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Abstract— A method to compute the optimal sail angle
for an autonomous sailboat is proposed, which allows for
maximizing the longitudinal velocity while maintaining safe
sailing conditions by limiting the roll angle. A simplified 4-
DOF dynamic model of the sailboat is used to obtain the roll
dynamics and longitudinal sail force. From these expressions,
we derive a cost function which depends on the thrust force.
The cost needs to be minimized under stability constraint in
roll motion while the system is subject to a bound on the roll
angle. Numerical simulations, using a full nonlinear dynamic
model of the sailboat, show the improved performance of the
proposed method, compared to traditional solutions that can
be found in the literature.

I. INTRODUCTION

Due to their low energy consumption, autonomous sailing
robots provide a promising solution for long-term observa-
tion or monitoring missions in the oceans and a lot of sailing
robot projects were launched worldwide during the last
decade [1]–[8]. The control of an autonomous sailboat (i.e.
controlling its heading while ensuring a “good” trimming of
the sails) is challenging since the thrust force depends on
uncontrollable and partially unpredictable wind. Moreover,
such vehicles exhibit complex behaviour due to aero- and
hydrodynamic properties of their sails and hull.

The problem of planning and controlling the heading angle
of an autonomous sailboat has been widely studied (see [1],
[3], [8]–[11] among others), but little attention has been paid
to the computation of the sail angle. On manned sailboats,
sail trimming is mainly carried out on the basis of the
experience and skills of the sailors. Sailors can also use
VPP programs to correct their sailing configurations (VPP
are commercial products that give the theoretical maximum
velocity of a sailboat for each wind condition [12]). Sailors’
skills and experience have been adapted to the case of au-
tonomous sailboats using either a linear relationship between
the sail’s angle of attack and the sail angle (including or not
saturation and hysteresis [3], [13]) or by using fuzzy logic
controller [14] [15]. None of these methods is focused on
the computation of a sail angle to maximize the longitudi-
nal speed (surge) of a sailboat. Some other methods have
been proposed like the extremum-seeking [16] for the on-
line speed optimization when sail model is unknown. Such
method usually has a long convergence time which could be
annoying with fast varying wind conditions [17].

Obviously, maximizing the speed of a sailboat is important
not only for racing purpose but also to be consistent with
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mission objectives for example. Maximizing the speed of a
sailboat also improves the manoeuvrability and the stability
of the heading controller since the torque produced by the
rudder depends on the square of the velocity of the fluid. On
the other side, when the speed of a sailboat increases, the
forces acting on the sail may increase the heeling (or roll)
angle and thus the risk of capsizing.

In this paper, we present a method for calculating an
optimal sailing angle that maximizes the speed of a sailboat
while ensuring that the heeling angle remains bounded by a
pre-defined value. This method is based on the study of the
steady state behaviour in surge and roll and is formulated
as an optimization problem (thrust force) subject to equality
constraint (roll stability). A major contribution of this paper
is to demonstrate that the choice of such an optimal sailing
angle mathematically limits the steady heeling angle to a
value smaller than π/4 radians. Moreover, other values for
the maximum steady heeling angle (less than π/4 radians)
can be easily introduced in the optimization process in order
to better reflect sailboat stability limits.

In this study, we assume that the sailboat has only one
mainsail with well known lift and drag coefficients and that
there is no aerodynamic interaction between the sail and the
rest of the sailboat.

The paper is organized as follow: we first describe a 4
DOF dynamic model of a sailboat and, under some assump-
tions, derive the expression of the longitudinal sail force and
equilibrium equation between the sail torque and restoring
torque. Then, we formulate the computation of the optimal
sail angle as a minimization problem subject to equality
constraint on the roll stability, first without limiting the roll
angle (section VI-A) and then including a saturation of the
roll angle (section VI-B). A numerical study for a real sail is
presented in the last section. Numerical simulations, based
on the full nonlinear dynamic model of a sailboat, show the
performance of this optimal sail computation, compared to
other methods described in the literature.

