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Abstract— The problem of improving the stability of a mobile
manipulator over a sloped terrain is addressed in the present
work. Such an improvement is achieved by finding the location
of center of mass of the manipulator that maximizes the overall
quasi-static stability defined as the force-angle stability using
a stochastic optimization approach known as the Covariance
Matrix Adaptation. The tracking of both trajectories for the robot
base and for the manipulator is achieved by using an inverse-
kinematics controller.

I. INTRODUCTION

A terrestrial mobile manipulator is suited for transporting
objects from a place to another while avoiding obstacles and
for achieving other tasks such as opening doors, tracking
objects with a camera mounted on the manipulator and more.
When such a robot traverses uneven terrain then the problem
of the robot’s tip-over stability becomes accentuated on top of
the existing constraints such as joint limits, motor speed-torque
limits, singular configurations, and obstacle regions.

The present work addresses the problem of whether the
degrees of freedom added to a mobile robotic system through
the incorporation of a manipulator can help increase the
robot’s stability, while satisfying other constraints that were
just mentioned.

Most of the past works on the mobile manipulators have
been focused on planning and controlling paths on the level
surface, while satisfying the aforementioned constraints and
guaranteeing the stability degree [1], manipulability [2] or task
compatibility [3]. In addition, they assume that the path (or
trajectory) for the end-effector of the manipulator is given [4],
[5].

In the present work, we focus on generating a path that
optimizes the overall tip-over stability (defined as the force-
angle stability measure [6]) over a sloped terrain by shifting
the center of mass of the manipulator accordingly. This
search is performed by using a stochastic optimization method
(Covariance Matrix Adaptation (CMA) algorithm) [7].

The manipulator employed in the present work has five
degrees of freedom, but the degree of freedom related to the
gripper is not considered because it does not significantly
influence on the location of the center of mass of the ma-
nipulator. Hence, the resulting manipulator has four degrees
of freedom, and, therefore, it is a redundant system. The
redundancy problem is typically resolved either by kinematic
control [8], optimal control [9]–[11] or nonlinear optimization
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Fig. 1. A Cameleon EOD, a tracked mobile robot from Eca Robotics [13]
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Fig. 2. Tracked mobile robot model: (a) top view, and (b) side view.

method [12]. We resolve the redundancy problem by finding
joint angular velocities that minimize the error between the
desired task-space velocities and the actual task-space veloci-
ties. In this manner, the mobile manipulator can track the two
trajectories: one for the base and the other for the center of
mass of the arm.

The rest of the present work is structured as follows. In
Section II, we describe the model for the mobile manipulator
employed in the present work, the planning method for the
arm configuration for increasing the robot’s overall stability
over a ramp, and the trajectory tracking for both the base and
the arm, where the base is asked to track a circular trajectory
on the ramp. In Section III, the results of both the planning for
the arm configuration and the trajectory tracking are shown, as
well as the improvement achieved by the arm reconfiguration.
Finally, in Section IV, we summarize the presented work with
some guidance for future work.



(a) Convex hull for the arm’s valid CoMs (b) Convex hull for the arm’s non-valid CoMs (c) Convex hull for both valid and non-valid arm’s
CoMs

Fig. 3. The workspace for the CoM of the manipulator is defined as the subtraction of the convex hull for the non-valid CoMs of the manipulator ((b)) from
the convex hull for both the valid and non-valid CoMs of the manipulator ((c)).

II. METHODS

A. Description of the robot model
The mobile manipulator considered in the present work

is modeled after the robot shown in Fig. 1. The model
corresponding to this robot is shown in Fig. 2. The robot base
consists of a tracked mobile robot with two tracks and two
flippers. The two tracks are actuated with two DC motors,
and the flippers are coupled and driven by one DC motor.
The flippers are only considered in the present study as
collidable bodies, and they are actuated. On the other hand, the
manipulator has five degrees of freedom with four links and
one gripper. In the present study, the degree of freedom for
the gripper is not considered because it does not significantly
influence on the location of the center of mass (CoM) of the
entire manipulator (Fig. 2). Hence, the manipulator is assumed
to have four degrees of freedom.

