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abstract

Computational models are of increasing complexity and their behavior may in particular emerge from the
interaction of different parts. Studying such models becomes then more and more difficult and there is
a need for methods and tools supporting this process. Multi-objective evolutionary algorithms generate
a set of trade-off solutions instead of a single optimal solution. The availability of a set of solutions that
have the specificity to be optimal relative to carefully chosen objectives allows to perform data mining in
order to better understand model features and regularities. We review the corresponding work, propose
a unifying framework, and highlight its potential use. Typical questions that such a methodology allows
to address are the following: what are the most critical parameters of the model? What are the relations
between the parameters and the objectives? What are the typical behaviors of the model? Two examples
are provided to illustrate the capabilities of the methodology. The features of a flapping-wing robot
are thus evaluated to find out its speed-energy relation, together with the criticality of its parameters.
A neurocomputational model of the Basal Ganglia brain nuclei is then considered and its most salient
features according to this methodology are presented and discussed.

Nomenclature

X parameter to be optimized (X ∈ Rm)
f(X) function to be optimized
≺ dominance relation
� dominance or equality relation
χ set of Pareto set approximations
Γ set of independent runs of the optimizer
αχ(z) attainment function
Ψ1 attainment surface corresponding to a value of 1 of the attainment function
Ψ0 attainment surface corresponding to a value of 0 of the attainment function
IpH(χ0) hypervolume of the set of points χ0 relative to the reference point p
η(χ0) nadir point
ι(χ0) ideal point
η̄ conservative nadir point
Flapping wing aircraft example
DI wing dihedral
TWi internal twist
TWe external twist
aDI amplitude of the wing dihedral
pDI period of the wing dihedral
aTWi amplitude of the internal twist
pTWi phase of the internal twist



2

rTWi
reference of the internal twist

aTWe amplitude of the external twist
pTWe phase of the external twist
rTWe

reference of the external twist
τ instantaneous torque
ω instantaneous rotational speed
P mechanical power
b aircraft wingspan
S wing area
cm mean chord
U aircraft cruise velocity
ν air kinematical viscosity
Re Reynolds number
St Strouhal number
k reduced frequency
κ1 reduced internal twist frequency
κ2 reduced external twist frequency
Basal ganglia model
BG basal ganglia brain nuclei
CBG Contracting Basal Ganglia model [1]
GPR Gurney, Prescott and Redgrave basal ganglia model [2]
WTA Winner-Takes-All
GPij j-th channel of the basal ganglia output (Globus pallidus internal)
sc selected channel
nsc non selected channel
GPe Globus Pallidus external
D1 Striatum neurons with D1 dopamine receptors
D2 Striatum neurons with D2 dopamine receptors
FSI Fast Spiking Interneurons

Introduction

Computational models are now pervasive in most domains of science, including astrophysics, mechanics,
neuroscience, geophysics, to name a few. They allow to compute the behavior of a system out of a
particular context and of specific mathematical relations, thus allowing the simulation of the observed
phenomenon [3]. The specificity of the scientific approach relying on such models is that the human
researcher generally doesn’t master the whole process ranging from the initial mathematical model to the
behavior exhibited in a particular context, leading to a so called epistemic opacity [4]:

A process is epistemically opaque relative to a cognitive agent X at time t just in case X does
not know at t all of the epistemically relevant elements of the process.

Such an opacity stems from the fact that scientific work in this context involves so complex compu-
tations, that no human or group of humans can handle it without the help of a computer, thus leading
to an hybrid scenario in which humans and machines are both critical. Likewise, the required validation
of a computational model involves fitting model outputs with experimental data. A trial and error pro-
cess may then be required to find the most adapted parameters among those that are justified by the
assumptions made while building the model. This intrusion of heuristics, although perfectly justified [5],
also adds some opacity in the research process based on computational models.
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A computational model allows to construct new knowledge on the basis of what is learned during the
model construction process and of the manipulations it allows [6]. [7] proposes to consider the following
steps in the process of knowledge acquisition from a model:

• denotation step: relations are built between the model and the target, e.g. model subparts are
justified or discussed on the basis of current knowledge;

• demonstration step: investigations on the features of the model;

• interpretation step: conversion of the findings from the model to the target system.

On a complex model, the demonstration step may be particularly difficult because of the epistemic
opacity. Features to study may naturally stem from the construction process, but some properties – as
those emerging from the interaction of different parts, for instance – can hardly be induced if no evidence
drives the exploration in this particular direction. In this perspective, the computational model is in itself
a complex system to study in order to unravel its unforeseen features. Such an object could be studied
in the same way as natural systems, i.e. by building a simpler model exhibiting the same behavior, but
there is a specificity that can be exploited to propose an alternative procedure: the ability to compute
the behavior of the model allows to perform a huge number of experiments with different contexts or
with different model parameters. This particular feature can be exploited in a systematic way to generate
experimental data that will help studying and then understanding such models.

We propose such a method to help analyzing computational models thanks to a procedure generating
dedicated experimental data. Such data are not outputs of the model, but sets of parameter values of
the model associated to selected behaviors. The method automatically finds both parameter sets and
behaviors, thus opening the way to the analysis of these particular behaviors. The method relies on the
idea that the model optimizes more than one function. Such functions may correspond to an evaluation
of how the models fits to several different experimental data or of how the model fits to other validated
analytical models of the studied phenomenon. Once such functions have been defined, the method consists
in using multi-objective optimization algorithms in order to generate a dense approximation of the set of
trade-off solutions. Looking for a dense approximation and not a sparse one opens the way to the study
of regularities in both parameter and behavior spaces.

To reach this goal, we propose to use multi-objective evolutionary algorithms, that are efficient op-
timization algorithms in a multi-objective context and that also feature a high versatility, allowing to
optimize any kind of model for any kind of objective function. The only restriction results from the inner
working of evolutionary algorithms: as they rely on the evaluation of up to millions of different solutions,
computational models will need to be fast enough – or available computational power needs to be high
enough – to compute their behavior a huge number of times. The set of trade-off solutions will then be
analyzed in order to gain new knowledge about the model, like the importance of a particular parameter,
the different possible model behaviors and their features, etc. The proposed methodology relies on the
following steps:

1. defining the relevant functions to be optimized (at least two);

2. finding a dense approximation of the set of trade-off solutions;

3. analyzing these points both in the parameter space and in the space of optimized functions values,
i.e. the objective space.

After a review of related work, some basic notions required to understand the different aspects of the
methodology are presented. The different steps of the method are then proposed together with a list
of questions that the method might contribute to answer. Some tools to be used to extract knowledge
from generated data relative to these questions are also reviewed. Two examples are then considered and
studied with the proposed methodology:
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• a flapping wing aircraft model;

• a model of the basal ganglia brain nuclei.

After a short introduction to the corresponding models, the methodology is applied to their study and
the knowledge thus gained is highlighted.

Related work

Optimization methods in general and evolutionary algorithms in particular are frequently used in the
engineering field to increase the profitability of an industrial process or the efficiency of a system. Besides
this use, whose economical consequences has driven the optimization field for years, such methods can
be used to support scientists’ work.

The most typical use consists in tuning parameters of models relative to given performance functions.
The performance in this case is generally the closeness to available experimental data. A second and more
specific use consists in considering the case of a natural system which has been optimized in some way
through its history. Using an optimization process and looking at the results can be used as a validation
for hypotheses on the objectives subject to optimization, or on the search space. Such an approach is
used in biology, for instance, with the hypothesis that animals or plants had to optimize their ability to
propagate their genes because of natural selection. A last use consists in using optimization in a data
mining context, in order to discover new knowledge from a huge set of experimental data or even, and
this is what we propose here, to generate data to dig in.

Model tuning

Computational models aim at reproducing observed phenomena to validate hypotheses on the inner
working of the involved systems and make predictions on the behavior to be observed in a different
context. As the behavior of most models is highly dependent on some parameters whose values cannot
always be deduced from direct observations, finding out the best parameter set to reproduce available
experimental data is then a critical task for model designers. In this case, optimization is of particular
interest with a cost function that typically measures the distance of model outputs to experimental data.
Such use of optimization algorithms are frequent.

