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Abstract

In this paper, we investigate the benefits and drawbacks of
different approaches for solving a cooperative foraging task
with two robots. We compare a classical clonal approach
with an additional approach which favors the evolution of
heterogeneous behaviors according to two defining criteria:
the evolvability of the cooperative solution and the efficiency
of the coordination behaviors evolved. Our results reveal a
tradeoff between evolvability and efficiency: the clonal ap-
proach evolves cooperation with a higher probability than a
non-clonal approach, but heterogeneous behaviors evolved
with the non-clonal approach systematically show better fit-
ness scores. We then propose to overcome this tradeoff and
improve on both of these criteria for each approach. To this
end, we investigate the use of incremental evolution to trans-
fer coordination behaviors evolved in a simpler task. We
show that this leads to a significant increase in evolvability
for the non-clonal approach, while the clonal approach does
not benefit from any gain in terms of efficiency.

Introduction
The evolution of cooperative actions in evolutionary robotics
is as much a challenge as an interesting perspective for
the design of complex collective systems (Doncieux et al.,
2015). As such, it has been widely studied with very diverse
approaches and objectives (Waibel et al., 2009; Hauert et al.,
2014; Trianni et al., 2007; Lichocki et al., 2013). These
works often use a clonal paradigm, where each robot has
a copy of the same genome. This makes sense as this is the
easiest way to ensure cooperation when individuals are ex-
pected to display similar behaviors. Moreover, using clones
ensures maximal genetic relatedness between individuals,
which is known to allow the evolution of altruism (Waibel
et al., 2011; Montanier and Bredeche, 2011). As such, most
research focus on increasing the probability for the cooper-
ative solution to evolve.

In comparison, the nature of coordination behaviors and
their influence on the quality of cooperation has yet to
be thoroughly studied. In particular, interactions between
clones in evolutionary robotics tend to produce homoge-
neous behaviors when most coordination tasks could benefit

from heterogeneous behaviors. This could be solved by us-
ing a non-clonal approach where paired individuals do not
use the same genome, and could possibly evolve different
behaviors more easily. However, a non-clonal approach may
face a chicken-and-egg dilemma: multiple individuals need
to behave in a particular fashion for cooperation to be re-
warding, but no benefit can be extracted from this behavior
unless all individuals cooperate. Therefore, without coop-
erating partners, those behaviors cannot be selected by the
evolution as they do not benefit the individual. This is par-
ticularly problematic when a moderately rewarding solitary
strategy overshadows a more rewarding, but also more chal-
lenging to evolve, cooperative strategy (Skyrms, 2004).

In this paper, we are interested in the comparison between
clonal and non-clonal approaches on two different criteria:

• Evolvability of cooperation, which is the number of suc-
cessful runs where cooperation evolved.

• Efficiency of cooperation. This criteria is focused on the
quality of the evolved behaviors and is determined by
the performance (w.r.t. fitness score) of the coordination
strategies.

To that end, we design a foraging task where both cooper-
ative and solitary strategies are possible but where coopera-
tion provides the largest reward. This task is favored by the
evolution of efficient cooperative behaviors and we compare
different approaches on both criteria. The first approach is
a straightforward implementation of the literature where in-
teracting individuals are clones. In comparison, the second
approach is a rather extreme implementation of a non-clonal
approach: we use coevolution, where individuals are from
two different populations, and where fitness scores are com-
puted independently for each individual. While this scheme
is typical of competitive coevolution (Floreano and Nolfi,
1997; Floreano et al., 1998; Panait and Luke, 2005), the na-
ture of the task considered here makes cooperation more in-
teresting, as both individuals can selfishly benefit from being
cooperative.

In the next section, we describe the methods and exper-
imental setup used throughout our study. Then, we com-
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pare the results of the two approaches on the cooperative
task. This first experiment reveals that both approaches face
a tradeoff between evolvability and efficiency, where neither
one dominates the other on both criteria. We investigate in a
second experiment the possibility to overcome this tradeoff
for both approaches. To this end, we use incremental evo-
lution (Harvey et al., 1994; Urzelai et al., 1998) and evolve
coordination in a simpler task in order to improve both the
evolvability and efficiency on the target task for each ap-
proach. Finally, we discuss the implication of our findings
in the last section, in particular with respect to maximizing
evolvability and efficiency alike.

