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Abstract—In this paper, we treat the problem of trajectory
planning of an unmanned ground vehicle evolving on an uneven
terrain. In such environment, the role of the suspension system
cannot be neglected and a vehicle vertical model has to be taken
into account. In the present work, we present three reduced
models with different level of complexity. These models make
possible to handle the constraints inherent to stability, embedded
equipment safety and suspension mechanical integrity.An opti-
mization problem is also formulated in order to define the optimal
speed profile for a safety behaviour of the mobile robot.
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I. INTRODUCTION

Nowadays, Unmanned Ground Vehicles (UGV) are de-
ployed in different fields to accomplish tasks such as military
transportation, sensible site inspection and nuclear zone in-
tervention. UGVs are therefore called to evolve within hostile
environments where trajectory planning is a key function when
preparing movement task in order to increase robot chances to
attempt its goal in best circumstances. A lot of previous works
treated mobile robot trajectory planning. Works such as [6] and
[8] took into account robot motion limitation by adding non-
holonomic equations in their models. Such works considered
the fact that UGVs were moving on laboratory surfaces where
road was supposed to be plane. For more complex applications
of UGVs, environment is composed of 3D and/or uneven
surfaces. In such cases, works like [1] and [10] developed
strategies where optimal motion was calculated using a UGV
dynamic model-based algorithm. In other works, kinematic and
dynamic models were coupled with A∗ and RRT algorithms
[3], [4], [7], [9], [11].

In these works, the robot is considered as a rigid body.
However, riding on an uneven or rough surfaces will cause
instability risks and eventually integrity problems, that are
directly related to suspensions parameters. Therefore, results
obtained with trajectory planner that do not consider such a
system could be fatal in some situations. Actually there are
works such as [5] and [2] that considered suspension system,
but they dealt with another type of robot like wheeled-legged
one.

In this work, we propose a particular general vertical
dynamic model that can be used either within quarter-car,

bicycle and full models. We propose also a strategy based
on two steps to calculate the optimal velocity profile along
a longitudinal uneven path with taking into account the robot
vertical behaviour. Finally we present an application of this
strategy on an uneven terrain.

II. VEHICLE VERTICAL DYNAMIC MODEL

The suspension system role is not only to isolate embedded
equipments from external perturbations, but also to maintain
contact between tyres and ground to assure permanent control
and therefore to operate safely. In this section, we present
three reduced dynamics models: the quarter-car, the bicycle
and the four (04) wheeled. All of them are based on sprung and
unsprung masses concept. Selecting a model among these three
models depends on the complexity level of the vehicle vertical
dynamic model used within an eventual study where the effect
of the suspension system of the considered vehicle cannot be
neglected. However, a general vertical dynamic model form
that allows passing from a model to another with minimum
modification will be presented.

A. Quarter-car model

This model is used when dynamic analysis is focussed on
bounce motion. The vehicle is supposed composed of a sprung
mass (chassis) mc linked to an unsprung mass (wheel) mw via
a suspension system (Figure 1). The latter is composed of a
spring with stiffness k and a damper with coefficient c. The
tyre is supposed to be elastic with stiffness kw. Both masses
are localized by their vertical positions zc and zw receptively.
The ground elevation is noted zs. u is the force applied by an
eventual active system. The dynamic of system is described
using the following differential equation:

Fig. 1: Quarter-car model.
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{
mcz̈c + c(żc − żw) + k(zc − zw) = u

mwz̈w + kw(zw − zs)− c(żc − żw)− k(zc − zw) = −u
(1)

Using the following variables replacement: x1 = zc − zw,
x2 = żc, x3 = zw − zs and x4 = żw.

We obtain

{
mcẋ2 + c(x2 − x4) + kx1 = u

mwẋ4 + kwx3 − c(x2 − x4)− kx1 = −u (2)

With

• x1: suspension deformation;

• x2: chassis vertical velocity;

• x3: tyre deflection;

• x4: tyre vertical velocity.

