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Abstract— Assisted gait monitoring could benefit from the
measurement of feet position and orientation. These measure-
ments could also be used to implement intention-based control
laws for smart walkers. Several works have been dedicated to
the detection of lower limbs. The proposed methods are usually
fast, but only detect the position of the legs. Others may even
be more complete, but are not adapted to reactive applications.
Also, they often use markers attached on the feet, which is
unsuitable in daily routine.

In this paper, a fast feet position and orientation detection
algorithm is proposed. It is based on a camera depth sensor
and does not require the use of any marker. The obtained
results are compared with a ground truth provided by a motion
traking system to experimentally assess the performances of the
proposed algorithm.

I. INTRODUCTION

A. Context

Conventional walkers are widely prescribed since they

provide the users with a wider support base, thus increasing

stability and safety [1]. Their use has however been reported

as leading to security issues and increasing the cognitive load

[2], especially in the elderly. The conventional walkers could

be replaced by smart walkers to cope with these issues.

For control purposes, some smart walkers exhibit an

interface (like button control) that requires some cognitive

efforts from the user to guide the walker and consequently

a discouraging learning phase. Most of the devices propose

a theoretically intuitive command based on force sensors,

for example [3], [4]. However, these sensors have some

limitations in terms of obtaining a stable signal for providing

a comfortable drive of the walker to the user. Since one needs

to tune the virtual inertia of the sensor to increase stability

and sensitivity to the driving, elders usually feel tired since

they need to push the walker. To get around this difficulty,

this article proposes to use non physical interaction to obtain

data that are needed to control the device. This solution

should also be fast to comply with the time specifications

of control applications.

Gait monitoring could also be achieved based on the

same method. This monitoring could be used for safety

purposes. Nejatbakhsh et al. [5] use velocity data to constrain

walker’s movements in case of excessive amount of velocity.

More precise data on gait could also help for following
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rehabilitation and for diagnosis purposes. Haussdorff et al.

in [6] showed that stride-to-stride variability is a good

parameter to predict the tendency of the subjects to fall.

The majority of the embedded gait analysis studies were

performed with accelerometers or force sensitive insoles [6].

This kind of sensors cannot in general be installed by patients

themselves and thus require an assistive person to install

and uninstall them. Moreover, they are unconfortable for

users and increase the global cost of the device. That is

why, despite a possible large number of applications of gait

monitoring data, they are never meant to be used in daily

routine. To solve this problem new sensors have to adapt

to changing environmental conditions as clothes and to be

contactless. Some contactless sensors have been tried [7]–

[14].

B. Related work on contactless sensors for lower limbs

detection

In the literature, four different sensors have been used to

measure lower limbs’ position and orientation : Ultrasonic

Sensors (US), Laser Range Finder sensors (LRF), Infra-Red

sensors (IR) or camera depth sensors.

Even if they can achieve good performances [7], US

sensors only are not a viable solution to detect lower limbs

in smart walkers. Indeed, their experimental setup relies on

markers attached on the feet. Markers could be unconfortable

to the user and cannot be used in a daily routine. For instance,

in case the control is based on feet detection, if one marker

falls, the user risks to be isolated with an assistive device in

failure, it becomes a risk of falling situation.

IR [8] and LRF [9], [10], [11] have been proposed

to achieve markerless estimation of lower limbs’ position.

These markerless solutions are quite simple and fast. JaRoW

[10] was integrated with LRF sensor to detect the location of

users lower limbs in real time. A Kalman filter was applied

to estimate and predict the locations of the user’s lower

limbs. However, false detections occur when feet are detected

instead of legs during walking [11] or with large clothes

[10]. False detection is not the only problem of the methods

associated with theses sensors. For example, RT-Walker [9]

uses LRF sensor to estimate the center of gravity of the user

for fall prevention purposes. However, they only detect legs

position, which is not sufficient to infer the user’s intentions

in terms of turning, neither to follow the orientation changes

during walking.

Recent studies take advantage of camera depth sensors

which are now available at reasonable costs [12], [13],

[14]. Paolini et al. [12] proposed real time feet position
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and orientation traking for treadmill use. Their position

errors are lower than 27mm (RMSD). Their orientation error

(bearing angle) are below 10%RMSD. They obtained 3D

orientations of the feet, but angles around vertical axis should

be sufficient for gait analysis and control purposes. Although

these results are really good, the proposed method is not

suitable for our application since it is based on the use of

markers attached to the feet.

Two teams proposed the use of a camera depth sensor

without markers. In [13], a parametric model of legs and

feet is adapted to the camera images using point clouds.