Methods
Two robotic agents are placed in a 800 by 800 units square
arena with four solid walls and emptied from any obstacle
apart from the targets in the foraging task. Each circular-
shaped agent, with a diameter of 20 units, has a collection
of sensors divided between a 90 degrees front camera and
12 uniformly distributed proximity sensors. The camera is
composed of 12 rays with infinite range which indicate the
type (coded on 3 bits) and proximity (one value in Rn) of the
nearest object or agent in their direction. Proximity sensors
have a range of twice the agent body’s diameter and are used
to get the distance to any obstacle nearby such as solid ob-
jects, the other agent or walls. The two agents always begin
the simulation next to one another at one end of the arena,
whereas all the objects’ initial positions are randomized.

Agents can move freely in the environment and are con-
trolled by a fully connected multi-layer perceptron with a
single hidden layer, the topology of which does not change
during the evolution. Inputs of this neural network are fed
with all the data extracted from the sensors: 48 neurons for
the camera (4 neurons for each of the 12 rays) and 12 neu-
rons for the proximity sensors. A bias neuron, whose value
is always 1, brings the total number of input neurons to 61.
The hidden layer is comprised of 8 neurons and the output
layer of 2 neurons giving the speed of each of the agent’s
wheels. The activation function used is a sigmoid.

In each experiment, individuals evolved during a fixed
amount of evaluations thanks to an evolutionary algorithm.
Their genome consists of a collection of the 506 connec-
tion weights (as real-values) of the neural network and is
initially randomized for each individual in the population.
Three evaluation setups are used to compare the different
approaches of our experiment:

• In the control setup, each individual is evaluated against
5 other randomly chosen individuals in the population ex-
cept itself. Therefore we ensure that there is no genetic
relatedness between individuals in each pair. However, it
is not clear how the evolutionary algorithm itself may im-
pact the population’s diversity, especially because elitism
is used;

• In the clonal setup, each individual is evaluated once
against a clone of itself. This setup is used to study the re-
sults of the classical clonal approach (Waibel et al., 2009;
Hauert et al., 2014; Trianni et al., 2007; Lichocki et al.,
2013). While previous works have shown on multiple
occasions that cooperation can evolve, it is not clear if
individuals can take different roles during a cooperative
interaction;

• In the coevolution setup, each of the two individuals
comes from two different coevolved populations. In this
setup, each individual from one population encounters 5
random individuals from the other population. As pairing
considers individuals from two seperate populations, the
evolution of heterogeneous behaviors is theoretically eas-
ier. As a matter of fact, such a relation where two very dif-
ferent individuals find a selfish interest in mutual cooper-
ation is actually quite common in nature (Connor, 1995).

A pair of individuals then interact in the arena described
before for a fixed number of simulation steps called a trial.
Each trial is conducted 5 times to account for the random
initial positions of the objects and decrease the influence of
the initial conditions on the individuals’ performance.

The selection method used in the evolutionary algorithm
is an elitist (10+10)-ES where the 10 best individuals in the
population are used to generate 10 offsprings for the next
generation. We use no recombination and therefore each
offspring is a mutated copy of its parent. Mutations were
sampled according to a gaussian operator with a standard
deviation of 1.10−2 and a gene’s mutation rate of 5.10−3.
Finally, population size was kept constant through the
evolution with a number of 20 individuals. All experiments
were done using the framework for evolutionary compu-
tation SFERESv2 (Mouret and Doncieux, 2010), which
includes a fast 2D robotic simulator. The source code for
reproducing the experiments is available for download at
http://pages.isir.upmc.fr/˜bredeche/Experiments/ECAL2015-
coop.tgz.

Cooperative Foraging Task
In this first experiment, we investigate the evolution of coop-
eration in a foraging task. The environment is filled with 18
solid targets that the agents can collect. To collect a target,
an agent has to stay close to this object for a fixed amount
of simulation steps (800). After this duration, the target dis-
appears and any agent close to it is rewarded with its value.
Targets are of two types. Green targets always reward 50
when collected whereas purple ones reward 250 only when
the agents collect it together (Table 1). If a solitary agent
collects a purple target, it disappears and rewards nothing.
Consequently, there is both an incentive and a risk to co-
operate as cooperation is dependent on successful coordina-
tion. This setup is a robotic implementation of a well-known
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problem in game theory for studying the evolution of mutu-
alistic cooperation: the Stag Hunt (Skyrms, 2004).

