
Gradient-like observer design on the Special Euclidean group SE(3)
with system outputs on the real projective space

Minh-Duc Hua, Tarek Hamel, Robert Mahony, Jochen Trumpf

Abstract— A nonlinear observer on the Special Euclidean
group SE(3) for full pose estimation, that takes the system
outputs on the real projective space directly as inputs, is
proposed. The observer derivation is based on a recent ad-
vanced theory on nonlinear observer design. A key advantage
with respect to existing pose observers on SE(3) is that we
can now incorporate in a unique observer different types
of measurements such as vectorial measurements of known
inertial vectors and position measurements of known feature
points. The proposed observer is extended allowing for the
compensation of unknown constant bias present in the velocity
measurements. Rigorous stability analyses are equally provided.
Excellent performance of the proposed observers are shown by
means of extensive simulations.

I. INTRODUCTION

The development of a robust and reliable estimator of
the pose (i.e. position and attitude) of a rigid body is a
key requirement for robust and high performance control
of robotic vehicles. Pose estimation is a highly nonlinear
problem in which the sensors normally utilized are prone
to non-Gaussian noise [7]. Classical approaches for state
estimation are based on nonlinear filtering techniques such
as extended Kalman filters, unscented Kalman filters or
particle filters. Recently, nonlinear observers have become
an alternative to these classical techniques, starting with the
work of Salcudean [19] for attitude estimation and then over
the last two decades [16], [24], [17], [21], [20], [13], [2],
[23], [15], [18], [8], [9], [6]. Most early nonlinear attitude
observers were developed on the basis of Lyapunov analysis.
However, the attitude estimation problem has become an
intuitive example for the development of recent theories
on invariant observers for systems with symmetry [1], [4],
[5], [13], [12], [22], [14], [11]. For the attitude estimation
problem, Mahony et al. [13] derived a complementary non-
linear attitude observer exploiting the underlying Lie group
structure of the Special Orthogonal group SO(3), and proved
almost global stability of the error system. A locally valid
symmetry-preserving nonlinear observer design based on the
Cartan moving-frame method was proposed in [4], [5]. This
process is valid for arbitrary Lie groups but specializes
to the same attitude filter on SO(3). Lageman et al. [12]
proposed a gradient-like observer design technique for in-
variant systems on Lie groups. This method leads to almost
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globally convergent observers provided that a non-degenerate
Morse-Bott cost function is used. More recently, Mahony
et al. [14] proposed an observer design method directly on
the output space for equivariant kinematics of mechanical
systems. The proposed observer structure combined with
an equivariant innovation term leads to autonomous error
evolution. Moreover, a Lyapunov function construction is
used to design the observer innovation in order to ensure
the required equivariance and, subsequently, lead to strong
convergence properties of the error dynamics. Khosravian et
al. [11] extends the observer design methodology proposed
[14] for invariant systems on Lie group with outputs on
homogeneous spaces and where the measurement of system
input is corrupted by an unknown constant bias. It is showed
that any candidate observer results in non-autonomous error
dynamics, except Abelian Lie groups.

In fact, full pose observer design, although less studied
than attitude observer design, has recently attracted more
attention [24], [17], [7], [3], [2], [23], [10]. Baldwin et
al. proposed observers directly on SE(3) using both full
state feedback [3] and bearing only measurements of known
landmarks [2]. Vasconcelos et al. [23] proposed an observer
on SO(3)×R

3 that uses full range and bearing measurements
of known landmarks, achieving almost global asymptotic
stability. In a prior work by the authors [10], a nonlinear
observer on SE(3) was proposed using directly position
measurements in the body-fixed frame of known inertial
feature points or landmarks, with motivation strongly related
to robotic vision applications using either stereo camera
or Kinect sensor. The observer derivation is based on the
gradient-like observer design technique proposed in [12], and
the almost global asymptotic stability of the error system is
proved by means of Lyapunov analysis.

In this paper, we consider the question of deriving a
nonlinear observer on SE(3) for full pose estimation that
takes the system outputs on the real projective space RP

3

directly as inputs. A key advance on our prior work [10] is
the possibility of incorporating “naturally” in a sole observer
both vectorial measurements (provided e.g. by magnetome-
ters or inclinometers) and position measurements of known
inertial feature points (provided e.g. by stereo camera). In
addition, sharing the same robustness property with the ob-
server proposed in [10], the algorithm here proposed is also
well-posed even when there is insufficient data for full pose
reconstruction using algebraic techniques. In such situations,
the proposed observer continues to operate, incorporating
what information is available and relying on propagation of
prior estimates where necessary. Finally, as a complementary



contribution, a modified version of the basic observer is
proposed so as to deal with the case where bias is present
in the velocity measurements.

