
Timed-automata abstraction of switched
dynamical systems using control funnels?

Patricia Bouyer1, Nicolas Markey1,
Nicolas Perrin2,3, Philipp Schlehuber-Caissier2

1Laboratoire Spécification & Vérification – CNRS & ENS Cachan – France
2Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France

3CNRS, UMR 7222, ISIR, F-75005, Paris, France

Abstract. The development of formal methods for control design is
an important challenge with potential applications in a wide range of
safety-critical cyber-physical systems. Focusing on switched dynamical
systems, we propose a new abstraction, based on time-varying regions
of invariance (the control funnels), that models behaviors of systems as
timed automata. The main advantage of this method is that it allows auto-
mated verification of formal specifications and reactive controller synthesis
without discretizing the evolution of the state of the system. Efficient
constructions are possible in the case of linear dynamics. We demonstrate
the potential of our approach with two examples.

1 Introduction

Verification and synthesis are notoriously difficult for hybrid dynamical systems,
i.e. systems that allow abrupt changes in continuous dynamics. For instance,
reachability is already undecidable for 2-dimensional piecewise-affine maps [14],
or for 3-dimensional dynamical systems with piecewise-constant derivatives [2].

To enable automated logical reasoning on switched dynamical systems, most
methods tend to entirely discretize the dynamics, for example by approximating
the behavior of the system with a finite-state machine. Alternatively, early work
pointed out links between hybrid and timed systems [20], and several methods have
been designed to create formal abstractions of dynamical systems that do not rely
on a discretization of time. In [11], a finite maneuver automaton is constructed
from a library of motion primitives, and motion plans correspond to timed
words. In [16, 12], switched controller synthesis and stochastic optimal control are
realized via metric temporal logic (MTL) or metric-interval temporal logic (MITL)
specifications. In [22, 19], grid-based abstractions and timed automata are used
for motion planning or to check timed properties of dynamical systems. In [24],
a subdivision of the state space created from sublevel sets of Lyapunov functions
leads to an abstraction of dynamical systems by timed automata that enables
verification and falsification of safety properties. The same kind of abstraction is

? This work has been partly supported by ERC Starting grant EQualIS (FP7-308087)
and by European FET project Cassting (FP7-601148)

used in [23] for controller design via timed games, but the update map of the
timed games obtained is such that synthesis cannot be realized using existing
tools. In [8], the state space of each mode of a piecewise-affine hybrid system is
portioned into polytopes, and thanks to control laws that prevent the system
from exiting through a given facet, or that force the system to exit through a
facet in finite time, reactive control problems can be solved as timed games on
timed automata.

Our contribution is a novel timed-automata abstraction of switched dynamical
systems based on a particular kind of time-varying regions of invariance: control
funnels. Recent results have shown that these invariants are very useful for robust
motion planning and control [26, 18, 17], and that funnels or similar concepts
related to the notion of Lyapunov stability can be used for formal verification of
hybrid systems [13, 10], and for reactive controller synthesis [9].

The paper is organized as follows: Section 2, describes how control funnels,
especially for trajectory tracking controllers, can be used to create timed transition
systems that abstract the behavior of a given switched dynamical system, and as
a result can potentially allow the use of verification tools for motion planning.
In Section 3, we show how these timed transition systems can be encoded as timed
automata. In Section 4, we consider the case of linear dynamics and introduce
the notion of fixed size LQR funnel. In Section 5, we present two examples of
application and efficient algorithms that manipulate these LQR funnels. In the
first one, a timed game is solved by the tool Uppaal-Tiga [5] for the synthesis
of a controller that can reactively adjust the phase of a sine wave controlled in
acceleration. In the second example, we show that, using our timed-automata
abstraction with LQR funnels along constant velocity trajectories, a non-trivial
solution to a pick-and-place problem can be computed by the model checker
Uppaal [6]. Section 6 concludes and presents avenues for future work.

2 Graphs of control funnels

2.1 Control funnels

Consider a controlled dynamical system governed by the following equation:

ẋ = f(x, t, u(x, t)), (1)

where x ∈ Rd is the state of the system (which can contain velocities1), t ∈ R+ is a
real (clock) value corresponding to time (we restrict ourselves to nonnegative time
values), u : Rd × R+ → Rk is the control input function, and f is a continuously
differentiable function from Rd × R+ × Rk to Rd (which ensures the uniqueness
of the solution for given initial conditions). Assuming that the function u is fixed,
we also use the following notation for Equation (1):

ẋ = fu(x, t). (2)

1 In this paper, we mostly consider state spaces that describe the position and velocity
of systems controlled in acceleration. The continuity of trajectories in the state space
ensures that the position is always a continuously differentiable function of time.

2

Fig. 1. An example of control funnel for a controller tracking a reference trajectory.
The dashed line is a trajectory of the controlled system in the state space. On the right
side, switching transitions between control funnels are depicted.

A control funnel for the above dynamical system is a function F : I → 2Rd

such that I ⊆ R+ and for any solution x(t) of (2), the following property holds:

∀t1 ∈ I. ∀t2 ∈ I. (t2 > t1 and x(t1) ∈ F(t1))⇒ x(t2) ∈ F(t2). (3)

It corresponds to time-varying regions of invariance.

