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DISCRETE-TIME MODELS FOR
IMPLICIT PORT-HAMILTONIAN SYSTEMS

FERNANDO CASTAÑOS∗, HANNAH MICHALSKA† , DMITRY GROMOV‡, AND VINCENT

HAYWARD§

Abstract. Implicit representations of finite-dimensional port-Hamiltonian systems are studied
from the perspective of their use in numerical simulation and control design. Implicit representations
arise when a system is modeled in Cartesian coordinates and when the system constraints are applied
in the form of additional algebraic equations (the system model is in a differential-algebraic equation
form). Such representations lend themselves better to sample-data approximations. Given an implicit
representation of a port-Hamiltonian system it is shown how to construct a sampled-data model that
preserves the port-Hamiltonian (PH) structure under sample and hold.

Key words. port-Hamiltonian systems, nonlinear implicit systems, symplectic integration,
sampled-data systems

1. Introduction. The class of Hamiltonian systems has a prominent role in
many disciplines. It was recently extended in [6] to include open systems, i.e. systems
that interact with the environment via a set of inputs and outputs (called ports),
giving rise to port-Hamiltonian (PH) systems. Such extended models immediately
reveal the passive properties of the underlying systems, making them particularly
well suited for designing passivity-based control (PBC) laws. Two types of model
representations of Hamiltonian systems are in widespread use: the explicit repre-
sentation stated in the form of an ordinary differential equation (ODE) on an ab-
stract manifold [28, 29, 25, 26] and the implicit representation stated in the form of a
differential-algebraic equation (DAE) usually evolving in a Euclidean space [4]. While
explicit representations are usually preferred in the context of analytical mechanics;
see [1, 8, 19], the implicit DAEs models lend themselves better for numerical compu-
tations as they lead to simpler expressions for the Hamiltonian functions. The formal
relations between the two representations and their equivalence can be established
if the system’s configuration space is regarded as an embedded submanifold of the
Euclidean space; see [4] for a full development.

Of principal interest here will be the construction of sampled-data (discrete-time)
models of PH systems that best approximate their continuous-time counterparts.
Sampled-data models are important in digital control implementations and permit
for simpler design of PBC laws directly in discrete time. In this context, the notion
of “best approximation” deserves clarification.

For linear systems, exact sampled-data models can be constructed by requiring
that the solutions of the sampled-data and continuous-time systems coincide at the
discretization points. Point-wise model matching is usually impossible in the case of
nonlinear systems short of explicit derivation of analytical expressions for their solu-
tions. For general dynamic systems, it is thus the choice of an integration method
for generating an approximate solution (like Euler or Runge-Kutta) whose precision
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relates to the compromise between complexity and order of approximation of the
given continuous-time system by its sampled-data counterpart. In the special case of
Hamiltonian systems, structure preservation is usually the main criterion for choosing
a numerical method; see, e.g., [11] for more details on structure-preserving numerical
schemes. Structure-preserving methods guarantee accuracy in long-horizon simula-
tions.

It is known that autonomous Hamiltonian systems conserve two quantities: the
Hamiltonian function H (i.e., the energy or storage function) and a certain two-
form ω, called the symplectic form. Numerical integration algorithms can either
conserve H [14, 15] or ω [27], but not both. Conservation of ω is usually preferred
over conservation of H as the symplectic form unambiguously defines the class of
Hamiltonian vector fields; see Theorem 2.3 and Remark 1.

Contribution. Adopting a symplectic-form preserving approach, a sampled-
data model for a given continuous-time PH system in developed here. The approach
employs implicit representations of PH systems as the latter lead to simpler expres-
sions for the Hamiltonian functions. Specifically, the Hamiltonian functions arising
from implicit representations lend themselves well to the application of flow-splitting
numerical integration methods; see [27] for a splitting method that applies to au-
tonomous Hamiltonian systems (Hamiltonian systems without ports). Additionally,
the discrete-time modeling approach presented here preserves passivity of PH systems
(Theorem 4.2). The passive structure is preserved in the sense that the discrete model
is the exact representation of another, possibly non affine, continuous-time PH sys-
tem which, up to an approximation error of order two with respect to the sampling
interval, has the same storage function H and the same output function y.

Paper structure. Section 2 introduces the implicit representations of PH sys-
tems. This section recalls the results from [4] and serves mainly to introduce the
notation and to state the main assumptions (1 and 2). Also, the definition of PH sys-
tems is extended to the case of non affine control systems. Splitting and symplectic
integration methods for autonomous systems are recalled in § 3. Discrete-time mod-
els for implicit PH systems based on vector splitting methods are developed in § 4
and their asymptotic properties are analyzed. An illustrative example is provided
confirming the findings.

2. Implicit representations of port-Hamiltonian systems. We begin this
section by defining the configuration and phase spaces of Hamiltonian systems in
implicit form. Conservative properties are also discussed. Similarly to the case of
explicit representations of Hamiltonian systems, both the Hamiltonian function and
the symplectic two-form of the implicit representation are invariant under the flow
of the system. Following [6], input and output ports are added to the implicit rep-
resentation, insuring passivity of the resulting PH system. Finally, we extend the
definition of PH to the the case of non affine control systems. This will be needed
when performing backward error analysis later in § 4 since time discretization entails
the loss of affinity.

2.1. The configuration space. The class of systems considered here is re-
stricted to mechanical finite-dimensional systems with scleronomic constraints that
evolve in continuous time. Systems of this type typically consist of M rigid bodies
held together as one structure by the action of constraint forces. The position of each
of the rigid bodies can be unambiguously described in terms of the position of its cen-
ter of mass and its orientation in space. The configuration space of a spatial system as
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a whole can thus be viewed as a subset, G, of a Cartesian space of dimension n = 6M
that is expressed in terms of smooth, independent constraint functions g : Rn → Rk,
with k ≤ n, as the level set

G := g−1(0) = {r ∈ R
n | g(r) = 0} (2.1)

where g−1(0) is the inverse image of 0 ∈ Rk. Functional independence of the con-
straints is expressed in terms of the following rank condition.

Assumption 1. The rank of g is equal to k at all points of the set g−1(0).
Recalling that the rank of a mapping is the rank of its tangent map (push-

forward by g), then in any coordinates, the condition requires that the Jacobian
G := {∂gi/∂rj}ij has full rank, i.e., rank(G) = k at every point of g−1(0). The value

0 ∈ Rk is then called a regular value of g, the level set g−1(0) is a regular level set of
g, and g is said to be a defining map for g−1(0); see [16], p. 113-114. It hence follows
that G can be given the differentiable structure of a closed embedded submanifold of
Rn; see [16], Corollary 5.24, p. 114. The Constant-Rank Level Set Theorem ([16],
Theorem 5.22, p. 113), further specifies its dimension as o = n− k.

