
Thèse de Doctorat
de l’université Pierre et Marie Curie

Spécialité : Informatique (EDITE)

Présentée par : M. Antoine Cully

Soutenue le : 21 Décembre 2015

Pour obtenir le grade de
Docteur de l’Université Pierre et Marie Curie

Creative Adaptation through
Learning

Rapporteurs Marc Schoenauer - INRIA Saclay - Île-de-France
David Filliat - ENSTA - ParisTech

Examinateurs Raja Chatila - Univ. Pierre et Marie Curie - ISIR
Jan Peters - Technische Universität Darmstadt
Jonas Buchli - ETH Zurich

Invitée Eva Cruck - Direction Générale de l’Armement
Agence Nationale de la Recherche

Directeur Stéphane Doncieux - Univ. Pierre et Marie Curie - ISIR
Co-encadrant Jean-Baptiste Mouret - Univ. Pierre et Marie Curie - ISIR

INRIA Nancy - Grand Est

French Abstract

Les robots ont profondément transformé l’industrie manufacturière et sont suscepti-
bles de délivrer de grands bénéfices pour la société, par exemple en intervenant sur
des lieux de catastrophes naturelles, lors de secours à la personne ou dans le cadre
de la santé et des transports. Ce sont aussi des outils précieux pour la recherche
scientifique, comme pour l’exploration des planètes ou des fonds marins. L’un
des obstacles majeurs à leur utilisation en dehors des environnements parfaitement
contrôlés des usines ou des laboratoires, est leur fragilité. Alors que les animaux
peuvent rapidement s’adapter à des blessures, les robots actuels ont des difficultés
à faire preuve de créativité lorsqu’ils doivent surmonter un problème inattendu: ils
sont limités aux capteurs qu’ils embarquent et ne peuvent diagnostiquer que les
situations qui ont été anticipées par leur concepteurs.

Dans cette thèse, nous proposons une approche différente qui consiste à laisser
le robot apprendre de lui-même un comportement palliant la panne. Cependant, les
méthodes actuelles d’apprentissage sont lentes même lorsque l’espace de recherche
est petit et contraint. Pour surmonter cette limitation et permettre une adaptation
rapide et créative, nous combinons la créativité des algorithmes évolutionnistes avec
la rapidité des algorithmes de recherche de politique (policy search).

Notre première contribution montre comment les algorithmes évolutionnistes
peuvent être utilisés afin de trouver, non pas une solution, mais un large ensemble
de solutions à la fois performantes et diverses. Nous appelons ces ensembles de
solutions des répertoires comportementaux (behavioral repertoires). En découvrant
de manière autonome ces répertoires comportementaux, notre robot hexapode a été
capable d’apprendre à marcher dans toutes les directions et de trouver des milliers
de façons différentes de marcher. A notre sens, ces répertoires comportementaux
capturent la créativité des algorithmes évolutionnistes.

La seconde contribution que nous présentons dans ce manuscrit combine ces
répertoires comportementaux avec de l’optimisation Bayesienne. Le répertoire com-
portemental guide l’algorithme d’optimisation afin de permettre au robot endom-
magé de réaliser des tests intelligents pour trouver rapidement un comportement
de compensation qui fonctionne en dépit de la panne. Nos expériences démontrent
que le robot est capable de s’adapter à la situation moins de deux minutes malgré
l’utilisation d’un grand espace de recherche et l’absence de plan de secours préétab-
lis. L’algorithme a été testé sur un robot hexapode endommagé de 5 manières
différentes, comprenant des pattes cassées, déconnectées ou arrachées, ainsi que sur
un bras robotisé avec des articulations endommagées de 14 façons différentes.

Pour finir, notre dernière contribution étend cet algorithme d’adaptation afin
de pallier trois difficultés qui sont couramment rencontrées en robotique: (1) per-
mettre de transférer les connaissances acquises sur une tâche afin d’apprendre plus
rapidement à réaliser les tâches suivantes, (2) être robuste aux solutions qui ne
peuvent pas être évaluées sur le robot (pour des raisons de sécurité par exemple), et

ii

qui sont susceptibles de pénaliser les performances d’apprentissage et (3) adapter
les informations reçues a priori par le robot, qui peuvent être trompeuses, afin de
maximiser leur utilité. Avec ces nouvelles propriétés, notre algorithme d’adaptation
a permis à un bras robotisé endommagé d’atteindre successivement 20 cibles en
moins de 10 minutes en utilisant uniquement les images provenant d’une caméra
placée à une position arbitraire et inconnue du robot.

A travers l’ensemble de cette thèse, nous avons mis un point d’honneur à con-
cevoir des algorithmes qui fonctionnent non seulement en simulation, mais aussi en
réalité. C’est pourquoi l’ensemble des contributions présentées dans ce manuscrit
ont été testées sur au moins un robot physique, ce qui représente l’un des plus
grands défis de cette thèse. D’une manière générale, ces travaux visent à apporter
les fondations algorithmiques permettant aux robots physiques d’être plus robustes,
performants et autonomes.

English Abstract
Robots have transformed many industries, most notably manufacturing, and have
the power to deliver tremendous benefits to society, for example in search and
rescue, disaster response, health care, and transportation. They are also invaluable
tools for scientific exploration of distant planets or deep oceans. A major obstacle
to their widespread adoption in more complex environments and outside of factories
is their fragility. While animals can quickly adapt to injuries, current robots cannot
“think outside the box” to find a compensatory behavior when they are damaged:
they are limited to their pre-specified self-sensing abilities, which can diagnose only
anticipated failure modes and strongly increase the overall complexity of the robot.

In this thesis, we propose a different approach that considers having robots learn
appropriate behaviors in response to damage. However, current learning techniques
are slow even with small, constrained search spaces. To allow fast and creative
adaptation, we combine the creativity of evolutionary algorithms with the learning
speed of policy search algorithms.

In our first contribution, we show how evolutionary algorithms can be used to
find, not only one solution, but a set of both high-performing and diverse solutions.
We call these sets of solutions behavioral repertoires and we used them to allow
a legged robot to learn to walk in every direction and to find several thousands
ways to walk. In a sense, these repertoires capture a portion of the creativity of
evolutionary algorithms.

In our second contribution, we designed an algorithm that combines these be-
havioral repertoires with Bayesian Optimization, a policy search algorithm. The
repertoires guide the learning algorithm to allow damaged robots to conduct in-
telligent experiments to rapidly discover a compensatory behavior that works in
spite of the damage. Experiments reveal successful adaptation in less than two
minutes in large search spaces and without requiring self-diagnosis or pre-specified
contingency plans. The algorithm has been tested on a legged robot injured in five
different ways, including damaged, broken, and missing legs, and on a robotic arm
with joints broken in 14 different ways.

Finally, in our last contribution, we extended this algorithm to address three
common issues in robotics: (1) transferring knowledge from one task to faster learn
the following ones, (2) dealing with solutions that cannot be evaluated on the robot,
which may hurt learning algorithms and (3) adapting prior information that may
be misleading, in order to maximize their potential utility. All these additional
features allow our damaged robotic arm to reach in less than 10 minutes 20 targets
by using images provided by a camera placed at an arbitrary and unknown location.

Throughout this thesis, we made a point of designing algorithms that work not
only in simulation but also in reality. Therefore, all the contributions presented in
this manuscript have been evaluated on at least one physical robot, which represents
one of the biggest challenges addressed in this thesis. Globally, this work aims to
provide the algorithmic foundations that will allow physical robots to be more
robust, effective and autonomous.

Acknowledgement

A PhD thesis is quite an adventure and even if there is a main character, it is, in
fact, teamwork. With these few lines, I would like to warmly thank all my team-
mates for their help and their support that allowed me to enjoy this intense journey.

Like in every journey, some moments have been more difficult than others.
Fortunately, my dear Coralie was always present to cheer me on during time of
doubt. She has also been extremely patient during the long evenings and nights
that I spent to finish a paper, an experiment or simply to find a bug in my code.
She has been my highest support during all these 3 years and the manuscript that
you are currently reading would not have been the same without her.