Example 1. A typical example of a control funnel based on a trajectory tracking
controller (that is, a control funnel asymptotically converging towards a reference
trajectory in the state space) is shown in Fig. 1.

Example 2. For a concrete example, consider the simple system whose trajec-
tories are of the form e−t · x0. Then any set W ⊆ Rd defines a control funnel
FW : t 7→ {e−t ·w | w ∈W}.

The notion of funnel was popularized by Mason [21], and it usually specifically
refers to operations that eliminate uncertainty (as is the case in the example of
Fig. 1) by collapsing a large set of initial conditions into a smaller set of final
conditions (see for instance [26]). In our case, the control funnel may or may not
reduce uncertainty, and it is important to note that the set F(t) does not have
to decrease in size over time. This more general concept is closer to the definition
of viability tubes [4], but we nevertheless use the term control funnel as some
reduction of uncertainty is often essential to the usefulness of our abstractions.
We address the computation of control funnels in Section 4, and leave them as
relatively abstract objects for now.

2.2 Motion planning

Let us suppose that we have a finite set U of control laws u1(x, t), u2(x, t), . . . ,
un(x, t) that respectively set the dynamics of a given system to ẋ = fu1

(x, t),
ẋ = fu2(x, t), . . . , ẋ = fun(x, t).

We say that the system can switch to the control law ui(x, t) at some state x̃
whenever there is t0 ∈ R+ and a solution x(t) of ẋ = fui(x, t) with initial
condition x̃ = x(t0). Typically, if ui(x, t) corresponds to a trajectory tracking
controller, t0 identifies the point of the trajectory where the tracking is triggered.

3

Informally, the motion planning problem asks, given a finite set of control laws
as above, an initial point x0, a target zone Tf ⊆ Rd, and an obstacle Ω ⊆ Rd,
whether there exists a sequence of control law switches that generates a trajectory
from x0 to Tf while avoiding the obstacle Ω. Several variants of this problem
can be considered, that vary on the objective (for instance some tasks can be
expressed as ω-regular objectives), but we focus here on a reachability with
avoidance objective.

More formally, motion planning asks for a finite sequence of time values
t10 < t11, t20 < t21, . . . , tP0 < tP1 , a finite sequence of control laws indices k1, . . . , kP ,
and a finite sequence x1, . . . , xP ∈ Tf of points in Rd, such that:

(a) for every 1 ≤ p ≤ P , if xp is the unique solution to ẋ = fukp (x, t) with initial

condition xp(tp0) = xp−1, then xp(tp1) = xp.
(b) for every 1 ≤ p ≤ P , for every tp0 ≤ t ≤ t

p
1, xp(t) /∈ Ω.

Intuitively, this means that we can switch conveniently between all the con-
trol laws, causing discrete changes in the system dynamics, and ensure the
global (reachability with avoidance) objective. The continuous trajectory gen-
erated by the solution above is the concatenation of the trajectory portions
{xp(t) | tp0 ≤ t ≤ t

p
1} for 1 ≤ p ≤ P .

2.3 Motion planning with graphs of control funnels

We now explain how the motion planning problem can be abstracted using timed
transition systems based on control funnels.

For each control law ui(x, t), we assume that we have a finite set of control
funnels F1

i ,F2
i , . . . ,F

mi
i , respectively defined over I1

i ⊆ R+, I2
i ⊆ R+, . . . ,

Imii ⊆ R+. We assume that for every 1 ≤ i ≤ n, for every 1 ≤ j ≤ mi,

for every t ∈ Iji , it holds Fji (t)∩Ω = ∅, which means that trajectories contained
in these funnels always avoid the obstacle Ω.

Consider a control law switch at position x̃ to law ui(x, t) with clock value t0.
If there exists a control funnel F ji such that t0 ∈ Iji , and x̃ ∈ F ji (t0), then

we know that the state of the system will remain inside F ji (t) for any t > t0
in Iji (as long as control law ui(x, t) is used). To always keep the system inside
one of the control funnels, we can impose sufficient conditions on the switches.
For instance, if the state is inside F ji (t0), and if for some future clock value t1,

there exists a control funnel F lk and t2 ∈ I lk such that F ji (t1) ⊆ F lk(t2), then
when the clock value is t1 we can safely switch to the control law uk(x, t) while
setting the clock to t2. Indeed, we know that the state of the system at the
switch instant will be inside F lk(t2), and therefore it will remain inside F lk(t)
after the switch. Such transitions from a funnel to another are illustrated on the
right side of Fig. 1. It is worth noting that similar transitions could be achieved
with, instead of control funnels, controller specifications as introduced in [15].
For some control funnels F ji and Fki associated to the same control law, it is the

case (see Section 4) that when funnel F ji is entered at time t, then at any time

4

t′ ≥ t+ hj→ki (where hj→ki is a constant), the state of the system is inside Fki (t′).

In that case, we say that the funnel Fki h
j→k
i -absorbs the funnel F ji .