By deriving the first and the third equations of system (??)
and adding the result to system (2) we get:


ẋ1 − żc + żw = 0

mcẋ2 + c(x2 − x4) + kx1 − u = 0

ẋ3 − żw + żs = 0

mwẋ4 + kwx3 − c(x2 − x4)− kx1 + u = 0

(3)

This system is rewritten in the following form:


1 0 0 0

0 mc 0 0

0 0 1 0

0 0 0 mw


︸ ︷︷ ︸

M


ẋ1
ẋ2
ẋ3
ẋ4


︸ ︷︷ ︸

ẋ

+


0 −1 0 1

k c 0 −c
0 0 0 −1
−k −c kw c


︸ ︷︷ ︸

K


x1
x2
x3
x4


︸ ︷︷ ︸

x

+


0

0

1

0

 żs +


0

−1
0

1

u

︸ ︷︷ ︸
D

=


0

0

0

0



(4)

In this model żs and eventually u are the input of the
model.

B. Bicycle model

In addition to bounce movement, this model permits to
study the robot pitch angle θ (the corresponding inertia mo-
ment is Iθ). In this case, unsprung mass is composed of two
wheels, front and right. Both of wheels are linked to the chassis
by a suspension system with the characteristics kf , cf , kr and
cr (f for front and r for rear). Their longitudinal distances to
the centre of mass are respectively lf and lr (figure 2).

Fig. 2: Bicycle model.

The dynamics of the robot is described by the following
set of ODEs:


mcz̈c + cf (żf − żwf ) + kf (zf − zwf )+
Iθ θ̈ − lfcf (żf − żwf )− lfkf (zf − zwf )+

mwf z̈wf + kwf (zwf − zsf )−
mwr z̈wr + kwr(zwr − zsr)−

cr(żr − żwr) + kr(zr − zwr) = uf + ur
lrcr(żr − żwr) + lrkr(zr − zwr) = −lfuf + lrur

cf (żf − żwf )− kf (zf − zwf ) = −uf
cr(żr − żwr)− kr(zr − zwr) = −ur

(5)

Performing the variables replacements given in (6), we
obtain the equations of motion with compact form (7).


x1j = zj − zwj
x2j = żj
x3j = zwj − zsj
x4j = żwj

(6)

With j = {f, r}.




I 0 0

2×2︷︸︸︷
0

0 M ′c 0 0

0 0 I 0

0 0 0 Mw


︸ ︷︷ ︸

M


Ẋ1

Ẋ2

Ẋ3

Ẋ4

+


0 −I 0 I

Kc Cc 0 −Cc
0 0 0 −I
−Kc −Cc Kw Cc


︸ ︷︷ ︸

K


X1

X2

X3

X4


︸ ︷︷ ︸

X

+


0

0

I

0

 Żs +


0

−I
0

I

U

︸ ︷︷ ︸
D

=


0

0

0

0


︸ ︷︷ ︸

8×1

(7)

Where:

• I is (2× 2) identity matrix; M ′c = GtMcG;

• Mc =

(
mc 0

0 Iθ

)
; G =

(
1 1

−lf lr

)
;

• Kc =

(
kf 0

0 kr

)
; Cc =

(
cf 0

0 cr

)
;

• Mw =

(
mw 0

0 mw

)
; Kw =

(
kw 0

0 kw

)
;

• Xi = (xif , xir)
t and i = {1, 2, 3, 4} ; Zs =

(zsf , zsr)
t;

• U = (usf , usr)
t.

C. Full model

This model is used if one is interested to study the bounce,
the pitch and the roll movements of the robot. The model
is described in the figure 3 where ϕ and Iϕ are respectively
chassis roll angle and inertia moment. d is the half of track.

Fig. 3: Full model.