It goes without saying that this thesis would also not have been the same
without my supervisor Jean-Baptiste Mouret. He taught me everything I know in
computer science and in scientific research in general. He believed in me and gave
me enough freedom to explore my own ideas, while keeping a close eye on my pro-
gresses to prevent me to go on bad paths. He made me face challenges that I never
expected to be able to accomplish. The current young scientist that I am today is
undoubtedly the fruit of his supervision and I am proud of being one of his students.

The quality of supervision that I had during my thesis is also highly due to
Stéphane Doncieux, who gave us the means and freedom to investigate our ideas
within a fantastic working environment that we name AMAC team. His pieces
of advice have always been extremely valuable and I really enjoyed our fruitful
discussions about dreams in robotics.

Within the AMAC team and the ISIR laboratory in general, I had the luck to
be in an excellent working environment that both stimulated and encouraged me.
In addition to the environment, I had outstanding colleagues. The researchers of
the team have always been here to share their own experience, to ask questions or
to give pieces of advice. They are the heart of this big family that allows young
PhD-students to grow up and I wish to be able, at one point, to help, support, and
to advise young students as they did with me.

In particular, I would like to thank the marvelous members of the “famous J01”
and affiliates (the list is too large, but they will recognise themselves). Several
generations of PhD-students passed, but always with a lot of laughs, jokes and
pranks. In addition to be my colleagues, most of them are today my friends.

The only regret that I have about this thesis is that, at the end, I have to leave
this exceptional team.

vi

A good preparation is required before every adventure, and for my prepa-
ration before the PhD-Thesis, I would like to thank all my teachers from
the Polytech’Paris-UPMC engineer school (who are, for most of them, also
my colleagues in the ISIR lab). In addition to teach me their knowledge, they
also exchange with me their passion about robotics and the profession of researcher.

Even if they do not fully understood what I was doing, I would like to thank
my family, who has always encouraged me to follow my desires and gave me the
means to accomplish them.

I would like to thank the members of the jury of my PhD defense for accepting
to be part of the jury. Their final judgement will validate the fruit of three intense
and fascinating years of work and symbolize the end of this fabulous adventure.

Finally, I would like also to thank the DGA and the University Pierre and
Marie Curie, who gave me the opportunity to do this fantastic journey.

Thank you for this incredible journey!

Contents

1 Introduction 1

2 Background 7
2.1 Introduction . 7
2.2 Evolutionary algorithms . 10

2.2.1 Principle . 10
2.2.2 Multi-objective optimization 15
2.2.3 Novelty Search . 18
2.2.4 Evolutionary robotics . 20
2.2.5 The Reality Gap problem and the Transferability approach . 22
2.2.6 Partial conclusion . 23

2.3 Policy search algorithms . 24
2.3.1 Common principles . 24
2.3.2 Application in behavior learning in robotics 33
2.3.3 Partial conclusion . 34

2.4 Bayesian Optimization . 35
2.4.1 Principle . 35
2.4.2 Gaussian Processes . 35
2.4.3 Acquisition function . 42
2.4.4 Application in behavior learning in robotics 44
2.4.5 Partial conclusion . 46

2.5 Conclusion . 47

3 Behavioral Repertoire 49
3.1 Introduction . 50

3.1.1 Evolving Walking Controllers 50
3.1.2 Evolving behavioral repertoires 52

3.2 The TBR-Evolution algorithm . 54
3.2.1 Principle . 54
3.2.2 Experimental validation . 58

3.3 The MAP-Elites algorithm . 76
3.3.1 Principle . 76
3.3.2 Experimental validation . 80

3.4 Conclusion . 87

4 Damage Recovery 89
4.1 Introduction . 90

4.1.1 Learning for resilience . 91
4.1.2 Resilience with a self-model 92
4.1.3 Dealing with imperfect simulators to make robots more robust 95

viii Contents

4.2 The T-Resilience algorithm . 97

4.2.1 Motivations and principle . 97

4.2.2 Method description . 97

4.2.3 Experimental validation . 99

4.2.4 Results . 104

4.2.5 Partial conclusion . 109

4.3 The Intelligent Trial and Error algorithm 109

4.3.1 Motivations and principle . 109

4.3.2 Method description . 112

4.3.3 Experimental validation . 115

4.3.4 Partial conclusion . 139

4.4 Conclusion . 140

5 Knowledge Transfer, Missing Data, and Misleading Priors 143

5.1 Introduction . 144

5.2 Knowledge Transfer . 145

5.2.1 Motivations . 145

5.2.2 Principle . 146

5.2.3 Method Description . 148

5.2.4 Multi-Channels Regression with Bayesian Optimization . . . 151

5.2.5 Experimental Validation . 157

5.3 Missing Data . 165

5.3.1 Motivations . 165

5.3.2 Principle . 165

5.3.3 Method Description . 167

5.3.4 Experimental Validation . 169

5.4 Misleading Priors . 172

5.4.1 Motivations . 172

5.4.2 Principle . 173

5.4.3 Method Description . 173

5.4.4 Experimental Validation . 175

5.5 Evaluation on the physical robot . 180

5.5.1 The whole framework . 180

5.5.2 Experimental setup . 181

5.5.3 Experimental Results . 184

5.6 Conclusion . 184

6 Discussion 187

6.1 Using simulations to learn faster . 188

6.2 Gathering collections of solution into Behavioral Repertoires 190

6.3 Exploring the information provided by Behavioral Repertoires 193

7 Conclusion 195

Contents ix

Bibliography 199

A The Hexapod Experiments 227
A.1 The Hexapod Robot . 227
A.2 The Hexapod Genotypes and Controllers 227

A.2.1 The first version (24 parameters) 227
A.2.2 The second version (36 parameters) 229

B The Robotic Arm experiments 231
B.1 The Robotic Arm:

First setup . 231
B.2 The Robotic Arm:

Second setup . 232
B.3 The Arm Controller . 233

C Parameters values used in the experiments 235
C.1 TBR-Evolution experiments . 235
C.2 T-Resilience experiments . 236
C.3 Intelligent Trial and Error experiments 236

C.3.1 Experiments with the hexapod robot 236
C.3.2 Experiments with the robotic arm 236

C.4 State-Based BO with Transfer, Priors and blacklists 237

D Other 239
D.1 Appendix for the T-resilience experiments 239

D.1.1 Implementation details for reference experiments 239
D.1.2 Validation of the implementations 242
D.1.3 Median durations and number of tests 244
D.1.4 Statistical tests . 244

D.2 Methods for the Intelligent Trial and Error algorithm and experiments245
D.2.1 Notations . 245
D.2.2 Hexapod Experiment . 245
D.2.3 Robotic Arm Experiment . 248
D.2.4 Selection of parameters . 249
D.2.5 Running time . 251

D.3 Notation for the State-Based BO with Transfer, Priors and blacklists
algorithms . 253

Chapter 1

Introduction

In 1950, Alan Turing proposed to address the question “can machines think?” via
an “imitation game”, which aims to assess machines’ ability to exhibit behaviors
that are indistinguishable from those of a human (Turing, 1950). In practice, this
game involves a human (the evaluator) that has to distinguish between a human
and a machine by dialoguing with them via a keyboard and a screen interface.
The objective of Alan Turing was to substitute the initial question “can machines
think?” by “Can a machine communicate in a way that makes it indistinguishable
from a human”. This question and this reasoning had, and still has, a strong impact
in artificial intelligence (Warwick and Shah, 2015; Russell et al., 2010). However, a
robot is not only a mind in a computer, it is an agent “that has a physical body”
(Pfeifer and Bongard, 2007) and “that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors” (Russell et al.,
2010). In order to transpose Turing’s approach into robotics, his question could be
considered from a more general point of view: “Can a robot act in a way that makes
it indistinguishable from a human?”. Without directly considering humans, we can
wonder: can robots act more like animals than like current machines (Brooks,
1990)? But, what is acting like an animal? Put differently, what distinguishes a
robot from an animal? In this manuscript, we will consider that one of the most
striking differences between animals and robots is the impressive adaptation abilities
of animals (Meyer, 1996); as a result, we will propose new algorithms to reduce this
difference.

