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Abstract

In this paper, we present an approach for multicamera

pedestrian detection exploiting the concepts of multiview

geometry and the shapes of 3D geometric primitives. Mul-

ticamera occupancy maps provide peak responses corre-

sponding to the object detection but suffer from several false

detections known as ghosts. The novelty of this paper is the

introduction of shape patterns which can model the objects,

such as pedestrians, by defining a kernel function in the pro-

jected occupancy space. This kernel depends upon the ge-

ometry of the 3D primitives and also varies in relation to

their position with respect to the cameras in the real world

configuration. For multiple objects visible across several

cameras, we define a formation model which is the convo-

lution of this spatially varying kernel with the set of possible

object locations. The locations corresponding to detections

can thus be obtained through a deconvolution process. For

efficient computations, we further propose an estimated de-

convolution process specific to our kernel responses which

can also be heavily parallelized. We show the application of

this process towards pedestrian detection by studying var-

ious 3D cylindrical primitives. Experiments on two public

dataset sequences, including comparison with another ap-

proach, show the efficiency of the proposed method in terms

of pedestrian detection and ghost pruning, including in ad-

verse and challenging conditions.

1. Introduction

Intelligent automated visual surveillance is an active area

of research in signal, image processing and computer vision

communities. Pedestrian detection is a well-studied issue

which also finds several applications in the domain of visual

surveillance. Extensive research has been done in the area

of monocular pedestrian detection. However, these methods

remain restricted in the handling of occlusion, clutter, scale,

people density [3].

Research community has focused on using multicamera

systems for improvements in pedestrian detection and thus

the visual surveillance. The ubiquitous presence of cameras

with the increase in computational resources has also fu-

eled the development of multiview research. Sensor fusion,

multiview visual analysis are some of the challenges faced

in this area.

Multiview object detection can be achieve with the aid

of proper image registration of views covered by various

cameras present in the scene. Multiview geometric tech-

niques such camera homographies and the use of camera

calibration have been employed to project cameras to a

common search space such as the ground plane. Khan and

Shah [7] use the camera homography constraint to gener-

ate occupancy maps which is the fusion of multiple scene

planes. Eshel and Moses [4] use multiplanar projections

for top-view camera topologies in order to perform head

detection and eventually the pedestrian detection. Proba-

bilistic methodologies have also been utilized for multiview

detection. Probabilistic occupancy map method models the

pedestrian with a rectangle of average human height placed

on a discretized ground plane [6].

All the methods presented so far suffer from a high false

detection rate. Besides focusing on the rather complete de-

tection or tracking systems, this phenomenon of false de-

tections has been studied in the literature as the ghost prun-

ing problem. False detections occurring due to the inter-

section of non-corresponding regions, based on the camera

and object positions, are referred to as ghosts in the liter-

ature (see Fig. 1). An approach based on color matching

across the camera views has been proposed in [12]. Evans

et al. compute the probability of a ghost detection based on

a spatiotemporal relationship of the objects present in the

scene with the camera positions [5]. Mehmood et al. [8] de-

fine a background occupancy map to gather image evidence

across all camera views in order to remove the ghosts.

We present a novel approach for pedestrian detection us-

ing multicamera occupancy maps and by modeling the ob-

ject shapes as 3D geometric primitives (see Fig. 1). We

define a spatially varying kernel which depends upon the

shape and geometric characteristics of the primitives and

the camera calibration. We propose an analytical formation



model for object detection by performing convolution of the

proposed kernel with the object location map. Our spatially

varying kernel is able to perform suppression of false de-

tection through multiview reasoning. This specific kernel

allows us to define sharp peak responses corresponding to

the object detections. These detections can be localized by

a deconvolution process. We also propose an efficient ap-

proximative deconvolution using a modified version of wa-

tershed transform specific to our kernel.

The proposed algorithm is able to account for challeng-

ing situations such as lighting, color, weather variations,

and is able to robustly localize the pedestrians handling oc-

clusion and projective shadows from a high density crowd.

The proposed algorithm is not limited to a specific cam-

era topology [4, 8], requires no temporal information [5],

performs multicamera reasoning rather than the concatena-

tion of monocular primitive detections [2], and has lower

number of parameters with no optimization requirements as

in [14, 15]. The quantitative analysis shows the efficiency of

our approach on two public dataset sequences. We also pro-

vide time complexity analysis of the algorithm and propose

a multicore implementation for obtaining optimal runtime

efficiency.

The rest of the paper is organized as follows. The pro-

posed algorithm is presented in Section 2. We present the

evaluation methodology, quantitative comparison and anal-

ysis of our approach in Section 3. Finally, the paper con-

cludes in Section 4.

