapod gaits. The diversity may also be
computed for the gaits of bipedal and quadrupedal type of
robots. Similarly, behavioral diversity may be computed
for other benchmark problems such as, the final position
of a robot in a maze navigation task (Lehman and Stan-
ley, 2011b; Mouret and Doncieux, 2012), the final positions
of balls in an arena for the robot ball-collecting task (Don-
cieux and Mouret, 2009, 2010), and a vector of board piece
moves in game playing tasks (Reisinger and Miikkulainen,
2007; Gauci and Stanley, 2010). Consequently, our approach
to estimate evolvability is easily applicable to a wide range of
tasks, commonly used in evolutionary robotics experiments.

The systematic building and organizing of knowledge, a
requirement in any scientific discipline, can not be achieved
without a wide assortment of quantifiable measures to com-
pare and contrast concepts, hypotheses, testable explana-
tions and predictions. In the field of evolutionary robotics,
task-performance has been prominently and often solely
used as such a quantifiable measure to form links between
the different available evolutionary systems. However, the
evaluated fitness by its very nature, is limited to the specific
problem for which the individual solutions are tested. By
contrast, an estimate of evolvability facilitated by an evolu-
tionary process, may be applicable to a much broader scope
of scenarios, allowing the formation of a more generic re-
lationship between existing evolutionary system implemen-
tations. An evolvability-based approach of comparison be-
tween evolutionary processes may help to extrapolate to un-
evaluated problem regions in-between existing evaluations,
and consequently better lend itself to building a strong theo-
retical foundation for future research in the field.

8 Conclusion

A novel approach to compare encoding schemes is proposed
in this paper, using evolvability instead of task-fitness, and
demonstrated for the problem of evolving locomotion gaits
for a hexapod robot. From the different direct and gener-
ative encodings evaluated, the single-unit pattern genera-
tor had the best evolvability signature. Furthermore, its en-

coded individuals were foremost in adapting to various new
and challenging scenarios. Our biologically-relevant “finger-
print” of the evolvability provided by an encoding accounts
for both the quantity and quality of phenotypic variation re-
sulting from genetic change, and results in distinct evolv-
ability signatures for the different encodings, despite simi-
lar task-fitness values. These evolvability signatures allow
for a discrimination between encoding schemes, based on
their capability of producing highly adaptable individuals
for novel, and importantly, a priori unknown scenarios. In
summary, our evolvability signatures for encoding compari-
son serves as a comprehensive analysis tool beyond the stan-
dard task-fitness performance benchmarks commonly em-
ployed in the evolutionary robotics field.
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(a) Highly beneficial mutations generated by different encodings.
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Figure S1: Proportion of mutants generating gait diversity in excess of 0.5, and performance loss not exceeding 50%, from
1, 000 independent mutations of the best individuals at generation 8, 000 in each of 20 replicates, for the Direct,
CPG, CPG-f/b, ANN and SUPG encoding schemes. These highly beneficial mutations are counted from the
shaded region of each encoding’s evolvability signature.
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(c) High mutation intensity

Figure S2: Gait diversity and the proportion decrease in performance, following 20, 000 independent mutations of different
intensities, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding schemes after 8, 000 generations of selection,
pooled from all 20 replicates. Mutations at low, medium and high intensity, corresponded to 0.25, 1 and 4 times,
respectively, the mutation rate and step-size used during selection.
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Figure S3: Mutant performance in forward displacement and the gait diversity resulting from mutation, for the Direct, CPG,
CPG-f/b, ANN and SUPG encoding schemes. Each box corresponds to the median of 1, 000 mutants, in each of
20 replicates. Mutations were generated at low (×0.25), medium (×1) and high (×4) times mutation rate and
step-size used during selection, and applied to the best individuals at generation 8, 000 of selection. Dotted lines
(f-j) indicate the median performance of best individuals across 20 replicates, after 8, 000 generation of selection.
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(a) Scenario 1: Removal of right-middle leg.
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(b) Scenario 2: Removal of right-middle and
left-middle legs.
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(c) Scenario 3: Removal of right-middle and
left-rear legs.

Figure S4: The proportion of performance in forward displacement before (generations 0 to 8, 000) and after (generations
8001 to 18, 000) the three robot-damage scenarios, for the Direct, CPG, CPG-f/b, ANN and SUPG encoding
schemes.



Table S1: Performance comparison of the Direct, Open-loop CPG, Closed-loop CPG, HyperNEAT, and SUPG encoding
schemes.