The remainder of this paper is organised as follows.
Section II formally introduces the problem of pose estimation
on SE(3) along with the notation used. In Section III, based
on a recent advanced theory for nonlinear observer design
directly on the output space [14], a nonlinear observer on
SE(3) is proposed using direct body-fixed measurements of
known inertial elements of the real projective space RP

3 and
the knowledge of the group velocity. Stability analysis is also
provided in this section. Then, in Section IV the proposed
basic observer is extended using Lyapunov theory in order
to cope with the case where the measurement data of the
group velocity are corrupted by an unknown constant bias.
In Section V, the performance of the proposed observers
are validated by means of simulation. Finally, concluding
remarks are given in Section VI.

II. PRELIMINARY MATERIAL

A. Notation

Let {A} and {B} denote an inertial frame and a body-
fixed frame attached to a vehicle moving in 3D-space,
respectively. The vehicle’s position, expressed in the frame
{A}, is denoted as p ∈ R

3. The attitude of the vehicle is
represented by a rotation matrixR ∈ SO(3) of the frame {B}
relative to the frame {A}. Let V ∈ R

3 denote the vehicle’s
translational velocity, expressed in {B}. Let Ω ∈ R

3 denote
the vehicle’s angular velocity, expressed in {B}, of the frame
{B} relative to the frame {A}.

In this paper, we consider the problem of estimating the
vehicle’s pose, which can be represented by an element of
the Special Euclidean group SE(3) given by the matrix

X :=

[
R p
0 1

]
∈ SE(3) ⊂ R

4×4. (1)

This representation, known as homogeneous coordinates,
preserves the group structure of SE(3) with the GL(4)
operation of matrix multiplication, i.e. X1X2 ∈ SE(3),
∀X1, X2 ∈ SE(3). Now let us recall some common defi-
nitions and notation.
• The Lie-algebra se(3) of the group SE(3) is defined as

se(3) :=

{
A ∈ R

4×4 | ∃Ω, V ∈ R
3 : A =

[
Ω× V
0 0

]}
,

with Ω× denoting the skew-symmetric matrix associated
with the cross product by Ω, i.e. Ω×v = Ω×v, ∀v ∈ R

3. The
adjoint operator is a mapping Ad : SE(3) × se(3) → se(3)
defined as AdXA := XAX−1, with X ∈ SE(3), A ∈ se(3).
• For any two matrices M1,M2 ∈ R

n×n, the Euclidean
matrix inner product and Frobenius norm are defined as

〈M1,M2〉 := tr(M�
1 M2), ‖M1‖ :=

√
〈M1,M1〉.

Let Pa(M), ∀M ∈ R
n×n, denote the anti-symmetric part of

M , i.e. Pa(M) := (M −M�)/2. Let P : R4×4 → se(3)
denote the unique orthogonal projection of R 4×4 onto se(3)

with respect to the inner product 〈·, ·〉, i.e. ∀A ∈ se(3), M ∈
R

4×4, one has

〈A,M〉 = 〈A,P(M)〉 = 〈P(M), A〉 .
It is verified that for all M1 ∈ R

3×3,m2,3 ∈ R
3,m4 ∈ R,

P

([
M1 m2

m�
3 m4

])
:=

[
Pa(M1) m2

0 0

]
. (2)

• For all X ∈ SE(3), A1, A2 ∈ se(3), the following equation
defines a right-invariant Riemannian metric 〈·, ·〉X :

〈A1X,A2X〉X := 〈A1, A2〉.
• For any x ∈ R

4 (or ∈ RP
3), the notation x ∈ R

3 denotes
the vector of first three components of x and the notation x i

stands for the i-th component of x. Thus, it can be written
as x = [x x4]

�.

B. System equations and measurements

The vehicle’s pose X ∈ SE(3), defined by (1), satisfies
the kinematic equation

Ẋ = F (X,A) := XA, (3)

with group velocity A ∈ se(3). System (3) is left invariant
in the sense that it preserves the (Lie group) invariance
properties with respect to constant translation and constant
rotation of the body-fixed frame {B} X 
→ X0X .

