
A New Algorithm for Learning Non-Stationary Dynamic Bayesian Networks:
Application to Event Detection

Christophe Gonzales1, Séverine Dubuisson2, Cristina Manfredotti1
1 Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France.
2 Sorbonne Universites, UPMC Univ Paris 06, UMR 7222, ISIR, Paris, France.

Abstract

Dynamic Bayesian networks (DBN) are a popular
framework for managing uncertainty in time-evolving
systems. Their efficient learning has thus received many
contributions in the literature. But, most often, those as-
sume that the data to be modeled by a DBN are gen-
erated by a stationary process, i.e., neither the structure
nor the parameters of the BNs evolve over time. Un-
fortunately, there exist real-world problems where such
a hypothesis is highly unrealistic, e.g., in video event
recognition, social networks or road traffic analysis. In
this paper, we propose a principled approach to learn
the structure and parameters of “non-stationary DBNs”,
that can cope with such situations. Our algorithm is
specifically designed to work in situations where all in-
put data are streamed. Unlike previous works on non-
stationary DBN learning, we make no restrictive as-
sumption about the way the structure evolves or over
parameters’ independence during this evolution. Yet,
as highlighted in our experimentations, our algorithm
scales very well. Its lack of restrictive assumptions
makes it very effective to detect events (evolutions),
which is confirmed by our experimentations.

Introduction
Over the last 25 years, Bayesian networks (BN) have be-
come the reference framework for reasoning with uncer-
tainty (?). Their popularity stimulated the need for various
extensions, e.g., probabilistic relational models for dealing
with very high-dimensional problems (?), but also tempo-
ral extensions to deal with dynamic systems like DBNs (?).
Over the years, the latter have become very popular. Basi-
cally, a DBN is a pair of Bayesian networks, representing the
uncertainty over the random variables in the first time slice
and over those in pairs of consecutive time slices respec-
tively. Appending (n − 1) times the second BN to the first
one is a simple and effective way to create a “grounded” BN
defined over an horizon of n time slices. By its definition,
learning the structure and parameters of a DBN consists es-
sentially of applying separately classical learning algorithms
on its two BNs, a task for which many efficient algorithms
do exist (?; ?; ?; ?).

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, in many practical situations, it is unreasonable
to assume that neither the structure nor the parameters of
the DBN evolve over time. As a simple example, consider
tracking two individuals in a video who first walk together
and split after a few moments. As their trajectories differ
at the split point, using the same DBN to model their be-
havior before and after the split would clearly result in poor
tracking. The same reasoning could also be applied to neu-
ral patterns that evolve during life, road traffic for which
rush hours’ densities are different from those of the rest of
the day, and to many other domains. Non-stationary DBNs
(nsDBN) have been introduced precisely to cope with this
time-evolving dimension (?; ?). Essentially, they consist of
modeling the dynamic system using a set of pairs (BN,time
interval). Similarly to classical DBNs, appending all these
BNs on the time intervals on which they are defined results
in a “grounded” BN defined over the union of all these in-
tervals.

While their definition is quite simple, there exist surpris-
ingly few algorithms for learning nsDBNs in the literature,
see, e.g., (?; ?; ?). But all these methods have serious short-
comings. For instance, it is assumed in (?) that only param-
eters can change, the structure being necessarily fixed. In (?;
?), the evolution of the structure is supposed to follow a
given distribution. Such a hypothesis is questionable: actu-
ally, removing an arc representing a strong dependence be-
tween two random variables is considered equivalent to re-
moving one that represents a very weak dependence. In ad-
dition, in these papers, the data over all the time slices need
be known prior to the nsDBN structure learning, which in-
evitably rules out applications where input data are streamed
(like in videos). In (?), data are supposed to be constituted
by only one observation per time slice, which requires that
the generating process remains stationary for long periods.
In (?), random variables need be continuous, hence ruling
out applications where data are discrete. In (?), when the
structure evolves, the parameters before and after the evo-
lution are supposed to be independent. This hypothesis may
not seem so realistic: why should a structure modification
around a node Xn make the conditional probabilities of all
the other nodes after this modification be independent of
those before the change? Due to these strong requirements,
the above methods are not very well suited for situations
where data are either discrete or are streamed. In this pa-

per, we propose a new learning algorithm devoted to those
situations. In particular, it is designed to work in a stream-
ing mode and to enable parameters’ dependencies between
different time intervals.