In computational neuroscience, where the models are of increasing complexity, it has been used,
for instance, to tune single neuron models [8], neural fields [9, 10] or neural network models of specific
functions [11–13].

In hydrological modeling, model parameter identification is a difficult task because of their intercorre-
lations that may result in compensating errors. Optimization algorithms have then been used to identify
model parameters and evolutionary algorithms revealed to be competitive with other optimization algo-
rithms [14, 15]. Considering that antagonists objectives actually have to be optimized, multi-objective
approaches have been proposed [16, 17], see [18] for a review. Other physics related fields, like materials
science, also consider model optimization with evolutionary algorithms [19–21], see [22] for a review.

What is ”optimized” by a particular process?

Optimization tools can also be used to test hypotheses about a natural process that also performs some
kind of optimization. In this case, a computational model is also optimized, but for a different purpose
than mere model building. Several cost functions are defined and used to optimize the model. The one
providing the closest behavior to the observed phenomena will be supposed to be the valid hypothesis.

Biologists use such an approach to study the criteria optimized by an animal. Starting with an
idealized model that is generic enough, several cost functions are proposed and the resulting behaviors
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are compared to experimental data to see if they fit. The conclusions of such work may be the confirmation
of hypothesis on the objectives definition and on the search space. Such an approach has been used to
study biomechanical adaptations in bone tissue [23] or migration behavior of birds [24], for instance.
Likewise, hypotheses on the influence of wiring cost on neuron placement were investigated with the use
of optimization algorithms [25].

Evolutionary algorithms and data mining

Scientists have to face two different challenges, while studying a phenomenon:

• extracting new knowledge from experimental data in order to validate an hypothesis (relevance of
a model, for instance);

• and before that, generating relevant experimental data to analyze.

These two steps are of utmost importance in a scientist work. The first point consists in extracting
an answer to a given question from a potentially huge set of data. This is the goal of the data mining
field which has proposed algorithms to make this process more efficient, see Data Mining section below
for an introduction. Evolutionary algorithms have been proposed to support this step. In this context,
evolutionary algorithms are used to induce rules that can predict future data [26, 27], i.e. they are
automatically building a predictive model. Other uses of evolutionary algorithms include clustering or
data preparation [28].

The second point corresponds to the design of the experiment that subsequent analyses will rely on.
This step can hardly be completely automatized, but optimization algorithms can be part of it. Multi-
objective evolutionary algorithms revealed in different context to generate data from which new knowledge
can be extracted. [18], for instance, used it to get some insight on model errors and uncertainties. [29] used
multi-objective optimization in an engineering context to generate data whose analyses helped discovering
design principles for some devices. [30], for instance, used such an approach to find design principles for
electric brushless motors. The approach, called INNOVIZATION – which stands for INNOVation through
optimIZATION – consists in first choosing some antagonistic objectives (two, at least), then using multi-
objective optimization tools to get an approximation of the set of Pareto optimal solutions, and then look
at the solutions to discover regularities specific to the considered system. Self-Organizing Maps (SOM)
and Analysis of Variance (ANOVA) were also used to analyze designs resulting from a multi-objective
approach and better understand the relations between design variables and objective functions for several
aerodynamic design problems [31, 32]. The proposed framework unifies such approaches and extends its
use to different aspects of computational model analysis.

Background

Multi-objective problems

Optimization problems can be formalized as follows:

Find the parameter X =


x1

x2

...
xm

 ∈ Rm that maximizes (or minimizes) f(X) under the

constraints:

gj(X) ≤ 0, j = 1, 2, . . . , p

lj(X) = 0, j = 1, 2, . . . , q
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where gj(X) and lj(X) are functions that express respectively inequality and equality contraints.
When f(X) takes its values in R, the problem is called a mono-objective problem. When f(X) takes

its values in Rn with n > 1, the problem is called a multi-objective problem. A mono-objective problem
generally has only a single optimal solution. Single objective optimizations result then generally in a single
solution. In a multi-objective problem, when the objectives are antagonistic, multiple trade-off solutions
do exist. Multi-objective optimization algorithms may then return either one particular trade-off or a set
of different trade-offs. In this work, we will focus on this last case.

In a single objective context, comparing two solutions is straightforward: X1 is better than X2 if
and only if f(X1) > f(X2). In a multi-objective context, comparing two solutions is more difficult. A
straightforward approach consists in computing a weighted sum of each component fi(.) of f(.). With
such an approach, X1 is better than X2 if and only if

∑n
i=1 wifi(X1) >

∑n
i=1 wifi(X2). This approach

consists in choosing a priori the relative importance of each objective. Another approach is possible in
which no such choice is required. Such an approach requires to define a new dominance relation adapted
to the multi-objective case. In this work, we will use the Pareto dominance relation defined as follows:

A solution X1 is said to dominate another solution X2, if both conditions 1 and 2 are true:

1. the solution X1 is not worse than X2 with respect to all objectives;

2. the solution X1 is strictly better than X2 with respect to at least one objective.

In the following, X2 ≺ X1 will indicate that X1 dominates X2, X2 � X1 will indicate that either
X1 dominates X2 or that X1 = X2.

This dominance relation is not a strict but a partial ordering relation. The consequence is that, using
this ordering relation, there are generally multiple optimal solutions. As we rely on the Pareto dominance
relation, such solutions are called Pareto optimal solutions. The set of non-dominated solutions within
the entire feasible search space is the called the globally Pareto-optimal set.

The existence of multiple optimal solutions is the core of the proposed approach: a multi-objective
optimization problem will be defined, its Pareto-optimal set will be searched for and analyzed using data
mining techniques to provide new insights on the considered computational model.

Multi-objective optimization algorithms

How to find the globally Pareto-optimal set? The models for which the proposed approach will be the
most useful will be complex, non linear, discontinuous models, that may have a temporal aspect. Such
models are the most difficult to understand and are then those for which the need for analysis tools is the
most critical. This requirement implies to choose versatile optimization tools. Metaheuristics are then
a good choice for their ability to deal with such problems [33]. They don’t impose any mathematical
constraint and are thus widely applicable, but with the drawback of a convergence to an approximation
of the optimal solutions.

Multi-objective evolutionary algorithms

Among metaheuristics, evolutionary algorithms have shown to be particularly efficient in a multiobjective
context [34]. This feature stems from a specificity of evolutionary algorithms: they optimize in parallel a
set of solutions instead of a single one. It makes them easy to adapt to a multi-objective context as each
point of the population may converge to a particular trade-off solution. Multiple algorithms have been
defined – like NSGA-II [35] or ε-MOEA [36], for instance – and they proved to be efficient in multiple
applications [37].

Evolutionary algorithms rely on an inspiration from Darwinian natural selection and feature a set of
candidate solutions, called a population. Each solution is evaluated and its performance is used to apply
a selection pressure: fittest individuals survive to the next generation and generate proportionally more
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similar and new solutions than others. New solutions are copies of their ancestors with some random
alterations, called mutations. They can also have several ancestors, inheriting some parts of each ancestor
through a crossover operator. A typical evolutionary algorithm can be summarized as follows:

1. generate a random set of solutions

2. evaluate each of them

3. select the fittest solutions

4. generate new solutions

5. evaluate each of them

6. if the number of cycles is below a chosen threshold, go back to 3, otherwise stop the optimization.

See [38] for an introduction to evolutionary algorithms.
As evolutionary algorithms only require to evaluate the objective function f(.) at different points,

these algorithms indeed impose no mathematical constraints. They typically don’t need to know the
derivative of the function, for instance. Their drawback is that they require a huge number of evaluations
to converge (typically from 105 to 106 evaluations). The consequence for the proposed approach is that the
computational models under study must be fast enough to allow a huge number of computer simulations.

Indicators

In the following, different indicators to be used within the proposed multi-objective analysis method are
defined.