II. NOTATION

• {e1, e2, e3} denotes the canonical basis of R3.
• For any x ∈ R3, the notation x× denotes the skew-

symmetric matrix associated with x, i.e. x×y = x× y,
∀y ∈ R3.

• For any affine vector −→x , xX denotes the vector of
coordinates of −→x in the basis of the frame X .



• Rv,θ ∈ SO(3) denotes the rotation matrix that rotate a
vector by an angle θ around v.

• G: sailboat center of mass (CoM).
• Gs: center of pressure of the sail (assumed to be fixed).
• I = {0;−→ı 0,

−→ 0,
−→
k 0}: inertial frame chosen as the

North-West-Up frame.
• B = {G;−→ı ,−→ ,

−→
k }: body frame fixed to the hull.

• S = {Gs;−→ı s,−→ s,
−→
k s}: sail-fixed frame.

• M ∈ R3×3, J = diag([J11J22J33]) ∈ R3×3: sail-
boat’s mass and inertia matrices, including real-body
and added-mass components.

• −→x , −→x s: position of G and Gs w.r.t. the inertial frame.
• −→ω : angular velocity of the body-fixed frame w.r.t. the

inertial frame.
• −→v : linear velocity of G w.r.t. the inertial frame.
• −→v s: linear velocity of Gs w.r.t. the inertial frame.
• −→v w: wind velocity w.r.t. the inertial frame.
• −→v as: apparent velocity of the sail.
• x, R, ω, v: short notation of xI , RIB, ωB, vB.
• δs, αs: sail angle and sail angle of attack.
• CLs (·), CDs (·): lift and drag coefficients of the sail.
• ∇f(x) = ∂f

∂x
• φ, ψ: roll and yaw angles of the sailboat.
• c(·) , cos(·) and s(·) , sin(·)
• hs :=

−−→
GGs ·

−→
k s: vertical distance between G and Gs

• Vlong., Vlat.: longitudinal and lateral velocity of the
sailboat

•
∑−→

F ,
∑−→τ : sum of forces and torques applied on G

• lφ: metacentric height of the sailboat
• ΘV : angle of apparent wind speed w.r.t the body frame

III. MODEL USED

The 6-DOF model used for the sailboat is a classical
model in marine robotics [10], [18]. The dynamic can be
summarized as follows:Mv̇ = −ω×Mv +

∑
FB

Jω̇ = −ω×Jω +
∑

τB
(1)

with v = [v1, v2, v3]> and ω = [ω1, ω2, ω3]>.
By approximating the hull to a volume with three mutually

perpendicular axes of symmetry, the contributions of the off-
diagonal elements in the added mass matrix can be neglected,
i.e. both mass and inertia matrices are diagonal.

Assumption 1 The pitch motion and vertical motion are
small so that we can use a 4 DOF dynamic model: x, y
translations and roll, yaw (φ, ψ) rotations.

Thus, kinematic equations of motion are given by:

φ̇ = ω1 , ψ̇ = ω3(cosφ)−1

The longitudinal and lateral velocities Vlong., Vlat. of the
sailboat are defined as:Vlong.Vlat.

0

 := R>z,ψẋ = Rx,φv

·G
δs

αs

−→v w−→v as
−→v

−→
F D

s

−→
F L

s

−→
F s

−→
F N

s

−→
F T

s

−→ı φ

−→

−→
k

ψ

−→ı 0

−→ 0

−→
k 0

Fig. 1: Frames orientation and wind efforts

From here, roll dynamic can be expressed as the following:

φ̈ = ω̇1 = −e>1 J−1ω×Jω + e>1 J
−1
∑

τB

=
−J22 + J33

J11
ω2
3 tanφ− e>1

J11

∑
τB

Assuming that roll dynamic is much faster than yaw
dynamic (φ̇ � ψ̇), the last one can be neglected leading
to the following expression:

φ̈ = − e
>
1

J11

∑
τB

This dynamic equation will be used later in the expression
of the equilibrium constraint of the sailboat.