These rules for navigating between control funnels give to the set of control
funnels the structure of an infinite graph, or, more precisely, of a timed transition
system with real-valued clocks. One of the clocks of this timed transition system
is ct, the controller clock. We add two other clocks: a global clock cg, and a local
clock ch.

The funnel timed transition system TU,F associated with the family of laws

U = (ui(x, t))1≤i≤n and the family of funnels F = ((F ji , I
j
i))1≤i≤n,1≤j≤mi is

defined as follows. The configurations are pairs (F ji , v) where v assigns a non-

negative real value to each of the clocks ct, cg and ch, with v(ct) ∈ Iji , and its
transition set contains three types of elements:

– the time-elapsing transitions: (F ji , v)→ (F ji , v +∆) whenever [v(ct), v(ct) +

∆] ⊆ Iji (where v + ∆ denotes the valuation that maps each clock c to
v(c) +∆);

– the switching transitions : (F ji , v)→ (F lk, v′) whenever v′(cg) = v(cg), v
′(ch) =

0, v(ct) ∈ Iji , v′(ct) ∈ I lk, and F ji (v(ct)) ⊆ F lk(v′(ct));

– the absorbing transitions: (F ji , v)→ (Fki , v′) whenever Fki h
j→k
i -absorbs F ji ,

v(ch) ≥ hj→ki , v′(ch) = 0, v′(cg) = v(cg) and v′(ct) = v(ct).

A run in this timed transition system is a finite sequence of configurations(
(F j0i0 , v0), (F j1i1 , v1), . . . , (F jPiP , vP)

)
such that v0(ch) = v0(cg) = 0, v0(ct) ∈ Ij0i0 ,

and all the transitions (F jpip , vp) → (F jp+1

ip+1
, vp+1) for 0 ≤ p < P are valid

transitions that belong to TU,F .
Such a run is of total duration vP (cg), and it corresponds to a schedule of

control law switches that results from the following rules: initially, the control
law is set to ui0(x, t), and the controller clock ct is set to v0(ct). For every time-
elapsing transition (F ji , v)→ (F ji , v+∆), the same control law ui(x, t) is kept for

a duration of ∆ time units, and for every switching transition (F ji , v)→ (F lk, v′),
the control law is switched from ui(x, t) to uk(x, t), with an initialization of
the controller clock to v′(ct). Absorbing transitions are discarded, as they just
correspond to an instantaneous change of funnels for the same control law. Let us
denote this sequence of switches by r. Then, it is fundamental to notice that
for every x ∈ Fj0i0 (v0(ct)), if we follow the schedule of control law switches just
described, then the system remains inside control funnels and reaches at the
end of the run a unique point of Rd, that we denote r(x). The trajectory going
from x to r(x) is also uniquely defined.

The funnel timed transition system TU,F satisfies the following property:

Theorem 1. Let r =
(
(F j0i0 , v0), (F j1i1 , v1), . . . , (F jPiP , vP)

)
be a run in TU,F .

If x ∈ Fj0i0 (v0(ct)), then r(x) ∈ FjPiP (vP (ct)).

In some sense, the funnel timed transition system TU,F is a correct abstraction of

trajectories that can be generated by the set of control laws: if x0 ∈ Fj0i0 (v0(ct))

5

Fig. 2. Run of a funnel timed transition system with three control funnels:
r =

(
(F1

1 , v
1
0), (F1

1 , v
1
1), (F1

2 , v
2
0), (F1

2 , v
2
1), (F1

3 , v
3
0), (F1

3 , v
3
1), (F1

4 , v
4
0), (F1

4 , v
4
1)
)
, with:

∀1 ≤ i ≤ 4, vi0(ct) = ti0, vi1(ct) = ti1, vi0(ch) = 0, vi1(ch) = ti1−ti0, vi1(cg) = vi0(cg)+vi1(ch),
and v10(cg) = 0, and ∀2 ≤ i ≤ 4, vi0(cg) = vi−1

1 (cg).

and F jPiP (vP (ct)) ⊆ Tf , then such a run witnesses a solution to the motion
planning problem. However, this abstraction is obviously not complete.

Example 3 (An example with obstacles). The example in Fig. 2 shows a run with
three control laws u1(x, t), u2(x, t) and u3(x, t), three control funnels F1

1 , F1
2

and F1
3 , and an obstacle in the state space. The domains of definition of the

control funnels I1
1 , I1

2 and I1
3 are such that for all α ∈ {1, 2, 3} and all t ∈ I1

α,
F1
α(t) does not intersect the obstacles.

With the previous property, any run in the corresponding funnel timed
transition system leads to a trajectory that avoids the obstacles. The example of
Fig. 2, where reaching F1

1 (t41) from F1
1 (t10) requires a series of switches between

the different control funnels, shows the potential interest of automated verification
in timed transition systems, as it can result in the generation of obstacle-free
dynamic trajectories via appropriate control law switches.