The fitness score (F ) of an individual is the average re-
ward per trial:

F =
1

N ∗M
N∑

i=1

M∑

j=1

fij

Where N is the number of individuals encountered (5 in
the control and coevolution setups, 1 in the clonal setup), M
the number of trials (5) and fij the rewards obtained at trial
j with individual i.

When a target is collected, another target of the same type
is then placed at a random position in the arena to keep a
constant ratio between green and purple targets. Each evalu-
ation lasted 20000 simulation steps and 60 independent runs
were conducted for each experimental setup, each one last-
ing 40000 evaluations.

Target Reward
Green

alone 50
coop 50

Purple
alone 0
coop 250

Table 1: Rewards for the foraging of the different targets,
depending on whether they were collected alone or cooper-
atively.

Results

Setting # Coop. # Solitary Total
Control 10 50 60
Clonal 28 32 60
Coevolution 14 46 60

Table 2: Number of simulations where the best individual
evolved a cooperative strategy (collecting purple targets) or
a solitary strategy (collecting green targets) for each setup in
the foraging task.

We are interested in the number of simulations where co-
operation evolved (i.e. the evolvability of each approach),
which means simulations where the best individual in the
population evolved the cooperative foraging of the purple
targets (i.e. more than 50% of the collected targets are pur-
ple). Results for the three setups are displayed in Table 2.
As could be expected from the literature, the clonal setup
displays a greater evolvability w.r.t. evolving cooperation
(28/60), whereas coevolution (14/60) is on par with the con-
trol setup (10/60). It is also apparent that cooperation is still
difficult to evolve as in the best case (clonal), no more than

half the simulations display the evolution of cooperative be-
haviors.

Figure 1: Median fitness score of the best individuals in each
of the runs where cooperation evolved for each setup over
time. The fitness score of an individual is computed as the
average reward the individual earned per trial by foraging
targets. The colored areas around the medians represent the
first and third quartiles.

However, cooperative individuals do not perform with the
same efficiency from one setup to another. We show in Fig-
ure 1 the median fitness score of the best individuals in each
independent run where cooperation evolved over time and
for each setup. Fitness scores are significantly different in
each setup with the best score obtained in the coevolution
setup and the worst in the control setup (Mann-Whitney U-
test on the fitness score of the best individuals at the last
evaluation, p-value < 0.001).

These differences in efficiency can be explained by look-
ing at the nature of the cooperative behaviors evolved, which
reveals two types of behaviors: turning and leader/follower.

Individuals adopting the turning strategy turn around one
another so that they always see the other individual as well
as stay close to it (Figure 2(a)). This allows the two indi-
viduals to approach simultaneously a same target and there-
fore forage it in a cooperative fashion. In this strategy, both
individuals have a similar behavior and no role division is
necessary for their successful cooperation.

In comparison, individuals which evolve a leader/follower
strategy adopt a differentiation between two roles: leader
and follower (Figure 2(b)). The individual we call leader
always goes first on a target whereas the follower always
arrives second on the same target. We observe that the fol-
lower’s behavior consists in staying close to the leader and
always keeping it in front of itself. In comparison the leader
shows a lesser interest in the presence of its follower and
rarely checks on its position.
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Figure 2: Snapshots of the simulation after an entire trial in the foraging task. The path of each robotic agent from their initial
positions (black dots) is represented in red and blue. The green and purple discs represent the 18 targets in the environment.
When a target is foraged by the two agents, a red cross (resp. blue) is drawn on the target if the red agent (resp. blue) arrived
on it first. Each snapshot corresponds to a trial where agents adopted a different behavior: (a) turning or (b) leader/follower.

