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Abstract—Determining in advance all objects that a robot will
interact with in an open environment is very challenging, if not
impossible. It makes difficult the development of models that will
allow to perceive and recognize objects, to interact with them and
to predict how these objects will react to interactions with other
objects or with the robot. Developmental robotics proposes to
make robots learn by themselves such models through a dedicated
exploration step. It raises a chicken-and-egg problem: the robot
needs to learn about objects to discover how to interact with them
and, to this end, it needs to interact with them. In this work,
we propose Novelty-driven Evolutionary Babbling (NovEB), an
approach enabling to bootstrap this process and to acquire
knowledge about objects in the surrounding environment without
requiring to include a priori knowledge about the environment,
including objects, or about the means to interact with them.
Our approach consists in using an evolutionary algorithm driven
by a novelty criterion defined in the raw sensorimotor flow:
behaviours, described by a trajectory of the robot end effector,
are generated with the goal to maximize the novelty of raw
perceptions. The approach is tested on a simulated PR2 robot
and is compared to a random motor babbling.

I. INTRODUCTION

A robot can act in a robust manner without any internal
model [1]. Nevertheless, utilizing one of them has several
advantages, like allowing the robot to predict the result of
its actions. This capability may allow the robot to simulate an
action before executing it, thus reducing the risks of damaging
itself. It also allows the robot to use planning or learning
algorithms that can explore how to reach a desired goal and,
then, to execute only the required actions. The ability to
predict what happens and how this changes over time is also
a requirement of Intelligent Artificial Curiosity [2] that allows
the robot to focus its learning efforts on what it can actually
learn.

To predict the outcome of the robot’s actions, a model needs
to predict (1) what forces the corresponding motor commands
will create, (2) what movements will result from them, taking
into account the physics and potential interactions with other
objects in the environment, (3) what impact they will have on
the environment and (4) what consequences they will have on
future robot perceptions. Parts (1) and (4) depend on robot
morphology only: it defines a robot self-model. Parts (2) and
(3) correspond to a world model.

While the robot’s self-model can be designed or generated
during its manufacturing phase, the world model should be
adapted to the robot’s environment and tasks. Designing the
world model requires to anticipate every situation that a robot
can encounter, which can be a very complex task, if not
impossible, in an open environment. The Spirit mars rover
relied on a team of engineers to handle any unforeseen
situation [3], but it is not feasible to spend so much human
effort to adapt the world model of each future autonomous
robot. A promising approach consists then in allowing robots
to learn on their own these models according to the situations
they are dealing with.

Learning a world model requires a substantial amount
of data, which should highlight physical properties of the
robot’s surrounding environment, and of the objects it contains.
Whereas applying any motor command or any perception
gathered can be useful to learn a self-model, generating useful
data about the world is more tricky. Demonstrations can help,
but for the system to be autonomous, it should be able to
generate these data on its own, at least partly. Very few
actions will generate useful interactions, like contacts with
objects. Furthermore, relevant actions or perceptions are highly
dependent on the robot’s environment and, from an embodied
intelligence perspective, it should be discovered automatically
by the robot to exploit as much as possible features that
a human designer may neglect [4]. But how to bootstrap a
system that should learn world models with as less a priori
knowledge about how to interact with it as possible?

In this paper, we present a method named Novelty-driven
Evolutionary Babbling (NovEB), designed to perform a task-
agnostic exploration of an unknown environment. Its main
feature is to look for actions that maximize novelty in the
raw sensorimotor space. It is based on Novelty Search [5]
which relies on Evolutionary Algorithms driven by a behaviour
novelty criterion. The outcome of this approach is a dataset
of interactions with objects and their consequences (changes
in the visual perception for example). These data are aimed at
preparing a future developmental step for a robot, which would
consist in training classifiers or predictors, like deep learning



algorithms for instance1. The robot’s self-model (in this paper,
a forward/inverse kinematic model) is given to explore the
environment directly in its workspace (a 3D Euclidean space)
instead of exploring through the motor space. Nevertheless, no
information about the environment are provided to the robot,
making the proposed method strictly environment-agnostic.

The paper is organized as follows: Sections II and III present
papers on world model learning as well as the basics on
evolutionary-based Novelty Search. Then Section IV intro-
duces our algorithm. Section V highlights its effectiveness
on some experiments. Finally, a discussion is provided in
Section VI and a conclusion in Section VII.