3 Reduction to timed automata

Timed automata [1] are a timed extension of finite-state automata, with a well-
understood theory. They provide an expressive formalism for modelling and
reasoning about real-time systems, and enjoy decidable reachability properties;
much efforts have been invested over the last 20 years for the development of
efficient algorithms and tools for their automatic verification (such as the tool
Uppaal [6], which we use in this work).

Let C be a finite set of real-valued variables called clocks. A clock valuation
over a finite set of clocks C is a mapping v : C → R+. We write RC for the set
of clock valuations over C. If ∆ ∈ R+, we write v + ∆ for the clock valuation
defined by (v + ∆)(c) = v(c) + ∆ for every c ∈ C. A clock constraint over C
is a boolean combination of expressions of the form c ∼ α where α ∈ Q, and

6

∼ ∈ {≤, <,=, >,≥}. We denote by C(C) the set of clock constraints over C.
We write v |= g if v satisfies g (defined in a natural way). A reset of the clocks is
an element res of (Q∪{⊥})C (which we may write R(C)), and if v is a valuation,
its image by res, denoted res(v), is the valuation mapping c to v(c) whenever
res(c) = ⊥, and to res(c) ∈ Q otherwise.

We define a slight extension of timed automata with rational constants,
general boolean combinations of clock constraints and extended clock resets;
those timed automata are as expressive as standard timed automata [7], but they
will be useful for expressing funnel timed transition systems. A timed automaton
is a tuple A = (L,L0, LF , C,E, Inv) where L is a finite set of locations, L0 ⊆ L
is a set of initial locations, LF ⊆ L is a set of final locations, C is a finite set of
clocks, E ⊆ L× C(C)×R(C)× L is a finite set of edges, and Inv : L→ C(C) is
an invariant labelling function.

A configuration of A is a pair (`, v) ∈ L× RC such that v |= Inv(`), and the
timed transition system generated by A is given by the following two rules:

– time-elapsing transition: (`, v)→ (`, v+∆) whenever v+ δ ∈ Inv(`) for every
0 ≤ δ ≤ ∆;

– switching or absorbing transition: (`, v) → (`′, v′) whenever there exists
(`, g, res, `′) ∈ E such that v |= g ∧ Inv(`), v′ = res(v), and v′ ∈ Inv(`′).

A run in A is a sequence of consecutive transitions. The most fundamental result
about timed automata is the following:

Theorem 2 ([1]). Reachability in timed automata is PSPACE-complete.

We consider again the family of control laws U = (ui(x, t))1≤i≤n, and the

family of funnels F = ((F ji , I
j
i))1≤i≤n,1≤j≤mi , as in the previous section. For every

pair 1 ≤ i, k ≤ n, and every 1 ≤ j ≤ mi and 1 ≤ l ≤ mk, we select finitely many
tuples (switch, [α, β], (i, j), γ, (k, l)) with α, β, γ ∈ Q such that (i) [α, β] ⊆ Iji ,

(ii) γ ∈ I lk, and (iii) for every t ∈ [α, β], F ji (t) ⊆ F lk(γ). This allows us to under-
approximate the possible switches between funnels. For every 1 ≤ i ≤ n, for every
pair 1 ≤ j, k ≤ mi, we select at most one tuple (absorb, ν, (i, j, k)) such that ν ∈ Q
and Fki (t) ν-absorbs F ji (t). This allows us to under-approximate the possible
absorbing transitions. For every 1 ≤ i ≤ n and every 1 ≤ j ≤ mi, we fix a finite
set of tuples (initial, α, (i, j)) such that α ∈ Q and x0 ∈ F ji (α). This allows us
to under-approximate the possible initialization to a control funnel containing
the initial point x0. For every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (invariant, Si,j , (i, j)), where Si,j ⊆ Iji is a finite set of closed intervals
with rational bounds. This allows us to under-approximate the definition set of
the funnels. Finally, for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (target, [α, β], (i, j)), where α, β ∈ Q and [α, β] ⊆ Iji ∩ {t | F

j
i (t) ⊆ Tf}.

This allows us to under-approximate the target zone. We denote by K the set of
all tuples we just defined.

We can now define a timed automaton that conservatively computes the
runs generated by the funnel timed transition system. It is defined by AU,F,K =
(L,L0, LF , C,E, Inv) with:

7

– L = {F ji | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {init, stop}; L0 = {init}; LF = {stop};
– C = {ct, cg, ch};
– E is composed of the following edges:
• for every (initial, α, (i, j)) ∈ K, we have an edge (init, true, res,F ji) in E,

with res(ct) = α and res(cg) = res(ch) = 0;

• for every (switch, [α, β], (i, j), γ, (k, l)) ∈ K, we have an edge (F ji , α ≤
ct ≤ β, res,F lk) with res(ct) = γ, res(ch) = 0 and res(cg) = ⊥;

• for every (target, [α, β], (i, j)) ∈ K, we have an edge (F ji , α ≤ ct ≤
β, res, stop) in E, with res(ct) = res(cg) = res(ch) = ⊥;

• for every (absorb, ν, (i, j, k)) ∈ K, we have an edge (F ji , ch ≥ ν, res,Fki)
with res(ch) = 0 and res(ct) = res(cg) = ⊥;

– for every (invariant, Si,j , (i, j)) ∈ K, we let Inv(F ji) ,
∨

[α,β]∈Si,j (α ≤ ct ≤ β).