Table 3 shows the distribution of cooperative strategies
for all three setups. Whereas the control and clonal se-
tups always resulted in turning strategies (resp. 10/10 and
28/28), the coevolution setup always displayed the evolu-
tion of a leader/follower strategy (14). We observe that this
latter strategy leads to more efficient cooperation. Indeed,
individuals adopting the turning strategy are forced to check
constantly on the other individual’s position. Consequently,
they cannot be as fast as individuals with a leader/follower
strategy where they move to the target in a straight line under
the leader’s direction. Moreover, due to the random prox-
imity of the targets, the turning strategy is prone to errors.
Namely, they often get to another target than that of their
partner whenever two targets are too close to each other.

A possible explanation as to why no leader/follower strat-
egy could evolve in the control and clonal setups may be
because of the need to differentiate between the two roles.
Indeed, there needs to be the existence of an asymmetry be-
tween the two individuals for this phenomenon to appear.
With coevolved populations, this asymmetry is deliberately
created by the separation between the two populations. In-
deed, we observe that one population exclusively contains
leaders while the other exclusively contains followers.

The two other setups fail to evolve heterogeneous behav-
iors. In the control setup, this may be due to the evolu-
tionary algorithm used, especially with elistism enforcing
the homogenization of the population throughout the course
of evolution (as hinted in the Methods Section). Then, the
clonal setup introduces yet another challenge as switching to

a particular role can only be done during evaluation as both
individuals are by definition genetically similar.

Setting # Leader/Follower # Turning Total
Strategy Strategy

Control 0 10 10
Clonal 0 28 28
Coevolution 14 0 14

Table 3: Repartition of the different strategies evolved in
each of the runs where cooperation evolved for each setup
in the foraging task. We indicate in each cell the number of
simulations where a particular strategy evolved.

Going Beyond the Evolvability vs. Efficiency
Tradeoff using Incremental Evolution

The previous section revealed a tradeoff between evolvabil-
ity and efficiency. In the clonal setup, cooperation evolves
more often than with other setups. However, the coevolution
setup yields cooperative behaviors which are more efficient,
with paired individuals displaying asymmetrical behaviors.

In this section, we address the following question: is it
possible to benefit from both evolvability and efficiency with
the clonal and/or the coevolution setups? In other words, we
explore (1) whether the clonal setup can be used to evolve
pairs with heterogeneous behaviors, and (2) whether the co-
evolution setup can be improved in terms of number of runs
where cooperation evolved.
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In order to address this question, we use incremental evo-
lution, a rather common method in evolutionary robotics
for solving challenging problems (Dorigo and Colombetti,
1994; Saksida et al., 1997; Bongard, 2008; Doncieux, 2013).
The main principle is to ease the learning of a complex task
by splitting it into simpler sub-tasks (Perkins and Hayes,
1996).

In the following, we introduce an additional task, the way-
points crossing task, which requires the evolution of coordi-
nation behaviors, and is simpler to address than the previous
task. Individuals evolved in this first task are then used as
starting point for the original task described earlier, hoping
that cooperative behavior will be recycled from the first task
to the second task.

Waypoints Crossing Task
We consider a task where robotic agents have to cross ran-
domly positioned waypoints. As such, these round way-
points do not act as obstacles and have a diameter of 30 units.
As soon as an agent goes through a waypoint, it can not be
seen by this agent anymore. All 18 waypoints have the same
color and can be crossed in any order. The fitness score (F )
of each individual is defined as the average longest sequence
of waypoints shared by both agents per trial:

F =
1

N ∗M
N∑

i=1

M∑

j=1

lmaxij

Where N is the number of individuals encountered (5 in
the control and coevolution setups, 1 in the clonal setup), M
the number of trials (5) and lmaxij

the longest sequence of
waypoints shared by both individuals at trial j with individ-
ual i.

This implies that the two individuals are rewarded when
crossing waypoints in the same order as well as maximizing
the number of waypoints crossed. Each evaluation lasted
10000 simulation steps and 60 independent runs were con-
ducted for each experimental setup, each one lasting 40000
evaluations.

All simulations showed an increase in fitness score for
each of the three setups (cf. Figure 3). This was expected
as this task does not represent a particular challenge for the
individuals: it simply needs the evolution of a successful co-
ordination strategy. However, whereas the coevolution and
clonal setups performed equally, they both surpassed the
performance of individuals from the control setup (Mann-
Whitney, p-value < 0.001).