Let denote χ the set of approximations of the globally Pareto optimal set generated by a set of runs Γ.
As evolutionary algorithms feature a stochastic behavior, each time an optimization is actually performed,
a particular approximation of the globally Pareto-optimal set of points is also generated. χi will be the
approximation of the Pareto optimal set generated by the i-th run.

The attainment function αχ(z) [39] aims at measuring the performance of an algorithm while taking
into account its stochastic feature. αχ(z) can be defined as the probability of finding at least one solution
which attains z (in our case that dominates z) out of the set of optimization results χ. It can be estimated
via its empirical counterpart defined over r sets of optimization results as follows:

αr(z) =
1

r

r∑
i=1

I{χi D z}

where I{.} is the indicator function, equal to 1 if the assertion is true or 0 else. D represents the
following relation:

χi D z ≡ ∃x ∈ χi | x � z

An attainment surface [40] can then be defined as the hyper surface described by a particular value of
the attainment function. Some particular attainment surfaces will be of particular interest in the following:
the 1-attainment surface and the 0-attainment surface. The 1-attainment surface Ψ1 represents the set
of the ”worst” points among the solutions, i.e. the set of the most dominated points. The 0-attainment
surface Ψ0 represents the set of the ”best” points among the solutions, i.e. the set of non-dominated
solutions over all the results.

In the following, as suggested in [41], for the definition of the hypervolume described below, we will
simplify this definition and consider that χ is composed of only one set of points at a time, noted χ0.
The definition of αχ0

(z) becomes (figure 1, left):
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αχ0(z) =

{
1 if χ0 D z
0 else

1

0
x1

x2

x3

x4

x5

f1

f 2

p

x1
x2

x3

x4

x5

f1

f 2

Figure 1. Left: values of the attainment function αχ0
(z) for χ0 = {x1, x2, . . . , x5}. Right: the

hypervolume IpH(χ0) is the area of the surface colored in gray.

The hypervolume indicator of a particular non dominated set χ0, IpH(χ0) [41, 42] can be defined, for
a given reference point p as:

IpH(χ0) =

∫
φp

αχ0
(z)dz

with φp ⊂ Rn the set of values above p, i.e. φp = {y ∈ Rn|∀i, yi ≥ pi}. This is a generalized definition
that holds for any dominance relation [41]. In the case of the Pareto dominance relation, as we will use
here, and in two dimensions, it actually corresponds to the area of the union of the rectangles defined by
the points (p, xi) with xi ∈ χ0 (figure 1, right).

The nadir objective vector η(χ0) of a set χ0 ⊂ Rn is defined as the point with the least value possible
for each objective:

η(χ0) = {miny∈χ0(yi), i = 1, 2, . . . , n}

Likewise, the ideal objective vector ι(χ0) of a set χ0 ⊂ Rm is defined as the point with the maximum
value possible for each objective:

ι(χ0) = {maxy∈χ0(yi), i = 1, 2, . . . ,m}

Data mining

The ability to gather huge sets of data is facilitated by modern technologies. This has pushed forward
the need to automate the process of extracting from such huge data sets consistent relationships between



9

variables, leading to the Data Mining field. Using a combination of machine learning, statistical analysis,
modeling techniques and database technology, data mining finds patterns and subtle relationships in data
and infers rules that allow the prediction of future results.

Two main families of data mining tools do exist: the first one, called the supervised data mining,
consists in identifying the relations between a target variable y, (which can be a scalar, a vector or a
tensor), and a set of m predictors (x1, x2, . . . , xm). The purpose of supervised data mining tools is to
build out of available data a formal relation y = F (x1, x2, . . . , xm) between the selected predictors which
are identified as the most discriminant to explain and to model y. The most famous techniques which
belong to this family are: oriented webs, segmentation by decision trees and neural networks. The second
family of data mining tools is called the non supervised one. Its purpose is to characterize, inside a given
population, homogeneous subgroups called clusters without any a priori on a potential target variable.
The famous techniques that one can find in this family are: non oriented webs, topology by Kohonen
maps, two steps cluster, etc.

The process of data mining actually consists of three steps:

1. data processing.

2. data modeling.

3. deployment.

Step 1: data processing. This stage usually starts with data preparation which may involve cleaning
data, data transformations, selecting subsets of records. Then, depending on the nature of the problem,
this first stage of the process of data mining may involve a simple choice of predictors for a regression
model or need elaborate exploratory analyses using a wide variety of graphical and statistical methods
in order to identify the most relevant variables that can be taken into account in the data modeling step.

Step 2: data modeling. This stage involves considering various models to identify the best one based
on their predictive performance. It might seem like a simple operation but it sometimes involves a very
complex and elaborate process. There are a lot of techniques developed to achieve that goal as we explain
in the beginning of this section. The selection of the future operational model consists in applying the
different potential models to the same data set and then comparing their performance to choose the best.

Step 3: deployment. That final step involves the model selected as the best in the previous stage to
apply it on new data in order to generate predictions or estimates of the expected target.

Numerous books review the theory and practice of data mining; the following references are general
books on data mining, representing a variety of approaches and perspectives [43–47].

Multi-objective analysis

Multi-objective analysis relies on optimization tools, but its aim is not to find an optimal set of parameters.
The method aims at helping the study of computational models by experts. Lots of computational
models are an assembly of different parts whose behavior may be clearly known in separation, but whose
interactions might be difficult to grasp. Multi-objective analysis method aims first at generating a set
of specific solutions: Pareto optimal solutions, and then study their features. The goal of the method is
then to find features of a model and identify points or regions of the parameter space that require further
studies. In this context, the optimization tools are used not to increase the efficiency of a particular
parameterized model, but to extract some knowledge on the considered model through the analysis of
specific behaviors. The automatic selection of such behaviors is a key feature of the proposed approach.

For a given parameterized model, the multi-objective analysis method aims at answering questions
like:

• What are the objective values within reach?
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• What relations are there between the parameters and the objectives?

• How critical is a particular parameter? Which parameter(s) make a solution Pareto optimal?

• Are there a continuum or a set of qualitatively distinct solutions? In this case, where are the
transitions and what are the features of the families of solutions?

• What characterizes a particular behavior relative to the others?

Furthermore, such a method can also help comparing different models. Actually, when models can be
evaluated on different criteria, one can be better than the other for some trade-offs, while the other may
perform better in other parts of the Pareto optimal set. The comparison of Pareto optimal sets provides
then a more rigorous view on the relative performance of the models.

The method consists in performing the following steps:

1. Selection of the search space;

2. Definition of objective functions;

3. Computation of the Pareto front (or at least an approximation of it);

4. Analysis of the results.

The first three steps are classical to anyone familiar with optimization tools. The last step is the
most important one of this methodology. We will list tools that can support it and highlight some of the
questions they can answer. The examples provided below just aim at highlighting what a simple analysis
can reveal on a computational model. A complete analysis of each of these examples goes far beyond the
scope of this article. Following examples won’t then exploit all of the analysis tools mentioned below.

Selecting the search space

Choosing the search space is generally the most simple step. The model to be studied is known beforehand
and generally described by a vector X of m parameters: x1, x2, . . . xm. The search space is then Rm if
unbounded or a subset of it.

Defining objective functions

Objective functions, that are also called cost functions or fitness functions, are the functions to be
optimized. The most critical point at this step is to define at least two antagonistic objective functions.
If the two functions are linearly dependent, a single solution can be optimal for both objectives: the set of
Pareto optimal solutions will then be reduced to a single solution, as for a mono-objective optimization,
thus not allowing to perform the proposed analysis.