For this case, one can easily prove that the state motion
system is similar to those presented by equations (4) and (7).
The general form is presented in equation (8).


n×n︷︸︸︷
I 0 0

n×n︷︸︸︷
0

0 M ′c 0 0

0 0 I 0

0 0 0 Mw


︸ ︷︷ ︸

M(4n×4n)


Ẋ1

Ẋ2

Ẋ3

Ẋ4



+


0 −I 0 I

Kc Cc 0 −Cc
0 0 0 −I
−Kc −Cc Kw Cc


︸ ︷︷ ︸

K(4n×4n)


n×1︷︸︸︷
X1

X2

X3

X4


︸ ︷︷ ︸
X(4n×1)

+


0

0

I

0

 Żs(4n×1) +


0

−I
0

I

U(4n×1)

︸ ︷︷ ︸
D

=


0

0

0

0


︸ ︷︷ ︸

16×1

(8)

This equation has the following form :

Ẋ = AX +B (9)

With A =M−1K and B =M−1D.

Details of this form are listed in table I, where n indicates
the number of wheels considered in the model.

Quarter Bicycle Full
n = 1 n = 2 n = 4

Mc mc

(
mc 0

0 Iθ

) (
mc 0 0

0 Iθ 0

0 0 Iϕ

)

G 1

(
1 −lf
1 lr

) 
1 −lf −d
1 −lf d

1 lr −d
1 lr d


Kc k

(
kf 0

0 kf

) 
kf 0 0 0

0 kf 0 0

0 0 kr 0

0 0 0 kr


Cc c

(
cf 0

0 cr

) 
cf 0 0 0

0 cf 0 0

0 0 cr 0

0 0 0 cr


Kw kw

(
kw 0

0 kw

) 
kw 0 0 0

0 kw 0 0

0 0 kw 0

0 0 0 kw


Xi xi (xif , xir)

t (xifr, xifl, xirr, xirl)
t

Zs zs (zsf , zsr)
t (zsfr, zsfl, zsrr, zsrl)

t

U u (uf , ur)
t (ufr, ufl, uurr, uurl)

t

TABLE I: Movement equations global form details.

This general form allows to anyone to switch from a model
to another with minimum modifications. The choice of a model



depends on the application. In the following section, a method
to find an optimal velocity profile along a longitudinal path is
proposed. We will show how to take into account the vehicle
vertical dynamic using the quarter-car model.

III. TRAJECTORY PLANNING TAKING INTO ACCOUNT
VERTICAL DYNAMICS

If an UGV has to move on an uneven path with important
velocity, embedded equipment safety and stability must be
taken into account. These two performance indices are assured
by a suspension system supposed composed of springs and
dampers as seen above. However, as any mechanical system,
suspension has stops that can be damaged because of excessive
deformation. Wheel axle also can be broken because of an
important vertical force. For this reason, robot mechanical
integrity must be preserved at first by planning movement that
prevent stops to be attempt during riding and by limiting force
applied on the axle and therefore, suspension will perform
safely.

In the following section we will propose a method to
determine the optimal velocity profile along a longitudinal
path that minimizes an objective function that consider the
execution time, the comfort, the stability and the consumed
energy. This problem is constrained by the robot mechanical
integrity and also accelerating and breaking limits.

A. Planning strategy

Let be a ground profile defined by the the road elevation zs
along a longitudinal path. The aim of the developed strategy
is to find an optimal velocity vopt along this path (figure 4).

The planning strategy is based on two steps.

• Step 1: obtain an optimal velocity profile that preserve
the suspension mechanical system;

• Step 2: deduce from the first profile a new one that
takes into account accelerating and breaking limits in
addition to comfort and stability indices;

v

v
min

vmax

vopt

vmax

Fig. 4: Optimal velocity profile concept.

