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Abstract—Research in the fields of Psychology and Neu-
roscience have provided strong evidence that mammals
can adaptively switch between goal-directed behaviors - i.e.
deliberative decisions based on costly but flexible planned
long-term consequences of actions - and habitual behaviors
- i.e. reactive behaviors that are efficient when the environ-
ment is stable but inflexible in the case of environmental
changes. However, the computational principles underlying
this switching ability are not yet understood, and several
alternative criteria have been proposed, each tested on
specific subsets of experimental datasets. Here we present
a neurorobotic implementation and comparison of such
type of criteria, plus some new ones imported from the
field of ensemble reinforcement learning, with a two-
fold objective: on the one hand exploring the possible
efficiency of such bio-inspired principles to enable robots
to have more behavioral flexibility during autonomous
development and learning; on the other hand, analyzing
whether an asynchronous continuous robotic simulation
and comparison of these criteria in a common task can
feed current debates in the Psychological and Neuroscience
fields. We evaluate these methods in an apparently simple
repetitive cube-pushing task on a simulated conveyor belt,
but which imposes to the robot constant trade-offs between
speed and accuracy and between stability and abrupt
changes. Our results show that if overall performance is not
improved by using multiple behavioral systems in a stable
environment, these methods allow for a better adaptation
to environmental changes. The Voting methods and Boltz-
mann addition, from ensemble reinforcement learning, give
the best performance, providing an interesting alternative
to Expert selection.

I. INTRODUCTION

Studies of behavior in mammals have highlighted two
main kinds of behaviors during decision-making tasks:
goal-directed behaviors governed by estimates of action-
outcome contingencies are mainly active at the beginning
of the task, while a transfer of control to habitual
behaviors governed by stimulus-response associations
occurs when the animal is extensively trained in the

task under stable conditions [1]. Dolan et al. review
these models in [2]. Goal-directed behaviors allow the
animal to be sensible to outcome devaluation and to
flexibly adapt to new conditions (e.g. avoid food that
has been poisoned). Habitual behavior is characterized
by the animal persevering in its behavior even after
outcome devaluation [3][4]. On the other hand, goal-
directed behaviors are hypothetized as slow and costly
before making a decision while habits allow the animal
to perform quickly and efficiently in a familiar task
and environment [5]. These behaviors are modeled using
the theory of Reinforcement Learning (RL) [6]: model-
based and model-free algorithms (here called “Experts”)
provide a direct analogy with goal-directed and habitual
behaviors [7]. Different computational criteria have been
proposed to decide when to shift between model-based
and model-free Experts. Applied to neuroscience tasks,
the work from Daw et al. [7] proposes that the most
certain Expert gets control on the agent, while Keramati
[8] balances speed and accuracy using the cost of plan-
ning versus the gain of information. A third approach
proposes, in the context of navigation strategies, that
an arbitration module learns by reinforcement the most
efficient behavior (in terms of average obtained reward)
in each state [9]. It has been successfully applied to
robotics [10], however it suffers from the RL algorithms
intrinsic properties, namely long learning and slow adap-
tation of policy to changes for model-free algorithms
and cost of planning for model-based algorithms. Thus
the contribution of this article is to compare different
existing criteria for the arbitration between MB and MF
reinforcement learning in the same robotic experiment
extended from our previous work [11] where we only
tested MF only, MB only and a random combination of
the two.
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Figure 1: Global Architecture with habit learning Decision
Layer ; From stimuli received, an abstract state is build up,
associated with a reward depending on previous state and
action and sent to the Experts and the Meta-Controller. From
this information, each Expert learns and decides what action to
execute in this state. These propositions are sent to the Meta-
Controller that arbitrate to decide what will be the final action.