Actually, any function numerically describing model features is worth considering for this step. This
choice is clearly of critical importance for the analysis to be the most useful, as all the performed analysis
will rely on these particular objective functions. The objective values within reach clearly depend on these
functions, so do the relations between objectives and parameters and the other considered questions (how
critical is a parameter? are there singularities? etc). Clearly, this step requires a deep expertise and
must be carefully defined and justified for the results to be of any use. Typical functions to optimize
are, for instance, accuracy of results and speed of response to both maximize or energy to minimize and
accuracy to maximize, etc.
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Computing the set of Pareto optimal solutions

All further studies rely on the availability of the set of Pareto optimal solutions. In most cases, only an
approximation of this set is within reach and the ”true” set of Pareto optimal solutions is not known.
It is then crucial to do whatever possible to guarantee the closeness of the approximated set to the real
one. Furthermore, to get the best from the last step of the method, i.e. the analysis of the results, it is
important to get a dense estimation of the Pareto optimal set in order to be confident in the fact that
the analysis does not miss important features because of a too coarse sampling. It also opens the way to
the study of regularities.

Multi-objective evolutionary algorithms (MOEA) are good tools to consider in this search as they
can provide a dense estimation of the Pareto optimal set in a single optimization run [34]. NSGA-II, for
instance, is an efficient and yet simple algorithm that is now widely used in this context [35]. Evolutionary
algorithms are stochastic optimization tools. Their estimation of the Pareto optimal set may then vary
from one run to the other. Few theoretical work is focused on the study of MOEA convergence [48, 49].
Most work in this field is based on empirical studies as theoretical results have often revealed to be of no
practical use yet, as stated in [48]:

there is some indication that many multiobjective selection concepts used in practice may fail
theoretically, it is possible that even such concepts without an almost sure convergence may
work better in practice that those where (global) convergence can be proven.

For the INNOVIZATION approach, [29] suggest to first use a multi-objective evolutionary algorithm,
e.g. NSGA-II. The nadir and ideal points are evaluated and a local search is used to get a better optimized
front [34,50]. Last, the normal constraint method (NCM) [51] is used, starting at a few locations to check
the accuracy of the optimized front.

Considering that we only have access to approximations of the set of Pareto-optimal solutions and
that they are generated by a stochastic process, we suggest another approach, aimed at exploiting at best
all the available data:

1. repeat the optimization several times;

2. evaluate the disparity between the generated sets;

3. compute Ψ0, the set of non-dominated solutions over all results;

4. for each point of Ψ0, evaluate how close or how far it is to the closest points of other Pareto sets.

Ideally, several different algorithms can also be used for the first step. Its goal is to increase the
confidence in the results with regards to the stochasticity of the process used to generate them. The
number of runs to actually perform should be high enough to ensure the statistical significance of the
results, but the required computing power will limit it in practice.

The second step aims at evaluating the disparity between the runs. A too wide variability in the results
is the symptom of a problem – ill parameterized evolutionary algorithm, for instance : population size too
small or too few generations – thus suggesting that the generated solutions might be still improved. It
suggests then to go back to the first step and perform other optimizations with new algorithms parameter
values (or test other algorithms). A low variability increases the confidence in the fact that the runs have
converged to a locally optimal set of solutions1.

The third step provides the best approximation of the set of Pareto optimal solutions relative to
available data. Analysis of the shape and patterns of Pareto optimal solutions must then be performed
directly on this set rather than on the result of a particular run.

The last step aims at more precisely evaluating the disparity within the front, whereas the second
step studied the global variability. A huge variability for a particular part of the front is a symptom that

1It doesn’t tell anything regarding the distance towards the global Pareto-optimal set.



12

should be known by the expert performing the analysis. It is representative of parts of the search space
that were more difficult to explore for whatever reasons (model instability, for instance) and it may be
worth to further analyze these particular points to understand where the variability comes from, or it
may also be worth knowing it in order to focus the analysis on points for which the convergence is less
questionable.

The first and third steps are straightforward. The fourth needs a dedicated evaluation algorithm that
will be described below. The second requires to evaluate a disparity between approximations of the set of
Pareto-optimal solutions. In two or three dimensions, this can be evaluated visually by simply plotting
the different fronts and looking at their differences. Making a quantitative comparison is not as simple
as comparing results of single objective optimization algorithms. As it is required to compare multi-
objective optimization algorithms, it has been the subject of intensive work over the last decade, see [52]
for a review. Comparison of generated sets of solutions can be performed on the basis of dominance
ranking or performance indicators.

Dominance ranking consists in evaluating if a particular set of solutions dominates another one, i.e. if
the solutions of the considered set dominate each of the solutions of the other one. This method is aimed
at ranking optimization algorithms, not at evaluating the disparity of the generated solutions and thus
won’t be used here.

Multiple performance indicators have been proposed to describe with a single scalar the performance
of a multi-objective algorithm [53]. They are mainly aimed at comparing algorithms, but also at guiding
the search or at defining a stopping criterion. To evaluate the disparity between the different runs, we
suggest to use the hypervolume indicator, that has the drawback of an exponential computational cost
relative to the number of objectives, but with the advantage of being strictly monotonic (see section
Indicators for its definition).

To evaluate the disparity between runs, we propose to compute the following values:

• For each of the performed run r ∈ Γ , identify the nadir objective vector ηr

• Discard the outliers: consider the conservative nadir point η defined as follows:

η = {maxr∈Γ(ηri ), i = 1, 2, . . . ,m}

The disparity between the generated sets is then evaluated as follows:

1. compute Ψ0 and Ψ1;

2. compute the difference of the hypervolumes of Ψ0 and Ψ1 relative to the conservative nadir point:
IηH(Ψ0) and IηH(Ψ1) to evaluate the variability of the runs.

For the evaluation of the disparity within Ψ0, we suggest to compute, for each point of Ψ0, the distance
to the closest points of each of the different Pareto sets Ψr and keep the maximum value. This value
may either be used visually or, with a distance threshold, used to define a conservative set Ψcons ⊂ Ψ0

defined as the set of points p ∈ Ψ0 for which the distance is below the chosen threshold.
To sum up this part, the evaluation of the Pareto front we suggest is the following:

1. repeat the optimization several times, if possible with several different algorithms

2. evaluate the disparity between the generated sets:

(a) compute Ψ0 and Ψ1

(b) compute their respective hypervolumes relative to η

(c) if the relative difference is above a given threshold, go back to step 1 with different parameter
values or with other optimization algorithms

3. for each point of Ψ0, evaluate the maximum distance towards each Ψr.
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Analysis of generated data

What is available after the former step is an approximation of the Pareto-optimal set of solutions. Each
point associates a particular set of parameter values X together with its corresponding objective values
f(X). Analyses proposed in the following aim at extracting knowledge from it. For each analysis, some
typical questions the analysis might contribute to answer are listed.

Analysis of the Pareto set

Typical questions:

• What are the objective values within reach?

• What are the relations between objectives?

• Is the model ill-posed?

A first analysis focuses on the set of points in the objective space, i.e. in the space of f(X) values.
The lower and higher values for each objective as well as the shape of the set may be of interest for the
information they provide on the computational model and on the set of contexts and parameters opened
to the optimization. The shape of the front may highlight objective relations and an irregular shape may
even be the symptom of an ill-posed model [18].

Analyzing the Pareto set implies to draw at least a part of it. In two or three dimensions, as for
the examples presented in the following, it can be directly plotted, but for higher dimensions, dedicated
visualization tools have been developed, like the scatter plot matrix, the value path or the star coordinates
methods [34]. Subsequent analysis may rely on a direct observation of the relations between objectives,
or on regression tools to identify it more formally.

Analysis of the parameters

Typical question:

• What are the relations between model parameters and objectives?

Each point of the Pareto set corresponds to a particular set of model parameters. Looking at how
these parameters change may highlight important features of the model, like parameter uncertainties [17].

In the examples provided below, a particular parameter will be plotted against one or two objectives,
thus not requiring complex visualization tools. Other analysis might need a global picture of the parameter
set relation to objectives. Dedicated tools to project it in a two or three dimensional space are then
required, like Kohonen maps [54], for instance.

Analysis of solutions

Typical questions:

• What are the typical behaviors of the model?

• What are the features of a particular solution or of a cluster of solutions?
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• What are the most critical parameters?