We easily get the following result:

Theorem 3. Let (init, v0) → (`1, v1) → · · · → (`P , vP) → (stop, vP) be a run
in AU,F,K such that v0 assigns 0 to every clock. Then r = ((`1, v1), . . . , (`P , vP))
is a run of the funnel timed transition system TU,F that brings x0 to r(x0) ∈ Tf
while avoiding the obstacle Ω.

This shows that the reachability of stop in AU,F,K implies that there exists an ap-
propriate schedule of control law switches that safely brings the system to the tar-
get zone. Of course, the method is not complete, not all schedules can be obtained
using the timed automaton AU,F,K . But if AU,F,K is precise enough, it will be pos-
sible to use automatic verification techniques for dynamic trajectory generation.

Remark 1. We could be more precise in the modelling as a timed automaton, if
we could use non-deterministic clock resets [7]; but we should then be careful with
decidability issues. Additionally, non-deterministic resets are not implemented in
Uppaal, which is why we have chosen timed automata with deterministic resets
only.

Remark 2. As we show with some examples in Section 5, our timed-automata
abstraction can be used for other types of objectives than just reachability with
avoidance. In particular, the approach can be extended to timed games [3],
where special uncontrollable transitions model uncertainty in the environment.
In that case, the aim is not to synthesize one single run in the system, but rather
a strategy that dictates how the system should be controlled, depending on how
the environment evolves. It is worth knowing that winning strategies can be
computed in exponential time in timed games, and that the tool Uppaal-Tiga [5]
computes winning strategies. In Section 5.1, we give an example of application
where timed games and Uppaal-Tiga are used.

4 LQR funnels

In this section we consider the particular case of linear time-invariant stabilizable
systems whose dynamics are described by the following equation:

ẋ = Ax +Bu, (4)

8

where A ∈ Rd×d and B ∈ Rd×k are two constant matrices, and u ∈ Rk is the
control input. We also consider reference trajectories that can be realized with
controlled systems described by Eq. (4), i.e. trajectories xref(t) for which there
exists uref(x, t) such that ẋref = Axref +Buref. We can combine this equation
with (4) and get ẋ− ẋref = A(x− xref) +B(u− uref), which rewrites

ẋ∆ = Ax∆ +Bu∆. (5)

To track ẋref, we compute u∆ as an infinite-time linear quadratic regulator
(LQR, see [25]), i.e. a minimization of the cost: J =

∫∞
0

(
xT
∆Qx∆ + uT

∆Ru∆
)

dt,
whereQ andR respectively are positive-semidefinite and positive-definite matrices.
The solution is u∆ = −Kx∆, with K = R−1BTP and P being the unique
positive-definite matrix solution of the continuous time algebraic Riccati equation:
PA+ATP − PBR−1BTP +Q = 0.

The dynamics can be rewritten ẋ∆ = (A−BK)x∆ = Āx∆, i.e.:

ẋ = ẋref + Ā(x− xref), (6)

and the matrix Ā is Hurwitz, i.e. all its eigenvalues have negative real parts.
Additionally, V : x∆ 7→ xT

∆Px∆ is a Lyapunov function (V (0) = 0 and for all
x∆ 6= 0, it holds V (x∆) > 0 and V̇ (x∆) < 0). The solutions of Eq. (6) can be
written: x(t) = xref(t) + eĀ(t−t0)x∆(t0). Since Ā is Hurwitz, the term eĀ(t−t0)

tends to 0 exponentially fast, and the tracking asymptotically converges towards
the reference trajectory xref(t). The Lyapunov function V can be used to define
control funnels as follows. For α > 0, we let:

Fα(t) = {xref(t) + x∆ | V (x∆) ≤ α} (7)

F is a control funnel defined over R: if x∆(t) = x(t) − xref(t) is a solution of
Eq. (5) such that x(t1) ∈ Fα(t1), then for any t2 > t1, since V (x∆) only decreases,
V (x∆(t2)) ≤ V (x∆(t1)) ≤ α, and thus x(t2) = xref(t2) + x∆(t2) ∈ Fα(t2).
Fα(t) is a fixed d-dimensional ellipsoid centered at xref (t). Without going

into details, it is possible to get lower bounds on the rate of decay of V (x∆), and
effectively compute β > 0 such that, for any solution x∆(t) of Eq. (5):

∀t ∈ R,∀δt ∈ R+, V (x∆(t+ δt)) ≤ e−β.δtV (x∆(t)) (8)

This proves that if the system is inside the control funnel Fα(t) at a given
instant, then after letting time elapse for a duration of δt, the system will be
inside the control funnel Fαe−β.δt(t). Using the terminology of Section 2.3, this
can be equivalently stated as follows: for 0 < α′ < α, the control funnel Fα′(t)[

1
β log(αα′)

]
-absorbs the control funnel Fα(t). Thanks to this property, for a given

LQR controller and a reference trajectory xref(t), we can define a finite set of fixed-
size control funnels Fα0(t),Fα1(t), . . . , Fαq(t), with α0 > α1 > · · · > αq > 0,
and absorbing transitions between them in the corresponding timed automaton.