II. RELATED WORKS

Developmental robotics proposes the generation of datasets
used to create the world model through the exploration of the
environment [6]. Some previous works ([7], [8], [9], [10]) use
a random motor babbling to create this knowledge. Their key
idea is to send random commands to robot joints in order to
produce different movements and collect the resulting data.

In [7], a random number is thus selected as the value of a
specific robot arm’s joint. This value remains unaltered during
a few iterations, while the values of the other arm’s joints
change. Once the robot has performed a given number of
iterations, a new random value is set to another joint, and the
process starts over again. When the total number of iterations
is equal to 20000, the exploration stops, and a world model
is created on the basis of the corresponding dataset, using
an MDP [11]. The model generated from the random motor
babbling in [9] is a Bayesian Belief Network [12].

Random motor babbling presents some limitations. On one
hand, it can execute many movements that do not produce
any contact with the objects composing the scene, repeatedly
exploring regions not providing any data. On the other hand,
when an interaction is finally generated, it has a small impact,
if any, on the rest of the babbling process; meanwhile a local
exploration could generate many new significant data.

Other mechanisms can be used to drive the exploration
of the environment, e.g., the use of intrinsic motivations. In
[2] Oudeyer et al. proposes Intelligent Artificial Curiosity
to drive the exploration of a robot’s actions and interaction
abilities. A robot executes actions in its search space and it
uses the corresponding data to train predictors, called experts,
which progressively get specialized in different regions of
the sensorimotor space. The next action to apply is then
randomly chosen in the action space covered by the expert
with the maximum learning progress. Although this approach
is very promising, it requires to provide a structure to the
world modeling experts: what are the dimensions to take
into account? Predicting raw sensorimotor values seems out
of reach when using vision, for instance, at least without
a careful pretraining. The approach proposed in this paper
is complementary to artificial curiosity: it may provide the

1This part is out of the scope of this paper

data out of which relevant dimensions could be extracted to
bootstrap a curiosity mechanism.

Evolutionary robotics relies on stochastic algorithms to
generate robot controllers or morphology [13]. They have
been used to generate controllers for locomotion, navigation or
foraging tasks [14]. They have the specificity of not requiring
the definition of a discrete set of actions and they can explore
large sets of continuous variables, provided that they can
make enough solution evaluations. It was shown recently
that using task-independent behaviour-based criteria had a
very significant impact on the generated results [15]. Novelty
search, in particular, uses only the novelty of behaviours to
drive the search [5]. It was shown in robotic applications that
it actually led to better results than a task-based criterion [5]. In
this paper, we propose to use this approach in a developmental
robotics context.

III. BACKGROUND

A. Evolutionary algorithms

Evolutionary computation relies on the variation and se-
lection principles of natural selection in order to drive a
search and optimization process [16]. They are population-
based algorithms in which many candidate solutions, called
individuals, are considered in parallel. Starting from a random
population, an iterative process evaluates each individual,
selects some of them according to their fitness value2 and
generates new solutions thanks to blind search operators (mu-
tation, that makes small random modifications to an individual,
or crossover that mixes several individuals). An individual
contains a genotype and the corresponding fitness value. The
genotype corresponds to the structure to be designed or opti-
mized. Typical genotypes are vector of floating point values,
strings of binary digits, trees or neural networks. See [16] for
an introduction to this topic.

B. Novelty Search

Novelty Search is a method to search for novel behaviours
[5]. The novelty of a behaviour is defined as the average
behavioural distance between this behaviour and its k-nearest
neighbours in the current population and in an archive of
previously explored behaviours:

Novelty(i, p, a) =
1

k

k∑
j=0

dist(i, neigh(i, p, a)j) (1)

where neigh(i, p, a)j is the jth-nearest neighbour of indi-
vidual i, including the current population p and the archive
a, with respect to distance dist, representing the distance
between the corresponding behaviours. Novelty(i, p, a) is
then used as a fitness function in the evolutionary process.
The method strongly relies on the behavioural distance used to
compute novelty. This distance is typically defined in a space
of behaviour descriptors and is problem-specific. This work

2The fitness function describes what is expected from individuals, this is
the function maximized by the evolutionary process



Fig. 1. Examples of different moments during the experiments using NovEB. Each column represents the execution of a trajectory (except for column A that
displays the initial state before any trajectory is executed). The top row represents the moment just after the execution of a trajectory, i.e., when the robot’s
arm has completed the trajectory. The bottom row shows the final image obtained once the arm has come back to its initial position. (Column B) A trajectory
without any object on the table being touched does not produce any change in the environment. (Column C) A trajectory in which an object is touched, hence
producing a change in its position. (Column D) A trajectory in which the contact with the object is slightly different can result in a very different output.
(Column E) A trajectory in which several objects are touched. An illustrating video is available on: https://youtu.be/zCO7qOIvKOU

draws inspiration from [17], where a hexapod robot quickly
and autonomously learns to walk in any possible direction
in its vicinity, using Novelty Search to modify the robot’s
controllers.