After more than 50 years of research in robotics, several breakthroughs have
been achieved. For example, a surgeon located in New York operated on a patient
in France with a transatlantic robot-assisted telesurgery (Marescaux et al., 2001).
The recent advances in 3D printing allowed researchers to automatically design and
manufacture robotic lifeforms from their structure to their neural network with an
evolutionary algorithm (Lipson and Pollack, 2000). The robots from Boston Dy-
namics, like the Bigdog (which is robust to uneven terrains, Raibert et al. (2008)),
the Cheetah (which runs at 29 mph (46 km/h)) and Atlas (which is an agile an-
thropomorphic robot) or the Asimo robot from Honda are good examples of very
sophisticated systems that show impressive abilities. These noticeable advances
suggest that robots are promising tools that can provide large benefits to the so-
ciety. For example, we can hope that robots will one day be able to substitute
humans in the most dangerous tasks they have to perform, like intervening in nu-
clear plants after a disaster (Nagatani et al., 2013) or in search and rescue missions
after earthquakes (Murphy, 2004; Murphy et al., 2008).

2 Introduction

While a few robots start to leave the well-controlled environments of factories
to get in our homes, we can observe that most of them are relatively simple robots.
More advanced robots, that is, more versatile robots, have the power to deliver
tremendous benefits to society. Nonetheless, a slight increase in versatility typ-
ically results in a large increase in the robots’ complexity, which, in turn, makes
such versatile robots much more expensive and much more damage-prone than their
simpler counterparts (Sanderson, 2010; Carlson and Murphy, 2005). This “expo-
nential complexity” is a major obstacle to the widespread adoption of robots in
complex environments and for complex missions.

In more concrete terms, the success of robotic vacuum cleaners and lawn mowers
mainly stems from the simplicity of their task, which is reflected in the simplicity of
the robots: they can perform only two types of action (moving forward/backward
or turning); they perceive only one thing (the presence of obstacles); and they react
with predefined behaviors to the encountered situations (Brooks et al., 1986; Brooks,
1990). With more complex robots, the situation is more complicated because they
involve more complex behaviors and require a deeper understanding of the context.
For example, a robot in a search and rescue mission (Murphy et al., 2008) has to
deal with uneven terrains and to locate injured people. In order to be effective,
it will have to move obstacles, to repatriate victims and to cooperate with other
robots. With all these tasks, these robots may face an almost infinite number of
situations, like different types of terrains, different types of disasters or different
types of injured people. In other words, while it is possible to foresee most of
the situations a simple robot (like a vacuum cleaner) may face, it is unfeasible
to predefine how complex robots have to react in front of the quasi infinite set
of situations they may encounter, unless having a team of engineers behind each
robot1.

In addition, the high complexity of versatile robots is bound to increase their
fragility: each additional actuator or sensor is potentially a different way for a robot
to become damaged. For example, many robots sent in search and rescue missions
have been damaged and unable to complete their mission. In 2005, two robots
were sent to search for victims after a mudslide near Los Angeles (La Conchita).
Unfortunately, they became unable to continue their missions after only two and
four minutes because of a root in the wet soil and a thick carpet in a house (Murphy
et al., 2008). Similarly, after a mine explosion in West Virginia (Sago in 2006):
the robot sent to find the victims became stuck on the mine rails after only 700
meters (Murphy et al., 2008). Five years later, the same kind of scenario repeated
several times after the nuclear accident at the Fukushima nuclear power plants
that happened in 2011. For example, one robot has been lost in 2011 because its
communication cable got snagged by the piping of the plant (Nagatani et al., 2013)
and a second robot has been lost in 2015 after a fallen object blocked its path. In all
these examples, the robots have been abandoned and the missions aborted, which

1For example, teams of engineers are involved in the control-loops (DeDonato et al., 2015) of
robots that participate to the DARPA Robotics Challenge (Pratt and Manzo, 2013) in order to
allow them to react to the situations they have to face.

3

can lead to dramatic consequences when lives are at stake.
The question of fault tolerance is a classic topic in engineering, as it is a common

problem in aviation and aerospace systems. Current damage recovery in deployed
systems typically involves two phases: (1) performing self-diagnosis thanks to the
embedded sensors and then (2) plan or select the best contingency plan according
to the diagnosis (Kluger and Lovell, 2006; Visinsky et al., 1994; Koren and Krishna,
2007). The side effect of this kind of approach is that it requires anticipating all
the damage conditions that may occur during the robot’s mission. Indeed, each
type of damage that should be diagnosed requires having the proper sensor at
the right place, similarly to a doctor who uses different tools to diagnose different
diseases, electrocardiogram to detect heart diseases and MRI for cancer cells. As a
consequence, the robot’s abilities to diagnose a damage condition directly depend
on its embedded sensors. As the robots and their missions increase in complexity, it
becomes almost unfeasible to foresee all the damage conditions that may occur and
to design the corresponding diagnostic modules and contingency plans. This is the
beginning of a vicious circle that prevents us from keeping the costs reasonable, as
each of these modules can be damaged too and may thus require additional sensors.

Animals, and probably humans, respond differently when they face an unex-
pected situation or when they are injured (Jarvis et al., 2013; Fuchs et al., 2014):
they discover by trial and error a new behavior. For example, when a child has a
sprain ankle, he is able to discover, without the diagnosis of a doctor, that limping
minimizes pain and allows him to go back home.

The objective of the algorithmic foundations presented in this manuscript is to
allow robots to do the same: making robots able to learn on their own how to deal
with the different situations they may encounter. With improved learning abili-
ties, robots will become able to autonomously discover new behaviors in order to
achieve their mission or to cope with a damage. The overall goal of this promising
approach is to help develop more robust, effective, autonomous robots by removing
the requirement for engineers to anticipate all the situations that robots may en-
counter. It could, for example, enable the creation of robots that can help rescuers
without requiring their continuous attention, or making easier the creation of per-
sonal robotic assistants that can continue to be helpful even when a part is broken.
Throughout this manuscript, we will mainly consider the challenge of damage re-
covery, though adapting to other unforeseen situations that do not involve damage
would be a natural extension of this work.

In order to effectively discover new behaviors, learning processes have to be both
fast and creative. Being able to learn quickly (in terms of both time and number
of evaluations) new behaviors is critical in many situations. The first reason is
that most autonomous robots run on batteries, and as a consequence, it is likely
that a robot that spends too much time learning new behaviors will run out of
battery before achieving its mission. The second reason is that many situations
require reacting quickly, typically after a disaster. Therefore, we cannot have robots
wasting hours trying to learn new behaviors when people’s lives are in danger.
Creativity, which “ involves the production of novel, useful [solutions]” (Mumford,

4 Introduction

2003), is an important property for learning algorithms, as it influences the number
of situations in which systems are able to find appropriate solutions. This property
requires algorithms to explore large search spaces to discover behaviors that are
different from what they already know (Lehman and Stanley, 2011a). Transposed
to robotics, the creativity of the algorithm determines the number of unforeseen
situations that the robot can handle. For example, riding a bicycle is different
from walking or limping. To allow a robot to adapt to a large variety of situations,
a learning algorithm has to be able to find all these different types of behaviors,
regardless the initial or current behavior of the robot.

Unfortunately, speed and creativity are most of the time antagonistic properties
of learning algorithms because exploring a large search space, that is, searching for
creative solutions, requires a large amount of time. In the next chapter (chapter 2),
we review the different families of learning algorithms and compare their creativity
and learning speed. We focus our review on evolutionary algorithms (Eiben and
Smith, 2003) and Policy Search methods (Kober et al., 2013) because they are
the main families of algorithms used to learn low-level behaviors (motor skills) in
robotics.

In chapter 3, we present how the creativity of evolutionary algorithms can be
employed to discover large collections of behaviors. For example, we show how a
legged robot can autonomously discover several hundred behaviors that allow it
to walk in every direction. In other experiments, the same robot also discovered
several thousand ways of walking in a straight line. We call these large collections
of behaviors Behavioral Repertoires.