II. CONTROL ARCHITECTURE

In this work, we extend the model proposed in
[11] where the third layer (i.e. Decisional layer) of
a classical robotic three-layered architecture [12] is
extended to coordinate a model-based Reinforcement
Learning algorithm (Value Iteration) as Goal-Directed
Expert (MB) and a model-free Reinforcement learning
algorithm (Qlearning) as Habitual Expert (MF) (fig. 1).
Each of these Experts takes a decision on which action
a ∈ A to execute in the current state s ∈ S , and a
Meta-Controller (MC) selects one of the propositions –
based on criteria detailed below – to be executed. Experts
are implemented as in [11], especially for the MB
features. In this version, the Meta-Controller is receiving
propositions from each Expert instead of arbitrating a
priori only with the state information. This organisation
allows to get internal Expert information on the way the
decision is taken (i.e. the final action probability distri-
bution from which the decision is drawn). Each Expert
computes its proposition when the state information is
received, but they are received asynchronously by the
Meta-Controller, due to the time needed for planning by
the MB Expert. However, as the total time allowed to the
latter to take a decision is bounded, we choose to wait
for each Expert proposal before arbitration. We studied
two kinds of arbitration, the first based on signals from
the task, the second based on Expert proposition fusion.

A. Tested criteria

1) Signals: From Experts running individually, rele-
vant information on the task and the environment can be
extracted. We analyse (a) a particular measure of uncer-
tainty corresponding to the entropy of action probability
distribution for each Expert (fig. 2a) and (b) a measure of
instantaneous performance corresponding to the average
reward received over time (fig. 2b).

The entropy measures how peaked is the distribution,
thus giving an estimation of how confident is each Expert
in its decisions. Based on this information on uncertainty,
we can choose the most certain Expert’s proposition.
In every state where an Expert has learnt the most
rewarding action, the entropy will be lower than in states
where it has no clue on the action to do. However,
this information can sometimes be misleading, especially
when the environment or the goal has changed after
extensive learning: the Habitual Expert is long to adapt,
and will keep a low entropy even when it’s behavior is
not adapted anymore.

Besides, we can monitor the mean reward (cf. fig
2b) received by the agent. The agent can get any value
of reward - by executing action a in state s - from
the environment, adequate behaviors being positively
rewarded and leading to a high mean reward. This
information tells us how adapted is the behavior :
• if the mean reward is constant, its value provides a

relative estimation of how good is policy. It should
be the case after convergence of learning in a stable
environment.

• if the mean reward is increasing, we can deduce that
the agent is currently discovering a better policy, or
that environment has changed such that the current
policy has become more relevant.

• if the mean reward is decreasing, the agent’s behav-
ior is not adapted anymore after an environmental
change.

We estimate incrementally the mean reward using
exponential decay (α : smoothing factor):

r̄t = (1− α) ∗ r̄t−1 + α ∗ rt (1)

and the entropy of Expert E as the Shannon entropy
(with Pi = p(a = ai|s)):

HE
t (x) = −

|A|∑
i=0

Pi ∗ log2(Pi) (2)

The used criteria are:
• Entropy: the Meta-Controller follows the proposi-

tion of the most confident Expert, i.e. the Expert
with the lowest entropy.
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(a) Action distribution entropy. (b) Mean reward.

Figure 2: Expert action Entropy and Mean reward evolution in 10 runs of Speed Shift cases of the Block Push experiment (see
III-A) when the agent is controlled by each Expert alone. For analysis, data from these experiments are filtered by a low-pass
filter of parameter ω. After learning a policy, mean reward and entropy have reached a stable level. Entropy shows which Expert
is the most confident in its proposal, which can be used as an arbitration criterion. When the environment changes, making
the current policy less efficient, the mean reward for MF Expert drops (fig 2b), indicating the shift in condition, while the MB
Expert is more robust to such changes. A corresponding increase in both entropies can be seen (fig. 2a).

• Mean Reward: the Meta-Controller follows the
proposition of the Habitual Expert if the mean
reward is increasing, of the Goal-Directed Expert
otherwise.

The second criterion intends to give control to the
Goal-Directed Expert in cases where performance is
dropping, which may signal a change in the environment,
and the need to rely on an Expert that can quickly react
to this change.

2) Proposition fusion: We also test different strategies
for merging action probability distributions from the
two Experts, from Ensemble Reinforcement Learning
proposed in [13]. Instead of arbitrating between proposi-
tions, a probability distribution is computed – by merging
Experts knowledge – from which the final decision is
taken. Four merging methods are tested, to value each
action :

• Majority vote: the most probable action of each
Expert receives a value of 1, others receive 0. In our
implementation, we give a value of 1/n, n being
the number of equally most probable actions, so
that we can give less importance to an expert that
is uncertain about the most relevant action. These
values are then summed over Experts to shape the
final probability distribution.