Assume that the group velocity A (i.e. Ω and V ) is
bounded, continuous, and available to measurement. More-
over, N ∈ N

+ constant elements of the real projective space
ẙi ∈ RP

3 (i = 1, · · · , N ), known in the inertial frame {A},
are assumed to be measured in the body-fixed frame {B} as

yi = h(X, ẙi) :=
X−1ẙi
|X−1ẙi| ∈ RP

3, i = 1, · · · , N. (4)

Note that the Lie group action h : SE(3) × RP
3 → RP

3 is
transitive and is a right group action in the sense that for all
X1, X2 ∈ SE(3) and y ∈ RP

3, one has h(X2, h(X1, y)) =
h(X1X2, y). For later use, define

Y := (y1, · · · , yN), Y̊ := (̊y1, · · · , ẙN ). (5)

Remark 1 Interestingly, by considering the measurement
data in the real projective space RP3, we are able to combine
in a unique pose observer various types of measurements that
are provided by sensors of different nature. For instance, from
a stereo camera or a Kinect sensor we can obtain a matching
of N1 ∈ N feature points whose position coordinates are
known in both the inertial reference frame {A} and the
current body-fixed frame {B}, i.e. one has

pi = R�(p̊i − p), i = 1, · · · , N1,

with p̊i, pi ∈ R
3 the position coordinates of the feature points

expressed in the frames {A} and {B}, respectively. Then, the
following simple transformations:

ẙ
i
:=

p̊i√|p̊i|2 + 1
, ẙi,4 :=

1√|p̊i|2 + 1
,

y
i
:=

pi√|pi|2 + 1
, yi,4 :=

1√|pi|2 + 1
,



yield the following relations in the form (4):

yi =
X−1ẙi
|X−1ẙi| = h(X, ẙi), i = 1, · · · , N1,

with ẙi = [̊y
i

ẙi,4]
� ∈ RP

3 and yi = [y
i

yi,4]
� ∈

RP
3. On the other hand, assume also that the vehicle is

equipped with N2 ∈ N vectorial sensors (e.g. magnetometer
or inclinometer) so as to provide the measurements vj ∈ R

3

in the body-fixed frame {B} of N2 Euclidean vectors (given
for example by the geomagnetic field or the gravity field)
whose coordinates v̊j ∈ R

3 in the inertial frame {A} are
known. Then, one verifies that vj = R�v̊j and deduces the
following relations in the form (4):

yj =
X−1ẙj
|X−1ẙj| = h(X, ẙj), j = N1 + 1, · · · , N1 +N2,

with ẙj = [̊y
j

0]� ∈ RP
3, yj = [y

j
0]� ∈ RP

3, ẙ
j
:=

v̊j
|̊vj | and y

j
:=

vj
|vj | .

We verify that SE(3) is a symmetry group with group
actions φ : SE(3)×SE(3) −→ SE(3), ψ : SE(3)×se(3) −→
se(3) and ρ : SE(3)× RP

3 −→ RP
3 defined by

φ(Q,X) := XQ,
ψ(Q,A) := AdQ−1A = Q−1AQ,

ρ(Q, y) := Q−1y
|Q−1y| .

Indeed, it is straightforward to verify that φ, ψ, and ρ are
right group actions in the sense that φ(Q2, φ(Q1, X)) =
φ(Q1Q2, X), ψ(Q2, ψ(Q1, A)) = ψ(Q1Q2, A), and
ρ(Q2, ρ(Q1, y)) = ρ(Q1Q2, y), for all Q1, Q2, X ∈ SE(3),
A ∈ se(3), and y ∈ RP

3. Clearly, one has

ρ(Q, h(X, ẙi)) =
Q−1 X−1ẙi

|X−1ẙi|∣∣Q−1 X−1yi

|X−1ẙi|
∣∣ = h(φ(Q,X), ẙi),

and

dφQ(X)[F (X,A)] = XAQ = (XQ)(Q−1AQ)
= F (φ(Q,X), ψ(Q,A)).

Thus, the kinematics (3) are right equivariant in the sense
of [14, Def. 2]. This is a condition allowing us to apply
the theory proposed in [14] for nonlinear observer design
directly on the output space. Note also that the system under
consideration belongs to type I systems (see [14]) where both
the velocity sensors and the state sensors are attached to the
body-fixed frame.

III. GRADIENT-LIKE OBSERVER DESIGN

Denote by X̂(t) ∈ SE(3) the estimate of the pose X(t)
and denote by R̂ and p̂ the estimates of R and p, respectively.

One has X̂ =

[
R̂ p̂
0 1

]
. Define the group error

E(X̂,X) := X̂X−1 ∈ SE(3), (6)

which is right invariant in the sense that for all X̂,X,Q ∈
SE(3), one has E(X̂Q,XQ) = E(X̂,X). From now on,
without confusion the shortened notation E is used for

E(X̂,X). The group error E converges to the identity
element I4 ∈ SE(3) iif X̂ converges to X . For later use,
define also the output errors ei ∈ RP

3, with i = 1, · · · , N ,
as

ei := h(X̂−1, yi) =
X̂yi

|X̂yi|
=

Eẙi
|Eẙi| . (7)

Note that ei (i = 1, · · · , N) can be viewed as the estimates
of ẙi, since they converge to ẙi when E converges to I4.
Note also that ei are computable by the observer.