In the chapter 4, we apply learning algorithms for on-line damage recovery.
One of the main challenges is to reduce the required time to adapt while keeping
the search space as open as possible to be able to deal with a large variety of
situations. In the first part of this chapter, we show how combining simulations
and physical experiments allows the algorithm to transfer the majority of the search
space exploration in simulation. In the second part of this chapter, we highlight how
behavioral repertoires, introduced in the previous chapter, can be combined with a
policy search algorithm to guide the exploration process. With these two principles,
we propose an algorithm that couples the creativity of evolutionary algorithm and
the speed of policy search algorithms to allow damaged robots to conduct intelligent
experiments to rapidly discover compensatory behaviors that work in spite of the
damage situations. For example, our experiments show a hexapod robot and a
robotic arm that recover from many damage conditions in less than 2 minutes, that
is, much faster than the state of the art.

The last chapter (chapter 5) extends our damage recovery algorithm to deal with
3 issues that frequently impact robotic experiments: (1) transferring knowledge
from one task to learn the following ones faster, (2) dealing with solutions that
cannot be evaluated on the robot, which may hurt learning algorithms and (3)
adapting prior information that may be misleading, in order to maximize their
potential utility. With these extensions, our algorithm aims to become a generic
framework that can be used with a large variety of robots to learn and adapt in

5

numerous situations.
Before the conclusion of this manuscript, we discuss the current limitations of

our methods and the different approaches that we plan to investigate in order to
circumvent them. In this last chapter (chapter 6), we also highlight the links that
may exist between our methods and observations made in neuroscience.

Chapter 2

Background

Contents
2.1 Introduction . 7

2.2 Evolutionary algorithms . 10

2.2.1 Principle . 10

2.2.2 Multi-objective optimization 15

2.2.3 Novelty Search . 18

2.2.4 Evolutionary robotics . 20

2.2.5 The Reality Gap problem and the Transferability approach . 22

2.2.6 Partial conclusion . 23

2.3 Policy search algorithms . 24

2.3.1 Common principles . 24

2.3.2 Application in behavior learning in robotics 33

2.3.3 Partial conclusion . 34

2.4 Bayesian Optimization . 35

2.4.1 Principle . 35

2.4.2 Gaussian Processes . 35

2.4.3 Acquisition function . 42

2.4.4 Application in behavior learning in robotics 44

2.4.5 Partial conclusion . 46

2.5 Conclusion . 47

2.1 Introduction

Learning algorithms aim to provide systems with the ability to acquire knowledge
and skills to solve a task without being explicitly programmed with a solution. For
example, Mitchell (1997) proposed this definition: “The field of machine learning is
concerned with the question of how to construct computer programs that automati-
cally improve with experience.” Learning algorithms are traditionally divided into
three categories of algorithms depending on the quantity of knowledge about the
solutions that is provided to the system (Haykin, 1998; Russell et al., 2010): (1) In
supervised learning, a “teacher” provides to the system a error signal that reflects
the difference between the output value and the expected value. These algorithms

8 Background

are typically applied on classification problems in which the system has a database
of inputs examples and corresponding outputs that the system should reproduce.
Based on these examples the goal of the algorithm is to learn a generalization of
these examples to deal with unknown examples. Conversely, (2) in unsupervised
learning (Hastie et al., 2009), there is no “teacher” and the system has no informa-
tion about the consequences (or outputs) of its choices. Consequently, the system
has to find hidden structures in the obtained data in order to distinguish them.
Clustering algorithms (Xu et al., 2005) are a good example of unsupervised learn-
ing algorithms. They use the spatial distribution of the data to infer clusters that
are likely to correspond to different classes. (3) Reinforcement Learning algorithms
(Kober et al., 2013) are in a way situated in between these two families of algorithms.
While the correct inputs/outputs pairs are never presented, the “teacher” provides
a qualitative feedback after the system has performed a sequence of actions. Most
of the time, this feedback is less informative than in supervised learning algorithms.
It can be for example a reward value, which does not indicate the actual solution
but rather states if the performed action is better or not than the previous ones.

More recently, several other families of learning algorithms have emerged and
do not fit well in these three categories. For example, intrinsically motivated learn-
ing (Oudeyer et al., 2007; Baldassarre and Mirolli, 2013; Delarboulas et al., 2010),
in which the system defines on his own the value of its actions, can be considered
as both an unsupervised learning algorithm because there is no teacher, and as a
reinforcement learning algorithm because the system tries to maximize the feed-
back provided by its internal motivation modules. Another example of a recent
approach that does not fit in these categories is Transfer learning (Pan and Yang,
2010; Thrun, 1996). This approach consists in transferring knowledge acquired on
previous tasks to new ones. It consequently shares similarities with both super-
vised and unsupervised learning algorithms, as the former task is most of the time
learned thanks to a “teacher”, while the links with the following tasks have to be au-
tonomously inferred by the system. Imitation learning (Billard et al., 2008; Schaal,
1999) is another family of algorithms that can be situated on the borderlines of the
traditional classifications. In this case, the system aims to reproduce a movement
showed by a “teacher”, for example via kinesthetic teaching. This technique shares
similarities with supervised learning algorithms, as there is a “teacher” showing the
solution. However, the link between the recorded data and the corresponding motor
commands is unknown and the robot has to learn to reproduce the movement by
minimizing a cost value, like in reinforcement learning, which corresponds to the
differences between the taught movement and the robot’s behavior.

Learning a behavior in an unforeseen situation, like after mechanical damage,
is typically a reinforcement learning problem, because the robot has to get back its
initial performance and no “teacher” can provide examples of good solutions. The
robot has to learn on its own how to behave in order to maximize its performance
by using its remaining abilities.

The definition of reinforcement learning (RL) from Sutton and Barto (1998a)
states that: “Reinforcement learning is learning what to do so as to maximize a

2.1. Introduction 9

numerical reward signal. The learner is not told which actions to take, as in most
forms of machine learning, but instead must discover which actions yield the most
reward by trying them.” In other words, a RL algorithms aims to solve a task
formulated as a cost function that has to be minimized or as a reward (also called
quality or performance) function that has to be maximized. Based on this function
(for instance named f), we can define a reinforcement learning algorithm as an
algorithm that solves this equation (considering f as a reward function):

x∗ = arg max
x

f(x) (2.1)

The goal of the algorithm is thus to find the politic or behavior x∗ that maximizes
the reward function (Sutton and Barto, 1998a; Russell et al., 2010).

We can see here that a RL problem can be formulated as a standard optimiza-
tion problem. However, when learning a behavior, the optimized function as well
as its properties and gradient are typically unknown. A typical example is a legged
robot learning to walk: it has to learn how to move its legs in order to keep balance
and to move. In this context, the reward function can be for example the walking
speed and the solutions can be parameters that define leg trajectories or synaptic
weights of neural networks that control the motors. The function that maps these
parameters to the reward value is unknown. Consequently, in order to acquire infor-
mation about this function, the system has to try potential solution and to record its
performance. This type of function is called black-box functions and makes impos-
sible to use standard optimization algorithms, like linear or quadratic programming
(Dantzig, 1998; Papadimitriou and Steiglitz, 1998) or the Newton’s optimization
method (Avriel, 2003), which require the problem to be linear/quadratic or to have
access to the derivative of the function.

Reinforcement learning algorithms have been designed to deal with this kind of
function and gather several sub-families of techniques, like Policy Search algorithms
(Kober et al., 2013; Deisenroth et al., 2013b) or Differential Dynamic Programming
(Bertsekas et al., 1995; Sutton et al., 1992). However, the name reinforcement
learning refers most of the time to the first family of RL algorithms that have
been proposed, making the distinction between the general RL family and these
traditional algorithms sometimes difficult and confusing. These algorithms aim to
associate to every state of the robot to a reward (it corresponds to the “value func-
tion”) and then use this information to determine the optimal policy to maximize
the reward. This family of algorithms is for example composed by the Q-learning
algorithm (Watkins, 1989; Watkins and Dayan, 1992), the State-Action-Reward-
State-Action algorithm (SARSA, Rummery and Niranjan (1994)) or the Time Dif-
ference Learning algorithm (TD-Learning, Sutton and Barto (1998b)). However,
the vast majority of these algorithms are designed to work with small state spaces
(for example 2D locations in maze experiments, Thrun (1992)) and with discretized
state and action spaces (for example discrete actions can be: move up, move down,
move right, move left, etc.).