• Rank vote: actions are ranked highest-first depend-
ing on their probability and given a decreasing value

depending on the rank. These values are summed
over Experts to give the final action value.

• Boltzmann Multiplication: the final action values
are computed as the product of their probabilities
over each Expert.

• Boltzmann Addition: the final action values are
computed as the sum of their probabilities over each
Expert.

For the two voting-based criteria, the final values
are converted into probabilities using a Softmax func-
tion. For Boltzmann operations, the final probabilities
of action come from normalizing the distribution. As
reference point we also tested a Random criterion pro-
posed in [11] which chooses randomly between MF
and MB at each iteration in order to simply assess
the usefulness of combining two Experts rather than
using just one. The architecture is implemented with
ROS [14]. Thus no synchrony is forced between the
Experts, and perceptions, states and actions are flowing
asynchrously – depending of the duration of processing
the information – through the architecture, as it will on
a real robot implementation.

III. RESULTS

A. Experiment Description

The architecture is evaluated in the same simulated
Block-Push task than described in [11] (see fig. 3).
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Figure 3: The experimental setup described in [11]: blocks
are carried on a discrete conveyor belt in front of the robot,
at a certain speed. Cc is the area seen by the agent, Ca the
area reachable.

Table I: Parameter values tested and chosen.

Param Values MF MB
α 0.0001, 0.001, 0.01, 0.1, 0.5, 0.9 0.5 0.01
γ 0.1, 0.5, 0.98, 0.9999 0.9999 0.98
τ 0.01, 0.1, 0.5, 1.0, 5.0 0.1 0.01

Blocks are carried on a conveyor belt, being spaced
regularly and moved at Block Speed (BS).

Two cases are studied :
1) Regular case (RC): BS is kept constant during the

whole experiment.
2) Speed Shift case (SS): after a certain time with

constant speed, the BS changes.
The input state s is a 2 × 8 vector, constructed as

follows: for i ∈ [0, 7], si(t) = 1 if a block has been seen
at t−i and 0 otherwise, and for i ∈ [8, 15], si(t) = 1 if a
block has been seen, and 0 otherwise. In s, the agent has
to decide between 3 actions. Each one has an intrinsic
cost, and can modify environment and perception (see
table II).

The parameters of each Expert controlling the agent
alone are optimised over reward accumulation as a
priority and then variance. α is the learning rate i.e.
how fast new knowledge is integrated, γ is the discount
factor and weights the influence of distant rewards,
τ is the decision temperature and balance the explo-
ration/exploitation trade-off. The values tested are shown
in table I.

B. Performance and Expert selection

The behavior of the agent is evaluated in performance
by the received Cumulative Reward (fig. 4). In each case,
we compare the performance of an agent controlled only

Table II: Actions.

Action Description Cost c
Do nothing
(DN)

Waiting action: no environmental mod-
ification nor perceptual information.

0

Look Cam
(LC)

No environmental modification but up-
dates pbs.

−0.03.

Push Arm
(PA)

This action removes a block being in
Ca (thus providing a reward Rt = 1)
and updates pbt.

−0.03.

by one Expert or by both Experts with arbitration. In both
cases, the MB alone performs worse than the MF alone,
and the random criterion allows a better performance in
mean than Experts alone. It differs from [11] where the
random criterion performance in the Regular Case cor-
responded to the mean between the performance of each
Expert alone. This can be explained by the a posteriori
arbitration of this architecture, whereas it was an a priori
arbitration based only on the reception of a new State
in the previous architecture. The a posteriori arbitration
allows to ensure that each Expert has proposed an action
for the current state before arbitrating whereas it may
happen before the Experts decided when done a priori.
Moreover, this set of parameters – different from [11]
– leads to the MF alone having a bimodal performance
distribution (fig. 5). Several policies can bring reward
leading to the learning of several action sequences. In the
worst experiments, the MF can be stuck in the starting
state, or follow a low performance policy (e.g. using
LC in states where it could use DN). The interaction
between MB and MF benefits to the whole system by
making a less varying performance, leading to a much
more unimodal distribution.