The paper is organized as follows. In the first section, we
recall the basics of nsDBNs. Then, we present our method
and, in the third section, we demonstrate its efficiency, both
in terms of the quality of the nsDBN found and in terms of
computation times. Finally, a conclusion is provided.

Non-Stationary DBNs and Their Learning
In all the paper, bold letters refer to sets and random vari-
ables are all considered to be discrete. A Bayesian network
is a compact probabilistic graphical model defined as:

Definition 1 A BN is a pair (G,Θ) where G = (V,A)
is a directed acyclic graph (DAG), V represents a set
of random variables1, A is a set of arcs, and Θ =
{P (X|Pa(X))}X∈V is the set of the conditional probability
distributions (CPT) of the nodes / random variables X in G
given their parents Pa(X) in G. The BN encodes the joint
probability over V as:

P (V) =
∏
X∈V

P (X|Pa(X)). (1)

nsDBNs are a temporal generalization of BNs:

Definition 2 A nsDBN is a sequence of pairs 〈(Bh, Th)〉mh=0,
where T0 = 0 represents the first time slice, B0 is the BN
representing the distribution over the random variables at
time 0, and each Bh, h = 1, . . . ,m, is a BN representing
the conditional probability of the random variables at time
t given those at time t − 1, for all t in time intervals Eh =
{Th−1 + 1, . . . , Th}. Th and Eh are called a transition time
and an epoch respectively. By convention, E0 = {0}.

A DBN is a nsDBN in which the sequence contains only
two pairs. Figure 1 shows a nsDBN (left) and its grounded
BN (right). Note that, by Definition 2, nsDBNs are defined
over discrete time horizons. Learning a nsDBN consists in
i) determining the set of transition times Th at which the net-
work evolves and ii) learning the structure and parameters of
each Bh (as in a classical DBN learning). Usually, the struc-
ture is learnt first and, given it, parameters are estimated by
maximum likelihood or maximum a posteriori.

figures/twoTBN.pdf

X1
0

X1
0

X0
0

X2
t

X1
t

X0
tX0

t−1

X2
t−1

X1
t−1

B0 B1

figures/dbn.pdf

X0
0

X1
0

X0
1

X2
1 X2

2

X0
2

X2
0

....

time 0 1 2

X2
T

X1
T

X0
T

T1

X1
2X1

1

Figure 1: A nsDBN 〈(B0, 0), (B1, T1)〉 (left, shaded) and its
ground BN (right).

1By abuse of notation, we use interchangeably X ∈ V to de-
note a node in the BN and its corresponding random variable.

In the Bayesian framework, learning the structure of a sin-
gle BN B = (G,Θ) from a database D is equivalent to com-
puting G = ArgmaxG∈GP (G|D) = ArgmaxG∈GP (G,D),
where G is the set of all possible DAGs, which is equivalent
to optimizing the following integral:

P (G,D) = P (G)

∫
θ

P (D|G,θ)π(θ)dθ (2)

where θ is the set of parameters of the BN, and π(θ) and
P (G) are priors over the set of parameters and structures
respectively. Assuming i) Dirichlet priors on parameters θ,
ii) independence of parameters for different values of Pa(X)
in CPT P (X|Pa(X)), iii) a complete database D (i.e., there
are no missing values), iv) data in D are i.i.d., it is shown in
(?) that Equation (2) is equal to the Bayesian Dirichlet (BD)
score:

P (G)

n∏
i=1

qi∏
j=1

Γ(αij)

Γ(Nij + αij)

ri∏
k=1

Γ(Nijk + αijk)