While these traditional reinforcement algorithms are beneficial to learn discrete
high-level tasks (like in path-planning problem (Singh et al., 1994), to learn to

10 Background

play video games (Mnih et al., 2015)); learning low-level behaviors or motor skills
in robotics (like walking gaits or reaching movements) involves most of the time
using continuous and high dimensional state and action spaces. These aspects
contrast with the constraints of traditional RL algorithms and this is why most
of applications of RL in robotics use Policy Search algorithms (PS) (Kober et al.,
2013), which are known to have better scalability and to work in continuous domains
(Sutton et al., 1999; Deisenroth et al., 2013b).

Another family of algorithms widely used to learn behaviors in robotics are
the evolutionary algorithms (EAs, Eiben and Smith (2003)). These algorithms are
most of the time considered apart from the general family of reinforcement learning
algorithms, because they come from different concepts and ideas. However, we can
underline that EAs fit perfectly into the definition of RL algorithms presented above.
They are used to optimize a fitness function, which is similar to a cost or a reward
function, and they test different potential solutions (gathered in a population) to
gather information about this unknown function.

In this chapter, we will present in detail both Evolutionary algorithms and Policy
Search algorithms, as they are widely used to learn low-level behaviors in robotics.
In the last part of this chapter we provide a concise tutorial on Bayesian Optimiza-
tion, a model-based policy search algorithm that is considered as the state-of-the-art
in learning behaviors in robotics. The objective of this overview is to get a global
picture of the advantages and the limitations of each of these algorithms, which
will be useful to design a learning algorithm that will allow robots to adapt to
unforeseen situations. We will in particular focus our attention on their ability to
find creative solutions and the number of trials on the robot required to find these
solutions. The creativity of an algorithm is related to its ability to perform a global
optimization and to the size of the search space they can deal with. Such property
is important as a behavior that works in spite of a damage may be substantially
different from the robot’s initial behaviors. For example, a six-legged robot with a
damaged leg will walk differently with its 5 remaining legs than when it was intact.
The learning speed of the algorithm is also a very important aspect of learning
algorithms as it directly impacts the autonomy of the robot. A robot requiring to
test hundreds of behaviors to find a solution is likely to run out of battery or to
aggravate its condition.

2.2 Evolutionary algorithms

2.2.1 Principle

Evolutionary Algorithms (EAs) take inspiration from the synthetic theory of evo-
lution. This theory, which emerged in the 30’s, combines the Darwinian theory of
evolution (Darwin, 1859), the Mendelian theory of heredity (Mendel, 1865) and the
theory of population genetics (Haldane, 1932). It details the mechanisms that drive
the diversity of individuals among a population and those that allow some traits to
be transferred from one individual to another though heredity. The synthetic the-

2.2. Evolutionary algorithms 11

ory of evolution mainly relies on the idea that the DNA encodes the characteristics
of the individual and that each DNA sequence is different. During the reproduc-
tion process, several sequences are combined and mutated in order to create new
individual, which promote the diversity of individuals in the population.

Evolutionary computation algorithms tend to employ an abstract representation
of this theory in order to use the adaptation abilities of natural evolution to a large
set of problems. This abstraction stands on 4 principles:

• Diversity of individual: Each individual, even from the same specie, is differ-
ent.

• Struggle for life: Every individual cannot survive because the natural re-
sources are limited. Consequently, the individuals have to compete to survive.

• Natural selection: The individuals survive because they have particular char-
acteristics that make them more adapted.

• Heredity of traits: The surviving individuals share some of their characteristics
to their descendants.

EAs are used to solve a large panel of optimization, design and modeling prob-
lems (Eiben and Smith, 2015). For example, they can generate structures (of neural
networks,Stanley and Miikkulainen (2002), or of objects, Hornby et al. (2011); Lip-
son and Pollack (2000)), images (Secretan et al., 2008; Sims, 1991), weights of
neural networks (Floreano and Mondada, 1994; Whitley et al., 1990; Devert et al.,
2008), virtual creatures (Sims, 1994; Lehman and Stanley, 2011b), robotic con-
troller (Zykov et al., 2004; Godzik et al., 2003), soft robots (Cheney et al., 2013) or
chemistry reactions (Gutierrez et al., 2014; Dinh et al., 2013). It is also very inter-
esting to mention that, while the EAs come from the synthetic theory of evolution,
EAs are also promising tool to study natural evolution (Smith, 1992; Lenski et al.,
1999). For example, Clune et al. (2013) used evolutionary algorithms to investigate
the evolutionary origins of modularity in biological networks. In other examples,
EAs have also been used to explain the emergence of collaborative behaviors like
cooperation (Bernard et al., 2015), altruism (Montanier and Bredeche, 2013; Waibel
et al., 2011) or communication (Floreano et al., 2007; Mitri et al., 2009; Wischmann
et al., 2012).

These application examples, while being incomplete, show that the domain of
EAs is very large. However, it is interesting to note that most of them rely on
the same principles. In general, one iteration of EAs (called generation) involves 3
steps (Eiben and Smith, 2003). After the initialization (typically random) of the
population, (1) all the individuals of the population are evaluated on the problem
(see Fig. 2.1B) and are then ranked based on their quality (see Fig. 2.1C). (2)
the best individuals survive (see Fig. 2.1 E) while the others are likely to perish
(see Fig. 2.1 D). This selection process mimics the fact that each individual has to
compete in order to survive. (3) The surviving individuals are crossed and mutated
to create offspring individuals, which are then used to form a new population.

12 Background

A B C

D E

Figure 2.1: The main steps of evolutionary algorithms. All the population (A) is
evaluated on the task (B). Based on the recorded performance of the individuals
(fitness score), the population is sorted (C). The individuals that are in the bottom
of the ordering are removed from the population (E) while the others are mutated
and crossed in order to create a new population (D). This new population is then
used to repeat the process, which ends when a performance criterion is reached or
when a predefined number of generations has been executed.

2.2. Evolutionary algorithms 13

This 3-step process then repeats with the new population making it progressively
more adapted to the problem the algorithm is solving. The algorithm stops after
a particular amount of time (CPU time or number of evaluations) or after the
population has converged.

In the vast majority of work, EAs are employed to solve optimization problems
and they are typically well tailored to deal with black-box functions (Eiben and
Smith, 2003). The particularity of such functions is that no information about the
structure or gradient of the function is available. The algorithm can only supply a
potential solution and gets the corresponding value, making the optimization prob-
lem notably difficult. In EAs, the optimized function is called the fitness function
(Eiben and Smith, 2003):

Definition 1 (Fitness function) The fitness function represents the require-
ments the individuals have to adapt to. Mathematically, it is a function that takes
as an input a potential solution (also called an individual) and outputs a fitness
score that represents the quality of the individual on the considered problem.

The fitness score of an individual can be seen, from a biological point of view,
as its ability to survive in its environment. As describe below, this score has an
impact on the selection and reproduction processes. The potential solutions are
described thanks to a genotype that can be expanded into a phenotype.

Definition 2 (Genotype and Phenotype) The genotype encodes the informa-
tion that characterizes the individual. The phenotype is the expression of the infor-
mation contained in the genotype into an actual potential solution (that can be
applied to the problem). It corresponds to the observable and testable traits of
the individual. The conversion between the genotype and the phenotype is call the
genotype-phenotype mapping (Eiben and Smith, 2003).

For example, a genotype can be a set of numbers, while the phenotype corresponds
to an artificial neural network with synaptic weights parametrized by the values
contained in the genotype.