Only position errors are reported by the authors (less than

60mm) and are considerably bigger than the ones obtained

with markers (27mm) [12]. In [14], another parametrized

model is matched on the camera data. If the principle is

the same as in [13], in [14], the model is simpler and the

correspondence with the model is made with the depth map.

Only orientation error is reported by the authors (less than

15 ◦), and due to occlusion problems, data are not available
in all the gait cycle phases. As these two methods use legs,

they require two separated sets of points for legs, thus large

clothes and skirts will lead to false detection. Moreover,

because of complex segmentation, the image processing is

long, especially in [12], and cannot currently be implemented

in real-time, making it unsuitable for control applications.

C. Proposal

The Institute for Intelligent Systems and Robotics (ISIR,

Paris, France) have conducted a project on the development

of a smart walker for many years. Facing limits of force

sensor based control on the current prototype presented in

[15] (figure 1), we decided to implement depth camera based

control. The ALGORITMI research center (Guimarães, Por-

tugal) decided at the same time to use this sensor for gait

monitoring purposes. To achieve these two goals, one first

needs to evaluate the efficiency of the feet pose estimation

with a camera depth sensor placed on the smart walker.

Thus, the required evaluation is presented in this paper. First,

related work to lower limbs’ pose estimation is examined.

Then, the proposed algorithm for feet pose estimation is

explained and results are compared against a ground truth.

II. FEET POSITION AND ORIENTATION DETECTION

The proposed algorithm is implemented with an Active

Depth Sensor (Asus Xtion Pro - ADS) placed on the walker

device. The main used library is OpenCV [16].

A. Calibration

The calibration aims at converting (u,v,depth) coordinates

on the Walker frame into (Xw, Yw, Zw) coordinates of points

in meters in the walker frame (see figure 2). The calibration

of ADS for feet tracking is done in 2 steps. The calibration

process uses the ADS frame (X,Y, Z) as an intermediate

frame.

Fig. 1: The ISIR’s smart walker prototype with the ADS

1) Camera Intrinsic parameters: To express the point

coordinates in meters in the ADS frame, one have to know

the intrinsic parameters of the ADS, gathered in the following

matrix:

F =





fx 0 cx
0 fy cy
0 0 1





where fx and fy are the focal lengths and cx, cy the

coordinates of the center of the image. To get this matrix,

the OpenCV method of calibration was used with the RGB

image associated to the ADS. One assumes that the intrinsic

parameters of the RGB camera are close enough to those

of the camera depth sensor. With the intrinsic parameters

matrix, points in the ADS frame (X,Y, Z) are obtained by

multiplying the vector [u, v, 1] by inverted F and by the depth
(s) in the (u, v) coordinates:





X

Y

Z



 = F−1.





u

v

1



 .s(u, v)

2) ADS frame to walker frame: The geometric relation

between the ADS frame and the walker frame is assumed

to be a simple rotation along X . To find the angle of

this rotation two methods can be used: measure the angle

Fig. 2: ADS and walker frames
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manually (poor precision) or use the Point Cloud Library

(PCL) to segment the ground plane. With this, a rotation

matrix R is obtained to calculate the ADS coordinate points

in meters in the walker frame.




Xw

Yw

Zw



 = R−1.





X

Y

Z





B. Feet segmentation

The image issued from the ADS contains feet but also legs

(with perturbation of the clothes) of the user, background,

floor and wheels of the walker. The aim is to extract the feet

so the process is applied to the image.

1) Extract the “feet zone”: The ADS image is filtered to

display only the “feet zone”. The “feet zone” is defined in

Z (height) direction. It is the set of data that are between

few millimeters above the ground to a threshold height that

is obtained experimentally.

2) Feet segmentation: The “feet zone” image is converted

to a binary image and filtered with a closing/opening filter

to eliminate artifacts as can be seen on figure 4. Then, the

binary blob technique (based on [17]) is used to segment feet

candidates.

3) Selection of the feet: The centroid of each foot can-

didate is processed and the two closest centroids from the

center of the image are labeled as right and left foot. This

selection methods eliminates candidates close to the walker

wheels and other objects in the background (due mainly to

the imperfect estimation of the ground plane).

C. Computation of feet distances and orientations from the

walker

The feet data will be used for gait analysis and for the

control of a Smart Walker.

Clinical gait analysis is currently only performed with

positions of the feet in Yw direction. Width between feet

(difference in positions in Xw) could be used, to know if

users have a tendency to increase their support polygon and

thus give clues to predict falls [18].