A coordinate frame is attached to the center of the base,
representing the body frame. The arm links are represented
using the Denavit Hartenberg’s parameters [14]. Hence, a
coordinate system is attached to each joint with the purpose
to represent the CoM of each link.

The CoM of the manipulator can be expressed as a function
of the CoM of each manipulator link as

Gga =

GTB

3∑
i=0

mi
BTRi

Rigi

3∑
i=0

mi

, (1)

where Gga is the CoM of the manipulator in the global frame
(see Fig. 2(b)), GTB is the homogeneous transformation from
the body frame ({B}) to the global frame ({G}), BTRi

is the
homogeneous transformation from the i-th manipulator link
frame (Ri) to the body frame, Rigi is the CoM of the i-th
manipulator link expressed in the i-th manipulator link frame
(Ri), and mi is the mass of the i-th manipulator link.

B. Definition of the workspace for the center of mass of the
manipulator in the body frame

The search for the optimal CoM of the manipulator can
be efficient if one defines the workspace for the CoM of

the manipulator in the body frame in off-line using the
brute force method. That is, all possible locations of the
manipulator’s CoM are identified by considering all possible
values for the four joint angles that define the manipulator’s
configuration with some precision (having the robot platform
on a flat surface). Hence, in the definition of the workspace
of the manipulator’s CoM two types of constraints are taken
into account: the joint angle limits for each joint and the
self-collision detection. The self collision is detected using
the Gilbert-Johnson-keerthi (GJK) algorithm [15]. The self
collision is checked between all the four links that form the
manipulator and the main platform, the two tracks and the two
flippers. That is, for all possible values for the four joint angles,
the collision between bodies (manipulator links, main-base,
tracks and flippers) is checked. If no collision is occurred, then
the corresponding CoM of the manipulator is labeled as a valid
one. Otherwise, a non-valid label is attributed. This procedure
is repeated for all the considered joint-angle values.

This workspace is not convex due to the geometric con-
straints of the manipulator links and the collision with the base
platform (the main body, the two tracks and the two flippers).
However, if one can express this space as a combination of
convex hulls, then the identification procedure of whether a
point is within this workspace can be quickly evaluated. For
this reason, first from the clouds of both valid and non-valid
CoMs (non-valid due to the collision) a convex hull is formed
(Fig. 3(c)). Afterwards, another convex hull is formed from
the cloud of non-valid CoMs (Fig. 3(b)). Then, the workspace
for the CoM of the manipulator (denoted as V) is defined as
the subtraction of the convex hull for the non-valid CoMs of
the manipulator from the convex hull for both the valid and
non-valid CoMs of the manipulator. This workspace is shown
in Fig. 3(a).

C. Relating the tip-over stability to the CoM of the arm

The optimality criterion for searching the desired CoM
of the arm employed for the present work is the tip-over
stability. In particular, the force-angle stability measure [16]
is used. The force-angle stability measure can be computed as
the product between the magnitude of the net force and the
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Fig. 4. The robot’s tip-over stability can be defined as the force-angle stability
measure [16]. The tipover axes (aj ) are the vectors that define the support
polygon boundary, and the force-angle stability measure can be computed as
the product between the magnitude of the net force and the smallest angle
obtained among all the angles formed between the tipover-axis normals (li’s)
and the net force vector (fr). The details on the definition of the force-angle
stability measure are given in the text.

smallest angle obtained among all the angles formed between
the tipover-axis normals (li’s) and the net force vector (fr),
where the tipover axes (aj) are the vectors that define the
support polygon boundary. Therefore, the stability measure
can be defined as

µ = min
j

(θj)‖fr‖, j = {1, · · · , n}, (2)

where n is the number of tipover axis of the support polygon,
fr is the resulting force vector, aj is the j-the tipover axis, lj
is the vector normal to the j-th tip-over axis, and θj is the
angle formed between fr and lj. See Fig. 4 for clarification.

Therefore, the stability maximization problem can be for-
mulated as

max
ga

µ (ga)

s.t. ga ∈ V, (3)

where ga is the CoM of the manipulator, and V is the
workspace for the CoM of the manipulator.