Γ(αijk)
, (3)

where Γ is the usual Gamma function, n represents the num-
ber of random variables in the BN, ri and qi are the domain
sizes of the ith random variableXi and of its parents Pa(Xi)
respectively; Nijk represents the number of records in the
database in which the kth value of Xi and the jth value of
its parents were observed. Similarly, Nij =

∑
kNijk is the

number of records in which the jth value of Pa(Xi) was ob-
served. αijk represents the a priori that Xi and its parents
are equal to their kth and jth values respectively. Finally,
αij =

∑
k αijk. Usually, the prior P (G) on structures is

assumed to be uniform, hence P (G) is often not taken into
account in Equation (3).

For nsDBNs, Equation (3) is adapted in (?) as:

P (G0, . . . , Gm)

m∏
h=0

n∏
i=1

qi∏
j=1

Γ(αij(Eh))

Γ(Nij(Eh) + αij(Eh))

×
ri∏
k=1

Γ(Nijk(Eh) + αijk(Eh))

Γ(αijk(Eh))
,

(4)

where the Gh’s are the structures at each epoch, and the
quantities in the Gamma functions are similar to those in
(3) except that they are computed on subdatabases of D
corresponding to epochs Eh. In order to derive this equa-
tion, (?) assume that the CPT’s parameters in each epoch
are mutually independent of those in the other epochs. It
also assumed that the domains of the random variables do
not change over time, which may not always be realistic.
For instance, in video tracking, the positions of the tracked
object change over time and it is suboptimal to consider at
each epoch the union of all the possible positions over all the
frames. Finally, to keep the search on the structures tractable,
(?) assumes that the evolution of the structure over time
follows a truncated exponential. This enables to substitute
P (G0, . . . , Gm) by e−λss, where s is the number of graph
transformations used sequentially to create all theGh’s from
the Gh−1’s. Again, as discussed in the introduction, this as-
sumption is questionable. In the next section, we propose
another learning algorithm that overcomes these problems.

A New Learning Algorithm
In this section, we propose a new algorithm designed for
streaming problems (for example, for real-time event detec-
tion in video sequences). We thus assume that database D
is observed sequentially, one time slice at a time. Let Dt

be the data observed precisely at time t. Assume that some-
how we determined that Bh = (Gh,Θh) was the best BN
modeling the uncertainties up to time Th and, now, at time
t = Th + 1, we observe new data Dt that are likely to have
been generated by another BN Bh+1 = (Gh+1,Θh+1). Fol-
lowing the preceding section, and taking into account knowl-
edge at time Th, i.e., taking into account BN Bh, graph Gh+1

can be determined as Gh+1 = ArgmaxG∈GP (G|Dt,Bh) =
ArgmaxG∈GP (G,Dt|Gh,Θh).

P (G,Dt|Gh,Θh) =

∫
θh+1

P (G,θh+1,Dt|Gh,Θh)dθh+1

=

∫
θh+1

P (Dt|G,θh+1,Gh,Θh)π(θh+1|G,Gh,Θh)

×P (G|Gh,Θh)dθh+1

= P (G|Gh,Θh)

∫
θh+1

P (Dt|G,θh+1,Gh,Θh)

×π(θh+1|G,Gh,Θh)dθh+1

It is reasonable to assume that, given (G,θh+1), i.e., given
the BN at time t, Dt is independent of the BN at time Th <
t, i.e., it is independent of (Gh,Θh). Therefore, the above
equation is equivalent to:

P (G,Dt|Gh,Θh) = P (G|Gh,Θh)

×
∫
θh+1

P (Dt|G,θh+1)π(θh+1|G,Gh,Θh)dθh+1.
(5)