Because G is an embedded submanifold, it can also be regarded as an abstract
o-dimensional manifold with local coordinates q (called generalized coordinates in
mechanics). It is then also possible to exhibit an injective inclusion map: ı : G →֒
Rn (embedding), with rank(ı) = dimG, which is a homeomorphism onto the image
ı(G) ⊂ R

n and such that ı(q) = r and g ◦ ı ≡ 0. This inclusion serves as a map
between local coordinates q and global Cartesian coordinates r.

2.2. Hamiltonian equations. Let T ∗G be the cotangent bundle of G and let
{

qi, p̂i
}

be local coordinates. A system is said to be Hamiltonian if its trajectories
are integral curves of the Hamiltonian vector field D

Ĥ
: T ∗G → T (T ∗G),

D
Ĥ

=
∂Ĥ

∂p̂i

∂

∂qi
−
∂Ĥ

∂qi
∂

∂p̂i
,

where Ĥ : T ∗
G → R is the sum of the system’s kinetic and potential energies K̂ :

T ∗G → R and V̂ : G → R, respectively; see [1] for more details and a coordinate-free
definition.

The implicit model for a Hamiltonian system is defined as follows. Let T ∗Rn

be the cotangent bundle of Rn and let
{

ri, pi
}

be global coordinates. The implicit
Hamiltonian vector field takes the form

XH,g = DH − λj
∂gj

∂ri
∂

∂pi
, g = 0 , (2.2)

with

DH =
∂H

∂pi

∂

∂ri
−
∂H

∂ri
∂

∂pi
(2.3)

the unconstrained part of the Hamiltonian vector field and H : T ∗Rn → R is again
the sum of the kinetic and potential energies, but expressed in global coordinates.
That is, K : T ∗Rn → R and V : Rn → R; see [11, 27, 3] for details on the derivation
of this equation. The vector field unravels as the DAE system

ṙ = ∇pH(r, p) , ṗ = −∇rH(r, p)−G(r)⊤λ (2.4a)

0 = g(r) . (2.4b)
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By applying XH,g to both sides of the constraint equations gj = 0, one obtains
the so-called hidden constraints

f j := XH,g(g
j) =

∂H

∂pi

∂gj

∂ri
= 0 . (2.5)

Thus, the system evolves on the closed submanifold

LG = {(r, p) ∈ T ∗
R

n | g(r) = 0, f(r, p) = 0} (2.6)

and we have XH,g : LG → T (LG). A more rigorous construction of the phase space
LG is given in [4], where it is regarded as an embedding of T ∗G in T ∗Rn. The map
p̂ 7→ p as well as the formal relation between Ĥ and H can also be found in [4].

The Lagrange multipliers λj are defined implicitly by (2.2). Precisely, application
of XH,g to the hidden constraints makes λj appear:

XH,g(f
l) = DH(f l)− λj

∂gj

∂ri
∂f l

∂pi
= 0 . (2.7)

Thus, if the matrix
{

∂gj

∂ri
∂f l

∂pi

}

jl

=

{

∂gj

∂ri
∂2H

∂pi∂pm

∂gl

∂rm

}

jl

(2.8)

is non-singular on LG, then there are unique λj satisfying (2.7) and forcing the integral
curves to stay on LG.

Assumption 2. The Hessian matrix
{

∂2H(r, p)/∂pi∂pj
}

ij
is positive definite for

all (r, p) ∈ T ∗Rn so H(r, p) is convex in p.
This assumption, satisfied by most mechanical systems, together with Assump-

tion 1 ensures that the matrix in (2.8) is invertible and the system is well defined. In
mechanical systems, λ is the covector of constraint forces that insure satisfaction of
the constraints during the evolution of the system.

2.3. Energy conservation and symplecticity. It is well known that the flows
generated by Hamiltonian vector fields in explicit form preserve the Hamiltonian func-
tion, i.e. the total energy of the system is conserved during the evolution of the sys-
tem [32, 23, 24]. As the explicit and implicit system representations are equivalent,
the conservation also holds for the implicit Hamiltonian vector field (2.2), as is easily
confirmed by computing the Lie derivative ofH along the flow generated by XH,g [11].
Indeed,

LXH,g
H = XH,g(H) = DH(H)− λj

∂gj

∂ri
∂H

∂pi
= λjf

j , (2.9)

where the third equality holds because DH(H) = 0 and because of the definition of
f given in (2.5). Eq. (2.9) shows that LXH,g

H
∣

∣

LG
= 0 (cf. Eq. (2.6)), so H remains

constant along the system trajectories.
It is also well known that, besides the 0-form H , Hamiltonian flows preserve a

certain 2-form called the symplectic form. In the case of implicit representations the
symplectic form is given by the formula1

ω := dri ∧ dpi , (2.10)

1See [1] for a coordinate-free definition.
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which acts on vectors of T (T ∗Rn), with Einstein’s summation convention implied.
Definition 2.1. A differentiable mapping φ : T ∗Rn → T ∗Rn is called symplectic

if

φ∗ω = ω . (2.11)

Here, φ∗ denotes the pull-back map associated with φ, defined by
Definition 2.2. Let φ : M1 → M2 be a smooth map of manifolds and let

p ∈ M1. The pull-back map φ∗ : T ∗

φ(p)M2 → T ∗
pM2 associated with φ is a dual map

to the push-forward map φ∗ and is characterized by

〈φ∗ξ,X〉 = 〈ξ, φ∗X〉 for ξ ∈ T ∗

φ(p)M2, X ∈ TpM1 .

The application of this definition permits to re-write (2.11) in the equivalent form

ω(φ∗ξ, φ∗η) = ω(ξ, η) for all ξ, η ∈ T (T ∗
R

n) . (2.12)

The conservation of ω along XH,g can be established by showing that the Lie
derivative LXH,g

ω is equal to zero, the demonstration bearing similarity to that of the
conservation of H ; see [4] for the explicit derivation. Here, we cite the result

Theorem 2.3. [11, 17] Let H be twice continuously differentiable. The flow
φt : LG → LG of XH,g governed by (2.2) is a symplectic transformation on LG, i.e.,

φ∗tω = ω

for every t for which φt is defined.
Remark 1. The converse statement, that every symplectic flow φt solves Hamil-

ton’s equations for some H, is also true, so symplecticity is a characteristic property
of Hamiltonian systems [1]. This does not translate to the case of energy conservation,
i.e., while every Hamiltonian system conserves energy, not every energy-conserving
system is Hamiltonian.