In the remainder of the article, we will only use this kind of fixed size control
funnels, which we call “LQR funnels”. They are convenient because the larger

9

Fig. 3. An absorbing transition (in green) between two switching transitions.

ones can be used to “catch” other control funnels, and the smaller ones can easily
be caught by other control funnels. Figure 3 depicts a typical sequence, where
first a large control funnel (in green) catches the system, then after some time,
an absorbing transition can be triggered, and finally, a new transition brings
the system to a larger control funnel (in blue) on another trajectory. Besides
that, testing for inclusion between fixed-size ellipsoids is easy, and therefore
LQR funnels allow relatively efficient algorithms for the computation of the
tuples needed for the timed-automaton reduction ((switch, [α, β], (i, j), γ, (k, l)),
(invariant, Si,j , (i, j)), . . . , see Section 3).

It should be noted that the concepts of fixed size control funnels and absorbing
transitions, introduced here for linear systems, are also suitable for general
nonlinear systems. Lyapunov functions in general, and quadratic ones in particular,
can be computed via optimization, for example with Sum-of-Squares techniques
as shown in [17]. By imposing specific constraints on the optimization, fixed size
control funnels with exponential convergence can be obtained inducing the same
kind of absorbing transitions as introduced in the last paragraph.

5 Examples of application

5.1 Synchronization of sine waves

In this example, there is a unique reference trajectory: xref(t) = sin(2π
τ t),

for t ∈ [0, τ] and τ ∈ Q, and a unique LQR controller tracking this trajectory.
We define two fixed size LQR funnels F1 (the large one) and F2 (the small one)
defined over [0, τ] such that F2 γ-absorbs F1 for some γ ∈ Q. The size of F1 is
computed so that an upper bound on the acceleration is always ensured, as long
as the state of the system remains inside the control funnel.

The set F1(τ/2) contains the smaller control funnel F2(t) for a range of
time values [α, β] for some α < τ

2 ∈ Q and β > τ
2 ∈ Q. This allows switching

transitions from F2 to F1 with abrupt modifications of the controller clock ct.
Together with the absorbing transition and “cyclic transitions” that come from
the equalities F1(0) = F1(τ) and F2(0) = F2(τ), it results in an abstraction by
the timed automaton shown on the left side of Fig. 4. The goal is to synchronize
the controlled signal to a fixed signal sin(2π

τ t + ϕ0). The phase ϕ0 is initially

10

Fig. 4. On the left: the timed automaton for the controlled signal (the system). On the
right: the timed automaton used to model the target signal with an initially unknown
phase ϕ0. The opponent transition (dashed) is the one used to set ϕ0.

1

1

2 3

2

3

,

A

Fig. 5. The reactive controller performs three switching transitions to exactly adjust
its phase to that of the target signal.

unknown, which we model using an adversary: we use a new clock c′t, and an
opponent transition as in the timed automaton on the right side of Fig. 4.

With these two timed automata, we can use the tool Uppaal-Tiga to synthesize
a controller that reacts to the choice of the adversary, and performs adequate
switching transitions until ct = c′t. It is even possible to generate a strategy
that guarantees that the synchronization can always be performed in a bounded
amount of time. We show in Fig. 5 a trajectory generated by the synthesized
reactive controller. In this example, the phase chosen by the adversary is such that
it is best to accelerate the controlled signal. Therefore, the controller uses twice
the switching transition from F2 to F1 with a reset of the controller clock from α
to τ/2 (1 and 2 in Fig. 5). Between these switching transitions, an absorbing

transition is taken to go back to the control funnel F2 (A in Fig. 5). After the
first two switching transitions, the remaining gap ε between ct and c′t is smaller

11

Fig. 6. The figure on the
left shows the set-up. The
black dots correspond to
the position of the lanes.
On the right are shown
some LQR funnels along
the constant velocity ref-
erence trajectories in the
state space.

3210

than τ
2 −α, and therefore the controller waits a bit longer (until τ2 −ε) to perform

the switching transition that exactly synchronizes the two signals (3 in Fig. 5).
This example shows that our abstraction can be used for reactive controller

synthesis via timed games. The main advantage of our approach over methods
based on full discretization is that, since a continuous notion of time is kept in
our abstraction, the reactive strategy is theoretically able to exactly synchronize
the controlled signal to any real value of ϕ0. One of our hopes is that extensions
of this result can lead to a general formal approach for signal processing.

5.2 A 1D pick-and-place problem

In this second example, we show that timed-automata abstractions based on
control funnels can be used to perform non-trivial planning. We propose a
one-dimensional pick-and-place scenario. The set-up consists of a linear system
controlled in acceleration moving along a straight line. On this line, four positions
are defined as lanes (see Fig. 6). On three of these lanes (1, 2 and 3), packages
arrive that have to be caught at the right time by the system and later delivered
to lane 0. The system has limited acceleration and velocity, and can carry at
most two packages at a time.