Each potential solution is thus defined by a genotype and its corresponding
phenotype, which can be evaluated through the fitness function. Several potential
solutions are gathered into a population, which is then evolved by the EA:

Definition 3 (Population) The population is a set of genotypes that represents
potential solutions. Over the numerous generations of the algorithm, the individuals
of the population will change and the whole population will adapt to the problem.

While most of EAs follow this general framework, they differ in the employed
genotypes and phenotypes and in the way they implement the selection, mutation
and crossover steps.

Definition 4 (Survivor selection) The Survivor selection mechanism selects
among the individuals of the population those that will survive based on their quality
(fitness score).

14 Background

Typically, some selection operators are based solely on the ranks (e.g., it selects the
10 first individuals), some others can involve random selection (e.g., tournament
selection, where two randomly selected individuals of the population compete and
only the best one is selected).

The selected individuals are then mutated and crossed in order to create the new
population that will be used for the next generation. The crossover and mutation
steps affect the information contained in the genotype in order to add variations in
the produced individuals:

Definition 5 (Crossover) The crossover operator merges information from sev-
eral parent individuals (typically two) into one or two offspring individuals.

The selection of the parent individuals often involves another selection step (called
Parent Selection operator, Eiben and Smith (2003)), which selects the potential
parents based on their quality. This mechanism aims to simulate the attractiveness
of the individuals in order to allow the better individuals to become parents of the
next generation.

Definition 6 (Mutation) The mutation operator produces variations in the off-
spring individuals by altering directly the information contained in the genotype.

These operators are typically stochastic, as the parts of the genomes that are altered
or combined and the value of the mutated genes are most of the time randomly de-
termined. We can also note that the use of the crossover operator is not mandatory,
for example we can note that most of modern EAs disable this operator and only
rely on the mutation operator (Stanley and Miikkulainen, 2002; Clune et al., 2013).

The main role of the cross-over and mutation operator is to make the popula-
tion explore the genotype space, while the role of the survivors and parents selection
operators is to promote the better individuals and to allow the population to pro-
gressively improve its quality over the generations. However, even if EAs have shown
impressive results and applications (Eiben and Smith, 2003), there is no proof of
optimality. Consequently, it is likely that the obtained solution is only a local opti-
mum, but this is a common issue with optimization algorithms (Papadimitriou and
Steiglitz, 1998).

From an historical point of view, we find behind the name “Evolutionary Al-
gorithms” or “Evolutionary Computation”, several families of algorithms that refer
to different combinations or implementations of the operators defined previously.
Some of these methods are designed for some genotype/phenotype in particular.
The most famous of these families are (De Jong, 2006):

• Genetic Algorithms: This family of algorithms is devoted to the evolution
of strings of characters or of numbers, which allows the algorithm to use
operators that are independent to the considered problem. The main source
of variation of the genotype is the crossover operator that combines parts
of individuals in order to create new ones. The usual selection operator of
this family consists in changing a constant proportion of the population (for
example 50%) with new individuals.

2.2. Evolutionary algorithms 15

• Evolutionary Strategies: This family of algorithms mainly differs from the
first one in its selection operator. In this case, the selection operator considers
both the current population and several new individuals. As a consequence,
only high performing new individuals are added to the population and the
proportion of elitism varies according to the quality of the new individuals.
The second difference with genetic algorithms is source of genotype variations,
which here mainly consists in random mutations. A famous Evolutionary
Strategy is CMA-ES (covariance matrix adaptation - evolutionary strategy,
Hansen (2006)).

• Evolutionary and genetic Programming: This family of algorithms aims to
evolve computer programs or mathematical functions to solve a predefined
task. The generated programs are most of the time finite state machines
(Fogel et al., 1966) or tree structures. The structure of the trees is also
evolved and each node is a sub-function (for example sin, cos) or an operator
(for example +,−) and each leaf is an input variable or a constant (Cramer,
1985; Koza, 1992; Schmidt and Lipson, 2009).

Nowadays, these distinctions become less and less clear and several new cat-
egories appeared like, for example, the Estimation of Distribution Algorithms
(EDA, Larranaga and Lozano (2002)), the Multi-Objective Evolutionary Algo-
rithms (MOEA, Deb (2001)) or the Ant Colony Optimization algorithms (ACO,
Dorigo and Birattari (2010)).

2.2.2 Multi-objective optimization

In some situations, a problem cannot be formalized as a single fitness function but
rather as several ones. For example, when designing a car; several features are
important like the cost, the consumption, and the maximum speed. One way to
solve this problem with EAs is to use a weighted sum of the different features and
to use it as the fitness function. Nevertheless, such strategy fixes the trade-off
between all the features of the potential produced cars. In other words, the weights
of the sum will define the position of the extremum of the fitness function. For
example, one configuration of this sum may favor the price of the car while some
other configurations may favor its speed or its cost. In such design process, it is
likely that the desired trade-off is initially unknown and may require re-launching
the optimization process each time the designers want another configuration.

One alternative is to look for all the possible trade-offs or more precisely all
the non-dominated trade-offs. This concept of dominance states that you cannot
improve one of the features of the obtained trade-offs without decreasing the others
ones. This notion comes from the definition of Pareto dominance (Pareto, 1896;
Deb, 2001):

Definition 7 (Pareto dominance) A solution (or individual) x1 is said to dom-
inate an other solution x2, if and only if both conditions 1 and 2 are true (see Fig.
2.2 A):

16 Background

• (1) The solution x1 is no worse than x2 in all the objectives.

• (2) The solution x1 is strictly better than x2 in at least one objective.

Definition 8 (Pareto front) Based on this dominance notion, we can define a
Pareto front, which is the set of all the non-dominated solutions (see Fig. 2.2 B).

One of the most used Multi-Objective Evolutionary Algorithm (MOEA) is the
Non-dominated Sorting Genetic Algorithm II (NSGA-II)1 introduced by Deb et al.
(2002). This algorithm ranks the individuals according to their position in the
Pareto front or in the subsequent fronts (see Fig. 2.2B). For example, if the selection
step requires selecting 30 individuals, it will first select all the individuals of the
Pareto front and then on the subsequent fronts. It may then happen that a front
cannot fit entirely in the selection. For example, if the two first fronts contain
in total 25 individuals and the third one contains 10 individuals, this last front
cannot fit entirely in the 30 selected individuals (see Fig. 2.2C). To deal with this
situation, the authors introduced the concept of crowding distance that estimates
the density of individuals around each of them. This distance is used as a second
selection criterion when the algorithm has to compare individuals that are on the
same front. The main insight of this distance is to favor individuals that are isolated
in the front because they represent solutions that are different from the others.

Based on this selection operator, NSGA-II optimizes its population to have as
much as possible individuals on the Pareto front, but with a selection pressure
that tends to evenly spread these individuals on the front. The individuals of the
population that are on the Pareto front at the end of the evolutionary process
represent the solutions provided by the algorithm. It consists in a set of different
trade-offs over the objectives. The designers can pick up the most suited trade-off
according to the situations.

2.2.2.1 Helper objective

In the previous section, we presented how EAs can be used to optimize several
objectives simultaneously. In the previous examples of the car, the objectives were
specific to the problem (for example the cost and the speed of a car). However,
additional objectives can be used in order to help the algorithm to find the best
solutions on one principal objective (Knowles et al., 2001; Jensen, 2005). Optimizing
a second objective may lead the population toward better solutions of the first
objective. Such objectives are called helper objectives (Doncieux and Mouret, 2014;
Jensen, 2005) and the algorithm can be written as:

maximize

{

Fitness objective
Helper objective

1NSGA-II is now outdated. However, it is a well known, robust and effective algorithm, which
is sufficient for the applications that we will consider in this manuscript.