2.4. port-Hamiltonian systems. In the presence of external forces and dissi-
pation it is convenient to represent (2.2) as an input-output system equipped with a
pair of port variables (u, y), giving rise to a PH system; see [20, 32, 23] for the original
definition as stated with respect to Hamiltonian systems in explicit form. Extend-
ing on this definition the Hamiltonian systems in implicit form, a port-Hamiltonian
system is described in terms of the vector field XH,u,g : LG× (Rm)∗ → T (LG):

XH,u,g = DH +

(

ulU
l

i − λj
∂gj

∂ri

)

∂

∂pi
, g = 0 , (2.13)

with u ∈ (Rm)∗ defined as the controlled or input variable, y ∈ Rm is defined as the
output variable that satisfies

yl = U l
i

∂H

∂pi
(2.14)

and where U l
i are maps from Rn to R.

The vector field (2.13) and the output unravel as the DAE system

ṙ = ∇pH(r, p) , ṗ = −∇rH(r, p)−G(r)⊤λ+ U(r)u

y = U(r)⊤∇pH(r, p)

0 = g(r) .
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By analogy with the results described in Sec. 2.2, one can determine the Lagrange
multipliers λ explicitly. The constraints fa = 0 imply that

XH,u,g(f
a) = DH(fa) + ulU

l
i

∂fa

∂pi
− λj

∂gj

∂ri
∂fa

∂pi
= 0 , (2.15)

from where it follows that, as long as (2.8) is non-singular, there are unique λj (in
general dependent on u as well as on r and p) such that XH,u,g(f

a) = 0 and such that
the integral curve stays on LG.

It can be readily seen that an implicit PH system described by (2.13) no longer
preserves H . The Lie derivative of H is now

LXH,u,g
(H) = XH,u,g(H) = DH(H) + ulU

l
i

∂H

∂pi
− λj

∂gj

∂ri
∂H

∂pi
= uly

l − λjf
j ,

which establishes the power balance

LXH,u,g
H
∣

∣

LG
= uly

l . (2.16)

Since the product uly
l is equal to the rate of change in energy, we say that (u, y) is a

power-conjugated pair of port variables. If, in addition, the restriction of H to LG is
bounded from below, i.e., if the image of LG under H is bounded from below, then
(2.13) is called passive, or more precisely, lossless. Boundedness of H can be easily
assessed using the following proposition.

Proposition 2.4. [4] If the potential energy V is lower semi-continuous and G is
compact, then H restricted to LG is bounded from below (hence, the vector field (2.13)
describes a lossless system).

With the inclusion of the control variable u, it can no longer be expected that
the flow of (2.13) be symplectic. Indeed, it is not hard to see that the Lie derivative
of ω along XH,u,g is in general different from zero.

Proposition 2.5. [4] The Lie derivative of ω (2.10) along (2.13) and restricted
to LG satisfies

LXH,u,g
ω
∣

∣

LG
= dri ∧ d(ulU

l
i ) . (2.17)

Example: A double planar pendulum. Let us recall an example from [4], on
which we will elaborate when discussing sampled-data models.

Consider the model of a double planar pendulum shown in Fig. 2.1 that comprises
a pair of point masses ma and mb whose coordinate positions are ra = (rax , ray ) and
rb = (rbx , rby ), respectively. The massless bars are of fixed lengths la and lb which
gives rise to the two holonomic constraints:

g1(r) = ‖ra‖2 − l2a = 0 , g2(r) = ‖rδ‖2 − l2b = 0 (2.18)

with r := (ra, rb) ∈ Rn, n = 4, k = 2, rδ := rb − ra. The rank of the constraint
Jacobian is full as

rankG(r) = rank

(

rax ray 0 0
−rδx −rδy rδx rδy

)

= k (2.19)

for all r ∈ G. Therefore, 0 is a regular value of g and G is an embedded submanifold
of R4.
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x

y

Fig. 2.1. A double planar pendulum, a simple Hamiltonian system.

The total energy is

H(r, p) =
1

2
p⊤M−1p+ ḡ(mar

ay +mar
ay ) , (2.20)

where M :=

(

maIn 0n

0n mbIn

)

and ḡ is the standard gravity.

Substituting (2.18) and (2.20) in (2.4) gives

ṙa = m−1
a pa , ṙb = m−1

b pb (2.21a)








ṗax

ṗay

ṗbx
ṗby









= −









0
ḡma

0
ḡmb









− 2









rax −rδx

ray −rδy

0 rδx

0 rδy









(

λ1
λ2

)

(2.21b)

which, together with (2.18), constitutes a set of DAEs describing the motion of the
double pendulum in implicit form. The multipliers λ1 and λ2 are the magnitudes of
the tension along the two bars.

Now, assume that the double pendulum is actuated by application of torques
u1 and u2 to the joints that correspond to the angles q1 and q2, respectively. The
resulting linear forces are then U1u1 and U2u2 with

U1 := {U 1
i }i =









−ray

rax

0
0









1

l2a
and U2 := {U 2

i }i =









rδy

−rδx

−rδy

rδx









1

l2b
− U1 . (2.22)

The manifold defined by (2.18) is compact and the potential energy is continu-
ous, which confirms that the double pendulum is passive with passive outputs yl =
U l
i

∂H
∂pi

= U l
i ṙ

i.
An explicit model for the double pendulum as an ODE can be derived by choosing

the generalized coordinates on G as q1 ∈ (−π, π) and q2 ∈ (−π, π), as motivated by
Fig. 2.1. The associated embedding r = ı(q) satisfying g ◦ ı ≡ 0 is readily exhibited
as









rax

ray

rbx

rby









=









la cos q
1

la sin q
1

la cos q
1 + lb cos q

t

la sin q
1 + lb sin q

t









, qt := q1 + q2 . (2.23)
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In local coordinates, the total energy is

Ĥ(q, p̂) =
1

2
p̂⊤M̂(q)−1p̂+ ḡ

(

mtla sin q
1 +mblb sin q

t
)

. (2.24)

with

M̂(q) =

(

mtl
2
a +mbl

2
b + 2mblalb cos q

2 mbl
2
b +mblalb cos q

2

mbl
2
b +mblalb cos q

2 mbl
2
b

)

The motion of the system is described by

q̇ = M̂(q)−1p̂ , ˙̂p = −∇qV (q)−∇q

(

1

2
p̂⊤M̂(q)−1p̂

)

+ u (2.25)

(see [4] for more details).
Two representations for the same system were derived, one in the form of an

ODE (2.25) and the other as a DAE (2.21). The main point of this example can be
summarized in the following remark.

Remark 2. The implicit DAE representation of the Hamiltonian systems renders
a separable Hamiltonian function (2.20), i.e. the kinetic energy does not depend on
r and the inertia matrix M is a constant diagonal matrix. Moreover, the potential
energy is linear, which results in a constant potential energy gradient. On the other
hand it is easily verified that the explicit Hamiltonian representation does not share
such fortunate properties. The explicit Hamiltonian is no longer separable and the
inertia matrix depends on the generalized coordinates q.