We now proceed the observer design. As proposed by [14],
the observer takes the form

˙̂
X = X̂A−Δ(X̂, Y )X̂, X̂(0) ∈ SE(3), (8)

where Δ(X̂, Y ) ∈ se(3), which is a matrix-valued function
of X̂ and Y with Y defined by (5), is the innovation term to
be designed hereafter and must be right equivariant in the
sense that ∀Q ∈ SE(3):

Δ(φ(Q, X̂), ρ(Q, Y )) = Δ(X̂, Y ).

with ρ(Q, Y ) := (ρ(Q, y1), · · · , ρ(Q, yN)). Interestingly,
if the innovation term Δ(X̂, Y ) is right equivariant, the
dynamics of the group error E are autonomous [14, Th. 1]:

Ė = −Δ(E, Y̊ )E. (9)

In order to determine the innovation term Δ(X̂, Y ), the
following cost function is considered:

C : SE(3)×(RP3 × · · · × RP
3)−→ R

+,

(X̂, Y ) 
→ C(X̂, Y ) :=
N∑
i=1

ki
2

∣∣∣∣∣ X̂yi|X̂yi|
− ẙi

∣∣∣∣∣
2

(10)

with positive constant parameters ki. It is easily verified that
the cost function C(X̂, Y ) is right invariant in the sense that
C(φ(Q, X̂), ρ(Q, Y )) = C(X̂, Y ) for all Q ∈ SE(3). From
here, the innovation term Δ(X̂, Y ) is computed as [14, Eq.
(40)]:

Δ(X̂, Y ) := (grad1C(X̂, Y ))X̂−1, (11)

where grad1 is the gradient in the first variable, using a
right-invariant Riemannian metric on SE(3).

Lemma 1 The innovation term Δ(X̂, Y ) defined by (11) is
right equivariant and explicitly given by

Δ(X̂, Y )=−P

(
N∑
i=1

ki
(
I4 − eie

�
i

)
ẙie

�
i

)
, (12)

with ei considered as functions of X̂ and yi, i.e. ei =
X̂yi

|X̂yi| .

Proof: The proof for Δ(X̂, Y ) given by (12) to be right
equivariant is straightforward. Now, using standard rules for
transformations of Riemannian gradients and the fact that the
Riemannian metric is right invariant, one obtains

D1C(X̂, Y )[UX̂ ] = 〈grad1C(X̂, Y ), UX̂〉X
= 〈grad1C(X̂, Y )X̂−1X̂, UX̂〉X
= 〈grad1C(X̂, Y )X̂−1, U〉
= 〈Δ(X̂, Y ), U〉,

(13)



with some U ∈ se(3). On the other hand, using (10) one
deduces

D1C(X̂, Y )[UX̂ ] = d1C(X̂, Y )[UX̂]

=
∑N

i=1 ki

(
X̂yi

|X̂yi| − ẙi

)�(
I4 − (X̂yi)(X̂yi)

�

|X̂yi|2
)

(UX̂)yi

|X̂yi|
=
∑N

i=1 ki(ei − ẙi)
�(I4 − eie

�
i )Uei

= tr
(∑N

i=1 ki(I4 − eie
�
i )(ei − ẙi)e

�
i U

�
)

=
〈
−∑N

i=1 ki(I4 − eie
�
i )̊yie

�
i , U

〉
=
〈
−P

(∑N
i=1 ki(I4 − eie

�
i )̊yie

�
i

)
, U

〉
.

(14)
Finally, the expression of Δ(X̂, Y ) given by (12) is directly
obtained from (13) and (14).

Using the definition (2) of the projection P(·), the innova-
tion term Δ(X̂, Y ) given by (12) can be rewritten in matrix
form as follows:

Δ(X̂, Y )

=

⎡
⎢⎣−1

2

N∑
i=1

ki(ei × ẙ
i
)×

N∑
i=1

kiei,4((ei
�ẙi)ei − ẙ

i
)

0 0

⎤
⎥⎦ (15)

Using (9), (11) and (12), one deduces the error system

Ė = −grad1C(E, Y̊ )

= P

(
N∑
i=1

ki
(
I4 − eiei

�) ẙiei�
)
E

(16)

with ei considered as functions of E and ẙi, i.e. ei =
Eẙi

|Eẙi| .