Now, let us review all the terms in the above equation.
π(θh+1|G,Gh,Θh) is the prior over the parameters of the
BN at time t. A classical assumption, notably justified in
(?), is that this prior is a Dirichlet distribution. We also make
this assumption. Doing so and assuming on subdatabase Dt

hypotheses i) to iv) provided in the preceding section for
learning static BNs will obviously results in the above in-
tegral being equal to the product of Gamma functions of
Equation (3). As pointed-out in (?), a difficulty with using
the αijk’s is that the user must specify those a priori over
all the parameter space. To avoid this problem, people usu-
ally add other assumptions that enforce specific values for
the αijk’s. For instance, the K2 and BDeu scores enforce
αijk = 1 and αijk = N ′

riqi
(with N ′ an effective sample

size) respectively. In our framework, the αijk’s correspond
to π(θh+1|G,Gh,Θh), i.e., they are the a priori over param-
eters θh+1 of Bh+1 given the BN Bh at time Th. Therefore,
if B̂ = (G, Θ̂) is, among all the BNs whose structures are
G, that which minimizes the Kullback-Leibler distance with
Bh, it makes sense to assume that π(θh+1|G,Gh,Θh) is a
Dirichlet distribution with hyperparameters N ′Θ̂. Actually,
if N ′ is set to +∞, the Dirichlet distribution will tend as
much as possible toward a Dirac around the distribution of
Bh (given the new structure G). If N ′ is set to a small value,
the impact of Bh over θh+1 will be negligible. By adjusting

appropriately the value of N ′, the impact of Bh over θh+1

can thus be precisely controlled.

Lemma 1 Let B̂ = (G, Θ̂) be the BN with structure G
whose Kullback-Leibler distance with Bh is minimal. Let
PBh

and PB̂ be the probability distributions encoded by
Bh and B̂ respectively. Finally, for any node X in G, let
PaG(X) denote the set of parents of X in G. Then Θ̂ is de-
fined as, for any X , PB̂(X|PaG(X)) = PBh

(X|PaG(X)).

Computing PB̂(X|PaG(X)) is thus just a matter of in-
ference in BN Bh. If this inference is computationally dif-
ficult due to a too strong structural difference between G
and Gh (for instance, if, when applying a junction tree-
based algorithm, the treewidth of the latter is too high),
PB̂(X|PaG(X)) can still be approximated quickly and ef-
ficiently by maximum likelihood exploiting the subdatabase
at epoch Eh.

Let us now examine the first term in Equation (5), i.e.,
P (G|Gh,Θh). This is the prior over the structures’ space.
In (?), G is assumed to be independent of Θh given Gh and
the prior is thus equal to P (G|Gh); the latter is modeled as
a truncated exponential that penalizes graphs G that are too
different from Gh. As pointed out in the introduction, this
does not take into account the strength of the arcs in the
network, which are determined by factor Θh. Yet, arcs rep-
resenting weak dependences are certainly more likely to be
deleted than those representing very strong dependences. In
our framework, we propose to take into account this factor.
There exist several criteria to measure the strength of an arc.
In (?), the authors propose to exploit the conditional mutual
information criterion, leading to assessing the strength of arc
X → Y as:

I(X,Y |Z) =
∑
X,Z

P (X,Z)
∑
Y

P (Y |X,Z) log
P (Y |X,Z)

P (Y |Z) ,

where Z = Pa(Y)\{X}. (?) suggest to approximate this
equation as follows to speed-up its computation:

Î(X,Y |Z) =
∑
X,Z

P (X)P (Z)
∑
Y

P (Y |X,Z) log
P (Y |X,Z)

P (Y |Z) .

We can now extend the truncated exponential used by (?) as
follows: let 〈(X(s), Y(s), As)〉cs=1 be a sequence of transfor-
mations (As ∈ {arc addition (add), arc deletion (del), arc
reversal (rev)}) changing Gh into G. We propose to score
each graph G as:

P (G) ∝ P̂ (G) =

c∏
s=1

ef(X(s),Y(s),As), (6)

where f(X(s), Y(s), As) is equal to:
−λdÎ(X(s), Y(s)|Pa(Y(s))\{X(s)}) if As = del
−λa/Î(X(s), Y(s)|Pa(Y(s))) if As = add
1
2 (f(X(s), Y(s), del) + f(Y(s), X(s), add)) if As = rev

and λd and λa are two positive constants that represent
our knowledge about the possible amount of differences be-
tween Gh and G. Conditional mutual informations being

always non-negative, this formula tends to penalize graph
modifications while taking into account the strengths of the
arcs. As for the prior on the parameters, computing P̂ (G) is
thus just a matter of inference in BN Bh. In our framework,
P (G,Dt|Gh,Θh) is thus equal to:

c∏
s=1

ef(X(s),Y(s),As)
n∏
i=1

qi∏
j=1

Γ(N ′θ̂ij(Eh))

Γ(Nij(t) +N ′θ̂ij(Eh))

×
ri∏
k=1

Γ(Nijk(t) +N ′θ̂ijk(Eh))

Γ(N ′θ̂ijk(Eh))
,

(7)

where N ′ is an effective sample size, θ̂ijk(Eh) is the prob-
ability according to B̂ of Lemma 1 that Xi is equal to its
kth value given the jth configuration of its parents, and
θ̂ij(Eh) =

∑ri
k=1 θ̂ijk(Eh). Nijk(t) represents the num-

ber of observations in Dt of the kth value of Xi and the jth
configuration of its parents.

To complete the algorithm, there remains to determine the
transition times Th. In (?), it is suggested that the search
space for the learning algorithm should be the structures’
space times the set of transitions’ space. By adding oper-
ators that change the number of transitions as well as op-
erators that change the transition time’s locations. This in-
creases considerably the size of the search space, making
the convergence of the learning algorithm difficult to reach.

In (?), the authors propose to compute, for each record
d = (x1, . . . , xn) of observations of all the variables Xi

in subdatabase DEh
∪ Dt corresponding to time slices

Eh ∪ {t}, and each node Xi, a quantity cd = PBh
(Xi =

xi)/PBh
(Xi = xi|Xj = xj , j 6= i). For a given node

Xi, the set of ci’s thus constructed form a vector of length,
say v, from which a quantity Ci =

∑v
d=1 cd cos(π(d+0.5)

v)
is computed. Ci corresponds to the negative of the second
component of a discrete cosine transform. The authors ar-
gue that a high value of Ci indicates a transition time. While
this formula, notably the use of cd, is not really mathemat-
ically justified, it has a major advantage over the method in
(?): it does not increase the search space, hence enabling fast
learning algorithms.

In our framework, we propose yet another method, which
both limits the size of the search space and is mathematically
well justified. We suggest to perform classical goodness-of-
fit tests of BN Bh with database Dt. More precisely, for
each node Xi of the BN, we compute the χ2 statistics over
the subset of Dt corresponding to {Xi} ∪ Pa(Xi), where
Pa(Xi) is the set of parents of Xi in Bh. If at least one
of those statistics indicate that it is more likely that Dt has
been generated by a BN different from Bh than by Bh itself,
then this means that we have reached a new transition time,
else t should not be considered as a transition time. Prior
to using the goodness-of-fit tests, if Dt does not contain the
same variables as Bh (for instance, new random variables
have been added or others have been discarded), or if some
observed values do not match the domains of their random
variables in Bh, our algorithm considers that a new transition
time has been reached. Note that, in streaming applications,

it is quite possible to observe some random variable’s val-
ues only after a given time. For instance, in video tracking,
a person might be on the left of the scene at the beginning
of the video and on the right only at the end, and it would
be suboptimal from a learning perspective to consider that
random variable “location of the person” is defined at every
time slice over all the possible values from left to right (be-
cause this would increase drastically the domain size of the
random variable, hence increasing the noise in the BD score
used for structure learning).