IV. PROBLEM FORMULATION

By neglecting the angular velocity of the rotating sail, the
apparent velocity of the sail w.r.t the surrounding air −→v as is
defined by:

−→v as = −→v −−→v w

Let’s define V as the result of rotating vIas around the
−→
k 0

axis:

V ,

V1V2
0

 = R>z,ψv
I
as =

VlongVlat
0

−R>z,ψvIw
Then, the angle of apparent wind speed w.r.t the body frame
is given by:

ΘV , atan2(V2, V1)

Note that, ΘV is related to the apparent wind angle (AWA)
measured by on-board anemometer by:

tan(AWA) = cosφ tan ΘV



The angle of attack αs can be defined as [10]:

sinαs =
−vSas,2
|~vas|

with
vSas,2 = −V1 sin δs + V2 cosφ cos δs

|~vas| = |V | =
√
V 2
1 + V 2

2

To simplify the problem, we did several assumptions:

Assumption 2 The wind velocity is assumed to be always
parallel to the water surface, which is also assumed to be
flat.

Assumption 3 Amplitude of apparent speed is non-null
(|V | > 0) for all time.

Usually, to describe efforts on sail, we use lift and drag
coefficients [19] related to the forces generated by the
apparent wind in both apparent wind direction and normal
to the apparent wind direction. By using these coefficients,
effort on the sail

−→
F s is given by [10]:

−→
F s =− λs

(
CDs (αs)− CLs (αs) tanαs

)
|−→v as|−→v as

+ λs
CLs (αs)

cosαs
|−→v as|2−→ s

with λs = 1
2ρairSs (ρair: air density, Ss: surface of the sail).

The effort
−→
F s can be written as the sum of two terms: one

normal to the sail plan (parallel to −→ ) and one tangential to
the sail (parallel to −→ı s). This lead us to compute a normal
coefficient CNs and a tangential coefficient CTs :

CTs (αs) := CLs (αs) sinαs − CDs (αs) cosαs

CNs (αs) := CLs (αs) cosαs + CDs (αs) sinαs

The sail force can now be written as the following:
−→
F s = + λsC

N
s (αs)|V |2−→ s − λsCTs (αs)|V |2−→ı s

From curves presented in [19], we noticed that CTs � CNs
on sails that respect the following conditions: 1) high aspect

ratio (AR > 4), 2) low camber (c <
1

15
).

Furthermore, one can note that the normal coefficient
CNs (αs) of these kind of sails is a monotonically increasing
function of sinαs.

Assumption 4 The tangential component is assumed to be
very small with respect to the normal component so that we
can neglect the tangential force:

−→
F s ≈ −λsCNs (αs)|V |2−→ s

This assumption is verified in almost all sails described in
[19].

Assumption 5 The sail is fully actuated so that the sail
angle can take any value, without constraint related to
apparent wind direction, i.e. δs ∈ [−π, π]∀ΘV .

The roll sail torque and the longitudinal sail force are given
by: {

τBs,1 = −λshsCNs (αs)|V |2 cos δs

FBs,1 = −λsCNs (αs)|V |2 sin δs

Our idea is to write CNs (αs) as a function of sinαs:

CNs (αs) = f(sinαs)

where f(·) : [−1, 1] → R is a differentiable odd function
satisfying the following properties:

sign(f(x)) = sign(x) ,f(x) = 0 iif x = 0

f(−x) = −f(x) ,∇f(x) = ∇f(−x)
(2)

Thus, the roll sail torque and the longitudinal sail force can
be rewritten as:{

τs,1 = −λshsf(sinαs)|V |2 cos δs
Fs,1 = −λsf(sinαs)|V |2 sin δs

(3)

We also assume that, at roll equilibrium, torque effects
from rudder, keel and hydrodynamic efforts are neglected
due to the sailboat’s structure. The remaining sail torque τBs
and restoring torque τBres. give the equilibrium condition in
roll motion:

0 = φ̈ = τBrep,1 + τBs,1

= −mglφ sinφ− λshsf(sinαs)|V |2 cos δs
(4)

V. OPTIMAL SAIL ANGLE DETERMINATION

Since we want to maximize the longitudinal velocity, we try
to maximize the sail force Fs,1 = −λsf(sinαs)|V |2 sin δs
under the equilibrium condition in roll motion to avoid
capsizing. This can be formulated as a minimization problem
subject to an equality constraint:

min J (δs, φ) := f(sinαs) sin δs

s.t. : β sinφ+ f(sinαs) cos δs = 0
(5)

with
sinαs = V̄1 sin δs − V̄2 cosφ cos δs

V̄1,2 :=
V1,2
|V |

& β :=
mglφ

λshs|V |2
To take into account the equilibrium constraint in the

minimization problem, we compute the Lagrangian:

L = f(sαs)sδs + λ(βsφ+ f(sαs) cos δs)

Finding the optimal values δ?s and φ? can be done by finding
the minima of L through computing its partial derivative
and solving (6) simultaneously. The global minimum is the
solution of (6) that leads to a minimal value of the cost
function.

0=
∂L
∂λ

= βsφ+ f(sαs)cδs

0=
∂L
∂φ

= ∇f(sαs)(V̄2sφcδs)sδs

+ λ[βcφ+∇f(sαs)(V̄2sφcδs)cδs]

0=
∂L
∂δs

= ∇f(sαs)(V̄1cδs+V̄2cφsδs)sδs + f(sαs)cδs

+ λ[∇f(sαs)(V̄1cδs+V̄2cφsδs)cδs − f(sαs)sδs]
(6)



One deduces from 0 = ∂L
∂δs

that:

λ =
−∇f (V̄1 cos δs + V̄2 cosφ sin δs) sin δs − f cos δs
∇f (V̄1 cos δs + V̄2 cosφ sin δs) cos δs − f sin δs

Replacing λ into the expression 0 = ∂L
∂φ one obtains:

f∇f (V̄2sφcδs) + βcφ[∇f (V̄1cδs + V̄2cφsδs)sδs + fcδs] = 0

Replacing cos δs = −(β/f) sinφ and V̄1 sin δs = sinαs +
V̄2 cosφ cos δs into the above equation, we get:

−β∇f V̄2s2φ+βcφ[∇f (V̄1cδs+ V̄2 cosφsδs)sδs+fcδs] = 0

that lead to a relation between the roll angle φ and the angle
of attack αs:

tan(2φ) =
2V̄2
β

(
f∇f

sαs∇f + f

)
(7)

In summary, instead of solving (6), the following equations
need to be solved in order to find the minima:

sinαs = V̄1 sin δs − V̄2 cosφ cos δs

β sinφ+ f cos δs = 0

tan(2φ) =
2V̄2
β

(
f∇f

sinαs∇f + f

)
(8a)
(8b)

(8c)

Remark 1 Relation (8c) implies that the optimal roll angle
φ? is bounded by π/4, i.e. |φ?| ≤ π/4. Moreover, in the
case where f is an increasing function, one ensures that

sign(φ?) = sign(V̄2)

Indeed, since ∇f is positive as f is an increasing func-
tion, and since f(sinαs) has the same sign as sinαs,
one verifies that f∇f

sinαs∇f+f is positive. Thus, sign(φ?) =

sign(tan(2φ?)) = sign(V̄2).

Lemma 1 If (δ?s , φ
?) is the optimal solution to the mini-

mization problem (5), then (δ?s ± π, φ?) is also an optimal
solution to (5).