Encodings p-Value* Effect size**
Direct

8.0× 10−5 0.85
Open-loop CPG

Direct
7.0× 10−7 0.90

Closed-loop CPG

Direct
0.0142 0.30

HyperNEAT

Direct
1.2× 10−7 0.02

SUPG

Open-loop CPG
3.0× 10−4 0.81

Closed-loop CPG

Open-loop CPG
4.2× 10−4 0.21

HyperNEAT

Open-loop CPG
1.7× 10−8 0.0

SUPG

Closed-loop CPG
4.8× 10−6 0.09

HyperNEAT

Closed-loop CPG
3.4× 10−8 0.0

SUPG

HyperNEAT
0.1860 0.42

SUPG

*Significance computed with the Mann-Whitney-Wilcoxon non-
parametric test, at 0.05 significance level.
**Effect size estimated as ratio of Mann-Whitney U statistic and
the product of two sample sizes.

Table S2: Comparison of the number of beneficial mutations generated by the Direct, Open-loop CPG, Closed-loop CPG,
HyperNEAT, and SUPG encoding schemes.

Encodings p-Value* Effect size**
Direct

0.0304 0.30
Open-loop CPG

Direct
1.5× 10−5 0.10

Closed-loop CPG

Direct
6.8× 10−8 0.0

HyperNEAT

Direct
6.7× 10−8 0.0

SUPG

Open-loop CPG
5.1× 10−4 0.18

Closed-loop CPG

Open-loop CPG
6.8× 10−8 0.0

HyperNEAT

Open-loop CPG
6.8× 10−8 0.0

SUPG

Closed-loop CPG
2.5× 10−4 0.16

HyperNEAT

Closed-loop CPG
3.4× 10−7 0.03

SUPG

HyperNEAT
9.1× 10−8 0.01

SUPG

*Significance computed with the Mann-Whitney-Wilcoxon non-
parametric test, at 0.05 significance level.
**Effect size estimated as ratio of Mann-Whitney U statistic and
the product of two sample sizes.



Table S3: Comparison of number of generations of selection required to restore 85% of the original performance of the
undamaged hexapod, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes, in the first damage
scenario (removal of right-middle leg).

Encodings p-Value* Effect size**
Direct

0.4182 0.48
Open-loop CPG

Direct
0.3538 0.47

Closed-loop CPG

Direct
0.4393 0.52

HyperNEAT

Direct
0.0003 0.81

SUPG

Open-loop CPG
0.4505 0.49

Closed-loop CPG

Open-loop CPG
0.3045 0.55

HyperNEAT

Open-loop CPG
0.0010 0.81

SUPG

Closed-loop CPG
0.0045 0.55

HyperNEAT

Closed-loop CPG
3.4× 10−7 0.79

SUPG

HyperNEAT
9.1× 10−8 0.74

SUPG

*Significance computed with the Mann-Whitney-Wilcoxon non-
parametric test, at 0.05 significance level.
**Effect size estimated as ratio of Mann-Whitney U statistic and
the product of two sample sizes.

Table S4: Comparison of number of generations of selection required to restore 85% of the original performance of the
undamaged hexapod, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes, in the second damage
scenario (removal of right-middle and left-middle legs).

Encodings p-Value* Effect size**
Direct

0.4768 0.50
Open-loop CPG

Direct
0.1979 0.45

Closed-loop CPG

Direct
0.0286 0.65

HyperNEAT

Direct
3.9× 10−6 0.90

SUPG

Open-loop CPG
0.2231 0.46

Closed-loop CPG

Open-loop CPG
0.0286 0.65

HyperNEAT

Open-loop CPG
1.8× 10−6 0.91

SUPG

Closed-loop CPG
0.0052 0.69

HyperNEAT

Closed-loop CPG
4.8× 10−7 0.93

SUPG

HyperNEAT
0.0026 0.76

SUPG

*Significance computed with the Mann-Whitney-Wilcoxon non-
parametric test, at 0.05 significance level.
**Effect size estimated as ratio of Mann-Whitney U statistic and
the product of two sample sizes.



Table S5: Comparison of number of generations of selection required to restore 85% of the original performance of the
undamaged hexapod, for the Direct, CPG, CPG-f/b, ANN, and SUPG encoding schemes, in the third damage
scenario (removal of right-middle and left-rear legs).

Encodings p-Value* Effect size**
Direct

0.1711 0.48
Open-loop CPG

Direct
0.1711 0.47

Closed-loop CPG

Direct
0.0082 0.67

HyperNEAT

Direct
0.0001 0.78

SUPG

Open-loop CPG
0.5 0.50

Closed-loop CPG

Open-loop CPG
0.0023 0.67

HyperNEAT

Open-loop CPG
3.3× 10−5 0.80

SUPG

Closed-loop CPG
0.0023 0.68

HyperNEAT

Closed-loop CPG
3.3× 10−5 0.80

SUPG

HyperNEAT
0.2460 0.56

SUPG

*Significance computed with the Mann-Whitney-Wilcoxon non-
parametric test, at 0.05 significance level.
**Effect size estimated as ratio of Mann-Whitney U statistic and
the product of two sample sizes.