2. Primitive Detection in Multicamera Occu-

pancy Maps

Occupancy maps are well known in the multicamera

context to exhibit peak responses corresponding to the ob-

ject locations in the scene [7]. Multicamera occupancy

maps assign a probability that is based on the normalized

sum of the image evidence, binary or probabilistic, gath-

ered from all the cameras and projected to a common search

space such as the ground plane. Fig. 1(c) shows an exam-

ple of occupancy map generated using two camera views

and multiplanar projections parallel to the ground. Mul-

ticamera occupancy maps also exhibit artifacts depending

upon the relative position between the camera and the ob-

jects [5]. These artifacts are not due to the noise or a ran-

dom phenomenon, they are explained by multiview geom-

etry reasoning and can even be predicted. Therefore, this

work applies the concepts of multiview geometric reason-

ing in order to overcome such artifacts.

2.1. Primitive Formation

Let O(X,Y ) be an occupancy map that defines the prob-

ability of the presence of an object at each location (X,Y )
on the ground plane Z = 0. The strong distinct peak re-

sponses in the occupancy map can be modeled as a sum of

2D dirac delta functions

D(X,Y ) =

n∑

i=1

δ(X −Xi, Y − Yi). (1)

where (Xi, Yi) are the coordinates of the n objets. The

goal of this work is to localize a set of detections D =
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} using a response sim-

ilar to that of the delta function in the occupancy maps. As

presented earlier, this work applies the concepts of multi-

view geometric reasoning to overcome the artifacts that are

not due to noise or to a random phenomenon and can be

perfectly explained by a multi-view analysis. In this con-

text, if we model each object as a 3D geometric primitive

then it is possible to formulate an analytical shape approxi-

mation in the corresponding occupancy map. We propose a

2D kernel to achieve this, and the object localization can be

considered as a deconvolution process.

We assume an arbitrary primitive shape of diameter �

visible by two cameras (see Fig. 2). For convenience, let

us study the primitives in the cylindrical coordinate system

(ρ, ϕ, Z) originating at the ground location of the camera

(LcX , LcY , 0). The vertical cross sectional view of this

cylinder will be a polygon comparable to a rectangle of

(a) View 1 (b) View 2

(c) Multicamera Occupancy Map

Figure 1. Illustration of the multicamera occupancy map and prim-

itive based detection using two views of the PETS 2007 dataset.

The occupancy map contains an ‘X’-shape pattern corresponding

to the person and it’s visibility in two two cameras at different

heights. This shape pattern is modeled using geometric primi-

tives. Application of a threshold to the occupancy map will cre-

ate several false detections referred to as ghosts. The rectangular

bounding box represents the Area of Interest (AOI). Difficulties

such as those arising from the errors in the background subtrac-

tion process, and the projection/presence of people outside AOI in

the occupancy are present in this figure.
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Figure 2. Illustration of the projected kernel profiles. Primitive placed in the scene, viewed by two cameras, and as visible from: (Top) the

top view in the real world, (Middle) the cross sectional view in the projected kernel domain, (Bottom) the top view in the projected kernel

domain. fr is a frustum obtained in the cross sectional view of the primitive, defined in the cylindrical coordinate system for convenience.

po is a polygon obtained in the top view formation of the primitive, defined in the rectilinear coordinate system.

height h and width � while the primitive’s projected cross

sectional view will form a collection of frustums bounded

by the intersection of the camera rays to the ground and

the elevated parallel planes [2]. The projected profile of the

kernel is the combination of these cross sectional frustums,

along the parallel planar heights, Z = 0 and Z = h, or the

combination of polygons as viewed from the top

K(X,Y ;P,LC , Z) =
1

|C|

∑

c

∑

z

po(P,Lc, z). (2)

where Lc = (LcX , LcY , LcZ ) represents the location of

the camera c ∈ C and |C| is the cardinality. P is the set

of points belonging to a specific geometric primitive. This

spatially varying asymmetric kernel defines a local spread

in the occupancy map that depends upon the shape, size and

position of the primitive, the projection heights, all in rela-

tion to the position of the camera.

The geometric primitives can include cylinders, cubes,

pyramids or other shapes depending upon the object to be

detected. For this particular work focusing on pedestrians,

primitives are selected as cylinders. Pedestrians occupy a

combinatorial rectangular profile in the multicamera based

kernel profile, and occupancy maps (see Fig. 3). The partic-

ular of selection of top view introduces robustness against

the requirement of modeling using multiple cross sectional

views.