For the sake of analysis purposes, the following assump-
tion is introduced.

Assumption 1 (Observability) The set {ẙi ∈ RP
3, i =

1, · · · , N} satisfies one of the three following cases:

• Case 1: There exist two different points ẙi1 and ẙi2 with
ẙi1,4 = ẙi2,4 = 0 and one point ẙj1 such that ẙj1,4 �= 0.

• Case 2: There exist one point ẙi1 with ẙi1,4 = 0 and
two different points ẙj1 and ẙj2 (i.e., ẙj1 �= ẙj2) with
ẙj1,4 �= 0 and ẙj2,4 �= 0. Furthermore, the vector ẙ

i1
and the resultant vector vj12 := ẙj2,4 ẙj1

− ẙj1,4 ẙj2 are
non-collinear.

• Case 3: There exist three different points ẙj1 , ẙj2 and
ẙj3 such that ẙj1,4 �= 0, ẙj2,4 �= 0 and ẙj3,4 �= 0.
Furthermore, the resultant vectors vj12 := ẙj2,4 ẙj1

−
ẙj1,4 ẙj2

, vj23 := ẙj3,4 ẙj2
− ẙj2,4 ẙj3

and vj31 :=

ẙj1,4 ẙj3
− ẙj3,4 ẙj1

are not all collinear.

From here, the first result of this paper is stated.

Theorem 1 Consider the kinematics (3). Consider the ob-
server (8) with the innovation term Δ(X̂, Y ) given by (12).
Assume that Assumption 1 is satisfied. Then, the equilibrium
E = I4 of the error system (16) is locally asymptotically
stable.

Proof: Since the right-hand side of (16) is a gradient
flow of C, in order to prove the local asymptotic stability of
E = I4, it suffices to prove that C(E, Y̊ ) is minimal when
E = I4. Note that

C(E, Y̊ ) = V(E) :=
1

2

N∑
i=1

ki

∣∣∣∣ Eẙi|Eẙi| − ẙi

∣∣∣∣
2

. (17)

Let us prove that the function V(E) has a unique global
minimum at E = I4, i.e.

V(E) = 0 ⇔ E = I4.

First, it is straightforward to verify that V(I4) = 0. Denote

E =

[
Re pe
0 1

]
, with Re ∈ SO(3), pe ∈ R

3. Now assuming

that V(E) = 0, we only have to prove that E = I4 or,
equivalently, Re = I3 and pe = 0. In view of (17) and
V(E) = 0, one deduces that Eẙi = |Eẙi |̊yi, ∀i, i.e.⎧⎪⎨

⎪⎩
Re̊yi + peẙi,4 =

√
ẙ2i,4 + |Reẙi + peẙi,4|2 ẙi

ẙi,4 =
√
ẙ2i,4 + |Reẙi + peẙi,4|2 ẙi,4

(18a)

(18b)

Let us consider all the three cases of Assumption 1.

• Case 1 of Assumption 1: Since ẙi1,4 = ẙi2,4 = 0, one
has |̊y

i1
| = |̊y

i2
| = 1. Then, one deduces from (18a) that

Re̊yi1
= ẙ

i1
and Reẙi2

= ẙ
i2

. These equalities and the
non-collinearity of ẙ

i1
and ẙ

i2
allows one to deduce that

Re = I3. Since ẙj1,4 �= 0, (18b) implies that |Eẙj1 | = 1. As
a consequence, one deduces from (18a) that p e = 0.

• Case 2 of Assumption 1: Analogously to case 1, one
deduces that Re̊yi1

= ẙ
i1

. Now, since ẙj1,4 �= 0 and
ẙj2,4 �= 0, (18b) implies that |Eẙj1 | = |Eẙj2 | = 1. Then,
from (18a) one obtains{

(Re − I3 )̊yj1
+ peẙj1,4 = 0

(Re − I3 )̊yj2
+ peẙj2,4 = 0

From here, simple combination yields Revj12 = vj12 , with
vj12 defined in Assumption 1. One easily verifies that vj12 �=
0 using the fact that ẙj1 and ẙj2 are non-collinear by
assumption. Furthermore, since ẙ

i1
and vj12 are non-collinear

by assumption, relations Re̊yi1
= ẙ

i1
and Revj12 = vj12

obtained previously imply that Re = I3. From here, it is
straightforward to deduce that pe = 0.