In the Regular Case, the Entropy criterion is equivalent
in mean to using only the MF Expert whereas the
Mean Reward criterion is close to the MB Expert alone
performance. It is consistent with the mean selection rate
of each Expert (fig. 6) and the bias induced by each
criterion : the Entropy criterion (on the second row)
shows that MF is preferentially selected. Because of our
asynchronous implementation and the incremental learn-
ing of new states (see fig. 7), the Transition Model grows
in complexity and the planification cannot be completely
done in the given time. Thus, the MB Expert always
keeps an overall higher entropy than the MF Expert.
Further discussion and some improvement options will
be exposed in Sect. IV.

The mean reward criterion tends to select the MB
in most situations (fig. 6), since in this task setup, a
negative feedback (i.e. a cost) is received when doing
an action without getting reward. As the performance of
this Expert is lower than the MF Expert one, it leads to
a low performance of the Expert combination arbitrated
with this criterion.

Besides, none of the four fusion methods did perform
better than Experts alone nor than the Random criterion
in the Regular Case. Both Experts contribute equally to
the final action distribution so the uncertainty of the MB
balances the higher certainty of the MF, and the final
policy is worse than the one the MF alone is able to learn.
This again confirms that the Regular Case is suitable for

4

257



Figure 4: Average Cumulative Reward received by the agent over 10 runs of the Block Push experiment. RC: regular case; SS:
speed-shift case. First row: the signals-based criteria. Second row: the fusion-based ones. Dashed line time of the speed shift.
The gray area is the zone where the cumulative reward is higher than the one obtained with the Random criterion, which is
used as a reference.

learning a behavioral ”habit” with the MF Expert whose
decisions should not be polluted by the MB expert.

In the Speed Shift case however, the performance of
Experts alone are strongly altered by the speed shift,
leading to less rewarding policies (fig. 4). However, all
combination methods (signal or fusion) lead to a perfor-
mance robust to this environmental change, catching up
the final MF alone performance (or being close for the
Mean reward).

Three out of four fusion-based methods lead to a final
performance higher than or equivalent to the Random
performance. The very close performances of Majority
Voting and Boltzmann Addition are surprising: Boltz-
mann Addition is more similar to Rank Voting in its
principle and was expected to have similar performance.
Majority Voting was expected to perform close or better
than random selection : with only two Experts, arbi-
tration when they disagree is equivalent to choosing
action randomly, when they agree, the distribution is
strongly peaked on the corresponding action, leading to a
higher probability of selection. On the other hand, Boltz-
mann Addition keeps fine variations: summing proba-
bilities may make two actions equiprobables whereas
they were well-separated from each Expert’s point of

view. The same phenomenon happens with Majority
Voting : agreement leads to high certainty on the action
to do, disagreement fades each Expert certainty in the
collective decision. In addition, authors in [13] show
a better performance of Boltzmann Multiplication and
Majority voting, whereas here, the best method is Rank
Voting. This can be explained by the fact that this method
reinforce small constrasts in the probability distribution
: even when two actions have very close probabilities,
they are separated by the same score distance than the
one between the first best action and a second best action
with a far lower probability. Thus, with two Experts,
small differences are highlighted and help quickly taking
into account the few feedbacks received at the beginning.
Finally, the Boltzmann Multiplication performs the worst
among fusion-based methods. It suffers from directly
using MB probabilities and thus fading the peaked distri-
butions from MF (whereas Rank Voting and Boltzmann
Addition keep the variations).

IV. DISCUSSION

In this work, we evaluated the use of two signals
to arbitrate between the MF and MB Experts. We
highlighted that this approach only requires information
that is already present in each Expert running alone,