The LQR funnels in this example are constructed based on 12 reference
trajectories. The first four have different constant positive velocities (xiref with
i ∈ {1, . . . , 4}, the fastest one being x4

ref, and the slowest one x1
ref). The next

four are the same trajectories with negative velocities. On each of these ref-
erence trajectories, five different control funnels of constant size are defined
(F ji for j ∈ {0, . . . , 4}, the largest one being F0

i). The control funnels with neg-
ative constant velocity are the mirror image of those with positive velocity.
Additionally, four stationary trajectories xLk

ref (with k ∈ {0, . . . , 3}) at the po-
sitions of the lanes are defined. The controllers associated to these trajectories
simply stabilize the system at lane positions. For each of these trajectories a
small (j = 0) and a large (j = 1) control funnel are constructed. They are
denoted by F jLk. By construction, neighboring trajectories (e.g. x3

ref and x2
ref or

x1
ref and x−1

ref) are connected, meaning that for two neighboring trajectories xiref

and xkref, ∀t ∈ Ii, ∃t′ ∈ Ik s.t. F4
i (t) ⊂ F0

k (t′) (see Fig. 6). This allows the system
to reach a higher or lower velocity without the need of an explicitly defined

12

Fig. 7. In order to define the tuples
(switch, [α, β], (i, j), γ, (k, l)) (see Section 3),
N regularly spaced points are chosen in xk

ref

(defining the ellipses F l
k(tn) for n ∈ {1, . . . , N}),

and for each n, we set γ = tn, and if a point
xi

ref (t) such that Fj
i (t) ⊂ F l

k(γ) is found, an in-
cremental search is performed to define a range
[α, β] such that ∀t ∈ [α, β], Fj

i (t) ⊂ F l
k(γ).

acceleration trajectory. While the abstraction based on these control funnels
does not represent all the possible behaviors of the system (it is not complete),
switching between different velocity references allows the system to perform a
great variety of trajectories with continuous and bounded velocity and bounded
acceleration.

To fully specify the timed-automata abstraction, the tuples defining the
transition guards must be computed (see Section 3). Here, the regions of invariance
defining the funnels are identically-shaped ellipses (only translated along a
reference trajectory and scaled), thus the test for inclusion is computationally
very cheap. Therefore, many points can be tested for inclusion on each trajectory,
as depicted in Fig. 7, which leads to precise ranges for the switching transitions.
Since the funnels are fixed sets translated along reference trajectories, knowing
velocity or acceleration bounds on these references, and using offsets in the
inclusion tests, we can ensure inclusion on the whole range of a switching transition
with only a finite number of inclusion tests.

We consider an example where three packages respectively arrive on lanes 3, 2
and 1 at times t1arrive = 40, t2arrive = 111 and t3arrive = 122 (corresponding equality
tests on cg can be used to refer to these moments in the timed automaton
abstraction). The goal is to find a trajectory that catches all the packages and
delivers them to lane 0. At the moment of the catch (cg = tparrive), the reference xiref

tracked by the system must be exactly at the correct position (i.e. on the lane of
the arriving package). Depending on the reference trajectory, this corresponds to
a particular value of ct. We add the following constraints on the catches: an upper
bound on velocity such that the system cannot be tracking x4

ref, x
3
ref, x

−3
ref or x−4

ref

when it catches a package, and a bound on uncertainty such that the system must
be in a small control funnel to catch a package. Using additional constructions
in our timed automaton abstraction (for example a bounded counter that keeps
track of the number of packages being carried by the system), it is easy to
specify these constraints and the objective as a reachability specification that
can be checked by Uppaal. Uppaal outputs a timed word that corresponds to
the schedule of control law switches and the trajectory shown on Fig. 8, which
successfully catches the packages and delivers them to lane 0.

The two upper graphs of Fig. 8 show the evolution of the system in its state
space and some of the regions of invariance when taking a switching transition
(colored ellipses). The green dots mark positions at which absorbing transitions
take place (F ji → F

j+1
i). Purple crosses represent a package. The lower graph

13

1 2 3 5

6

7

ref
sys

67

4

5

4

1 2

3

Fig. 8. Execution of a succeeding control strategy given as a timed word.

compares the evolution of the position of the real system with the reference.
One can see that even though the reference velocity can only take seven different
values, a relatively smooth trajectory is realized. Before catching the first package,
the system switches from F4

1 to F0
L3 1 . It then converges to F1

L3 2 just before
the catch. The difference between the real system position and the reference is
very small at that point in time. The system then switches to F0

−1 3 in order
to return to lane 0. It is interesting to notice that the system chooses to return
to lane 0 after having picked only one package, therefore adopting a non-greedy
strategy. This is because it wouldn’t have time to perform a delivery to lane 0
between the arrival of the second and third packages.

When the second package arrives on lane 2, the system catches it while
being in F4

−1 4 . This is again a non-trivial behavior: in order to get both the
second and the third packages, the system has to first go a little bit further than
lane 2 so as to be able to catch the two packages without violating the limit on
acceleration. A slight adjustment of the reference position 5 has to be done to

14

catch the third package exactly on time 6 . After that, the system performs a
local acceleration 7 to reach lane 0 as soon as possible, and delivers the two
packages.