Our complete algorithm is given in Algo. 1. Note that,
when t is not considered as a transition time, i.e., when Dt

is likely to have been generated by Bh, we shall exploit this
database to refine the parameters of Bh, e.g., using the algo-
rithm advocated in (?). We will show in the next section the
efficiency and effectiveness of our algorithm.

learn B0 from database D0

learn B1 from database D1

h← 1
while a new database Dt is observed do

if the variables in Dt or their values differ from
those in Bh, or if a goodness-of-fit test indicates a
transition time then

learn Bh+1 using Equation (7)
h← h+ 1

else
update the parameters in Bh using Dt

Algorithm 1: nsDBN Learning.

Experimentations
For our experimentations, we generated nsDBNs as follows:
for B0, we started from two well-known BNs, “asia” and
“alarm”, with 8 and 37 nodes respectively, in which we per-
turbed the CPTs randomly. Then, using the random gen-
erator proposed in (?), we generated the other Bh’s for 4
epochs (h = 1, . . . , 4). Again, the CPTs of all the Bh’s were
randomly perturbed. Then we sampled from these nsDBNs
to create databases Dt. We performed essentially two sets
of experiments. In the first one, each epoch was set to 10
time slices and databases were generated with different num-
bers of records (20, 100, 250, 500, 750, 1000, 2500, 5000)
whereas, in the second set, the number of records was fixed
to either 500 or 2000 but the number of time slices in the
epochs varied from 5 to 30 with a step of 5. For each of those
configurations, 30 experiments were performed, resulting in
an overall of 1200 different nsDBNs. Tables 1 to 3 average
over the 30 experiments the results obtained by our algo-
rithm on these nsBNs on a PC with an Intel Xeon E5 2630
at 2.60GHz running on Linux. In all the experimentations,
our algorithm’s χ2 test significance level α was set to 0.01.

In Table 1, columns TP, FN, FP refer to the number of
“true positives”, “false negatives” and “false positives” w.r.t.
the transition times. As can be seen, even with moderate-
size databases (∼250 records per time slice), our algorithm
finds efficiently the transitions of the alarm-based nsDBNs

Table 1: . Experimentations with fixed-size epochs (10 time slices) and databases of varying sizes
Network Size KL mean KL std KL min KL max TP FN FP Time

Alarm

20 21.19±3.80 15.52±1.47 6.31±4.14 39.47±2.58 1.17±0.37 3.83±0.37 0.27±0.51 2.65±0.97
100 16.10±3.13 5.51±1.51 7.71±5.04 23.43±2.71 3.43±1.05 1.57±1.05 1.57±1.05 9.34±2.81
250 13.36±1.69 7.33±0.89 2.01±2.19 23.04±2.13 4.93±0.25 0.07±0.25 1.40±0.99 14.27±1.53
500 11.65±1.13 6.89±0.61 2.26±1.06 22.91±1.85 5.00±0.00 0.00±0.00 0.80±1.08 15.75±1.20
750 12.25±1.08 6.20±0.58 3.55±0.55 23.07±1.07 5.00±0.00 0.00±0.00 1.03±0.84 17.24±1.26

1000 12.63±1.12 6.25±0.49 2.88±0.29 22.45±1.05 5.00±0.00 0.00±0.00 1.13±1.28 19.57±1.18
2500 10.49±1.04 6.38±0.59 2.10±0.12 20.70±1.35 5.00±0.00 0.00±0.00 1.73±1.63 27.89±2.50
5000 6.96±1.10 3.38±0.78 1.09±0.22 12.45±2.06 5.00±0.00 0.00±0.00 3.03±1.74 39.02±3.46

Asia

20 3.85±0.82 0.86±0.77 2.98±0.81 4.92±1.62 1.37±0.48 3.63±0.48 1.00±0.63 0.47±0.16
100 1.20±0.16 0.48±0.15 0.50±0.15 2.03±0.42 4.67±0.60 0.33±0.60 1.13±1.02 2.06±0.46
250 0.75±0.15 0.35±0.12 0.27±0.06 1.46±0.40 5.00±0.00 0.00±0.00 1.10±1.04 4.13±0.67
500 0.58±0.14 0.36±0.11 0.13±0.06 1.32±0.35 5.00±0.00 0.00±0.00 1.43±1.15 4.65±0.47
750 0.53±0.14 0.36±0.11 0.10±0.06 1.30±0.35 5.00±0.00 0.00±0.00 1.77±1.71 4.96±0.76