IV. NOVELTY-DRIVEN EVOLUTIONARY BABBLING

At the beginning of the studied developmental step, the
robot knows nothing about its surrounding environment. It
needs to generate sensorimotor data to be used in a next
developmental step to define the structure and relevant dimen-
sions of its world models. The robot thus needs to explore
possible interactions with surrounding objects so that its future
world models can extract information about them and start
predicting how they behave. To this end, we propose Novelty-
driven Evolutionary Babbling (NovEB). This method relies on
Novelty Search [5] to explore possible robot’s movements,
while focusing on those that generate the highest novelty from
the perception point of view. NovEB makes the assumption
that new perceptions result from robot actions. It generates
many different robot arm trajectories, c1, . . . , cS , and it looks
at the modifications they may create in the environment, as
perceived from the robot’s sensors (vision in particular). Due
to Novelty Search principles, a movement that generates per-
ceptions that have never been encountered before has a higher
chance to survive, namely to be selected to generate new close
movements through the mutation operator. Movements that
do not generate any perceptual novelty are discarded, thus
focusing the search on movements generating new perceptions.

Generate children pop(pop) and Select(pop) are based on
NSGA-II [18], a “Pareto-based multi-objective evolutionary
algorithm”, which is a state-of-the art algorithm for multi-
objective problems; but it is also very efficient in mono-
objective ones. Generate children pop(pop) is the function
that creates a new population with mutation and crossover.
Novelty(i, p, a) is defined as in equation (1), on the basis of the
nearest neighbours in the current population; and in an archive

of past behaviours with a distance defined in a behavioural
space described below. At each generation, the individual with
the highest novelty is added to the archive. In mono-objective
problems, Select(pop) is an elitist algorithm that selects the
best individuals among the parent and the children populations,
using the function Fitness(i).

The main algorithm of NovEB is the following:
1: pop← c1, c2, ..., cS . random population
2: a← ∅ . a stands for the novelty archive
3: g ← 0 . number of generations in the population
4: while g < gmax do
5: for i ∈ pop do
6: Execute trajectory (i) . compute behaviour of i
7: end for
8: maxnovelty ← 0
9: for i ∈ pop do

10: Fitness(i) ← Novelty(i, p, a)
11: if Novelty(i, p, a) >maxnovelty then
12: maxnovelty ← Novelty(i, p, a)
13: bestcandidate ← i
14: end if
15: end for
16: archive← archive ∪ {bestcandidate}
17: pop← pop ∪ Generate children pop(pop)
18: pop←Select(pop)
19: g ← g + 1
20: end while

The genotype is a vector of waypoints in an Euclidean
space, used to define a trajectory of the robot’s end effector3.
In the initial population, these values are randomly generated
within a defined range. Afterwards, the values are modified by
the mutation operator, without any restriction on the resulting

3This type of environment exploration is inspired by the goal-directed
exploration [19]. We do not follow the same terminology to avoid any
misunderstanding with the use of the term goal as a synonym of a task to
solve.



values. Two mutation operators are defined. The first one adds
a random Gaussian noise to a given trajectory. The second one
can change the complexity of the trajectory by adding one
waypoint. Added points are put in the middle of two other
points of the trajectory. This ability to change the complexity
of the genotype is inherited from NEAT [20], and is also
a feature of Novelty Search: the search starts with simple
solutions, considers the behaviours they can generate and
progressively considers solutions of higher complexities [5].

The behaviour associated with an individual is an image
of the scene as seen by the robot once its arm has come
back to its initial position4. The robot’s movements eventually
change the scene by moving objects, being this reflected in
the gathered images. A behavioural distance used to compute
novelty among the images has to be defined.