• Case 3 of Assumption 1: Analogously to case 2, one
deduces from (18) that |Eẙj1 | = |Eẙj2 | = |Eẙj3 | = 1 and⎧⎪⎪⎨

⎪⎪⎩
(Re − I3 )̊yj1

+ peẙj1,4 = 0

(Re − I3 )̊yj2
+ peẙj2,4 = 0

(Re − I3 )̊yj3
+ peẙj3,4 = 0

From here, analogously to case 2 one deduces that Revj12 =
vj12 , Revj23 = vj23 , Revj31 = vj31 , and that vj12 , vj23 and
vj31 are not null. Then, using the non-collinearity assumption
of the vectors vj12 , vj23 and vj31 , one easily deduces that
Re = I3 and, consequently, that pe = 0.



IV. OBSERVER DESIGN WITH VELOCITY BIAS

COMPENSATION

In this section, the observer developed in the previous
section will be extended in order to cope with the case where
the measurement Ay ∈ se(3) of the group velocity A ∈ se(3)
is corrupted by an unknown constant bias bA ∈ se(3), i.e.

Ay = A+ bA .

Assumption 2 Assume that the following matrices G̊ ∈
R

3×3 and H̊ ∈ R
3×3 are full rank:

G̊ :=

N∑
i=1

ki(̊yi×)
2

H̊ :=

(
N∑
i=1

kiẙi,4̊yi×

)
G̊−1

(
N∑
i=1

kiẙi,4̊yi×

)

−
N∑
i=1

kiẙ
2
i,4(I3 − ẙ

i̊
y�
i
)

The condition on the set {ẙi ∈ RP
3, i = 1, · · · , N}

evoked in Assumption 1 ensures that it is always possible
to choose a set of parameters {ki, i = 1, · · · , N} such that
G̊ and H̊ are full rank (i.e. invertible). Now, the second result
of this paper is stated.

Proposition 1 Consider the observer system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̂
X = X̂(Ay − b̂A)−Δ(X̂, Y )X̂

˙̂
bA = −kbP

(
X̂�

N∑
i=1

ki
(
I4−eiei�

)
ẙiei

�X̂−�
)

X̂(0) ∈ SE(3), b̂A(0) ∈ se(3)

(21a)

(21b)

with Δ(X̂, Y ) given by (12). Assume that Assumptions 1 and
2 are satisfied. Assume also that A andX are bounded for all
time. Then, the equilibrium (E, b̃A) = (I4, 0) of the dynamics
of (E, b̃A), with b̃A := bA − b̂A, is locally asymptotically
stable.

Proof: It is easily verified that ˙̃
bA = − ˙̂

bA and ˙̂
X =

X̂(A+ b̃A)−Δ(X̂, Y )X̂ . Then, one deduces

Ė =
(
AdX̂ b̃A −Δ(E, Y̊ )

)
E. (22)

Now, consider the candidate Lyapunov function

Vb(E, b̃A) :=
1

2

N∑
i=1

ki

∣∣∣∣ Eẙi|Eẙi| − ẙi

∣∣∣∣
2

+
1

2kb
‖b̃A‖2. (23)

Analogously to the proof of Theorem 1, it can be verified
that Vb(E, b̃A) is locally positive-definite and has a unique
global minimum at (E, b̃A) = (I4, 0), i.e. Vb(E, b̃A) = 0 ⇔
(E, b̃A) = (I4, 0).

The time-derivative of Vb satisfies

V̇b =
〈
−∑N

i=1 ki
(
I4−eiei�

)
ẙiei

�, AdX̂ b̃A −Δ(E, Y̊ )
〉

− 1
kb

〈
˙̂
bA, b̃A

〉
= −

∥∥∥P(∑N
i=1 ki

(
I4 − eie

�
i

)
ẙie

�
i

)∥∥∥2
= −‖Δ(E, Y̊ )‖2.

(24)
Since the dynamics of (E, b̃A) are not autonomous, LaSalle’s
theorem does not apply to deduce the convergence of V̇b to
zero. Thus, the next step of the proof consists in proving that
V̇b is (locally) uniformly continuous along every system’s
solution in order to deduce, by application of Barbalat’s
lemma, the convergence of V̇b to zero. To this purpose it
suffices to prove that V̈b is bounded. In view of (24), V̈b

is bounded if ėi (i = 1, · · · , N ) are bounded, where (using
(22) and the relation ei =

Eẙi

|Eẙi| )

ėi = (I4 − eie
�
i )(AdX̂ b̃A −Δ(E, Y̊ ))ei.