As a Pareto set may contain a lot of different points and before undertaking deeper studies, it may
be important to build clusters of solutions in order to identify the most salient behaviors. In some
experiments, as in the second example presented below, the definition of such clusters may directly stem
from expert knowledge. In other cases, automatic clustering methods can be used to detect groups of
similar solutions on the Pareto front. The most commonly used algorithms to accomplish this task are
k-means [55], fuzzy c-means [55], principal component analysis, hierarchical clustering [56] and Kohonen
maps [57,58].

Once clusters of solutions have been identified, the proposed analysis consists in looking at which
parameters better describe a cluster relative to other clusters. Understanding what makes a solution
Pareto-optimal or what is specific of a particular cluster of solutions may highlight the relative importance
of each parameter. To drive this analysis, classification algorithms can automatically extract the most
descriptive cluster features [59]. The results of such classifications is a decision tree. Starting from the
whole set of considered points, the tree aims at subdividing it according to variable ranges. Each internal
node is associated to a variable and the branches coming out of it are labeled with ranges of values. Each
path from the root node to a particular node is then descriptive of a set of points and the goal of decision
tree algorithms is to find the description sets that discriminate best between two given set of points.
When the study focuses on a particular cluster, it will highlight the main features of this cluster relative
to other clusters (may it be from the Pareto set or from the set of explored points).

Further analyses may focus on a specific solution. While expert knowledge can be used to highlight
a particular point, simple selection rules have also been proposed, like the one of [60], that ranks Pareto
optimal solutions by using a graphical method based on Lp, p = 1, 2,∞ norms of the normalized vector
of objectives. The chosen solutions are those that minimize the distance, measured in an Lp-norm, to
the ideal point. The behavior of the chosen point can then be studied while relying on expert knowledge.

Example from Aerodynamics: study of a flapping wing aircraft

The first example concerns the study of a flapping wing aircraft. Although the underlying physics is
locally well understood, the impact of wing beats on aerodynamical forces and the question of what
wing beats to generate to get a particular behavior of the aircraft is still a subject of intense research.
The multi-objective analysis is used here to generate a set of wing beats to study. As few experimental
data are available, the results will be related to what biologists did observe on birds of similar size.
Biologists have identified relations between significant parameters like wing area, cruising speed, wing
span, flapping wing frequency, wing load or mass [61]. Wing kinematics have also been studied for several
species [62–64]. The goal of the multi-objective analysis is to identify some specific wing beats to be tested
in an experimental device. The choice of the wing beats is driven by the need to enhance the model or
more generally the understanding of the underlying physical phenomena.

Description of the model

Aerodynamical forces created by wing movements are computed with a semi-empiric, quasi-steady-
aerodynamics model. Each wing is decomposed in three panels. For each panel, the local incident
airspeed is evaluated. The computation of aerodynamic forces has been extended over classical lift
computational models to better evaluate the forces at high incidence angles, see [65, 66] for a detailed
description. The panels are considered as non deformable solids, connected to their neighbors via joints,
as shown on figure 2. The integration of the forces and the movements of the parts are computed using
ODE software library2.

2http://ode.org
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Figure 2. Degrees-of-freedom of the simulated flapping wing aircraft.

Wing kinematics are described by the following equations:

DI = aDI sin(2πt/pDI) (1)

TWi = rTWi + aTWi sin(2π(t/pDI + pTWi)) (2)

TWe = rTWe + aTWe sin(2π(t/pDI + pTWe)) (3)

where DI is the wing dihedral, TWi the internal twist and TWe the external twist. Wing kinematics
are then described by eight parameters subject to the evolutionary optimization. The chosen ranges for
each value are the following:

• amplitude of the dihedral: aDI in [0; 45o]

• period of the dihedral (and of all other degrees of freedom): pDI in [0.2; 1s]

• reference of the internal twist: rTWi in [−22.5; 22.5o]

• amplitude of the internal twist: aTWi in [0; 45o]

• phase of the internal twist: pTWi in [0; 1]

• reference of the external twist: rTWe in [−22.5; 22.5o]

• amplitude of the external twist: aTWe in [0; 45o]

• phase of the external twist: pTWe in [0; 1]

Objectives to optimize

The energy-speed relation is characteristic of a particular shape and of a particular wing kinematic. We
will then choose to optimize both speed and energy to empirically evaluate this relation. As we are
interested in low as well as high speeds, we will perform two sets of experiments, one in which the speed
is minimized and one in which the speed is maximized.

The objectives to maximize are the following:

• experiment 1:

– +1× average aircraft speed
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– −1× average mechanical power

• experiment 2:

– −1× average aircraft speed

– −1× average mechanical power

Following [65], the instantaneous mechanical power is computed as the scalar product between the
instantaneous torque (τ) and the instantaneous rotational speed (ω) for a joint: P =

∑
i |τi.ωi|. The

mechanical power objective only takes into account the shoulder joints which are the main contributors to
energy consumption. It should be noted that the power is always considered as positive. The mechanical
power is then over estimated, as the torques required to accelerate or to slow down are considered as
equivalent.

NSGA-II is used to perform the search, with a population size of 500 and during 1000 generations.
Evolved parameters are represented as vectors of real values with a polynomial mutation and a sbx
crossover, as described in [34], p124.

Results

Four different runs have been performed for each of the two setups.
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Figure 3. Left: Ψ0 and Ψ1 for the experiments on the flapping wing aircraft. ”speed min” corresponds
to the speed minimization experiments and ”speed max” correspond to the speed maximization
experiment. X-axis is the speed in m.s−1, Y-axis is the energy in W . Right: Filtered version of Ψ0 for
the experiments on the flapping wing aircraft. Plotted points are those whose distance towards the
Pareto fronts of other runs are lower than a chosen threshold ε (here ε = 1)

Ψ0 and Ψ1 have been computed and plotted on figure 3, left. The conservative hypervolumes are
respectively IHp (Ψ0) = 414.9 and IHp (Ψ1) = 393.4 for the speed minimization experiment and IHp (Ψ0) =

6267.4 and IHp (Ψ1) = 6117.3 for the speed maximization. The difference is then 5.2% of IHp (Ψ0) for

speed minimization and 2.4% of IHp (Ψ0) for speed maximization. The disparity is then low, but not
negligible, especially for the speed minimization case. The plot of the filtered version of Ψ0 (figure 3,
right), highlights that the differences are concentrated on the lowest speeds and, in a smaller extent,
also on the highest speeds. This disparity reveals that the search was more difficult for these particular
speeds.

In the following, we consider the points from Ψ0 and study their features from an aerodynamical point
of view. The ornithopter is characterized by a wingspan b of 1.93 m (both wings), a wing area S of 0.407
m2, a mean chord cm of 0.2 and a variable cruise velocity U . The air kinematical viscosity ν is about
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15 10−6. To analyze the Pareto optimal solutions, the following aerodynamical dimensionless numbers
are defined:

• Reynolds number: Re = Uc
ν

• Strouhal number: St =
sin(

π aDI
180 )b

U pDI

• Reduced frequency: k = πc
U pDI

• Reduced internal twist frequency: κ1 = 2|π aTWi

180 |k

• Reduced external twist frequency: κ2 = 2|π aTWe

180 |k
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Figure 4. Left: Reduced frequency versus the cruise Velocity. Right: Strouhal number versus the
cruise Velocity

If we look at the reduced frequency (see Figure 4, left), we can see that for velocities inferior to
8.7 m.s−1 the reduced frequency varies between 0.25 and 0.42. These values are not standard for birds
for which the reduced frequency oscillates between 0.1 and 0.25 [67]. Thus, unusual high frequencies
are experienced by our ornithopter at low speeds. These high frequencies may explain the optimization
problems for low speeds, as they may result in an instability of the physics simulation. At higher speeds
the reported reduced frequencies agree with the usual values encountered for birds.

Moreover, the Strouhal number (see Figure 4, right) oscillates between 0.35 and 0.9 when the cruise
velocity varies from 7 to 8.8 m.s−1, which is not common for birds (St∼ 0.15-0.35) [68]. This indicates that
unusual high dihedral velocities are experienced by our ornithopter at low speeds. For higher velocities
the Strouhal numbers agree with the usual values reported for birds.