V. EXPERIMENTS

A. Evaluated scenario

The objective of this experiment is the generation of con-
tacts of the robot’s end effector with objects around the robot.
The results of this babbling is a set of observations aimed
at building world models (including models of objects). The
scene defined for the experiment is composed of a table with
objects on top of it: on the left a gray box, on the front-center
a can, on the right a blue box, and on the back-center a ball.
All the objects are within reach of the right arm of the robot,
except for the ball, that can be moved only if it is pushed by
another object. The two boxes and the can are located at the
border of the table, and the ball is located behind them. The
can is located just in front of the robot, in the middle of the
table (see Fig. 1). The weight chosen for the objects on the
table is low to facilitate their movement when the end effector
of the robot makes contact with them. The experiment was
run for around 20000 iterations, as in [7]. At the end of each
iteration, the objects are put back to their original position.

A trajectory is initially composed of an initial position,
common to all trajectories, and a final point to be reached. The
randomly generated final coordinates are in the range [0,1],
being able to go beyond these bounds afterwards. The robot
relies on a motion planner, called OMPL5, to plan a trajectory.
It is not always possible to compute a trajectory given a final
point, due to this is without reach of the robot, or the collision
includes collisions with the table, the ground or the robot. Only
the safe and feasible trajectories are executed.

The behaviour descriptor associated to a trajectory is the
final image of the scene, which is taken once the arm came
back to the initial position. To compute the distances required
for the novelty objective, images are encoded into a numeric
string by using the pHash library, due to ”perceptual hashes
are close to one another if the features [of the two images]
are similar” [21]. The distance between two strings is then
computed with the Hamming distance [22].

4This is meant to avoid to take into account robot’s arm movements as a
source of novelty. This could be useful to generate a self-model, but it would
be misleading for building a world model.

5http://ompl.kavrakilab.org/

Fig. 2. View from above showing the space covered during the execution
of NovEB (left) and during that of the control experiment (right). The
representation is composed of the PR2 (white box) in front of the table (brown
box). The small circle and boxes represents the objects on the table. The green
dots represent the final position of each trajectory executed by the robot. For
the control experiment, dots show that a majority of the space within reach
of the robot’s right arm is searched, whereas NovEB clearly focuses on the
interesting parts of the space.

Fig. 3. View from above showing the final positions of the objects during the
execution of NovEB (left) and during that of the control experiment (right).
The representation is similar to that of Fig. 2. The blue, gray, yellow and red
dots represent the final positions of the blue box, of the gray box, of the can,
and of the ball respectively. Some dots are located behind the robot due to
the simulator’s physics engine not always handling correctly the dynamics of
the objects. However, this has no impact on the results of the experiments
because such objects are out of the field of vision of the robot. Note again
that NovEB produces much more changes than the control experiment.

To assess the performance of our approach, the final po-
sitions of the objects of the scene have also been recorded
(objects and their positions are unknown to the robot).

The experiments have been performed with a simulated
PR2 robot6. The main features of the robot, regarding our
experiment, are two arms with 7-DoF ended up with grippers,
and a set of high quality cameras located on its head. The
code used for the experiments is available online7.

ROS Hydro Medusa8 was used to manage the robot. The
simulation has been executed in Gazebo 1.99. MoveIt10 pro-
vides the robot with the capability of defining safe trajectories

6https://www.willowgarage.com/pages/pr2/overview
7http://pages.isir.upmc.fr/evorob db/
8http://wiki.ros.org/hydro
9http://gazebosim.org/
10http://moveit.ros.org/
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Fig. 4. Comparison of the accumulated number of contacts produced in both
experiments w.r.t. the number of attempted movements.
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Fig. 5. On top, accumulated number of contacts created by NovEB for each
object. Three regions can be distinguished, based on the growth of the number
of contacts. At the bottom, accumulated number of contacts created during the
control experiment for each object w.r.t the number of executed movements.
The shaded areas represent the same area in both figures.

for the end effector, using OMPL, based on a set of points in
the space. It also provides collision avoidance. The evolution-
ary algorithm, on which the execution of this method relies,
is executed in Sferesv2 [23], a framework for evolutionary
computation designed for multi-core parallelization.

B. Control experiment

A random motor babbling is defined as a control experiment,
due to its wide use in different works to generate knowledge
about the world. In this experiment the motor babbling consists
in the definition of different sets of joint values provided to the
right arm of the PR2. These values are randomly generated,
and used by the robot to perform a movement. The attempted
movements are defined sequentially, until reaching the value of
20000. Only the safe and feasible movements are performed,
called executed movements.