1000 0.51±0.13 0.36±0.10 0.09±0.05 1.27±0.34 5.00±0.00 0.00±0.00 1.57±1.36 4.73±0.60
2500 0.46±0.13 0.34±0.09 0.05±0.04 1.20±0.30 5.00±0.00 0.00±0.00 2.43±1.99 5.07±0.89
5000 0.44±0.14 0.34±0.09 0.02±0.03 1.19±0.32 5.00±0.00 0.00±0.00 3.10±1.56 6.20±0.82

Table 2: . Experimentations with fixed-size databases (2000 records) and epochs of varying sizes
Network Step KL mean KL std KL min KL max TP FN FP Time

Alarm

5 9.44±1.36 5.44±0.97 2.32±0.15 19.40±2.67 5.00±0.00 0.00±0.00 1.07±1.12 22.87±2.11
10 11.81±0.88 7.07±0.54 2.31±0.11 22.40±0.71 5.00±0.00 0.00±0.00 2.03±1.47 25.89±1.96
15 12.23±1.25 7.53±0.51 2.26±0.12 22.51±0.71 5.00±0.00 0.00±0.00 2.27±1.81 29.99±3.21
20 12.18±1.16 7.84±0.43 2.34±0.16 22.59±0.53 5.00±0.00 0.00±0.00 2.47±1.67 33.53±2.89
25 11.70±0.96 7.85±0.42 2.33±0.15 22.43±0.82 5.00±0.00 0.00±0.00 2.40±1.28 38.31±2.91
30 12.25±1.18 8.14±0.37 2.31±0.16 22.84±0.52 5.00±0.00 0.00±0.00 2.23±1.78 39.88±2.86

Asia

5 0.46±0.11 0.32±0.08 0.05±0.05 1.09±0.31 5.00±0.00 0.00±0.00 1.40±1.50 4.22±0.75
10 0.48±0.12 0.36±0.09 0.06±0.04 1.26±0.35 5.00±0.00 0.00±0.00 2.27±2.03 4.85±0.70
15 0.47±0.11 0.37±0.09 0.06±0.05 1.29±0.32 5.00±0.00 0.00±0.00 2.63±1.99 4.66±0.87
20 0.50±0.11 0.38±0.08 0.07±0.04 1.35±0.31 5.00±0.00 0.00±0.00 2.63±1.66 5.66±0.71
25 0.49±0.10 0.38±0.09 0.05±0.05 1.34±0.31 5.00±0.00 0.00±0.00 2.73±2.08 5.41±0.79
30 0.50±0.11 0.39±0.08 0.06±0.05 1.40±0.32 5.00±0.00 0.00±0.00 2.67±2.02 6.00±0.80

(as there are 5 epochs, the best possible value for TP is ac-
tually 5). Of course, as “asia” has fewer variables, our algo-
rithm is able to find the true set of transitions with smaller
databases (at least 100 records). This clearly makes it appro-
priate to detect events in dynamic systems. Note however
that the number of false positives tends to increase with the
size of the database. Actually, when the number of records
increases, there are more opportunities to spread the data
on low regions of the CPTs and, in addition, the χ2 test
needs data to fit better the CPTs to not reject the null hy-
pothesis (no transition time). However, even in those cases
where the algorithm creates erroneous transition times, the
network obtained remains very close to the original nsDBN,
as highlighted by the Kullback-Leibler distances shown in
the first 4 columns. These distances were computed at ev-
ery time slice and the columns correspond to the average,
standard deviation, min and max KL obtained on all the
time slices. As the databases are not very large, some ran-
dom variables’ values were never observed in the database
at some time slices, hence ruling out Kullback-Leibler com-
parisons with the original nsDBN. To avoid this problem,
we reestimated by maximum likelihood the parameters on
the original nsDBNs’ structures with the same subdatabases
used by our algorithm and we compared these reestimated

BNs with those found by our algorithm. In a sense, the rees-
timated BNs are the “best” BNs we could get provided our
databases. Finally, note that the computation times (in sec-
onds) remain quite low and increase sublinearly. This can
be explained by the fact that learning new structures is more
time consuming than performing χ2 tests but the latter is
performed much more frequently.