2.2. Model Formation and Matching

The corresponding occupancy map specific to the kernel

K is a convolution of its spatially varying response with the

corresponding set of object locations DK(X,Y ) in addi-

tion to the noise ǫ observed due to the presence of multiple

objects

O(X,Y ) = DK(X,Y ) ∗K(X,Y ;P,LC , Z) + ǫ. (3)

Pedestrian detection can now be achieved by the decon-

volution of O followed by a peak extraction process. How-

ever, deconvolution with multiple kernels is a computation-

ally expensive step and sensitive to noise such as that from

the background subtraction process, imprecisions of camera

calibration, time synchronization errors. Assuming that the

scene is not of overly dense crowds, template similarity can

be utilized as an estimated deconvolution

D̂K(X,Y ) = 1
‖K(X,Y )‖max

∑

X

∑

Y

min(K(X,Y ),O(X,Y )).

(4)

where ‖K(X,Y )‖max is the max-norm [13].

D̂K(X,Y ) searches for any evidence of local match-

ing and proceeds further by normalizing it with respect

to the global kernel space for a better context in terms of

the difference between K(X,Y ) and O(X,Y ). There

exists a trade off-between the detection accuracy and

the computational processing defined by the number of

samples over which the similarity is computed. Higher

number of samples will produce a sharper response at

the cost of time required. However, we use a multi-core

implementation in order to compute the template similarity

score between the occupancy map and the kernel profiles.
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Figure 3. Illustration of the various stages of the proposed algorithm. (Top) Two views of PETS 2006 dataset, and their corresponding

foreground masks. The boundaries represent the Area of Interest (AOI). The pedestrian is modeled by a 3D cylinder. (Middle) The

occupancy map obtained from the foreground masks, the kernel profile of the cylinder, and the corresponding estimated deconvolution.

(Bottom) The results obtained. The bounding box around the person represents the ground truth, and the circle marks the estimated

detection. The proposed analytical model induces a maximum response for the object center and the estimated detection is the result of

this maxima selection in the estimated deconvolution.

2.3. Watershed Based Maxima Selection

The template similarity does not resemble the required

combination of dirac delta responses (see Fig. 3(g)). The

result is a distribution consisting of several modes for which

it is necessary to estimate the maxima to obtain the number

of objects or pedestrians, and their locations on the ground

plane. For this purpose, watershed based maxima selection

algorithm is applied. This algorithm performs the extrac-

tion of the centralized location in the overlapping areas ob-

tained in the kernel domain (see Fig. 2). Local maxima are

extracted in 8×8 pixel blocks. Watershed transform with

markers [1] is applied to these local maxima such that their

topological prominence is greater than the tolerance thresh-

old τ . It computes the geometric centre if several local max-

ima fulfill the criteria [9]. τ gauges the closeness of the two

detections, and intuitively decides the size of the overlap-

ping areas in the kernel domain (see Fig. 2).

3. Experiments

We have compared our approach to the MSPL algo-

rithm [7]. In the MSPL approach, multiple scene planes

are selected for occupancy map generation. For detection,

we apply watershed based maxima selection to a similar se-

lection of planar heights Z. Binary foreground masks are

generated using the default parameters of the publicly avail-

able implementation of multi-layer background subtraction

method [16]. The occupancy map O(X,Y ) is calculated

by averaging the foreground scores across all camera views

(see Fig. 3(e)).

We use two public datasets: PETS 2006 [10] and PETS

2007 [11]. For PETS 2006, we selected the cameras 3 and 4

of the S1 sequence. PETS 2006 is recorded in an indoor en-

vironment. For PETS 2007, we selected the cameras 2 and

3 of the S8 sequence. This scene is a combination of both

indoor and outdoor scenarios, including sunlight variations

across the sequence. PETS 2007 has a higher density of

pedestrians compared to PETS 2006. For both sequences,

the AOI is defined such that it is visible from all cameras.

The cameras above are selected to cover these AOI from

relatively varying positions and topologies.

We annotated a total of 159 frames for PETS 2006 and

120 frames for PETS 2007. We use the camera calibration

data which is available for both the datasets. If absent, cam-
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(b) PETS 2007

Figure 4. Evaluation of the proposed method with different parameter settings. Total Error Rate (TER) as a function of the τ and �

parameters for: (a) PETS 2006 and, (b) PETS 2007 dataset.