In addition to that if we look at the reduced internal and external frequencies (see Figures 5 left and
right), we notice that they take high values at low speeds, the external reduced frequency κ2 being slightly
higher than the internal one κ1. This means that our ornithopter experiences high twist velocities at low
speeds.

Furthermore, if we take a look at rTWi and rTWe (see Figure 6), we can see that the wing is highly
twisted at low speeds which is characteristic of the flight of birds at these speeds [62]. At higher speeds
the wing’s twist decreases as expected [62].

To sum up the previous statements, we can say that low speeds are characterized by both high twist
and dihedral velocities that can be attributed to the generation of the necessary lift at low speeds [69]
while the high frequencies experienced are directly related to the generation of the power for flight [63].

However, the reported values of Strouhal number and reduced frequencies for our ornithopter are
quite high at these speeds. At this stage, to explain these values different hypotheses can be considered:
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Figure 5. Left: Reduced internal frequency versus the cruise Velocity. Right: Reduced external
frequency versus the cruise Velocity
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• the accuracy of the aerodynamical model [65,66] at low speeds is low;

• the convergence of the optimization process at low speeds is too poor;

• the ornithopter’s configuration is not compatible with low speeds.

Concerning the aerodynamical model, if we compute the Reynolds number on the Pareto front we
can see that it varies between 105 and 5 105 while the velocity fluctuates between 7.5 and 37.3. At these
Reynolds numbers, commonly experienced by birds similar to our ornithopter [70], transitional flows may
occur [67] especially at low speeds. Thus, one has to make sure that the aerodynamical model can handle
with reasonable accuracy low Reynolds number effects by comparing the model with experimental results
or CFD3 simulations. The kinematics associated to points in the low speed part of the Pareto front can
then be used on a real experimental device in a wind tunnel or with CFD simulations to test the accuracy
of the model and more precisely focus a study on the phenomena that the proposed model might neglect
at this speed.

The most interesting solutions from an energetic consumption point of view are those which minimize
the energy. A characterization of these solutions versus the other solutions by a binary decision tree [57,71]
allows to identify the kinematic parameters that are important to define these interesting solutions.

A neighbourhood of the solution of minimal energy was defined by taking all the solutions such that
the relative variation on the energy is less than 5 per cent. Then, a description of this neighbourhood
relative to other Pareto optimal solutions was sought using Classification and Regression Tree algorithm
(CART). It highlighted one significant rule:

0.48 ≤ pDI and rTWi ≤ −5.85 and 8.5 ≤ aTWe (4)

The obtained decision tree is 93 % accurate and ranks the kinematical variables appearing in (4) by
order of importance. Thereby, pDI is more important than rTWi which is more important than aTWe to
define the minimal energy solutions. This result is qualitatively acceptable from an aerodynamical point
of view. Indeed the flapping period, the internal twist reference and the internal twist amplitude play an
important role in the aerodynamics of our ornithopter [62, 71]. Anyway, as there is no previous work on
the subject, the only way to validate it is to launch the same experiments in a windtunnel and compare
the obtained minimal energy solutions.

Furthermore, the precedent result gives us a compact vision of the kinematical model for the minimum
energy solutions. For these solutions, the decision tree suggests that the important parameters for the
model are the flapping period, the internal twist reference and the external twist amplitude. A possible
way to check this result a posteriori is to build a reduced model of the kinematics with just the three
preceding kinematic parameters, recompute a Pareto front in the conditions stated before and compare
the minimal energy solutions obtained.

Summary

We have optimized the parameters of the wing kinematics of a simulated flapping wing aircraft. To
empirically generate its speed-energy relation, we used both speed and energy as objectives to optimize.
Key steps and main results are listed below:

• At first, we evaluated the convergence of the optimization runs and highlighted a convergence
problem in the low speed part;

• we then performed an aerodynamical study of the Pareto optimal solutions. For speeds higher
than ∼ 9 m.s−1, these solutions are characterized by realistic values of Strouhal number, reduced
frequency and Reynolds number which conforts us in the validity of these solutions and thus of the
model at these speeds;

3Computational Fluid Dynamics
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• low speeds Pareto optimal solutions are characterized by highly twisted wings, high frequencies,
high dihedral and twist velocities inherent to the flight at these speeds but the order of magnitude
of the reported values is not realistic which shows that further investigations are needed. Three
potential hypotheses may explain the high values encountered at low speeds: the inaccuracy of
the aerodynamical model, the failure of the optimization process or the incompatibility of the
ornithopter’s geometry and/or kinematics with these speeds;

• the minimum energy solutions are characterized by three kinematical parameters: the flapping
period, the internal twist reference and the external twist amplitude. This result gives us a compact
vision or reduced order model of the kinematical model for these solutions.

Example from Neuroscience: study of a Basal Ganglia model

The Basal Ganglia (BG) is a set of interconnected brain nuclei. Located under the cortex, the BG is
present in all the vertebrates, its structure remaining largely identical throughout the species. In order
to gain a better understanding on the mecanisms governing it, various neuro-computational models have
been proposed (for a review, see [72]). Among them are the recent CBG model [1] and the more classical
GPR model [2]; the parameters of both of them have been evolved with MOEA in a previous work [73].
We summarize here the results obtained and we push further the multi-objective analysis. This analysis
will focus in particular on the relative importance of connections between nuclei for each model, and does
provide a way to compare the two models.

Description of the models

The considered models of the BG are made of rate-coding artificial neurons (either leaky-integrators in
the GPR or locally-projected dynamical systems in the CBG), representing the average activity of a
population of real neurons. These models are basically described by a first order differential equation
combined with a transfer function or a projection operator. They are represented by circles in figure 7.
These neurons are grouped in nuclei which have been anatomically identified (boxes in figure 7). The
main components of these models are the definition of the graph of connections between the nuclei, the
weights of these connections and some internal properties for each nucleus. The architectures of the CBG
and GPR models are respectively shown in the right and left panels of figure 7. The slight differences
between them consist in the adjonction of connections in the CBG that were unknown or not included at
the time when the GPR model was elaborated. The strengths of the connections and the internal nucleus
properties account for 25 parameters for the CBG, and 20 for the GPR. Each connection parameter is to
be evolved in the range [0.05, 1], as setting a connection weight to zero would be equivalent to delete this
connection. For more details on the whereabouts of each models, we refer to the original articles [1,2] or
to our previous work [73].

The biological knowledge used to constrain the weights of the connections and the internal properties
of the nuclei is rather weak, hence the modeler has to hand-tune almost every parameter to obtain a
satisfying model. The MOEA were used to evolve the parameters while sticking to the architectures of
the CBG and GPR models, in an attempt to shed light on the role of the various parameters and to
compare the two architectures.

Objectives to optimize

According to the mainstream hypothesis, the BG operates a generic selection system [74]. The corre-
sponding computational setup postulates the existence of a certain number of channels corresponding to
possible alternatives; these are selected by disinhibition: the outputs of the channels are inhibitory and
active by default, thus inhibiting their targets, when a channel is selected, its output is decreased, and
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cortex, and the outputs are the activity of the GPi/SNr neurons. Three channels in competition are
represented in most nuclei. The outgoing connections of the shaded channel are the only one shown.
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thus its inhibitory effect canceled. The computational hypothesis is then formulated as a winner-takes-all
among competitive channels, assigning the minimum activity to the channel with the highest input, while
the others are activated as much as possible. This simple model of BG behavior will be used as a basis
of the objective functions definition.