2.2. Evolutionary algorithms 17

Obj 1

Obj 2 Non dominated solution

Pareto front

Reachable
solutions

Dominated
solution

Obj 2

Obj 1

A B

I1

I2I4

I3

Zone dominated by I1

Zone that dominates I1

Obj 1

Obj 2 F1

F2

F3

F4

N
individuals

N
individuals

N
individuals

Copy

Selection + Mutation

N
individuals

C

F1

F3

F2F4

Figure 2.2: The Pareto dominance and the Pareto front. In these schemes, the
algorithm maximizes both objective 1 and objective 2. Each dot represents an
individual, which is for example contained in the population. Orange dots are
non-dominated individuals, while the (dark) blue ones are dominated. (A) I1 is
dominated by I2 because I2 is better than I1 on the two objectives, while I1 dom-
inates I3. I1 and I4 do not have any dominance relation because none of them
is as good as the other on all the objectives (I1 is better than I4 on the objec-
tive 1, while I4 is better than I1 on the objective 2). We can also see that I4 is
dominated by I2 because I2 is as good as I4 on objective 2 but better on objec-
tive 1. (B) The solid green line represents an approximation of the Pareto front,
which is composed by all the non-dominated individuals of the population. The
dashed green lines represent the subsequent fronts. These fronts gather solutions
that are only dominated by the solutions of the previous fronts. (C) The stochastic
multi-objective optimization algorithm NSGA-II (Deb et al., 2002). Starting with a
population of N randomly generated individuals, an offspring population of N new
candidate solutions is generated using the best candidate solutions of the current
population. The union of the offspring and the current population is then ranked
according to Pareto dominance (here represented by having solutions in different
ranks connected by lines labeled F1, F2, etc.) and the best N candidate solutions
form the next generation.

18 Background

Preventing early convergence of EAs is typically a good example where helper ob-
jectives can be useful (Knowles et al., 2001). A promising way to prevent this
problem consists in preserving the diversity of the population. Thanks to this di-
versity, some individuals are likely to get out of local optima and then to populate
more promising area of the search space. The diversity of the population can be
fostered by using an additional objective that defines a selection pressure to favor
individuals that are different from the rest of the population. The diversity of one
individual (xi) can be computed as the average distance from this individual and
the others in the population.

diversity(xi) =
1

N

j=N
∑

j=0

d(xi, xj) (2.2)

where xi denotes the i-th individual of the population and N the size of the popu-
lation. The function d(x, y) computes the distance between two individuals.

There exist several ways to compute the distance between two individuals. One
way consists in computing a Euclidean or an editing distance between the two
genotypes (mainly when they are strings of numbers or characters, Gomez (2009);
Mouret and Doncieux (2009)). Another way can be to compute the distance ac-
cording to the phenotypes (Mouret and Doncieux, 2012), but for these methods
there is no proof that two similar (or very different) genotypes or phenotypes will
lead to similar solutions (respectively, different solutions). Avoiding premature con-
vergence requires having a diversity of solutions, which is not necessarily provided
by a diversity of genotypes (or phenotype). For this reason, the most promising
way to compute the distance between two individuals is to consider the behavior of
the individual (typically in evolutionary robotics, we can consider the robot’s be-
havior, Mouret and Doncieux (2012)). We call this type of diversity the behavioral
diversity. Nonetheless, computing a distance between two behaviors is still an open
question because it requires finding a descriptor of this behavior that can then be
used in the distance computing, but there is not universal procedure to define this
descriptor. For example, with a mobile robot it can be the robot’s trajectory or its
final position.

2.2.3 Novelty Search

The Novelty Search is a concept introduced by Lehman and Stanley (2011a), which
proposes to look for novel solutions (or behaviors) instead of focusing on fitness
optimization. It goes in a sense further than the behavioral diversity because, in-
stead of only considering the current population and promoting the most different
individuals, the Novelty Search considers all the individuals encountered during the
evolutionary process (or a representative subset) and rewards the most novel ones.
To keep a trace of all these individuals, this algorithm stores the individuals (or a
descriptor of them) into an archive, which is used afterwards to compute the nov-
elty of the newly generated individuals. The results of this algorithm suggest that,

2.2. Evolutionary algorithms 19

for some problem families, looking for novel solutions is more interesting than opti-
mizing a performance objectives (Stanley and Lehman, 2015). For example, it has
been shown that the Novelty Search algorithm outperforms traditional evolutionary
algorithms on some deceptive tasks (like the deceptive maze experiment, Lehman
and Stanley (2011a)).

Lehman and Stanley then extended their algorithm to deal with a longstanding
challenge in artificial life, which is to craft an algorithm able to discover a wide
diversity of interesting artificial creatures. While evolutionary algorithms are good
candidates, they usually converge to a single species of creatures. In order to
overcome this issue, they recently proposed a method called Novelty search with
local competition (Lehman and Stanley, 2011b). This method, based on multi-
objective evolutionary algorithms, combines the exploration abilities of the Novelty
Search algorithm (Lehman and Stanley, 2011a) with a performance competition
between similar individuals.

The Novelty Search with Local Competition simultaneously optimizes two ob-
jectives for an individual: (1) the novelty objective (Novelty(x)), which measures
how novel is the individual compared to previously encountered ones, and (2) the
local competition objective (Qrank(xi)), which compares the individual’s quality
to the performance of individuals in a neighborhood, defined with a morphological
distance.

With these two objectives, the algorithm favors individuals that are new, those
that are more efficient than their neighbors and those that are optimal trade-offs
between novelty and “local quality”. Both objectives are evaluated thanks to an
archive, which records all encountered families of individuals and allows the algo-
rithm to define neighborhoods for each individual. The novelty objective is com-
puted as the average distance between the current individual and its k-nearest
neighbors, and the local competition objective is the number of neighbors that the
considered individual outperforms according to the quality criterion.

Lehman and Stanley (2011b) successfully applied this method to generate a high
number of creatures with different morphologies, all able to walk in a straight line.
The algorithm found a heterogeneous population of different creatures, from little
hoppers to imposing quadrupeds, all walking at different speeds according to their
stature.

The novelty objective fosters the exploration of the reachable space. An in-
dividual is deemed as novel when it shows a behavioral descriptor (B(xi)) that
is different from those that have been previously encountered. The novelty score
of an individual xi (Novelty(xi)) is set as the average distance between the be-
havioral descriptor of the current controller (D(xi, which can be for example the
ending point of a mobile robot) and the descriptors of the individuals contained in
its neighborhood (N (xi)):

Novelty(xi) =

∑

xj∈N (xi) d(B(xi)−B(xj))

card(N (xi))
(2.3)

To get high novelty scores, individuals have to show descriptors that are differ-

20 Background

ent from the rest of the population. Each time a controller with a novelty score
exceeds a threshold (ρ), this controller is saved in an archive. Given this archive
and the current population, a neighborhood is defined for each individual (N (xi)).
This neighborhood regroups the k nearest individual, according to the behavioral
distance. We can see that the definition of the Novelty Search objective is similar
to the behavioral diversity, but several main differences exist. The fist difference
is that the novelty search considers only the k-nearest individuals instead of the
whole population when computing the average distance. The second and main dif-
ference remains in the fact that while the behavioral diversity considers only the
individuals of the current population, the novelty search considers also individuals
that have been stored in the archive. This allows the Novelty Search algorithm to
keep a history of what it found.

The local quality rank promotes individuals that show particular properties,
like stability or accuracy. These properties are evaluated by the quality score
(quality(xi)), which depends on implementation choices and particularly on the
type of phenotype used. In other words, among several individuals that show the
same descriptor, the quality score defines which one should be promoted. For an
individual xi, the rank (Qrank(xi)) is defined as the number of controllers from its
neighborhood that outperform its quality score: minimizing this objective allows
the algorithm to find individuals with better quality than their neighbors.

Qrank(xi) = card(xj ∈ N (xi), quality(xi) < quality(xj)) (2.4)

2.2.4 Evolutionary robotics

Evolutionary algorithms have been widely used to learn behaviors in robotics during
the two last decades. In the mid 90’s, several works used EAs to find neural network
parameters to control robots. For example, Lewis et al. (1994) evolved a bit string
of 65 bits to tune the synaptic connections between 12 neurons to generate insect-
like like walking gaits with a physical six-legged robot. The evolutionary process
was divided into two steps: the first step focuses on generating oscillations between
pairs of neurons while the second step uses these oscillating bi-neurons and inter-
connects them to generate walking gaits. This division in the evolutionary process
aims to bootstrap the generation of the gait but the total process still required
between 200 and 500 physical trials.