Proof: Let α?s such that sinα?s = V̄1 sin δ?s−V̄2 cosφ? cos δ?s .
Since (δ?s , φ

?, α?s) is the optimal solution to (5), they satisfy
(8). Therefore, we only need to show that (δ?s±π, φ?, α?s±π)
also satisfy (8) and the associated cost function J (δ?s±π, φ?)
is equal to the cost function induced by the optimal solution
(δ?s , φ

?), i.e. J (δ?s ± π, φ?) = J (δ?s , φ
?). Indeed, relation

(8a) with (δs, φ, αs) = (δ?s ± π, φ?, α?s ± π) writes

sin(α?s ± π) = V̄1 sin(δ?s ± π)− V̄2 cosφ? cos(δ?s ± π)

⇔ sinα?s = V̄1 sin δ?s − V̄2 cosφ? cos δ?s

which is exactly relation (8a) with (δs, φ, αs) = (δ?s , φ
?, α?s).

Similarly, using the fact that f(·) is an odd function, one
easily verifies that relations (8b) and (8c) also hold with
(δs, φ, αs) = (δ?s ± π, φ?, α?s ± π), provided that they are
satisfied with (δs, φ, αs) = (δ?s , φ

?, α?s). It is also straight-
forward that J (δ?s ± π, φ?) = J (δ?s , φ

?).

Remark 2 As a result of lemma 1, if the sail angle is
physically limited to the interval [−π/2, π/2], there exists
always one solution inside this interval.

VI. SOLVING THE OPTIMAL SAIL PROBLEM

A. Without saturation on optimal Roll angle

System of equations (8) need to be solved in real-time
on the sailboat to continuously get an optimal sail angle
reference. Because this computation can be time-consuming,
we transform the system to get a single nonlinear equation
with a single variable.
Denote:  x := sinαs ∈ [−1, 1]

y := sin(2φ) ∈ ]−1, 1[
z := sin δs ∈ [−1, 1]

(9)

The cost function is then: J (x, z) = f(x)z
From (8a) and (8b) one deduces:

sinαs = V̄1 sin δs +
V̄2β sin(2φ)

2f
=⇒

x = V̄1z +
V̄2β

2

y

f(x)

From here and by using (8) and (9), one obtains the
following equations:

x = V̄1z +
V̄2β

2

y

f(x)

β√
2

y

f(x)
= ∓

√
1− z2

√√
1− y2 + 1

y√
1− y2

=
2V̄2
β

f(x)∇f(x)

x∇f(x) + f(x)

(10a)

(10b)

(10c)

for x ∈ [−1, 1], y ∈ ]−1, 1[, z ∈ [−1, 1].
Letting:

g(x) :=
f(x)∇f(x)

x∇f(x) + f(x)
> 0

ḡ(x) :=
2V̄2
β
g(x) =

2λshs|V |V2
mglφ

g(x)

one deduces from (10c):

y =
ḡ(x)√

1 + ḡ2(x)
,
√

1− y2 =
1√

1 + ḡ2(x)

and, thus, from (10b):√
1− z2 =

∓βḡ(x)√
2f(x)(1 + ḡ2(x))

1
4 (1 +

√
1 + ḡ2(x))

1
2

(11)
One deduces from (10a):

z =
1

V̄1

[
x− V̄ 2

2

g(x)

f(x)
√

1 + ḡ2(x)

]
(12)

Using V̄ 2
1 z

2 + V̄ 2
1 (
√

1− z2)2 = V̄ 2
1 , one finally gets the

single nonlinear equation to be solved:

2
[
xf(x)

√
1 + ḡ2(x)− V̄ 2

2 g(x)
]2

+

V̄ 2
1 β

2ḡ2(x)
√

1 + ḡ2(x)

1 +
√

1 + ḡ2(x)
− 2V̄ 2

1 f
2(x)(1 + ḡ2(x)) = 0

(13)



Solving the nonlinear equation (13) get the same results than
solving the nonlinear system (8). The results are the local
minima and maxima of the cost function. To find the global
minimum, we can continue to evaluate the cost function for
each value of x, in order to obtain the optimal value for x
(and y and z accordingly).

Lemma 2 If x ∈ [−1, 1] is a solution to Eq. (13), then −x ∈
[−1, 1] is also a solution to Eq. (13).