To ensure that the evolved models behave as a winner-takes-all, N = 500 random input vectors have
been submitted to each individual, drawn in [0, 1] from a uniform distribution. Two objectives were to
be minimized. First, the channel corresponding to the largest input (the selected channel ”sc”) was to
have minimal activity. Hence, the first fitness function is :

f1 =

∑
N

GPisc

N

But this is not sufficient to obtain a WTA algorithm, as this could lead to the complete disinhibition
of every channel. Therefore, a second objective was defined as the mean of all the other channels, the
not selected channels ”nsc”, of cardinal ”#(nsc)” :

f2 = 1−

∑
N

(∑
GPinsc

#(nsc)

)
N

Any set of parameters minimizing these two objectives implements a WTA algorithm. Regardless
of the inputs, a model with the fitnesses (f1 = 1, f2 = 0) always selects all the channels, and a model
with (f1 = 0, f2 = 1) never selects any channel. All the other values for (f1, f2) represent different
approximations of a WTA.

Results

Ten runs have been first launched with a CBG architecture and their results compared and analyzed
in details; ten runs with a GPR architecture were then computed for comparison purposes (see the
comparison between the two architectures below). Ψ0 and Ψ1 have been computed and plotted on
figure 8, left, for the CBG runs. Their conservative hypervolumes are respectively IHp (Ψ0) = 0.593 and

IHp (Ψ1) = 0.588. The difference between the two is very low (0.7% of IHp (Ψ0)). The confidence in the
convergence of the runs is then high as the different runs have generated noticeably similar results. This
is confirmed by the plot of figure 8 (right) that shows a dense representation of the Pareto front with no
particular gap, contrary to the previous experiment.

Interpretations of the entire set of solutions

Some connection weights are minimized or maximized for the whole Pareto front. This result can be
interpreted as reflecting the relative contribution of the connections for the objectives. Hence, connections
that are maximized at the upper bound of the search space, are of upmost importance for the selection.
They reflect the parts of the circuit that are essential to achieve some kind of selection.

On the contrary, some connection parameters are minimized. Excluding the hypothesis that the math-
ematical formalism or the parameters search space are not adequate in modeling the reality, this means
that either (1) these connections are indeed very weak, or even non-existent; or (2) these connections are
useful for another purpose that is not expressed by the objectives.

Other parameters have been found to be set at random, this can be quantified with a very low measure
of auto-correlation (see figure 9 for an example of a rather precisely set versus a randomly set parameter).
The interpretation for these connections is that they are indifferent to the objective functions, neither
contributing nor being against the supposed function.
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Figure 8. For both graphs, X and Y axis are the f1 and f2 fitnesses.
Left: Ψ0 and Ψ1 for the experiments on the basal ganglia model.
Right: Filtered version of Ψ0 for the experiments on the basal ganglia model. Plotted points are those
whose distance towards the Pareto fronts of other runs are lower than a chosen threshold ε (here
ε = 0.01).

We provide here only the guidelines for interpretations of parameters at the bounds or randomly
set, as the biological implications for the specific parameters of the Basal Ganglia evolutions have been
discussed in details elsewhere [73].
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Figure 9. Plot of the STN → GPe/GPi (left) and the GPi → VL (right) connection weight parameters
for each solution of the Pareto front. The X-Axis lists the solutions along the front, beginning with
those who rank best for the first objective and ending with those who rank worst the first objective.
While the STN → GPe/GPi appears to be set rather precisely by the evolution, the GPi → VL is
apparently set at random.

Choice and analysis of a particular set of solutions

The whole set of solutions implements different kinds of selection, but some of these trade-offs are probably
not interesting solutions. This is especially true for the solutions located at the endings of the pareto
front, which tend either to never select any channel or to always select all the channels. Hence there is a
need to choose a subset of solutions on the basis of expert knowledge. The comparative analysis of these
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solutions relative to the whole set of solutions aims to bring a characterization of the most interesting
models.

We began by evaluating the compatibility of the solutions with known biological data. To do this, we
exploited two known facts. First, in the absence of input, the GPi, which is the output nucleus of the
Basal Ganglia, is active. Its firing rate at rest, called the base level, should then correspond to a rather
high value. Second, in a competition situation, the unselected channels should have an output higher
than the base level, but the selected channel should have a lower output. By plotting the base level along
the output of the selected channel as well as the mean output of the other channels, we have been able
to identify a biologically plausible zone of the front (figure 10).
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Figure 10. Plot of the output levels of each solution. The blue line corresponds to the mean output of
the selected channel, and should be minimized according to objective 1. The green line corresponds to
the mean outputs of the other channels, and should be maximized according to objective 2. The red
dots correspond to the base level, i.e. the output in the absence of input. The dots corresponding to the
most biologically plausible solutions (see text) are emphasized.

Another way to evaluate the quality of the selection is with an engineering approach. We elaborated a
measure of the ability to discriminate between the two best channels in input, by looking at how different
their outputs are. Indeed, for many of the obtained solutions, when the channel with the highest input
and its closest competitor are very close, both of them are selected simultaneously. To evaluate this, we
scored the percentage of random inputs that led to the selection of two channels, i.e. that led to the case
where the two best channels in outputs are closer than an arbitrary value of 0.01. The results are shown
on figure 11, they correspond roughly to the solutions we obtained with the previous criterion (figure
10). This shows that the solutions operating a biologically plausible selection are also amongst the most
efficient ones.

By considering the subset of solutions efficient for both criterions, we can now analyze what makes
them different from the other solutions, with the help of decision tree algorithms. To prepare this analysis,
we began by normalizing the numbers of the solutions for each state by replicating the plausible solutions
seven times, leading to a population comprising roughly as much plausible solutions (497) as non-plausible
ones (501). After this, we applied a standard Classification And Regression Tree (CART) algorithm to
separate the plausible ”P” solutions from the non-plausible ”NP” solutions (figure 12).

This decision tree shows that to ensure a biologically plausible selection, the GPe→ D1 connection has
to be superior than 0.63. This is relevant to a biological interpretation, because the GPe→ D1 connection
is a subject of debate. Indeed, the connection from GPe to Striatum has been acknowledged for a long
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Figure 11. Plot of percentage of dual selection of the two best channels in input. The solutions
labeled previously as ”biologically plausible” are emphasized.

Figure 12. Binary decision tree representing the best parameters to discriminate between biologically
plausible solutions (”P” solutions) and non-biologically plausible ones (”Np”). See text for methodology.
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time in various species [75,76]. Anatomically, [77] showed that some GPe neurons targeted preferentially
Fast Spiking Interneurons (FSI), with approximately half of their axonal terminaisons ending on FSI
and the remaining terminaisons ending on other neurons of the Striatum. Electrophysiologically, [78]
showed recently an inverse correlation in vivo between the GPe neurons firing rate and FSI firing rate,
which is coherent with the idea that the GPe target them with an inhibitory influence. While these data
suggest a strong influence of GPe neurons on FSI, they do not mean that their influence on the D1 and
D2 neurons is weak or non-existant, and this connection has indeed been exploited in computational
modeling work [1]. The present result suggests that this connection should not only exist, but it should
also be potent.

The percentage of solutions classified by the other branches of the tree is far less important, hence
we have to be cautious in the interpretation of these. Furthermore, this would require a more detailed
biological analysis, going out of the scope of this paper, so we choose not to continue further this analysis.
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Figure 13. The fitnesses of the best fronts of the CBG (red) and GPR (green) fronts permit to
compare the two architectures.

Comparison between different architectures

The CBG model has been built upon another model, called the ”GPR” model [2]. The main difference
between the two models is that the CBG takes into account biological data that were unknown at the
time of the elaboration of the GPR. This results in a slighty different connection scheme (figure 7).

To evaluate whether the CBG or GPR architecture is more suitable to operate a selection process,
the evolution of the GPR architecture has been done with a setup similar to the one done for the CBG.
The parameters, which are fewer in the GPR (20 in place of 25), have been evolved under the same
constraints. All the runs have converged toward the same approximation of the Pareto front, as they
did for the CBG. Results showed that the solutions of the CBG strictly dominated the solutions of the
GPR for the whole front (figure 13). For any solution from the GPR front, there is a solution from the
CBG front that has a better score for both objectives, resulting in a better selection as we defined it.
This hence leads to the conclusion that the changes in connectivity, as well as the additional degree of
freedom of the CBG, globally enhanced the selection functionality. This is particularly interesting as, to
the extent of our knowledge, there is no other way to assess whether one architecture or another is more
suitable to exhibit a selection process.
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Summary

We evolved the ”CBG” architecture of the Basal Ganglia, to make it operate a selection amongst its
entries. To this aim, we defined two antagonist objectives scoring the quality of the selection done on a
given set of inputs. We list below the key steps and results of the multi-objective analysis of the evolution:

• Before interpreting the results of the evolution, we made sure that they converged to a good ap-
proximation of the Pareto-optimal solutions.