[19] demonstrated that the toe orientation have some

consequences on the knee osteoarthristis. Having this infor-

mation monitored during daily life walk while using smart-

walker can provide an asset to rehabilitation process.

The existing way to control a smart walker thanks to

the feet position is presented in [10]. They have a discrete

approach that obtains the rotation of the robot from the

position of the foot. The limitation of their approach is that

the position of the foot must be strictly different from a

straight motion or a sliding motion. However, with some

elderly the gait evolves the stride size is decreasing and the

strategy of turning could be affected as presented in [20].

A measure of orientation can provide complimentary set of

information to robustify such a controller.

1) Monitoring the feet positions: Two points are candi-

dates to monitor the positions of the feet: the centroids of the

feet and the toe tips. However, none of these two solutions

are perfect since the centroid does not correspond to a fixed

point of the foot as well as the toe tip point estimation due to

changes (noise) on the blobs limits. Thus, we chose to select

(Xf ,Yf ) as coordinates in the walker frame (see figure 2) as

the mean of the abscissa of the foot and the ordinate of the

closest point of the foot to the ADS. Despite the presented

disadvantages, it also takes the centroid of each foot into

account for further purposes.

2) Calculate the feet orientations: As was explained

before, the detection of fixed points of the feet is not accurate

and the foot orientation calculation thereby cannot be based

on the line between centroid and toe tip. To solve this

problem, Principal Component Analysis (PCA) is used to

find the highest variance of the points that correspond to

each foot, thus obtaining the information on the orientation

of each foot. PCA is used for many different applications

where correlation between variables is required and creates

a new space where this correlation is defined. Consider

p variables and n samples, the first step of this method

is to calculate the covariance matrix (size pxp) that takes

the n samples into account. Then, the eigenvectors of this

matrix are calculated and give the principal directions of the

correlation (p is the maximal number of directions that can

be found) and the eigenvalues will give the importance of

the resulting correlations. In this specific application, PCA

will be used to find the axis of inertia of each foot. It is

applied with two parameters (p = 2) that correspond to
the feet coordinates (x and y), the n samples correspond

to the number of detected points of each foot and x̄ and ȳ

correspond to their means. The covariance matrix for each

foot is defined as the following:








1

N

n
∑

i=1

(xi − x̄)2 1

N

n
∑

i=1

(xi − x̄)(yi − ȳ)

1

N

n
∑

i=1

(xi − x̄)(yi − ȳ) 1

N

n
∑

i=1

(yi − ȳ)2









Then, the eigenvectors are calculated to find the axis of

inertia that will give the orientation of each foot.

3) Double support instants detection: To detect the dou-

ble support instants (DSI), the distance between the feet

is calculated. The modulus of the distance is maximum

when the derivate of the depth signal (Yw direction) turned

negative or positive. If this condition is verified, a double

support instant is detected. The altitude signal was not used

for double support instant detection since even if altitude is

well estimated, the DSI are not as clear on the z signal as

on the y signal.

III. RESULTS

This section aims to present the results with healthy young

individuals by tracking their feet with the proposed system

using an ADS. It has a resolution of (640x480) pixels and

16 bits depth precision.

A. Experimental setup

Two trajectories were tested with 3 healthy subjects: walk

along a straight line and then turn right (resp. left, see

figure 3(a)). For validation of the obtained data with the
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(a) Trajectories performed by
the subjects

(b) Codamotion markers on the
left foot

Fig. 3: Codamotion setup

proposed ADS system, reference trajectories are provided

by the Codamotion capture system [21]. The technology

uses miniature infra-red active markers, positionned on each

foot, see figure 3(b), to track the key positions on any

subject. Signals from the markers are beamed to Codamotion

sensor units (black rectangles on figure 3(a)). The spatial

error of this sensor is less than 0.33mm. The sampling

period was set to 100Hz and data processing was done in

MATLAB©(version 2011b). Positions and orientations of the

feet are compared between data obtained from ADS and from

a ground truth (Codamotion).

B. Feet detection and segmentation results

1) Visual validation: After the experiments, the sequence

is processed offline by the proposed algorithm for feet

tracking. In figure 4, three frames are presented showing

different phases of the performed trajectory. The first frame

shows the moment where the right foot is starting to cross

the left foot. The second frame shows the feet following

a straight trajectory in a double support instant. The third

frame shows a double support instant on a turning moment.

In figure 4, the left image of each frame corresponds to

the original input depth image captured by the ADS. The

second image shows the result of the “feet zone” selection.