5

258



0 200 400 600
0

2

4

6

Histograms of reward repartition (RC, 10 runs) at t=2600

MF only

0 200 400 600
0

2

4

6

MB only

0 200 400 600
0

2

4

6

Random

0 200 400 600
0

2

4

6

#
 r

u
n
s

Entropy

0 200 400 600
0

2

4

6

Mean Reward

0 200 400 600
0

2

4

6

Majority Voting

0 200 400 600
0

2

4

6

Rank Voting

0 200 400 600
0

2

4

6

Cum. Reward

Boltzmann Multiplication

0 200 400 600
0

2

4

6

Boltzmann Addition

0 200 400 600
0

2

4

6

Histograms of reward repartition (SS, 10 runs) at t=2600

MF only

0 200 400 600
0

2

4

6

MB only

0 200 400 600
0

2

4

6

Random

0 200 400 600
0

2

4

6

#
 r

u
n

s

Entropy

0 200 400 600
0

2

4

6

Mean Reward

0 200 400 600
0

2

4

6

Majority Voting

0 200 400 600
0

2

4

6

Rank Voting

0 200 400 600
0

2

4

6

Cum. Reward

Boltzmann Multiplication

0 200 400 600
0

2

4

6

Boltzmann Addition

Figure 5: Histograms of 10 runs of the Block Push experiment per criterion. Left : Regular Case (RC). Right : Speed Shift
case (SS). For each case and each criterion, we plot the distribution of cumulative reward reached at time t. It shows that the
performance can either be unimodal or bimodal.

Figure 6: Mean selection rate over 10 runs of the Block
Push experiment per criterion. First row: Entropy arbitration.
Second row: Mean reward arbitration. Left column: Regular
Case (RC). Right column: Speed Shift Case (SS). The dashed
line indicates the speed shift.

and is related to environmental changes and Experts’
certainty about decision. We also widened our interest
to another approach that merges Experts’ expertise,
letting the Meta-Controller take the final decision from
a unified probability distribution. We showed that, in

the Regular Case condition, none of these arbitration
and fusion methods clearly outperforms the random
arbitration method used as a proof of concept in [11].
However, they allow to keep efficient policies when
the agent is confronted to a change of environmental
condition and thus a more robust behavior.

When signal-based arbitrations were tested, the selec-
tion rate of Experts showed a high bias from the criterion
design. If Mean reward indicates inadequation of policy,
it cannot predict when to give control to the MF Expert.
The parametrization is also very dependent of the task:
a high α value will make the agent very sensible to
small changes in its policy and actions resulting from
an exploratory choice in the softmax decision process
will make the arbitration switches between Experts. A
low value will make the agent blind to some changes
that may require a shift back to the MB Expert. Thus,
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Figure 7: Evolution of the number of states over time.
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tuning correctly this parameter would require to analyse
the dynamics of the environment.

The Entropy criterion proposed here is close to
the idea of uncertainty presented in [7]. In our high-
dimensional task (fig. 7), the MB Entropy stays high,
which biases the arbitration between Expert. Because
our task has a dynamic environment, probabilistic transi-
tions, the hypothesis of Perfect Information made in [8]
is not valid, as it considers deterministic, synchronous
and low dimensionality tasks. This point questions the
direct application of RL algorithms to robotics : a RL
agent performs efficiently if it can learn with certainty
the relevant policy, or State-Action association. If the
mapping of states in the task environment is ambiguous,
learning the relevant policy in the real world will be
difficult and far from optimality. Some recent work
started to address the question of building relevant
abstract representations from perception [15][16], and
will be a key advance to make discrete RL algorithms
efficient in real world situations. Also, because of the
task’s properties, it is tedious for Experts to learn a
close-to-optimal policy. Thus, the relevance of criteria
must be studied on other problems in order to validate
or invalidate their interest for robotics, which will be the
topic of further investigation.

These limitations also question the assumption made
in Neuroscience models that performing a goal-directed
behavior with an MB expert systematically implies to
replan from scratch before each decision (thus explain-
ing high reaction times in this situation; [7][8]). This
assumption is reasonable only when confronted to very
simple tasks with a small number of states. Our main
limitation in performance here comes from the MB
Expert, because of its bounded planning on a large
number of states. An alternative approach consists in
letting enough time for the planning to refine the action
values, and then rely on this computed plan for next
decisions, as is often done in robotics, where a plan
is entirely computed before acting [17]. As our agent
incrementally discovers its environment, this replanning
should be done regularly, when needed, and entirely to
exploit the new knowledge. In such a different setup,
and taking inspiration from the fusion-based methods, do
Experts have to propose an action or only the processed
information for the final decision? The second option
will allow to separate the planning process and the
decision, which are coupled in our architecture, but do
not have the same time scale. The decision should be
made anytime a new state is received to allow reactivity,
whereas the planning should be done only when our
model of the task is too different than what is currently

experienced by the agent.
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