Name Valid Range Description

FDR [0,∞) False Detections Rate: ratio of estimates

not corresponding to ground truth to the to-

tal number of objects in groundtruth

MDR [0, 1] Missed Detections Rate: ratio of ground

truths not found to the total number of ob-

jects in groundtruth

MIR [0, 1] Multiple Instances Rate: ratio of multiple

estimates assigned to a ground truth to the

total number of objects in groundtruth

TER [0,∞) TER=FDR+MDR+MIR

Table 1. Summary of the evaluation measures used. Maximum

matching is applied across all camera views as defined in [15].

era homography can be used [7]. The tools and criteria as

defined in [15] are used for annotation purposes1. We notice

presence of errors in the foreground masks (see Fig. 3(d)),

errors of camera calibration (see the slight variation of the

estimated position in Fig. 3(h) and Fig. 3(i)), and signifi-

cant effect of the projections of pedestrian outside our AOIs

(see Fig. 1(c)). The evaluation measures used are projected

position error metrics as defined in [15] and summarized in

Table 1.

The cylindrical primitives are 1.75m high [6, 14, 15].

The planar heights used are 211 planes, one plane for each

centimeter between 0–2.1m, covering the range of possible

human heights. We evaluate the algorithm for two param-

eters: diameter of the cylinder � and tolerance threshold

τ .

Quantitative Comparison: The evaluation results are

presented in Table 2. If we consider TER, it can be ob-

served that we obtain improvements over MSPL both in

PETS 2006 and PETS 2007. For the proposed MGP algo-

rithm, Fig. 4 shows TER plotted as a function of the τ and

� parameters for both datasets. � performs 3D reasoning

whereas τ performs local analysis in the kernel space. The

� parameter fits to the specific radius of the pedestrians in

1The sequences, with their foreground masks, ground truth annotation

and calibration data are available at http://www.owaismehmood.

com/codes.

the dataset, and our values resemble those in [2]. We can

observe that our novel application of watershed based max-

ima selection and the related selection of τ eliminates MIR

for both algorithms and with the two datasets.

The proposed algorithm is influenced by the height of

the cameras. If we study the two extreme cases: (a) camera

at extreme low height provides imprecise detection, precise

height estimation, (b) camera at extreme top provides pre-

cise detection, imprecise height estimation. Thus, the re-

sults can further be improved with increased height of the

cameras, such as PETS 2007 View 1 (see Fig. 5(c)), or intro-

duction of another camera with more height. Fig. 5 shows

examples of the results obtained.

Runtime: The spatially varying kernel and formation

model exhibits negligible linear dependence to the number

of camera views and image resolution. The template sim-

ilarity module has a linear dependency on the image reso-

lution. The maxima selection stage has a constant runtime.

The proposed algorithm is scalable and runs efficiently em-

ploying a multi-core implementation.

4. Conclusions

In this paper, we have proposed an efficient approach for

performing pedestrian detection using multiview reasoning

in the multicamera occupancy maps. These maps exhibit

the problem of ghosts. We propose a spatially varying ker-

nel in the projective space which analyzes the shape patterns

Sequence Method TER FDR MDR MIR

PETS 2006
MGP 0.10 0.00 0.10 0.00

MSPL [7] 0.28 0.18 0.10 0.00

PETS 2007
MGP 0.36 0.08 0.28 0.00

MSPL [7] 1.08 0.89 0.19 0.00

Table 2. Comparison of the proposed Multicamera Geometric

Primitives (MGP) method with the Multiple Scene Planes Local-

ization (MSPL) method [7]. The parameter set is such that the

TER is minimized. For MSPL: τ = 35. For MGP and PETS

2006: � = 0.50, τ = 35, and PETS 2007: � = 0.40, τ = 40.

http://www.owaismehmood.com/codes
http://www.owaismehmood.com/codes
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Figure 5. Examples of the estimated pedestrian locations in the PETS 2006 and 2007 datasets. The algorithm correctly distinguishes

between the pedestrians and bag, trolley, ambiguities of presence in Area of Interest (AOI) across views. The algorithm is also able to

handle indoor, outdoor situations, variations of intensity such as sunlight vs interior lighting, and the projections of pedestrians outside the

user-defined AOI.

in the occupancy map. This kernel depends upon the prop-

erties of an assumed 3D geometric primitive and the camera

parameters. Moreover, it allows us to propose an analytical

formation model, the deconvolution of which provides the

object locations. We further introduce a novel parallelized

estimated deconvolution approach specific to our kernel re-

sponses. We show that our approach is able to recover

the pedestrian locations in two different datasets despite the

challenging conditions. For future work, we plan to explore

other geometric primitives such as studying the 3D cuboids

for vehicle detection.
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