On the other hand, one can develop (2) to relate the stability
measure to the overall CoM as

θj = σj cos
−1
(
fr

TΦT
j Φj (pj+1 − go)

)
, (4)

where Φj=
(
I− âjâ

T
j

)
, âj=aj/‖aj‖, and

σj =

{
1,

(
Φjfr × l̂j

)T
· âj > 0,

−1, otherwise.

where l̂j=lj/‖lj‖. Finally, go in (4) can be related to ga by

go =
maga +mbgb

mT
, (5)

where go is the overall CoM, ga is the CoM of the manipu-
lator, gb is the CoM of the robot base, mT = ma+mb is the

total mass, ma is the manipulator’s mass, and mb is the robot
base’s mass.

To validate the stability measure, some nonzero roll value
is given to the robot base, and the center of mass of the
manipulator is varied by rotating the manipulator’s link0 from
0 deg to 360 deg (see Fig. 5(a)). Fig. 5(b) shows that there
are two local maxima (among which the one that is close to
2π is the global maximum). The two local maxima roughly
correspond to having the manipulator towards the two vertices
of the robot side that is lifted. They are not equal because
the manipulator is not symmetric due to its links’ volumes
(geometric constraints).

In addition, we considered eleven robot configurations on
a ramp following a circular path as shown in Fig. 6(a). For
each robot configuration, the manipulator’s link0 is rotated 360
degrees with some precision (2π/100), and for each sample
the corresponding stability measure value is recorded. Notice
that the other manipulator links (1,2,3) have zero joint angle,
and, hence, the manipulator is stretched all the time while it
rotates about the link0’s vertical axis. Fig. 6(b) shows these
results. Each stability curve presents two local maxima and
two local minima. The two local maxima correspond to the
manipulator facing to the two corners of the upper face on
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(a) A robot configuration on a ramp

(b) The corresponding stability measure
Fig. 5. Stability measure for 360 degrees of the link 0, while the robot base
is located on a ramp with nonzero roll value and zero pitch value.
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(a) Eleven robot poses on a ramp following a circular path

(b) Stability measure values corresponding to the eleven configurations

Fig. 6. Eleven robot configurations are considered on a ramp and following
a circular path. For each configuration the manipulator’s link0 is rotated 360
degrees with some precision. For each sampling the robot’s stability measure
is recorded.

the ramp. Among these two maxima, one always has larger
stability value because of the asymmetry of the manipulator
due to its geometry (see Fig. 5(a)).

D. Search for the optimal location of the overall center of
mass

Next, the desired overall CoM is searched as function of the
robot platform’s pose using a stochastic optimization method
known as the Covariance Matrix Adaptation (CMA) algorithm)
[7] that maximizes the following fitness function

fitness = ω1
µ

µmax
− ω2

(
go

t − go
t−1
)2

d2
workspace

, (6)

where ω1≥0 and ω2≥0 are the weights satisfying the condition
ω1+ω2=1, µ is the stability function introduced in (2), go

t

is the currently desired CoM of the manipulator, and go
t−1

is the CoM of the manipulator in the previous time step. The
µmax is the stability measure corresponding to that of when
the robot platform is on a flat surface (with the manipulator
folded). Whereas, dworkspace is the largest distance of the arm’s
CoM workspace shown in Fig. 3. In this study, we would
like to maximize the stability and minimize the motion of
the manipulator from the previous time step. During the
sampling procedure, if a randomly sampled configuration does
not belong to the workspace defined for the CoM, then such
a configuration is discarded. As an example, Fig. 7(a) shows
an initial set of randomly chosen samples for the arm’s CoM

with their corresponding arm configurations with the robot
base having some nonzero roll angle, and Fig. 7(b) shows
the CMA convergence result. That is the arm configuration
that corresponds to the arm’s CoM that gives the best overall
stability.

We do not perform the inverse kinematics to find the joint
angles corresponding to the desired CoM of the manipulator
in each iteration of the CMA. This is because first it is very
expensive to perform the inverse kinematics, and, second, there
is no need to perform this task to compute the objective (i.e.,
fitness) function value associated to each configuration shown
in (8).