As with the previous foraging task, we can hypothesize
that these differences in fitness scores are due to differences
in the behaviors evolved. Table 4 gives a classification of
the cooperative behaviors for each setup. They are similar
to those in the previous task with the addition of a third rare
strategy: the wall-following strategy (which is regrouped in
“Other”). Wall-followers simply follow the walls around the

Figure 3: Median fitness score of the best individuals in each
of the 60 independent runs and for each setup over time.
Fitness score is computed as the average longest sequence of
waypoints shared by both agents per trial. The colored areas
around the medians represent the first and third quartiles.

arena and cross any waypoints close to the wall they are ad-
jacent to. As such, this is a far less efficient strategy than the
two others.

Setting # Lead. # Turn. # Other Total
Control 19 37 4 60
Clonal 23 31 6 60
Coevolution 59 1 0 60

Table 4: Repartition of the different strategies evolved in
each of the 60 independent runs for each setup in the way-
points task. We indicate in each cell the number of simu-
lations where a particular strategy evolved: Leader/follower
(Lead.), Turning (Turn.) or Other. “Other” regroups wall-
following strategies or simulations where no recognizable
strategy evolved.

In the coevolution setup, nearly all runs (59/60) evolved
a leader/follower strategy. Interestingly, although fitness
scores in the clonal and control setups are significantly dif-
ferent, this behavior evolved in roughly one third of the runs
for both setups. To explain the difference in fitness scores,
we must take into account the quality of the leader/follower
strategy in each setup. We measure the proportion of lead-
ership in each interaction, which is computed as the pro-
portion of waypoints crossed by both individuals for which
the leader arrived first. Figure 4 displays the boxplots
of the proportion of leadership for the best individuals in
each setup and only for the simulations where a success-
ful leader/follower strategy evolved (a minimal threshold of
0.75 is chosen to consider only the best performing runs).
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Figure 4: Boxplots of the proportion of leadership over time for the best individuals in each runs where the proportion at the
last evaluation was greater than 0.75 in the (a) control, (b) clonal or (c) coevolution setup. This value represents the proportion
of waypoints crossed by both individuals for which the leader arrived first.

We show that the proportion of leadership is greater in the
clonal and coevolution setups than in the control one (Mann-
Whitney, p-value < 0.005). These differences means that
the individuals are more efficient in their leader/follower
strategy in the clonal and coevolution settings than in the
control one. This explains the differences in fitness scores
observed in Figure 3.

Interestingly, whereas in the foraging task no
leader/follower strategy could evolve in the control
and clonal setups, this strategy did evolve in one third of
the simulations for this task. This could mean that these
individuals use information in the environment to adopt one
role or the other. Indeed, we observe that this is achieved
by exploiting the differences in the initial starting positions,
with one individual on the left and the other on the right.
They both turn to the same direction (left or right, depending
on the runs) at the beginning of the simulation which results
in one individual (the leader) turning its back to the other,
while the second individual (the follower) looking at its
partner.

Recycling Cooperative Behaviors in the Foraging
Task
Coming back to the initial foraging task, we perform the ex-
act same experiment described at the beginning of this paper,
with one notable exception: the initial population is initial-
ized with genomes evolved for solving the waypoint task.
This implies that coordination is possible starting from the
very first generation of each setup. Given that we have al-
ready shown that such coordination is a desirable feature,
the question is: will it be possible to retain cooperative be-
haviors in order to solve the foraging task?

Table 5 gives the results in terms of evolved behaviors
from the 60 independent runs for each setup. The coevolu-
tion setup evolves cooperation slightly more often (28/60)
than both the control (20/60) and the clonal (24/60) setups.
A first remark is that the number of occurences of cooper-

Setting # Coop. # Solitary Total# Lead. # Turn.
Control 0 20 40 60
Clonal 0 24 36 60
Coevolution 28 0 32 60

Table 5: Proportion of the 60 independent simulations where
the best individual evolved a cooperative strategy (collecting
purple targets) or a solitary strategy (collecting green tar-
gets) for each setup in the foraging task when individuals
are previously evolved in the waypoints task. In addition,
the repartition of the different strategies is indicated when
cooperation evolved: Leader/Follower (Lead.) or Turning
(Turn.).

ation for the coevolution and control setups have actually
doubled compared to previous results without incremental
evolution (see Table 2). This is not the case for the clonal
setup, which does not appear to benefit from incremental
evolution.