The a cost of a simpler Hamiltonian function is the higher dimensional implicit
model representation and the appearance of the Lagrange multipliers. As will soon be
seen, however, implicit representations are particularly advantageous for the purposes
of system discretization.

2.5. Non affine port-Hamiltonian systems. It was assumed in (2.13) that
the control variables enter the vector field affinely. Many physical systems exhibit
this property so, from a modeling point of view, this assumption is not too restrictive.
However, for the purpose of performing backward error analysis in § 4, we will need to
consider PH systems for which the control might enter in a non affine way. Motivated
by the fact that LXH,u,g

ω
∣

∣

LG
= 0 when u ≡ 0, we propose the following extended

definition of a PH system.
Definition 2.6. A controlled vector field X : LG × (Rm)∗ → T (LG) is said to

be port-Hamiltonian if u ≡ 0 implies that the generated flow is symplectic.
Passivity of a non affine port-Hamiltonian system can be established by redefining

the passive output.
Lemma 2.7. A (not necessarily affine) smooth PH system described by a vector

field X can always be decomposed as X = X0 + ulZ
l, where X0 : LG → T (LG) is a

Hamiltonian vector field and Z l : LG × (Rm)∗ → T (LG) are the input vector fields.
Hence, X satisfies the power balance X(H) = uly

l for some real-valued function H
and real-valued output functions yl = Z l(H). (The output functions may now depend
directly on u as well as on r and p.)

Proof. Following [18], we first show that a smooth control vector field can be split
into a drift and a set of vector fields having u factored out. Let us define the drift X0

as X0(x) = X(x, 0) and let us define the vector fields W l by the equations

W l(α) =
∂

∂ul

(

X(α)
)

for all α ∈ C∞(LG,R) .
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It follows from the chain rule that

ulW
l(x, θu)(α) =

d

dθ

(

X(x, θu)
)

(α) .

Upon integration on both sides of the equation we arrive at

ul

∫ 1

0

W l(x, θu)(α)dθ = X(x, θu)(α)
∣

∣

∣

1

0
= X(x, u)(α)−X0(x)(α) .

Therefore, we have

X = X0 + ulZ
l , (2.26)

where the input vector fields Z l are defined by

Z l(x, u)(α) =

∫ 1

0

W l(x, θu)(α)dθ for all α ∈ C∞(LG,R) .

It follows from the hypothesis that X0 generates a symplectic flow, so it is a
Hamiltonian vector field and satisfies X0(H) = 0 for some real-valued function H .
Applying X to H shows that X(H) = X0(H) + ulZ

l(H) = uly
l with yl = Z l(H).

Remark 3. For an affine PH system, the formulae of this lemma recover the
output functions (2.14) with Z l = U l

j
∂

∂pj
, that is, yl = Z l(H) = U l

i
∂H
∂pi

.

3. Sampled-data models for autonomous Hamiltonian systems. Com-
puting a sampled-data model of a dynamical system basically amounts to computing
an approximate solution of the differential equations during a small interval of time.
This problem has been studied extensively in the literature of numerical analysis, from
which we borrow some results and terminology. In numerical analysis, a sampled-data
model is the central component of an integration method or a numerical integrator,
up to the point that these terms are used interchangeably.

Mathematical models for sampled-data systems arise in diverse circumstances. In
the direct approach to digital control, i.e., as opposed to the emulation of continuous
control laws, the design of the controller is performed in discrete time, the designer
working directly over a sampled-data model. When designing directly in discrete time,
the controller can be directly implemented on a digital device. Also, it is possible to
exploit the advantages of switched controls or, e.g., multirate control techniques [21].

Computing the sampled-data model for a given nonlinear system relies on the
computation of a solution φt of the corresponding ODE or DAE, which is in general
impossible to do analytically, so one has to settle for an approximate solution.

When simulating the behavior of dynamic systems, a discrete-time model of the
continuous system is also used for computing a numerical solution to the initial-value
problem. Many different integration methods (or methods for short) can be found in
the literature. Let us first focus on integration methods for autonomous systems and
further restrict our attention to one-step methods defined by a transformation

ψh : xα 7→ xα+1 ,

where the constant step-size h is regarded as a parameter of the method2. For a given
initial condition x0 in the phase space, ψh is applied recursively to generate a discrete

2For a more general method, the value of the xα+1 need not depend only on xα, but may also
depend on the previous values xα−1, xα−2,. . . (a multistep method). Also, the value of h need not
be constant in general.
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flow x1, x2, x3, . . . that approximates the true flow φh(x0), φ2h(x0), φ3h(x0), . . . of
a given vector field X at time instants h, 2h, 3h, . . . In this sense, the map ψh is a
discrete-time approximation of φh (or a sampled-data model of φh).

Definition 3.1. A one-step method has order s if the local error satisfies3

ψh(x0)− φh(x0) = O(hs+1) as h→ 0 (3.1)

uniformly in x0. A one-step method is said to be consistent if s ≥ 1.
Let us now discuss some important properties of numerical integrators, like order

and symmetry.

3.1. Symplectic methods. If a sampled-data model approximates the discrete
time behavior of a Hamiltonian system, one could hope for ψh to inherit its funda-
mental qualitative properties: energy conservation and symplecticity. Unfortunately,
it is not possible to preserve H and ω simultaneously, unless ψh agrees with the exact
flow φh up to a reparametrization of time [7]. For this reason, one has to choose ei-
ther in favor of one or the other invariant4. Energy conserving methods have received
some attention [9, 31, 10, 12, 13], but in light of Remark 1, most of the literature
focuses on symplectic integration algorithms (see [11, 17, 5] and references therein).
A comparison between both approaches is carried out in [30] for the rigid body.

A theoretical advantage of constructing a symplectic one-step method is that,
even though ψh only approximates φh up to the s’th order, it coincides exactly (if
one disregards convergence issues) with the flow of another Hamiltonian system, a
modified Hamiltonian system described by a modified differential equation.

Theorem 3.2. [11, p. 352] A symplectic method ψh : LG → LG for the con-
strained Hamiltonian system (2.4) has a modified equation that is locally of the form

ṙ = +∇pH̃(r, p) , ṗ = −∇rH̃(r, p)−G(r)⊤λ̃ (3.2a)

0 = g(r) (3.2b)

with H̃ = H + hH2 + h2H3 + . . . Furthermore,

∂Hj(r, p)

∂pi

∂gl(r)

∂ri
= 0 , for all (r, p) ∈ LG ,

all l = 1, . . . , k and all j. Note that the actual value of the Legendre multipliers λ̃
differ in general from those obtained for the original system (2.4).