Because the CMA algorithm might not be able to search for
the global optima but be stuck to a local maximum, for each
case we considered two sets of initial conditions around the
two local minima. Fig. 6(b) indicates that for all the considered
cases the manipulator’s CoMs correspond to having the link0
joint angle around 2.0 rad and 5.0 rad and the other joint
angles being zero. Hence, two initial manipulator CoMs are
considered by performing the forward kinematics with the
aforementioned joint angle values.

Ten converged manipulator configurations are shown when
the mobile manipulator is asked to follow a circular path on
a ramp as shown in Fig. 8. For this simulation ω1=0.9 and
ω2=0.1 are used. The results show that for the first four robot
configurations, the manipulator is reconfigured to be on the
front right side. Then the manipulator is reconfigured towards

(a) One CMA optimization iteration

(b) The optimal manipulator’s CoM found using the CMA
Fig. 7. A number of arm configurations are considered to compute their
arm’s CoM and the associated objective function value. Afterwards the mean
of the these CoMs is computed.



Fig. 8. Converged configurations on a ramp.

Fig. 9. Desired and actual trajectories for the platform and the arm on the
slope.

the front left side during the subsequent four robot base
configurations. Finally, the manipulator is again reconfigured
to the front right side for the last two configurations. All
these reconfigurations show that they are chosen such that
the range of the manipulator motion is reduced. Therefore, all
these configurations are around one local maximum (regardless
whether this corresponds to the global maximum in terms of
the stability only). The choice between the left and right is
made based on the one that increases the stability.

E. Trajectory tracking

Once the CoM of the manipulator that optimizes (8) is found
for each base configuration and a desired path that connects
the start and ending configurations is found, then one can
control the motion of the manipulator such that its CoM passes
through the desired CoM of the manipulator by implementing
a controller that satisfies the following optimization problem:

min
q̇

1
2‖

S ξ̇des − SJ(q)q̇‖2ωA
+ 1

2‖q̇‖
2
ωB
,

s.t. q ≤ qlimit,

q̇ ≤ q̇limit, (7)

where S ξ̇des can be designed as
S ξ̇des = Kp

(
Sξdes − Sξ

)
. (8)

Sξ = [gbx , gby , γ, gax , gay , gaz ]
T indicates both the current

base configuration and the current arm’s CoM described in
the Slope Frame (S) (see Fig. 6(a)), q = [θl, θr, θ0, θ1, θ2, θ3]

T

(a) Tracking error for the base

(b) Tracking error for the arm
Fig. 10. Tracking error for both the base and the arm

indicating the two motor joint angles for the robot base and the
four joint angles for the manipulator, J(q) is the 6×6 Jacobian
, qlimit is 6D joint angle limits, q̇limit is 6D joint angular speed
limits, Kp is the 6× 6 proportional gain diagonal matrix, ξdes
is defined by the desired trajectories for the robot base and
the manipulator, and ωA and ωB represent the weights for the
two additive functions employed in the cost function.

III. RESULTS

Fig. 9 shows the tracking of both the trajectory for the
control point of the base and the trajectory for the CoM of
the arm as the robot traverses on the slope.

In fact, Fig. 10(a) and Fig. 10(b) show a closer look on
the tracking performance using the controller described in the
previous section. The tracking errors for both the base and the
arm are bounded.

Fig. 11 shows the joint angular velocities for both the
base and the arm. In the optimization problem shown in the
previous section, the joint angular velocities are limited by 4π
rad/s. Fig. 11(a) shows that the saturation of the joint angular
velocities during the initial stage of the simulation. In general,
the first arm link has larger values of angular velocity because
the desired trajectory for the center of mass of the arm mainly
moves parallel to the slope plane with small changes along
the direction normal to this plane.

On the other hand, Fig. 11(b) shows that the joint angular
velocities for the base quickly raise to reach the desired
velocities. One can also see that the values of the angular



(a) Angular velocities of the arm joints

(b) Angular velocities of the base joints
Fig. 11. Angular velocities for the arm joints and the base joints

velocity of the right side joint are always larger than those of
the left side joint. This result is because the robot is asked to
track the circular trajectory counterclockwisely, and, therefore,
the left side of the robot is the inner side as the robot tracks
the desired trajectory.