A second remark is that cooperation in the coevolution
setup systematically corresponds to a leader/follower strat-
egy, which is never the case with the two other setups. This
has a significant, though expected, impact on fitness scores,
as shown in Figure 5. Cooperation evolved with the coevolu-
tion setup leads to significantly greater fitness scores (Mann-
Whitney, p-value < 0.001).

Results from this experiment make it possible to revise
our initial statement. Using pre-trained individuals strongly
benefits the coevolution setup in terms of evolvability. But
this is not the case with the clonal setup, for which using
pre-trained individuals improves neither evolvability nor ef-
ficiency. Therefore, we may face a tradeoff which does
not concern evolvability and efficiency, but one that implies
computational cost: the coevolution setup outperforms the
clonal setup on both evolvability and efficiency at the cost
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of additional computational effort.
The control and clonal setups completely failed to main-

tain a leader/follower strategy, even though such strategy
originally evolved. An explanation is provided by con-
sidering the difference between the waypoints task, where
leader/follower evolved, and the current foraging task. In the
waypoints task, symmetry breaking could be achieved at the
beginning of the evaluation (as explained earlier), and could
be retained afterwards as the follower was always behind the
leader. However, the current foraging setup requires that the
two robots display the same behavior to cooperatively col-
lect a target (ie. both robots have to touch the target), which
implies that leader/follower roles are lost, as they depend on
the relative position of robots with one another.

Figure 5: Median fitness score of the best individuals in each
of the runs where cooperation evolved for each setup over
time. The fitness score of an individual is computed as the
average reward the individual earned per trial by foraging
targets. The colored areas around the medians represent the
first and third quartiles.

Discussion and Conclusion
In this paper, we considered several approaches for the evo-
lution of cooperation in evolutionary robotics: a clonal ap-
proach, where all individuals in a group share the same
genome, and a non-clonal approach, where individuals are
independent from one another, but may share a common in-
terest in cooperating.

We first showed that there exists a tradeoff between evolv-
ability and efficiency. On the one hand, the clonal approach
evolves cooperative behaviors on a more frequent basis than
with the other approach. On the other hand, the non-clonal
approach, which is implemented using a coevolution setup,
results in more efficient behaviors in terms of pure perfor-
mance whenever cooperation evolved. The non-clonal ap-

proach actually enables the evolution of asymmetric behav-
iors, such as a leader/follower strategy.

We then used incremental evolution to evolve coordina-
tion behaviors using a simpler task in order to overcome this
tradeoff and improve both evolvability and efficiency in each
setup. We showed that while no improvement was observed
in the clonal setup on either criteria, the outcome is very dif-
ferent for the coevolution setup: the probability of evolving
cooperation actually increases, and the evolved cooperative
solutions remain the most efficient.

This work raises several questions. Firstly, heterogeneous
behaviors were obtained with coevolution, a rather radical
way to enable asymmetrical behaviors during cooperation.
However, the waypoints task revealed that breaking symme-
try can also be done with identical individuals using environ-
mental feedback, even though such cooperation is difficult to
obtain. As a consequence, we intend to investigate the evo-
lution of cooperation with heterogeneous behavior without
resorting to coevolution. In particular, we will study how
more elaborated neural architectures (e.g. using plasticity)
can switch to a particular persistant regime depending on
environmental cues available at the beginning of the evalua-
tion.

Secondly, incremental evolution requires an added com-
putational cost in order to increase evolvability in the non-
clonal approach. However, it may be possible to avoid
this extra cost by considering other evolutionary methods.
In particular, we intend to explore how a multiobjective
approach which considers both performance and diversity
could improve the optimization process (Lehman and Stan-
ley, 2008; Doncieux and Mouret, 2014). Though this ap-
proach looks promising, it is not clear yet how diversity
should be implemented in the context of cooperative prob-
lem solving.
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