In Tables 2 and 3, the number of record was fixed, but we
varied the sizes of the epochs (from 5 to 30). It can be no-
ticed that these sizes have no significant effect on the number
of true positives or false positives. However, for 500-records
databases, the KL distances tend to decrease with the size
of the epochs, which makes sense because the algorithm has
more opportunities to adjust the CPT’s parameters before the
next epoch. For 2000-records databases, the KL distances
tend to stay level because this database size enabled to esti-
mate very precise CPTs, even for small epochs.

Finally, to conclude these experimentations, we shall have
provided comparisons with the algorithm of (?) but their
framework is very different from ours: they have to process
the entire database over all time slices whereas we process it
only one slice at a time in streaming. Therefore, they devote
a lot of time finding the best transition times when we do
not. So a comparison would be unfair, especially on com-

Table 3: . Experimentations with fixed-size databases (500 records) and epochs of varying sizes
Network Step KL mean KL std KL min KL max TP FN FP Time

Alarm

5 14.14±1.24 6.30±0.75 5.03±0.43 24.27±1.54 5.00±0.00 0.00±0.00 0.70±1.04 18.49±1.42
10 11.96±1.18 6.94±0.69 2.56±1.39 23.03±1.68 5.00±0.00 0.00±0.00 0.97±1.14 15.98±1.19
15 9.05±1.02 5.77±0.93 1.08±0.67 18.17±2.60 5.00±0.00 0.00±0.00 0.90±0.70 16.43±1.11
20 7.69±1.22 5.21±1.09 0.76±0.39 16.47±3.77 5.00±0.00 0.00±0.00 1.00±1.00 17.18±1.37
25 6.95±1.07 4.89±1.09 0.62±0.33 15.69±4.21 5.00±0.00 0.00±0.00 1.53±1.52 17.61±1.34
30 6.35±0.87 4.22±1.08 0.72±0.55 13.55±4.03 5.00±0.00 0.00±0.00 1.03±0.98 16.43±1.11

Asia

5 0.55±0.11 0.33±0.11 0.14±0.07 1.21±0.40 5.00±0.00 0.00±0.00 0.53±0.88 4.05±0.48
10 0.57±0.12 0.35±0.11 0.13±0.06 1.27±0.38 5.00±0.00 0.00±0.00 0.90±1.01 4.63±0.56
15 0.59±0.12 0.36±0.11 0.14±0.06 1.34±0.3715 5.00±0.00 0.00±0.00 1.47±1.12 4.86±0.50
20 0.60±0.13 0.37±0.12 0.16±0.04 1.37±0.37 5.00±0.00 0.00±0.00 1.17±1.16 4.74±0.56
25 0.59±0.13 0.36±0.11 0.14±0.06 1.32±0.33 5.00±0.00 0.00±0.00 1.43±1.28 4.91±0.53
30 0.58±0.13 0.37±0.11 0.12±0.05 1.39±0.40 5.00±0.00 0.00±0.00 2.07±1.44 4.85±0.76

putation times where they exceeded 600 seconds when we
are always below 40, and given the very good quality of our
learning.

Conclusion
We proposed in this paper a new approach to learn nsDBNs.
Our algorithm has very distinct features compared to the
other few nsDBN learning algorithms: i) it is specifically
designed to be run in streaming mode; ii) it does not make
restrictive assumptions on how the structure of the nsDBNs
evolves over time; iii) when the structure evolves, it uses a
principled approach to enable CPT’s parameters dependen-
cies between different epochs. Finally, as shown in the ex-
periments, our algorithm scales is very efficient.