C. Results

The final positions of the robot’s end effector reached during
one run of the execution of two experiments are shown in
Fig. 2. The space covered by NovEB is focused on the table,
while the space explored by the random babbling covers a big
part of the joint space of the right arm of the robot. During
the exploration performed by NovEB, some final positions are
located far from the table (isolated points at the bottom of
the left part of Fig. 2). These points correspond to the initial
randomly generated solutions, and the exploration around them
was stopped as they did not generate novelty.

In this context, a contact is counted when the end effector of
the right arm touches at least one object on the table. NovEB
generated a high number of contacts with the objects of the
scenario (see Fig. 4). When observing the final positions of the
objects, it also appears that they spread over a larger portion
of the space for NovEB than for the control experiment (see
Fig. 3). Therefore, the contacts generated by NovEB produced
a high diversity of behaviours in the scenario.

The random babbling generated a small number of contacts
with each object (bottom of Fig. 5). In contrast, the number
of contacts produced with each object is large in NovEB (top
of Fig. 5). For instance, the number of changes produced to
the can is over 10000, meaning that in almost each executed
trajectory during the exploration the position of the can was
modified. This result was expected as the can is located in the
center of the table, and interactions with any of the boxes could
modify its position. The babbling can be split up into three
different phases: (1) At the beginning, the robot gets focused
on the objects on the left side of the table. (2) When reaching
3000 executed movements, the robot changes its focus to the
can. The growth of the number of interactions with the ball
and the left box decreases and the contacts with the can and
the right box increase. (3) After 9000 executed movements,
the novelty found in the right part of the table decreases, and
the robot comes back to search new behaviours in the left side.

VI. DISCUSSION

NovEB can be considered as an intrinsic motivation for
exploration, like the Artificial Curiosity defined by Oudeyer
et al. [2]. One of the main difference between these two
approaches lies in the assumptions on which these methods
are based. The only requirement for NovEB is to define
a distance between two perceptions (in this paper, between
two images). This is specific to the robots sensors and is
independent from the task or the environment. Conversely,
the Intelligent Artificial Curiosity, at least in its current im-
plementation, requires to train predictors in order to estimate
the learning progress. Training such algorithms to predict the
consequences of an action only on the basis of raw perceptions
is a challenge per se. For instance, it seems difficult to
predict the image that the robot’s camera will capture based
only on previously captured raw images and the executed
actions. Current implementations of Artificial Curiosity rely
on higher level information, for example on the position of
the objects in the scene [2]. However, providing the tools that



extract these higher information from raw perceptions cannot
be environment-agnostic. For instance, when predicting the
positions of the objects, the algorithm needs to know how
many objects compose the scene, or how to extract these
objects from the raw perceptions (using large object database,
for instance). Based on this observation, these two approaches
can be complementary. NovEB can be used to generate a
large amount of data that can afterwards be used to extract
information from the scene (number or shape of objects, for
instance). Then, the high level information extracted can be
used to run Intelligent Artificial Curiosity for a detailed or
goal-oriented exploration [24].

As NovEB is driven by novelty only, it suffers from some of
the limitations that have motivated the development of Intelli-
gent Artificial Curiosity: it should get focused on interactions
that generate perceptions with a large variability. Intelligent
Artificial Curiosity can avoid this phenomenon as the learning
progress in such situations will remain low. This would be
a strong limitation for the exploration ability of the system
if NovEB was expected to handle the whole developmental
process. But this is not an issue, as NovEB is aimed only at
acquiring the data to bootstrap other developmental processes.

VII. CONCLUSION

In this paper, we have proposed a novel method for gener-
ating interactions with the objects surrounding a robot through
babbling. The approach has been applied on a virtual robot,
which discovers on its own which regions of the workspace
generate novel perceptions and focuses its exploration around
them. The results show that NovEB is able to generate several
thousand different interactions with this environment, an order
of magnitude higher than the number of interactions produced
with a random motor babbling approach. This difference is
obtained thanks to the ability of NovEB to focus its exploration
in regions that lead to novel visual perceptions.
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APPENDIX

NovEB parameters used in the experiment:
• Population size: 12
• Number of generations: 2000
• Number of k-closest neighbours: 3
• Individuals maintained among populations: 50%
• Probability of mutating an individual: 30%
• Sigma used for the Gaussian mutation: 0.3
• Probability of extending an individual: 5%