According to Assumption 2, there exists at least one point ẙ i
such that its fourth component ẙi,4 is not null. This indicates
that for a given small number ε > 0 there exists δε > 0 such
that if |pe| > δε or |b̃A| > δε then Vb(E, b̃A) > ε. Therefore,
there exists a small enough neighborhood Bε ∈ SE(3)×R

3

of the point (I4, 0) such that if (E(0), b̃A(0)) ∈ Bε then
Vb(E(0), b̃A(0)) < ε. Since Vb(E, b̃A) is non-increasing, one
has Vb(E(t), b̃A(t)) < ε, ∀t ≤ 0. This implies that E and
b̃A remain bounded. Since X is bounded by assumption,
one deduces from the boundedness of E that X̂ is also
bounded, which in turn implies the boundedness of Ė and
ėi. This concludes the proof of (local) uniform continuity of
V̇b and the convergence of V̇b to zero. One easily verifies
that (E, b̃A) = (I4, 0) is an equilibrium of the error system.
Let us prove the local stability of this equilibrium. To this
purpose let us first prove that ∀(E, b̃A) ∈ Bε:{ V̇b(E, b̃A) = 0 if E = I4

V̇b(E, b̃A) < 0 if E �= I4

Consider a first order approximation of E =

[
Re pe
0 1

]
around I4 as {

pe = εp
Re = I3 + εr×

with εp, εr ∈ R
3. We only need to prove that

V̇b(E, b̃A) = 0 ⇔ εp = εr = 0.

Note that (24) and (15) indicate that the relation V̇b = 0 is
equivalent to{ ∑N

i=1 kiei × ẙ
i

= 0∑N
i=1 ki((ei

�ẙi)ei − ẙ
i
)ei,4 = 0

(25)

In first order approximations, one verifies that

Eẙi =

[̊
y
i
+ εr×ẙi + ẙi,4εp

ẙi,4

]
,

|Eẙi| = 1 + ẙi,4ε
�
p ẙi,



and, thus,

ei =
Eẙi
|Eẙi| =

[̊
y
i
+ εr×ẙi + ẙi,4(I3 − ẙ

i̊
y�
i
)εp

ẙi,4 − ẙ2i,4ε
�
p ẙi

]
.

Therefore, in first order approximations the equalities in (25)
can be rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
N∑
i=1

kiẙi,4̊yi×

)
εp =

(
N∑
i=1

ki(̊yi×)
2

)
εr

(
N∑
i=1

kiẙ
2
i,4(I3 − ẙ

i̊
y�
i
)

)
εp=

(
N∑
i=1

kiẙi,4̊yi×

)
εr

(26a)

(26b)

Since G̊ is full rank according to Assumption 2, it is deduced
from (26a) that εr = G̊−1

(∑
i kiẙi,4̊yi×

)
εp. This relation

along with (26b) yields H̊εp = 0. Since H̊ is also full
rank by Assumption 2, it is deduced that εp = 0 and,
consequently, εr = 0.

It remains to prove to convergence of b̃A to zero. From
the convergence of E to I4 (proven previously) and (22), the
application of Barbalat’s lemma yields the convergence of Ė
to zero. Finally, Eq. (22) and the convergence of Ė and of
Δ(E, Y̊ ) to zero imply the convergence of b̃A to zero.

Remark 2 The estimate b̂A plays the role of integral cor-
rection for the error dynamics (22), allowing for the com-
pensation of the unknown constant bias bA. It may, however,
grow arbitrarily large, resulting in slow convergence and
sluggish dynamics of the error evolution. This leads us to
replace hereafter the integral term b̂A, with dynamics given
by (21b), by an “anti-windup” integrator similar to the
one proposed in [9]. More precisely, by decomposing b̂A

as b̂A =

[
(b̂Ω)× b̂V
0 0

]
with b̂Ω, b̂V ∈ R

3, one rewrites the

dynamics (21b) of the estimated bias b̂A as⎧⎪⎨
⎪⎩

˙̂
bΩ = kbR̂

�
(
ΩΔ +

1

2
VΔ × p̂

)
˙̂
bV = kbR̂

�VΔ

with VΔ :=
∑N

i=1 kiei,4((ei
�ẙi)ei − ẙ

i
) and ΩΔ :=

− 1
2

∑N
i=1 kiei × ẙ

i
. From here, the following modified dy-

namics of b̂A (i.e. of b̂Ω and b̂V ) are proposed:⎧⎪⎨
⎪⎩

˙̂
bΩ =kbR̂

�(ΩΔ+
1

2
VΔ× p̂)− κΩ(b̂Ω − satδΩ(b̂Ω))

˙̂
bV = kbR̂

�VΔ − κV (b̂V − satδV (b̂V ))

(28a)