In other words, for an initial condition x0, ψh(x0) is equal to the solution of (3.2)
at time t = h. Note that (3.1) provides information about the difference between
the actual flow φh of X and the approximate discrete flow ψh. This is the kind
of information that forward error analysis aims at. While certainly useful as an
indicator of the quality of the approximation, Eq. (3.1) only evaluates the behavior
of the approximate flow on the first iteration, but says nothing about its long time
behavior. From (3.1) alone we cannot infer anything about the error xα − φαh(x0)
when α is large, so we do not know if errors accumulate or if they average out to zero.

3We use big-O notation when quantifying approximation errors, i.e., for a given pair of functions

e1(h), e2(h), we write e1(h) = O(e2(h)) as h → a as shorthand for lim suph→a

‖e1(h)‖
‖e2(h)‖

< ∞.
4For particular Hamiltonians there might be other invariants, such as momentum or angular

momentum, but in general there need not be.
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On the other hand, Theorem 3.2 tells us that if ψh is symplectic, then there
exists a modified continuous system whose flow coincides exactly with the discrete
flow generated by ψh. The modified system (3.2) preserves the Hamiltonian structure
of the original system (2.4) and it is ‘close’ to it in the sense that H̃ = H + O(hs)
for a method of order s. In other words, a symplectic integration method preserves
the original 2-form ω and a different (but close) Hamiltonian function. This property
guaranties that the good behavior of the integration scheme is maintained during
many iterations, giving a global nature to the local property (3.1). This observation
is at the center of backward error analysis [11].

3.2. Splitting methods. A practical advantage of symplectic schemes is that
they lend themselves well to the application of splitting methods. To illustrate the
idea, consider again the unconstrained or, otherwise, explicit Hamiltonian vector field
D

Ĥ
on an abstract manifold T ∗G. If the Hamiltonian function is separable, i.e., if it

can be written as Ĥ(q, p̂) = Ĥa(q)+ Ĥb(p̂), then the vector field can be spilt into two
Hamiltonian vector fields

D
Ĥa

= −
∂Ĥa

∂qi
∂

∂p̂i
and D

Ĥb
=
∂Ĥb

∂p̂i

∂

∂qi

withD
Ĥ

= D
Ĥa

+D
Ĥb

. Notice that, taken separately, each vector field can be trivially
integrated exactly. For (qα, p̂α) ∈ T ∗G (we use the subindex α to refer to an element
in a sequence, not a particular coordinate) we have

(

q̇
˙̂p

)

=

(

0

−∇qĤa(q)

)

=⇒

(

qα+1

p̂α+1

)

=

(

qα
p̂α − h · ∇qĤa(qα)

)

= φa,h

(

qα
p̂α

)

and
(

q̇
˙̂p

)

=

(

+∇pĤb(p̂)
0

)

=⇒

(

qα+1

p̂α+1

)

=

(

qα + h ·∇p̂Ĥb(p̂α)
p̂α

)

= φb,h

(

qα
p̂α

)

.

A first-order symplectic method can be easily constructed by performing the compo-
sition

ψh = φb,h ◦ φa,h . (3.3)

Indeed, the maps φb,h and φa,h are symplectic because they are the exact flows of
Hamiltonian vector fields. Since the composition of two symplectic maps is again
symplectic, ψh is symplectic.

Many simple Hamiltonian systems with phase space T ∗G are not governed by
separable Hamiltonians, so splitting methods cannot be applied directly. However,
the Hamiltonian function of many mechanical systems becomes separable if the phase
space is embedded in T ∗Rn (see, e.g., Remark 2). An interesting symplectic method
that is particularly well suited for this class of systems was proposed in [27]. Roughly
speaking, the idea is to compute a symplectic method for the unconstrained Hamilto-
nian vector field DH : T ∗Rn → T (T ∗Rn), i.e., a symplectic map ψH,h approximating
the solution of the ODE (notice the absence of the constraint equations)

ṙ = +∇pH(r, p)

ṗ = −∇rH(r, p)

at time t = h.
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If H is separable, ψH,h can be readily found. The method ΨH,g,h for the original
constrained Hamiltonian vector field XH,g is then constructed by taking the image of
ψH,h and applying a correction term that ensures that the value of ΨH,g,h belongs to
LG, so that the constraints are satisfied. The correction is done in a careful way so
that the resulting map is still symplectic (see also [17]). Depending on the accuracy
of ψH,h, the resulting ΨH,g,h can be of first or second order (see § 4 for details).

3.3. Symmetric methods. For each t for which the solution is defined, the
flow φt(x0) of an autonomous differential equation defines a transformation on the
phase space. It follows from the group property of the flow [2] that the inverse of
the transformation can be obtained simply by reversing time, that is, φ−1

t (x1) =
φ−t(x1) = x0. Needless to say, this property does not hold in general for a discrete
approximation ψh, which motivates the following definition.

Definition 3.3. The adjoint method ψ∗
h of a method ψh is the inverse map of

the original method with reversed time step −h, i.e.,

ψ∗
h := (ψ−h)

−1 .

In other words, x1 = ψ∗
h(x0) is implicitly defined by ψ−h(x1) = x0. A method for

which ψ∗
h = ψh is called symmetric.

From a theoretical point of view, an approximate discrete-time flow should be
symmetric because actual continuous flows are. But symmetry is important from a
practical point of view too. It has been proved in [34] that all symmetric methods
are of even order, a fact that can be exploited to construct high-order methods from
simple lower-order methods. For example, one can take a first-order non-symmetric
method, compute its adjoint and construct a symmetric method

Ψh = ψh
2

◦ ψ∗
h
2

. (3.4)

We know that Ψh is at least first order, but since Ψh is symmetric, we also know that
the order has to be even, so we conclude that the method is actually of second order.

The scheme (3.4) works particularly well for splitting methods. Take, e.g., the
integration scheme (3.3). The maps φb,h and φa,h are symmetric (because they are
exact solutions of a differential equation), but their composition is not symmetric in
general. To remedy this, one can compute the adjoint method

ψ∗
h = (φb,−h ◦ φa,−h)

−1
= φ−1

a,−h ◦ φ−1
b,−h = φa,h ◦ φb,h (3.5)

and, using (3.3), (3.5) and (3.4), construct

Ψh = φb,h
2

◦ φa,h
2

◦ φa,h
2

◦ φb,h
2

= φb,h
2

◦ φa,h ◦ φb,h
2

,

which is a second-order symmetric method.

3.4. Modified vector fields and exponential representations. Consider a
vector-valued function F and a vector field X , both defined on LG. If F and X are
analytic, then the composition of F and the generated flow φt(x0) can be expanded
in a Taylor series around t = 0,

F ◦ φt(x0) = exp(tX)F (x0) :=

∞
∑

i=0

ti

i!
X i(F )(x0) ,
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ZOH

Continuous 

PH System Sampler

Sampled-data PH system

Fig. 4.1. Sampled-data PH system with sampling period h. The zero-order hold produces piece-
wise constant inputs ul(t) ≡ u

lα
for t ∈ [αh,αh+h), which is fed to the continuous-time PH system.