• We analysed the whole set of optimal solutions. Some parameters are either maximized, minimized,
or set of at random. We provided guidelines for interpreting the functional signification of these
parameters.

• We then analyzed the specific set of interesting solutions, after having characterized it by two
criterions. By using a binary regression tree, we are able to make a prediction concerning a specific
connection, the GPe→ D1 connection. This connection has a key role in the selection operated, and
should be set at a rather high value. This result is particularly interesting as, even if the existence
of this connection has been known for a long time, it has rarely been used in modeling works.

• Finally, we did optimize parameters of another architecture which is named ”GPR”, with the
same setup as for the CBG. This showed that the solutions of the CBG dominated the solutions
of the GPR, resulting in a better selection ability. This comparison highlights the relevance of
the additional connections of the CBG, and provides an unique mean to benchmark two different
architectures.

Discussion

The proposed framework listed only the most frequently used data mining algorithms. Other tools can
be used depending on the need. Likewise, the examples are provided to illustrate the potential of the
approach. Deeper analyses would require to go deeper in the respective fields of these models, what goes
beyond the scope of this article. From a methodological point of view, a good practice would be to use
this framework to first check in a systematic way a set of well established knowledge from the literature.
Further work should then focus on the discrepancies that highlight model errors or incompleteness. A
complete agreement to the literature would be a first validation of the model. In a second step, hypotheses
currently made can be tested this way by checking their compatibility with the generated data. Although
it does not represent a validation as strong as direct observations of the modeled phenomenon, it might
help when such observations are not possible or when their cost is so high that a lot of evidence is required
to justify such experiments. Although it is somewhat reassuring to follow a systematic path guided by a
well defined goal, such analyses is probably also very valuable when little is known in the literature. It
allows to propose new hypotheses and then also new experiments to be done on the modeled phenomenon
to validate them.

We have proposed different ways to check whether the set of optimization runs did converge or not.
The goal is to reduce the impact of the stochastic aspect of evolutionary algorithms. A too wide variability
indicates that the run did not converge, suggesting that other runs with different algorithm parameters
should be performed. Likewise, a finer analysis of the disparity between the runs may reveal area of
the objective space for which the optimization was more difficult. Although it is not possible to give a
simple and systematic interpretation of this symptom, one of the possibilities is model instabilities and
identifying such area of instability may be of interest for the expert performing the analysis. One may
wonder about the consequence of the lack of convergence proof on the potential interest of the method.
Despite all efforts put into the verifications mentioned before, the convergence to the global optimum will
never be sure. Is it a problem for the proposed methodology? Actually, the goal of the multi-objective
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analysis is to find a set of ”interesting” solutions to study. No matter how such points are generated, they
are nothing more than specific parameter sets of the model. It means that, even if they are not optimal,
they are representative of some model behaviors and are then worth studying. The only risk associated
to the non convergence towards the global Pareto-optimal set, is that there might be other behaviors
that the analysis will miss. The consequence is that the conclusions of the analysis should rely on the
observed behaviors only. Without other hypothesis on model compatibility with optimization, nothing
should be deduced about the capacity of the model to generate a non observed behavior, as this absence
may stem from a premature convergence towards a local optimum and not from a particular failure of
the model.

Likewise, the proposed comparison between models evaluates at the same time the capacity for the
model to optimize the given objectives, but also its compatibility with the optimization algorithm. We
might think about a model which is particularly difficult to optimize, for instance if its performance, as
defined by the objectives, decreases very fast as its parameters get away from optimal values. Optimizing
such a model corresponds to finding a needle in a haystack and in this case, optimization will surely
converge towards a local and easier to find optimum. It is then possible that a comparison performed
as described above will conclude that such a model is less efficient than another one, which is easier to
optimize and converges towards an optimum that is above the local optimum of the first model, but
maybe not above its global optimum. To be rigorous then, while performing such a comparison, it is
necessary to make the hypothesis that both models are compatible with the optimization, i.e. that their
global optimum is not on a sharp peak of performance. Although this is difficult to check in general, in
practice, such an hypothesis can be tested on well known parameter sets used to study the model. If
small changes in these sets results in a performance that is very low (for instance of the same order of
magnitude than that of randomly generated sets of parameters), then it is clear that such an hypothesis
doesn’t hold. In the other case, the hypothesis is unfortunately not validated but can be considered, by
default, as reasonable.

Finally, the motivation of this work was to propose an approach to tackle the epistemic opacity
inherent to at least some computational models. At this point, we may wonder if we succeeded in making
such models less opaque. We have proposed the use of multi-objective optimization algorithms that rely
on heuristics, in particular on an inspiration from natural selection and with no strong mathematical
grounding. In a second step, we have presented data mining tools to extract from the generated data
new knowledge. Doesn’t it contribute to make the conclusions weak because of an opaque process? Even
if the generation of the data relies on the evolutionary optimization, at the end, what are considered are
just some sets of parameters of the model. The method used to generate them is of little impact on the
conclusions, as long as no definite conclusions are drawn on the absence of observation of some model
behaviors. The evolutionary optimization can then be considered as black box heuristics to discover
set of parameters that are worth studying. In this respect, they are not less justified than a manual
exploration, as an expert may be driven by biases that are no more justified. Actually, the exploration
made by the evolutionary algorithm has the advantage of not being biased by any a priori knowledge
on the model. On the other side, an expert, as it can reasonably observe only a small number of model
behaviors, will be strongly biased towards parameter values that seem intuitively interesting to him and
this intuition may be misleading. The second step, i.e. the analysis step, is not different from current
scientific approach were a scientist has to dig in huge amount of data to extract the knowledge he is
looking for. In that perspective and from an epistemological point of view, nothing new is proposed
here. The opacity of this part of the knowledge building process, if any, is then similar to that of any
other experimental science. The epistemic opacity has then not increased. Was it reduced? The analysis
highlights potentially unforeseen features of the model, thus leading to a better understanding of its inner
working and as a consequence to a reduction of the underlying epistemic opacity, at least for the aspects
on which the analysis was focused.
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Conclusion

We have proposed a framework for studying computational models relying on the use of multi-objective
optimization algorithms. The main principle of the methodology consists in exploiting the ability to
simulate the behavior of such models a huge number of times to generate model parameter sets that are
worth studying. The choice of these data is driven by the optimization of multiple conflicting objectives
at the same time, resulting in a set of optimal solutions rather than a single optimal solution. Multi-
objective evolutionary algorithms were used for their versatility and for their ability to generate a dense
approximation of the set of the best trade-off solutions. Analysis to perform were suggested together
with typical questions they may contribute to answer. Two different examples were used to illustrate the
potential of the approach: the study of a simulated flapping wing aircraft and the study of basal ganglia
brain nuclei models. On the flapping wing aircraft model, the method has highlighted results compatible
with the literature for medium to high speeds and non realistic results for low speeds, suggesting to focus
further work on this particular point. Likewise, three kinematic parameters revealed to be critical for the
minimum energy solutions, opening the way to a reduced model design. On the basal ganglia brain nuclei,
the method revealed that the most biologically plausible solutions are also those that are the closest to
the functionality attributed to this brain structure. The method also highlighted the importance of a
particular connection, whose importance is debated in the neuroscience community and thus suggesting
important new hypothesis on its potential use. Finally, a comparison of two brain models using the multi-
objective method was performed and the model including the most recent neuroanatomical knowledge
dominated the other, thus confirming the importance of the new modeled structures. For the two models,
all these results were directly deduced after an analysis of the data generated by the multi-objective
evolutionary algorithm.
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