(28b)

with initial conditions |bΩ(0)| ≤ δΩ and |bV (0)| ≤ δV ;
κΩ and κV two positive numbers; δΩ and δV two positive
parameters associated with the classical functions satδΩ(·)
and satδΩ(·) defined by satδ(x) = xmin(1, δ/|x|), ∀x ∈ R

3.
The values of δΩ and δV correspond to initial guesses on
the bounds of bΩ and bV , i.e. |bΩ| ≤ δΩ and |bV | ≤ δV .
Then, based on the inequality |b− satδ(b− b̃)| ≤ |b̃| for all
b̃ ∈ R

3 and provided that δ ≥ |b| (see e.g. [9]), it can be
easily proved that the time-derivative of Vb defined by (23)
satisfies V̇b ≤ −‖Δ(E, Y̊ )‖2. Therefore, the convergence

and stability properties given in Proposition 1 still holds
when the dynamics of b̂A given by (21b) is replaced by (28).

V. SIMULATION RESULTS

In this section, the performance of observer (21), with
(21b) replaces by (28), is illustrated by simulations. The an-
gular and translational velocity measurements are corrupted
by the following constant biases:

bΩ = [−0.02 0.02 0.01]� (rad/s),

bV = [0.2 − 0.1 0.1]� (m/s).

We consider the three following cases where only three
system outputs yi ∈ RP

3 of known inertial elements ẙi ∈
RP

3 (i = 1, 2, 3) are available to measurement:
• Case 1: corresponds to Case 1 of Assumption 1, in

which two vectorial measurements v1, v2 ∈ R
3 and the

position measurement p1 ∈ R
3 of one feature point are

available, where

v1 = R�v̊1, v2 = R�v̊2, p1 = R�(p̊1 − p),

with v̊1 = [0 0 1]�, v̊2 = [
√
3/2 1/2 0]� and

p̊1 = [1 0 0]�.
• Case 2: corresponds to Case 2 of Assumption 1, in

which one vectorial measurement v1 ∈ R
3 and the

position measurements p1, p2 ∈ R
3 of two feature

points are available, where

v1 = R�v̊, p1 = R�(p̊1 − p), p2 = R�(p̊2 − p),

with v̊1 = [0 0 1]�, p̊1 = [1 0 0]� and p̊2 =
[−1/2

√
3/2 0]�.

• Case 3: corresponds to Case 3 of Assumption 1, in
which the position measurements p1, p2, p3 ∈ R

3 of
three feature points are available, where

p1 = R�(p̊1−p), p2 = R�(p̊2−p), p3 = R�(p̊3−p),
with p̊1 = [1 0 0]�, p̊2 = [−1/2

√
3/2 0]� and

p̊3 = [−1/2 −√
3/2 0]�.

Recall that Remark 1 explains how to transform a vector or
a position of a feature point into a corresponding element of
RP

3.
The gains and parameters involved in the proposed ob-

server are chosen as follows:
k1 = k2 = k3 = 2, kb = 1,

κΩ = κV = 10, δΩ = 0.052, δV = 0.346.

For each simulation run, the proposed filter is initialized at
the origin (i.e. R̂ = I3, p̂ = 0, b̂Ω = 0, b̂V = 0) while
the true trajectories are initialized differently. Combined
sinusoidal inputs are considered for both the angular and
translational velocity inputs of the system kinematics. The
rotation angle associated with the axis-angle representation
is used to represent the attitude trajectory. One can observe
from Figure 1 that the observer trajectories converge to the
true trajectories after a short transition period for all the
three considered cases. Figure 2 shows that the norms of
the estimated velocity bias errors |b̃Ω| and |b̃V | converge to
zero, which means that the group velocity bias bA is also
correctly estimated.
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Fig. 1. The rotation angle and the position tracking performance of the
proposed observer. Note that the dashed lines are the estimated trajectories
(for Cases 1 (green), Case 2 (blue), Case 3 (red)) while the solid line (black)
represents the true trajectory.
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Fig. 2. The norms of the estimated velocity bias errors |̃bΩ| and |̃bV | vs.
time.

VI. CONCLUSIONS

In this paper, we propose a nonlinear observer on SE(3)
for full pose estimation that takes the system outputs on the
real projective space RP

3 directly as inputs. The observer
derivation is based on a recent observer design technique
directly on the output space, proposed in [14]. An advantage
with respect to our prior work [10] is that we can now
incorporate in a unique observer different types of mea-
surements such as vectorial measurements of known inertial
vectors and position measurements of known feature points.
The proposed observer is also extended on SE(3) × se(3)
so as to compensate for unknown additive constant bias in
the velocity measurements. Rigorous stability analyses are
equally provided. Excellent performance of the proposed
observers are justified through extensive simulations.
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