The output is then sampled to generate the discrete-time output sequences {ylα}.

where X0(F ) = F , X2(F ) = X(X(F )), X3(F ) = X(X2(F )) etc (see [22, 33] for
details). In particular, if F is taken as the identity function Id, one obtains the flow
φt(x0) = exp(tX) Id(x0). Since an s-order method ψh for X coincides with the flow of
a modified vector field X̃ = X+O(hs) [11, p. 340], it is also possible to expand ψh in
a Taylor series, ψh(x0) = exp(hX̃) Id(x0). This exponential notation is a convenient
way to express the relationship between a vector field and the flow generated by it,
as well as to analyze the composition of flows.

4. A splitting method for implicit port-Hamiltonian systems. Suppose
that there is a sequence of commands {ulα}α∈N. Each command in the sequence ar-
rives at the discrete instants of time α = 0, h, 2h, . . . where h is a positive real number
—such commands could be generated, e.g., by a computer program. Suppose further
that a zero-order hold transforms this sequence into piece-wise constant controls

ul(t) ≡ ulα for t ∈ [αh, αh+ h) , (4.1)

which are fed into a PH system. Let φt(x0, u( · )) be the integral curve of the non-
autonomous vector field (2.13) with control (4.1) and passing through x0 ∈ LG at
t = 0. Let

yl(t) =

(

U l
i

∂H

∂pi

)

◦ φt(x0, u( · ))

be the corresponding outputs and let {ylα} with ylα := yl(αh) be the sequence ob-
tained by sampling them at discrete instants of time αh (see Fig. 4.1). We call the
resulting system a sampled-data port-Hamiltonian system.

The goal here is to develop a method for derivation of discrete-time (or sampled-
data) models for PH systems given by implicit vector fields. The underlying idea
is to split the PH vector field into two components: the vector field describing an
unconstrained system with state-space equal to the whole T ∗Rn, and a vector field
containing the Lagrange multipliers, the one that maintains the trajectories on the
submanifold LG. Splitting the vector field simplifies the computation of the sampled-
data model by decomposing the problem into two simpler subproblems.

Now we extend the results of [27] to the PH case. We show that, with a straightfor-
ward modification, the method presented in [27], originally intended as an integration
scheme for autonomous Hamiltonian systems, can be used to compute sampled-data
models that preserve the main properties of a PH system.

Consider again the implicit vector field

XH,u,g = DH +

(

ulU
l

i − λj
∂gj

∂ri

)

∂

∂pi
, g = 0 , yl = U l

i

∂H

∂pi
, (4.2)
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defined on LG, with DH as in (2.3) and with piece-wise constant controls (4.1). Sup-
pose that a method ψH,u,h : T ∗Rn → T ∗Rn of order s ≥ 1 for the unconstrained
vector field XH,u = DH + ulU

l
i

∂
∂pi

has been computed. Again, in many cases H is
separable so a high-order and symmetric method with a PH modified vector field can
be easily found. The controls ul are constant during each sampling interval, which
further simplifies the task of finding ψH,u,h.

Let us define the map

ΦΛ,h

(

rα
pα

)

:=

(

rα
pα − hG(rα)

⊤Λ

)

. (4.3)

Loosely, this is an approximation of the integral curve of the remnant vector field

−λj
∂gj

∂ri
∂

∂pi
evaluated at t = h and subject to g = 0. More precisely, for arbitrary

functions λj of r and p, we have that

Dλjgj :=
∂(λjg

j)

∂pi

∂

∂ri
−
∂(λjg

j)

∂ri

∂

∂pi
= gj

∂λj
∂pi

∂

∂ri
−

(

λj
∂gj

∂ri
+ gj

∂λj
∂ri

)

∂

∂pi

and, for r ∈ G, the vector field reduces to

Dλjgj = λjDgj = −λj
∂gj

∂ri
∂

∂pi
. (4.4)

In other words, when restricted to G, the vector field −λj
∂gj

∂ri
∂

∂pi
is Hamiltonian (hence

it generates a symplectic flow).
Lemma 4.1. [27] Let g(rα) = 0. Then, the map (4.3) is a first-order symplectic

method for DΛjgj . That is, for rα ∈ G,

ΦΛ,h

(

rα
pα

)

= exp(hD̃Λjgj ) Id

(

rα
pα

)

, D̃Λjgj = DΛ̃jgj

with Λ̃ a modified or perturbed version of Λ.
A method for (4.2) can be obtained from the symmetric composition

ΨH,u,g,h = Φµ,h
2

◦ ψH,u,h ◦ Φν, h
2

. (4.5)

For each (rα, pα) ∈ LG, the values of µ and ν are determined implicitly by the
constraints g(rα+1) = 0 and f(rα+1, pα+1) = 0 (i.e., by (rα+1, pα+1) ∈ LG). In this
way, ΨH,u,g,h defines a transformation on LG.

The transformation ΨH,u,g,h produces an approximate discrete flow for a given
command sequence {ulα}. From this flow, an approximate output sequence can be
obtained by evaluating the output function yl = U l

i
∂H
∂pi

at each discrete time αh.

Theorem 4.2. Consider the implicit method ΨH,u,g,h (4.5) and let X̃H,u be the
modified vector field of ψH,u,h.

(i) The method preserves the constraints gj = 0, f j = 0 and is of order s̄ =
min(s, 2), where s is the order of ψH,u,h.

(ii) The method is symmetric if ψH,u,h is symmetric.

(iii) If ψH,u,h is symplectic for ulα ≡ 0 (i.e., if X̃H,u is port-Hamiltonian), then

the modified vector field X̃H,u,g : LG → T (LG) is also port-Hamiltonian with Hamil-
tonian and output functions

H̃ = H +O(hs̄) and ỹl = yl +O(hs̄) . (4.6)
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Proof. The method preserves the constraints by construction. The proof about
the order of the method follows the same lines as the one given in [27] except that,
since we are dealing with port-Hamiltonian vector fields, Lie brackets have to be
used instead of Poisson brackets. We will compute X̃H,u,g, the modified vector field
generating ΨH,u,g,h, and show that it agrees with XH,u,g up to the first or second
order, depending on whether ΨH,u,g,h is, respectively, first or second order.