6 Conclusion and future work

We have presented a timed-automata abstraction of switched dynamical sys-
tems based on control funnels, i.e. time-varying regions of invariance. Applying
verification tools (such as Uppaal) on this abstraction, one can solve motion
planning or more complicated problems with timing requirements. In the example
of Section 5.2, we are able to generate a non-trivial solution for a pick-and-place
problem. Synthesis of controllers that react to the environment can be done by
solving timed games, and in the example of Section 5.1 we use Uppaal-Tiga to
generate a controller that can reactively adjust the phase of a signal controlled
in acceleration.

To go further and improve our abstraction, as mentioned in Section 3 (Re-
mark 1), we could use non-deterministic clock updates and study the related
decidability issues. We could also exploit the specific structure of the timed
automata used in our abstraction and design dedicated verification and synthesis
algorithms. Indeed, the timed automata of our model have three clocks, and
there is non-determinism for only one of them (ct). This makes us believe that we
could potentially outperform the general algorithms of Uppaal and Uppaal-Tiga
and solve more complex problems. Finally, in this quest to scale our approach up
to larger models and more advanced specifications, we also plan to combine it to
numerical and optimization methods.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Computer Science 126(2),
183–235 (Apr 1994)

2. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theor. Computer Science 138(1), 35–65 (Feb 1995)

3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata.
In: SSSC’98. pp. 469–474. Elsevier (1998)

4. Aubin, J.P.: Viability tubes. In: Modelling and Adaptive Control, pp. 27–47. Springer
(1988)

5. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: CAV’07. LNCS, vol. 4590, pp. 121–125.
Springer (Jul 2007)

6. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST’06. pp. 125–126. IEEE (Sep 2006)

7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata.
Theor. Computer Science 321(2-3), 291–345 (Aug 2004)

8. David, A., Grunnet, J.D., Jessen, J.J., Larsen, K.G., Rasmussen, J.I.: Application
of model-checking technology to controller synthesis. In: FMCO’10. LNCS, vol.
6957, pp. 336–351. Springer (Nov 2012)

15

9. DeCastro, J., Kress-Gazit, H.: Synthesis of nonlinear continuous controllers for
verifiably-correct high-level, reactive behaviors. IJRR 34(3), 378–394 (Mar 2014)

10. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: EMSOFT’13. pp. 1–10. IEEE (Sep 2013)

11. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear
systems with symmetries. IEEE Trans. Robotics 21(6), 1077–1091 (Dec 2005)

12. Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval
temporal logic specifications. Tech. Rep. 1503.07193, ArXiv (Mar 2015)

13. Julius, A.A., Pappas, G.J.: Trajectory based verification using local finite-time
invariance. In: HSCC’09. LNCS, vol. 5469, pp. 223–236. Springer (Apr 2009)

14. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynami-
cal systems. Theor. Computer Science 132(1), 113–128 (Sep 1994)

15. Le Ny, J.L., Pappas, G.J.: Sequential composition of robust controller specifications.
In: ICRA’12. pp. 5190–5195. IEEE (May 2012)

16. Liu, J., Prabhakar, P.: Switching control of dynamical systems from metric temporal
logic specifications. In: ICRA’14. pp. 5333–5338. IEEE (May 2014)

17. Majumdar, A., Ahmadi, A.A., Tedrake, R.: Control design along trajectories with
sums of squares programming. In: ICRA’13. pp. 4054–4061. IEEE (May 2013)

18. Majumdar, A., Tedrake, R.: Robust online motion planning with regions of finite
time invariance. In: WAFR’12. STAR, vol. 86, pp. 543–558. Springer (Jun 2013)

19. Maler, O., Batt, G.: Approximating continuous systems by timed automata. In:
FMSB’08. LNBI, vol. 5054, pp. 77–89. Springer (Jun 2008)

20. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Real-time:
theory in practice. LNCS, vol. 600, pp. 447–484. Springer (1992)

21. Mason, M.T.: The mechanics of manipulation. In: ICRA’85. vol. 2, pp. 544–548.
IEEE (Mar 1985)

22. Quottrup, M.M., Bak, T., Zamanabadi, R.I.: Multi-robot planning : a timed
automata approach. In: ICRA’04. vol. 5, pp. 4417–4422. IEEE (Apr 2004)

23. Sloth, C., Wisniewski, R.: Timed game abstraction of control systems. Tech. Rep.
1012.5113, ArXiv (Dec 2010)

24. Sloth, C., Wisniewski, R.: Complete abstractions of dynamical systems by timed
automata. Nonlinear Analysis: Hybrid Systems 7(1), 80–100 (Feb 2013)

25. Sontag, E.D.: Mathematical control theory: deterministic finite dimensional systems.
Springer (1998)

26. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: Feedback
motion planning via sums-of-squares verification. IJRR 29(8), 1038–1052 (Jul 2010)

16