Finally, Fig. 12 shows the force-angle stability measure as
the mobile manipulator tracks the trajectories. In the future, we
will compare these results to the stability measures achieved
with different robot configurations.

Finally, we compare the stability achieved as the robot
tracks the trajectories shown in Fig. 9 by reconfiguring its
arm to the stability result obtained by removing the arm
from the robot base. As the comparison results demonstrate,
a clear stability improvement can be achieved by the arm
reconfiguration.

IV. CONCLUSION AND FUTURE WORK

We propose in this paper a method for motion generation
and control of a mobile manipulator intended to navigate
on rough terrain, which can be considered to be as set of
slopes. The arm motion generation is defined by optimizing the
stability margin of the overall system. The inverse kinematics-
based controller ensures both tracking of the mobile base and
the arm’s center of mass. The proposed approach is validated
in simulation on a slopping ground, and, in the future, this
method will be generalized to other types of uneven terrains.

Fig. 12. The tip-over stability measure while the mobile manipulator tracks
the trajectories.

REFERENCES

[1] S. Sugano, Q. Huang, and I. Kato, “Stability criteria in controlling
mobile robotic systems,” in 1993 International Conference on Intelligent
Robots and Systems. Part 2 (of 3), July 26, 1993 - July 30, 1993.
Yokohama, Jap: Publ by IEEE, 1993, pp. 832–838.

[2] T. Yoshikawa, Foundations of robotics: analysis and control. Cam-
bridge, Massachusetts: The MIT Press, 1990.

[3] S. L. Chiu, “Task compatibility of manipulator postures,” The Interna-
tional Journal of Robotics Research, vol. 7, no. 5, pp. 13–21, 1988.

[4] A. Mohri, S. Furuno, and M. Yamamoto, “Trajectory planning of mobile
manipulator with end-effector’s specified path,” in Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2001.

[5] G. Oriolo and C. Mongillo, “Motion planning for mobile manipulators
along given end-effector paths,” in Proc. of IEEE International Confer-
ence on Robotics and Automation, 2005.

[6] E. Papadopoulos and D. A. Rey, “Force-angle measure of tipover
stability margin for mobile manipulators,” Vehicle System Dynamics,
vol. 33, no. 1, pp. 29–48, 2000.

[7] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation,” in
Proc. of IEEE International Conference on Evolutionary Computation,
1996.

[8] B. Siciliano, “Kinematic control of redundant robot manipulators: a
tutorial,” Journal of intelligent and robotic systems, vol. 3, pp. 201–
212, 1990.

[9] D. P. Martin, J. Baillieul, and J. M. Hollerbach, “Resolution of kine-
matic redundancy using optimization techniques,” IEEE Transactions on
Robotics and Automation, vol. 5, no. 4, pp. 529–533, 1989.

[10] W. Miksch and D. Schroeder, “Performance-functional based controller
design for a mobile manipulator,” in Proc. of IEEE International
Conference on Robotics and Automation, 1992.

[11] C.-C. Wang and V. Kumar, “Velocity control of mobile manipulators,”
in Proc. IEEE International Conference on Robotics and Automation,
1993.

[12] F. G. Pin, J.-C. Culioli, and D. B. Reister, “Using minimax approaches
to plan optimal task commutation configurations for combined mobile
platform-manipulator systems,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 1, pp. 44–54, 1994.

[13] Cameleon EOD, Eca Robotics: http://www.eca-robotics.com/en/robotic-
vehicle/robotics-terrestrial-unmanned-ground-vehicles-(ugv)-cameleon-
eod-lightweight-eod-ugv/22.htm.

[14] R. Hartenberg and J. Denavit, Kinematic synthesis of linkages.
McGraw-Hill, 1965.

[15] E. G. Gilbert, D. W. Johnson, and S. Keerthi, “Fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal of Robotics and Automation, vol. 4, no. 2, pp.
193–203, 1988.

[16] E. Papadopoulos and D. Rey, “A new measure of tipover stability margin
for mobile manipulators,” in Proc. IEEE International Conference on
Robotics and Automation, vol. vol.4, Minneapolis, MN, USA, 1996, pp.
3111–16.