Let us consider the case s = 1. Using the exponential notation and Lemma 4.1,
the composition (4.5) takes the form

ΨH,u,g,h = exp

(

h

2
Dν̃jgj

)

exp
(

hX̃H,u

)

exp

(

h

2
Dµ̃jgj

)

Id ,

where X̃H,u = XH,u + O(h). Applying the Baker-Campbell-Hausdorff (BCH) for-
mula [33] to the product of the first two factors and truncating after the first term
gives

exp

(

h

2
Dν̃jgj

)

exp
(

hX̃H,u

)

= exp
(

hX̃ ′

)

(4.7)

with X̃ ′ = X̃H,u + 1
2Dν̃jgj + O(h). Applying BCH again to include the third factor

gives

exp
(

hX̃ ′

)

exp

(

h

2
Dµ̃jgj

)

= exp
(

hX̃H,u,g

)

(4.8)

with the modified vector field X̃H,u,g = X̃H,u+
1
2

(

Dν̃jgj +Dµ̃jgj

)

+O(h). Using (4.4)

and X̃H,u = XH,u +O(h), we can write the modified vector field as

X̃H,u,g = XH,u +
ν̃j + µ̃j

2
Dgj +O(h) . (4.9)

The hidden constraints f l = 0 imply that

X̃H,u,g(f
l) = XH,u(f

l) +
ν̃j + µ̃j

2
Dgj (f l) +O(h) = 0 . (4.10)

It follows from (4.10), (4.4) and (2.15), that the Lagrange multipliers λj and the
‘modified Lagrange multipliers’ ν̃j and µ̃j are related by the equation (ν̃j + µ̃j)/2 =
λj +O(h), which when substituted back in (4.9) gives the desired result:

X̃H,u,g = XH,u + λjDgj +O(h) = XH,u,g +O(h) .

For s = 2 we follow the same procedure, but we truncate the BCH formula after
the second term. For the expression (4.7), the intermediate vector field is

X̃ ′ = X̃H,u +
1

2
Dν̃jgj +

h

4

[

Dν̃jgj , X̃H,u

]

+O(h2)

where [ · , · ] is the standard Lie bracket. Using the initial assumption X̃H,u = XH,u+

O(h2), we can write X̃ ′ as

X̃ ′ = XH,u +
1

2
Dν̃jgj +

h

4

[

Dν̃jgj , XH,u

]

+O(h2) .
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Regarding (4.8), the modified vector field for the complete scheme is

X̃H,u,g = XH,u +
1

2

(

Dν̃jgj +Dµ̃jgj

)

+
h

4

[

Dν̃jgj , XH,u

]

+
h

4

[

XH,u +
1

2
Dν̃jgj , Dµ̃jgj

]

+O(h2) .

Using (4.4) and the skew symmetry and bilinearity of the Lie bracket, the vector field
can be equivalently written as

X̃H,u,g = XH,u +
ν̃j + µ̃j

2
Dgj +

h

4

[

(ν̃j − µ̃j)Dgj , XH,u

]

+
h

8

[

ν̃jDgj , µ̃jDgj

]

+O(h2) . (4.11)

In order to extract information from the equation X̃H,u,g(g
l) = 0, let us first open

the brackets in (4.11) and write

X̃H,u,g = XH,u +
ν̃j + µ̃j

2
Dgj +

h

4
(ν̃j − µ̃j)DgjXH,u

−
h

4
XH,u

(

(ν̃j − µ̃j)Dgj

)

+
h

8
ν̃jDgj

(

µ̃jDgj

)

−
h

8
µ̃jDgj

(

ν̃jDgj

)

+O(h2) .

Taking into account that f l = XH,u(g
l) = 0 and Dgj (gl) ≡ 0, we have that

X̃H,u,g(g
l) =

h

4
(ν̃j − µ̃j)Dgjf l +O(h2) = 0 ,

from which we can see that modified Lagrange multipliers satisfy the order relation

ν̃j − µ̃j = O(h) . (4.12)

By substituting (4.12) back in (4.11) we can verify that the commutators are actually
second order, that is,

X̃H,u,g = XH,u +
ν̃j + µ̃j

2
Dgj +

h

8

[

ν̃jDgj , (ν̃j +O(h))Dgj

]

+O(h2)

= XH,u +
ν̃j + µ̃j

2
Dgj +O(h2) . (4.13)

From X̃H,u,g(f
l) = 0 and (2.15) we conclude that, when s = 2, (ν̃j + µ̃j)/2 = λj +

O(h2), so the desired result follows: X̃H,u,g = XH,u+λjDgj+O(h2) = XH,u,g+O(h2).
For statement (ii), notice that, when restricted to LG, the method (4.5) can be

described by the implicit equations
(

rα+1

pα+1 + hG(rα+1)
⊤µ

)

= ψH,u,h

(

rα
pα − hG(rα)

⊤ν

)

(4.14a)

g(rα+1) = g(rα) (4.14b)

f(rα+1, pα+1) = f(rα, pα) , (4.14c)

where rα, pα are the independent variables and rα+1, pα+1 are the dependent variables.
The vectors ν, µ are (also dependent) dummy variables that can be discarded after
rα+1, pα+1 have been found.
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After reversing time (that is, after substituting h by −h), equation (4.14a) be-
comes

(

rα+1

pα+1 − hG(rα+1)
⊤µ

)

= ψH,u,−h

(

rα
pα + hG(rα)

⊤ν

)

.

Recall that ψH,u,−h = ψ−1
H,u,h if ψH,u,h is symmetric. Therefore, when restricted to

LG, the reverse-time method is
(

rα
pα + hG(rα)

⊤ν

)

= ψH,u,h

(

rα+1

pα+1 − hG(rα + 1)⊤µ

)

(4.15a)

g(rα+1) = g(rα) (4.15b)

f(rα+1, pα+1) = f(rα, pα) , (4.15c)

which is the same as (4.14), but with rα, pα and ν interchanged with rα+1, pα+1 and
µ, respectively. This implies that, if we input rα+1, pα+1 as independent variables, we
recover rα, pα as the dependent variables, that is: ΨH,u,g,−h is the inverse mapping of
ΨH,u,g,h. (In general, the vectors ν, µ obtained using (4.14) will be different from those
obtained using (4.15), but this is inconsequential since these are dummy variables.)