This lemma is a direct consequence of Lemma 1. It can
also be easily proven using the properties (2) of f(·).

Solving Eq. (13) takes only few milliseconds on an Arm
Cortex-A9 @ 1 Ghz and thus can be easily done on-line to
continuously compute optimal sail angle δ∗s .

B. Including saturation on Roll angle

Limiting roll angle may be a prime concern to avoid
capsizing. If we want to limit the optimal roll angle such
that |φ?| ≤ φmax, with φmax < π/4, we can formulate the
following minimization problem:

min J (δs, φ) := f(sinαs) sin δs

s.t. : 1) β sinφ+ f(sinαs) cos δs = 0

2) |φ?| ≤ φmax

(14)

This is an optimization problem in a compact set. There-
fore, a straightforward way to solve (13) is to compute a
set Λ that include all potential solutions of (5). To take into
account roll limit φmax, the solution φ = sign(V̄2)φmax must
be added to Λ. The corresponding values of αs and δs are
obtained by solving numerically the roll motion equilibrium
in 5 and sinαs = V̄1 sin δs − V̄2 cosφ cos δs. By evaluating
the cost of all potential solution in Λ and excluding solutions
where |φ| < φmax, we can extract the optimal sail angle δ?s
so that equilibrium constraint is satisfied and |φ| < φmax.

VII. NUMERICAL ANALYSIS AND SIMULATION

A. Numerical case study for a flat sail

Let us consider a sail with no camber and AR = 5 [19,
p. 86]. The experimental data for the coefficients CLs and
CDs are depicted in Fig. 2a. Fig. 2b shows the computed
coefficients CNs and CTs versus the sine of the angle of
attack (i.e. sinαs). It can be observed that the tangential
component CTs evolves near zero and is largely dominated
by the normal component CNs . Thus, Assumption 4 holds
with good accuracy. An approximation by a polynomial of
degree 5 for CNs , (red curve in Fig. 2b), is given by:

CNs (x) =

{
p5x

5 + p4x
4 + p3x

3 + p2x
2 + p1x if x ≥ 0

p5x
5 − p4x4 + p3x

3 − p2x2 + p1x if x < 0

where x = sin(αs) and with p5 = 11.52, p4 = −33.79,
p3 = 39.45, p2 = −23.07 and p1 = 7.15.

The numerical study used parameters defined in table I and
have been done for two values of apparent velocity (|V | = 5
and |V | = 8) and two values of metacentric height (lφ = 0.1
and lφ = 1).
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(a) Value of CL
s and CD

s v.s. sinus of the attack angle αs

(from [19, p. 86]).
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s app.

(b) Computed and approximated CN
s and computed CT

s v.s.
sinus of the attack angle αs.

Fig. 2: Lift, drag, normal and tangential coefficients for a no
camber sail with AR = 5

TABLE I: Numerical values of the parameters

name m Ss g ρair hs
value 15 1 9.81 1.225 0.8

For this numerical study, equation (13) is solved nu-
merically using, for instance, the Secant method. It exists
normally 2 opposite-sign pairs of solutions for x, but we
know that the sign of x should be opposite to that of V̄2.
Therefore, for each ΘV , we have solved twice Eq. (13) with
initial guesses, respectively, close to zero and ±1 (depending
on the sign of V̄2). The comparison of the two resulting
values of the cost function allows us the find the optimal
solution.

We first consider the case where the roll angle is not
limited and plot only the solutions where δs ∈ [−π/2, π/2].

From 3b, we can note that, when wind speed is low, the
relation between δs and ΘV can be approximated by a linear
function (as in [13]). In case of high wind speed, the curve
begin to be saturated.

Now, we introduce the limitation to the roll angle, as in
section VI-B. Figs. 4 show the effect of such limitation on
φ? and δ?s . We observe from 4a that a small variation in δs
lead to an important variation in φ. We also notice that the
main influence of limiting the roll angle is on the slope of
the curve on its center part (when δs ∈ [−π/2, π/2]), i.e.
when sailing upwind.