On the third image, unknown objects are rejected and feet

are labelled. Moreover, the axis of each foot (green line) can

be seen, representing the different foot orientations identified

by the PCA algorithm.

2) Position errors: In figure 5, the signals obtained with

the position coordinates in the (Xw,Yw,Zw) frame are rep-

resented when the subject is walking forward. Coordinates

of the feet from the Codamotion system in the world

frame (X0,Y0,Z0) are transformed into coordinates in the

walker frame (Xw,Yw,Zw). Thus, in figure 5, each position

from ADS is compared with positions obtained with the

Codamotion system. As in [12], Root Mean Square Deviation

(RMSD) is used to quantitatively compare the Codamotion

and ADS position data. The results are shown in table I.

On position precision, the z signal is the more precise and

precision on x and y are about the same. On figure 5(c),

main differences between ADS data and ground truth occur

when the feet are far away from the ground. Indeed in this

case, a smaller part of the foot is in the feet zone leading

to less precise measurement. On figure 5(b), the pattern is

detected with ADS data as well as with the Codamotion

Fig. 4: Frames representing the image processing at different

phases of the gait cycle

TABLE I: Comparison between [12] and the proposed

method on positions and orientations errors

RMSD (mm) %RMSD (%)

Xw Yw Zw around Zw

Proposed 28.9 30.8 13.4 21.1

method ±2.03 ±2.82 ±3.37 ±4.33

[12] 4.9 19.4 8.4 7.9

±1.4 ±6.1 ±1.7 ±2.6

data. On figure 5(a), even if the difference seems bigger

due to the scale, position error is about the same as for

Yw. The precision of the proposed method is compared

to [12] (method with markers) in the table I. It can be

seen that a long way remains if one wants to obtain the

same precision of markers based method. However, when

we compare these results to [13], a markerless solution, (see

table II) using step length and width error as in [13], we

can see that the proposed method is more precise (about

25%). This method is also faster because we do not use 3D

model. When [13] has a processing time around 15 seconds,

the proposed algorithm takes around 30 ms to process with

similar computers. In addition, our method is more complete,

as orientation was not evaluated in their paper. Even if the

precision of the proposed method is not as good as in [12], it

seems acceptable for gait analysis and for control purposes.

Tests must still be performed to assess whether it is sufficient

for these applications.

In figure 6, it can be seen that double support instants are

difficult to extract from z-signal as no threshold in altitude

between “on the ground” and “out of the ground” can be

easily defined. Double support instants are well detected

by the proposed method (green picks on figure 6) with a

precision around 0.1s. This signal will be used for controlling
a smart walker in future work.
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(a) Xw

(b) Yw

(c) Zw

Fig. 5: 3D feet positions acquired by CODA motion capture

system and ADS sensor on the different axis.

TABLE II: Comparison between [13] and the proposed

method on step length and width errors in mm

Step length Step width

mean error std mean error std

Proposed method 28.5 16.7 17.6 8.25

[13] 33.6 22.0 25.5 20.6

Fig. 6: Zw position tracking with Codamotion system with

double support instants detection by ADS sensor.

3) Orientation errors: Figure 7 and 8 represent angle

measurements during a left and a right turn, respectively.

Straight and turning phases are identified. [14] presented

discontinuous angle measurements, as shown figure 7 and 8,

the proposed method gives continuous measurements. ADS

data and data from the Codamotion system display the same

behavior. The error in orientation is about 20% (see table

I) that should be sufficient to assess big changes. Indeed, it

represents ±7◦ and one can see that during straight phases
angle could change of ±10◦. During turning phases, angle
variations increase. From the figure 7 and 8, one can observe

than, in turning phase, the signals present opposite phases

correlated to the turning direction. This is a feature that can

be used to discriminate between a left turning motion and a

right turning motion.

IV. CONCLUSION

This paper proposed a new method to extract feet position

and orientation data from a camera depth sensor. The main

advantages of the presented method is that it is marker-

less, faster than using 3D models, robust against clothing

variations and that continuously detect orientations of the

feet. The precision of the presented method is better than

the other markerless methods and seems sufficient for gait

analysis. However, some improvements could be done, this

algorithm works with a fixed “feet zone”, an adaptative “feet

zone” could improve the z measurement. The turning feature

identified by the proposed method will be useful for the

turning control of the smart walker. This whole system has

to be implemented in a smart walker and tested with patients.

This will be done in future work.
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(a) left foot

(b) right foot

Fig. 7: ADS and Codamotion signals for a left turn

(a) left foot

(b) right foot

Fig. 8: ADS and Codamotion signals for a right turn
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