In statement (iii), the fact that X̃H,u,g is PH follows directly from Lemma 4.1,
Definition 2.6 and the fact that the composition of symplectic maps is again symplec-
tic. In other words, ΨH,u,g,h is symplectic when ulα ≡ 0, so

X̃H,u,g = X0 + ulZ
l = DH̃ + ulZ

l + λ̃jDgj (4.16)

for some Hamiltonian function H̃ and some input vector fields Z l. Since the method
is of order s̄, we have

X̃H,u,g = DH + ulU
l

i

∂H

∂pi
+ λjDgj +O(hs̄) . (4.17)

By setting ul = 0 and recalling that λ̃j = λj+O(hs̄), it follows from (4.16) and (4.17)

that DH̃ = DH + O(hs̄), which implies that H̃ = H + O(hs̄), and, in turn, that

Z l = U l
i

∂
∂pi

+ O(hs̄). The modified output functions are thus ỹl = Z l(H̃), that is,

ỹl = U l
i

∂
∂pi

(

H +O(hs̄)
)

+O(hs̄) = yl +O(hs̄).
Let us now turn to the problem of energy balance under sample and hold. The

power balance (2.16) implies that

Hα+1 −Hα =

∫ αh+h

αh

ul(t)y
l(t)dt , (4.18)

where we have defined the sampled Hamiltonian Hα := H(xα). A usual way to im-
prove the transient behavior of the system is to add damping by means of a continuous
control law [23]

ul(t) = −Klj y
j(t) , (4.19)

with {Klj } a symmetric and positive semi-definite matrix. With the control law
(4.19), the power balance (4.18) results in the dissipation inequality Hα+1 −Hα ≤ 0,
which guarantees that Hα decreases monotonically and, if the right conditions are
met, the system converges to a state of minimal energy.
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Suppose that the output is being sampled and that the input is being held at
intervals of length h. The control sequence is then given by

ulα = −Klj y
j
α (4.20)

and the power balance (4.18) takes the form

Hα+1 −Hα = ulα

∫ αh+h

αh

yl(t)dt = ulα

∫ h

0

yl(αh+ τ)dτ .

Applying Taylor’s theorem to the integral term gives

Hα+1 −Hα =
∑

l

ulα
(

ylαh+O(h2)
)

= −hKlj y
l
αy

j
α +

∑

l

ulαO(h2) ,

so Hα decreases when h is small enough and the norm of yα is large enough.
Since the approximate sampled-data model (4.5) is also PH (cf. item (iii) of

Theorem 4.2), it satisfies (again, after applying Taylor’s theorem)

H̃α+1 − H̃α =
∑

l

ulα
(

ỹlαh+O(h2)
)

(4.21)

for some H̃ and ỹ. According to (4.6), the energy balance (4.21) takes the form

Hα+1 −Hα +O(hs̄) =
∑

l

ulα
((

ylα +O(hs̄)
)

h+O(h2)
)

.

The same control sequence (4.20) produces

Hα+1 −Hα = −hKlj y
l
αy

j
α +

∑

l

ulαO(h2) +O(hs̄) .

Thus, for s̄ = 2, the qualitative behavior of the approximated sampled data model is
the same as the exact one: Hα decreases when h is small enough and the norm of yα
is large enough.

Example: A double planar pendulum (continued). Let us compute a
sampled-data model for the double pendulum described in the previous examples.
The first step is to compute a sample-data model for the simple unconstrained PH
system XH,u = DH + ulU

l
i

∂
∂pi

, where H is given by (2.20) and U l
i by (2.22). The

unconstrained and unactuated Hamiltonian vector field DH describes a pair of masses
with initial positions ra0 and rb0 and initial momenta pa0 pb0, simply falling under
the influence of gravity. The exact flow generated by DH , the drift, denoted by
(rα+1, pα+1) = φH,h(rα, pα), is then given by

rax

α+1 = rax
α +

h

ma

paxα
, r

ay

α+1 = ray
α +

h

ma

payα
− ḡ

h2

2

rbxα+1 = rbxα +
h

mb

pbxα , r
by

α+1 = rbyα +
h

mb

pbyα − ḡ
h2

2

and

paxα+1 = paxα
, payα+1 = payα

−maḡh

pbxα+1 = pbxα , pbyα+1 = pbyα −mbḡh .
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Value Description
la = 0.6[m] Length of the first link
lb = 0.3[m] Length of the second link
ma = 0.2[kg] Value of the first mass
mb = 0.6[kg] Value of the second mass

ḡ = 9.81[m/s]2 Acceleration due to gravity
Table 4.1

Parameters for the double pendulum.

The exact flow generated by ulU
l

i
∂

∂pi
, the control vector field without drift, is denoted

by (rα+1, pα+1) = φu,h(rα, pα). It is given by

riα+1 = riα , i ∈ {ax, ay, bx, by}

and

paxα+1 = paxα
−
h

l2a
(u1 − u2)r

ay

α , payα+1 = payα
+
h

l2a
(u1 − u2)r

ax

α

pbxα+1 = pbxα −
h

l2b
u2r

δy
α , pbyα+1 = pbyα +

h

l2b
u2r

δx
α .

From § 3.2, we know that a simple symmetric method of order two for XH,u is

ψH,u,h = φH, h
2

◦ φu,h ◦ φH, h
2

. (4.22)

Notice that φu,h = Id when u ≡ 0, so ψH,u,h = φH, h
2

◦ φH, h
2

= φH,h, which is a

symplectic map because it is the exact solution of a Hamiltonian system. Therefore,
X̃H,u is PH, and, from Theorem 4.2, it follows that the implicit method (4.5), with

ΨH,u,h as in (4.22) is the exact solution of a PH system X̃H,u,g with Hamiltonian

function H̃ = H +O(h2) and output function ỹ = y +O(h2) (i.e., s̄ = s = 2).

The sampled-data model was tested using the parameters shown in Table 4.1.
For illustration purposes, we chose a damping control uα = −0.3 ·yα and simulated
the closed-loop system using the sampled-data model (4.5). Figure 4.2 shows the
discrete-time series of H for different values of h. It can be seen that the time series
converge and, as expected, the value of Hα decreases monotonically when h is small
enough (in this case, less or equal to 30 [ms]). For comparison purposes, we have
included the evolution of H that is obtained by simulating (with Matlab’s Simulink)
the explicit model developed in [4] in series with a sampler and a zero-order hold.

5. Conclusions. We have extended the second-order integration method pre-
sented in [27]. The original method applies to autonomous Hamiltonian systems and,
being symplectic, preserves the Hamiltonian structure of the continuous-time system.
The extended method can be applied to port-Hamiltonian systems, which are Hamil-
tonian systems equipped with input–output pairs. The extended method preserves
the port-Hamiltonian structure. Affinity in the controls is lost by the method but,
fortunately, the passivity properties of the continuous-time system can be recovered
by a suitable redefinition of the output. Interestingly, the relation between the original
and the new output is also of second order.

The integration method can be used with the purposes of numerical simulation
or with the purpose of deriving discrete-time models to be used in the design of
discrete-time control laws.
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Discrete flows
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Fig. 4.2. Results of the numerical experiment. The Hamiltonian function is plotted against
time. The explicit model (simulated using Matlab’s module Simulink) is compared with the implicit
model (simulated using a Matlab script). As expected, H is monotonically decreasing when h is
small enough and the time series converges as h goes to zero.
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