Figs 3 and 4 have origin symmetry. We observe from
Fig 3c that angle of attack is not constant. In other words,



0 20 40 60 80 100 120 140 160 180
0

20

40

ΘV [deg]

φ
?
[d

eg
]

c1
c2
c3
c4

(a) Optimal roll angle φ? v.s. apparent wind angle ΘV
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Fig. 3: Optimal angles v.s. relative wind angle ΘV without
limitation on φ (c1: |V | = 5 & lφ = 1, c2: |V | = 8 & lφ = 1,
c3: |V | = 5 & lφ = 0.1, c4: |V | = 8 & lφ = 0.1.

maintaining a constant angle of attack is not an optimal
method for sail trimming.

B. Simulation

In order to evaluate the performance of this optimal sail
selection, we perform numerical simulation and compare the
results with the sail trimming method used in [3].

The sail trimming method used in [3] is summarized on
Fig. 5: the sail angle is limited to ±π/2 when |ΘV | > 5π/6
to save energy by limiting sail trimming. For the same reason,
the sail angle remains constant when |ΘV | ∈ [π/12, π/4].

For the simulations, we used an implementation of the full
nonlinear 6-DOF model given in [10]. For these simulations,
the real wind −→v w velocity is equal to 4m/s and the real wind
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Fig. 4: Optimal angles v.s. relative wind angle ΘV with
limitation on φ (with |V | = 5 & lφ = 0.1, c1: φmax = 45◦,
c2: φmax = 20◦, c3: φmax = 10◦)
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Fig. 5: Sail angle δs as a function of the apparent wind angle
ΘV , adapted from [3]

angle ∠vBw is a function of time as follows:

∠vBw =


10◦ if t ∈ [0, 20[

45◦ if t ∈ [20, 40[

80◦ if t ∈ [40, 60]

In both cases, a heading controller have been used to
maintain a zero heading angle.

Simulation results (fig. 6) show that both methods perform
equally when sailing downwind (t ∈ [0, 20]) but the gain on
velocity appears when sailing beam reach (t ∈ [20, 40]) and
even more when sailing upwind (t ∈ [40, 60]).

Figure 7 shows the maximum velocity that can be reached
by the sailboat as function of ∠vBw the relative angle be-
tween the heading and the true wind when |−→v w| is 4 m/s.
Curve S is for maximum velocity when using the presented
trimming method and φmax = 30◦ while curve Bm is for
maximum velocity when trimming the sail as in 5. They
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Fig. 6: Comparison between sail trimming methods (S:
optimal sail angle, Bm sail trimming as in [3])

are compared with the theoretical maximum velocity (velmax)
that is obtained by simulating the system with every possible
sail configuration for each wind condition. We observe that
trimming the sail with δ∗s give better results than with [3]
and that it is close to the maximum theoretical value.
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Fig. 7: Maximum velocity as function of relative angle
between the followed direction and the true wind (S: op-
timal sail, Bm sail trimming as in [3], (velmax: maximum
theoretical velocity)

VIII. CONCLUSION

In this paper, a method was designed to optimally tune the
sail angle of a sailboat in order to maximize its velocity along
its current heading. This optimization takes into account
a safety criterion to avoid capsizing. We show that, using
this method, the heeling angle is intrinsically limited to
±π/4. Moreover, other values for the maximum heeling
angle (less than ±π/4) can easily be introduced in the opti-
mization process to better reflect sailboat stability limits. As
a consequence, since this optimal sail angle is computed by

studying the longitudinal force and torque generated by the
apparent wind on the sail, its value depends on the apparent
wind velocity, which is more consistent with the sailors
practice. Numerical simulations show the performances of
this method, compared to more empirical ones.
Future works will focus on designing a roll controller taking
the optimal roll angle φ? as the reference and the sail angle
δs as the input to dynamically control the roll equilibrium
during tacking manoeuvres for example or in case of wind
gust.
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