1) Step 1: Preserving the robot mechanical structure: in
this work, preserving the robot mechanical structure is taken
into account by limiting the vertical force applied on the wheel
axle Fa and the contact force Fc between ground and tyre. The
optimization problem can formulated as follows: min(fobj =

T ). Where fobj is the objective function and T is travel time.
The considered constraints are:



max(Fa)− Famax < 0

−(min(Fa) + Famin) < 0

max(Fc)− Fcmax < 0

−min(Fc) < 0

vmin ≤ vopt1 ≤ vmax

(10)

Where Famax and Famin are the maximal and minimal
authorized forces that can support the axle; and Fcmax is the
maximal force authorized that can support the tyre.

Velocity profile is obtained by interpolating Np nodes
pi(si, vi), i = {1, 2, ..., Np} (figure 5). The optimization
process will search for best location of the nodes such as fobj
is minimized and constraints are repected.

v

v
min

vmax

1

p1
p

v1

v2
p2

2

Fig. 5: Velocity profile obtained from optimization parameters.

In order to illustrate this method, we will analyse the
following two scenarios.

Scenario 1: the robot is moving along an uneven path with
a velocity profile that corresponds to a bang-bang movement
(figure 6). The time of task execution is T = 1.5s. However
the figure shows that forces applied on axle and tyre exceed
authorized values.

Fig. 6: Scenario 1:non optimized velocity profile.



Scenario 2: the profile seen in figure 6, will be optimized
taking account of preserving the mechanical structure. The
obtained profile vopt1 is within figure 7. Note that axle and
tyre forces are within authorized range but execution time T
increased from 1.5s to 2.6s.

Fig. 7: Velocity profile optimization with preserving the robot
mechanical structure.

2) Step 2: Taking into account energy, comfort and stability
performance with traction and breaking limits: in this step,
vmax that appears in constraints defined in system (10) will
be substituted by vopt1, optimized profile obtained in the first
step. In addition the new objective function is:

fobj = λ1fobj1 + λ2fobj2 + λ3fobj3 + λ4fobj4 (11)

Where:

fobj1 =
1

vmax

∑
(vopt1 − vopt2) (12)

fobj2 =
1

Emax
E (13)

fobj3 = −1

g

√
var(ac) (14)

fobj4 = −1

g

√
var(aw) (15)

With:

• vmax: robot maximal velocity;

• E: energy consumed along the path;

• Emax: maximal energy that can be consumed with
maximal acceleration along the path;

• ac: chassis vertical acceleration (used to quantify the
comfort);

• aw: wheel vertical acceleration (used to quantify the
stability);

• var(x):x variance;

• λi: weight attributed to fobji .

New considered constraints are:

{
−Fxmax ≤ Fx ≤ Fxmax
vmin ≤ vopt2 ≤ vopt1

(16)

Where Fx is the longitudinal force and Fxmax is the
maximal force that can be developed. It is given by :

Fxmax = µFc (17)

µ is the adherence coefficient.

IV. APPLICATION ON AN UNEVEN TERRAIN

In figure 8, is presented an uneven terrain elevation map.
The robot has to move from Start point to the Goal point. A
shortest path (the blue line) is calculated using an algorithm
that penalizes the zones where the variance of elevations is
high. Details about this algorithm are not the scope of this
paper. Then, a ground profile is extracted and an optimal
velocity profile is calculated as seen in the previous section.
The obtained result is presented in figure 9.

Fig. 8: An uneven terrain elevation map.

V. CONCLUSION

In this paper, we have proposed a method that takes into
account the vertical dynamics when planning the trajectory of
an UGV. The adopted strategy is composed of two steps. The
first one determines an optimal velocity profile while consider-
ing the constraint of preserving the mechanical structure of the
suspension system. In the second step, the latter profile is used
as maximal when looking for a new one that considers energy,
comfort and stability performances indices in one hand, and
traction and breaking limits in the other hand.



Fig. 9: An uneven terrain elevation map.

An application has been performed on an uneven terrain
where a shortest path was calculated before applying the
proposed method.

Obtained results are satisfactory and their experimental
validation constitute the aim of a future work.
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