Another example comes from Floreano and Mondada (1994) who used an EA
to generate a neural network that produces a navigation and obstacle avoidance
behavior for a physical Khepera robot (Mondada et al., 1994) (a miniature two-
wheeled robot). The main objective of this work was to reproduce “Braitenberg”
behaviors (Braitenberg, 1986) with a neural network that has its parameters tuned
by an EA. It took between 30 and 60 hours and about 8000 evaluations on the
physical robot to generate such behaviors. The neural network has about 20 pa-
rameters (the exact number of evolved parameters is not specified in the paper). It
is interesting to note that this is one of the first work using EAs on a physical robot

2.2. Evolutionary algorithms 21

for hours without external human interventions.
Similar procedures have been used to evolve behaviors for various types of robots

or various kinds of behaviors (in simulation). For example, Beer and Gallagher
(1992) evolved a dynamical neural network that allows a mobile robot to reach
predefined positions based on sensory stimulus (Chemotaxis). Similarly, Cliff et al.
(1993) evolved a neural network that maps the sensory perceptions (from the robot’s
camera, its whiskers and bumpers) to the motors. This work is particularly inter-
esting as it proposes to see the robot as a moving set of sensors regardless the way
the robot is actuated. Based on this concept, the authors attached the camera and
the other sensors on pole beneath a Cartesian gantry. The “robot” is thus actuated
by the gantry and moves through an arbitrary scene. Non-mobile robots have also
been investigated, for example Whitley et al. (1994) evolved a neural network that
control a simulated balancing pole and Moriarty and Miikkulainen (1996) applied
an EA on a simulated robotic arm to generate obstacle avoidance behaviors with a
neural network.

During the following decade, different concepts have been investigated based
on these ideas. For example, EAs have been applied on complex robots like in
Zykov et al. (2004) in which a physical nine-legged robot learns dynamic gaits. The
EA optimizes the coefficient of a matrix that defines the periodic movement of the
12 pneumatic pistons that constitute the robot (corresponding to 24 valves and a
total of 72 parameters). This work needed about 2 hours and between 500 and 750
physical trials to generate a walking gait on the physical robot.

Another research direction focused on the type of genotypes/phenotypes used
to encode the controller. For example, Yosinski et al. (2011) used HyperNEAT,
a generative encoding that creates large-scale neural networks with the ability to
change the network’s topology (Stanley et al., 2009), to control a physical quadruped
robot. The generative ability of this new type of encoding opens the possibilities
of behavior that become, theoretically, infinite. Other approaches used EAs to
optimize the parameters of predefined and parametrized leg trajectories (Chernova
and Veloso, 2004; Hornby et al., 2005) or cellular automata (Barfoot et al., 2006)
to control legged robots. It is worth noting that one of the behaviors found with
these methods has been integrated in the consumer version of the quadruped robot
named AIBO (Hornby et al., 2005). All these techniques required between 2 and
25 hours to generate walking gaits and between 500 and 4000 evaluations.

Some key concepts also emerged during the last decade and continue to influence
the current research in learning for robotics. For example, the notion of embodiment
(Pfeifer and Bongard, 2007) proposes to see the cognitive abilities of robots, not
only as consequence of the complexity of the robot’s brain, but as the combination
and the synergies of the interactions of the robot’s body and its brain. However,
such interactions are challenging to generate with engineering methods and EAs
represent a promising approach to evolve the brain and/or the body based on the
robot’s interactions with its environment.

A very good example of this principle is the Golem project (Lipson and Pollack,
2000) that uses EAs to evolve both the morphology of the robot and the neural

22 Background

network that controls the robot. Another example is the work of Bongard et al.
(2006), which uses an EA and the results (sensory perceptions) of the interactions
of the robot with the environment to automatically generate a model (in a physical
simulator) of the robot’s morphology. Such model can be used afterward to learn
new behaviors in simulation.

The domain of evolutionary robotics also provides new tools to explain the
biological evolution (Smith, 1992; Lenski et al., 1999). For example, researchers
study the principles of distributed evolution thanks to swarm of robots, where each
robot represents an individual of the population. This concept, also known as
embodied evolution (Watson et al., 2002) offers several promising properties, like
the ability to distribute the evaluation of the individual but it may also allow new
collective behaviors to emerge, like cooperation (Bernard et al., 2015) or altruism
(Montanier and Bredeche, 2013; Waibel et al., 2011).

2.2.5 The Reality Gap problem and the Transferability approach

Most of the previously described methods and EAs in general, typically require
to test several thousands of candidate solutions during the optimization process
(see Table 2.1). This high number of tests is a major problem when they are
performed on a physical robot. An alternative is to perform the learning process in
simulation and then apply the result to the robot. Nevertheless, solutions obtained
in simulation often do not work well on the real device, because simulation and
reality never match perfectly. This phenomenon is called the Reality Gap (Jakobi
et al., 1995; Koos et al., 2013b).

Several methods have been proposed to deal with this problem. For example
Jakobi et al. (1995) proposed to use a minimal simulator and to add noise to this
simulator, in order to hide the details of the simulator that the robot may use to
artificially improve its fitness. This technique has been successfully applied to a
T-maze experiment with a Khepera robot (Mondada et al., 1994) and to a visual
discrimination task on a gantry robot Jakobi et al. (1995). It has also been used to
allow an octopod robot to learn walking gaits (Jakobi, 1998). However, this method
seems to be sensitive to some parameter values, as Koos et al. (2013b) were unable
to reproduce the original results of the T-Maze experiment.

Another example of method to deal with the reality gap problem consists in
using simultaneously several simulators (Boeing and Braunl, 2012). Each candi-
date solution is evaluated on all the simulators and its fitness value is defined as
a statistical combination of the fitness values coming from each simulator. With
this method, a good candidate solution should show a good fitness value with every
simulator, which may allow solutions to cross the reality gap, as it is statistically un-
likely that the simulation details, used to artificially improve the fitness, are shared
across all the simulators. This method has been applied to a wall following exper-
iment with an autonomous underwater robot (Boeing and Braunl, 2012) and to a
locomotion task with a bipedal robot (Boeing, 2009). However, this method signif-
icantly increase the computational cost of the algorithm, as it requires evaluating

2.2. Evolutionary algorithms 23

the solutions on several simulators instead of on a single one.

In Lehman et al. (2013), the authors made the hypothesis that behaviors that
react to their environment are more likely to be able to cross the reality gap. In-
deed, if the individual avoids to over-fit its behavior according to the simulated
environment but rather reacts to the situations it is actually facing, it is likely that
such behavior is able to handle the differences between the simulation and the real-
ity. This hypothesis has been successfully tested on a maze navigation task using a
Khepera III robot. The authors also showed that their approach can be combined
with Jakobi’s noise-based technique (Jakobi et al., 1995) to further improve the
robot’s ability to cross the reality gap.

The transferability approach (Koos et al., 2013b,a; Mouret et al., 2012) aims to
cross the reality gap by finding behaviors that act similarly in simulation and in
reality. During the evolutionary process, a few candidate controllers are transferred
to the physical robot to measure the behavioral differences between the simulation
and the reality; these differences represent the transferability value of the solutions.
With these few transfers, a regression model is built up to map solution descriptors
to an estimated transferability value. The regression model is then used to predict
the transferability value of untested solutions. The transferability approach uses a
multi-objective optimization algorithm to find solutions that maximize both task-
efficiency (e.g. forward speed, stability) and the estimated transferability value.

This mechanism drives the optimization algorithm towards solutions that are
both efficient in simulation and transferable (i.e. that act similarly in the simu-
lation and in the reality). It allows the algorithm to exploit the simulation and
consequently to reduce the number of tests performed on the physical robot.

This approach was successfully used with an E-puck robot in a T-maze and
with a quadruped robot that evolved to walk in a straight line with a minimum of
transfers on the physical robots (Koos et al., 2013b). The reality gap phenomenon
was particularly apparent in the quadruped experiment: with a controller opti-
mized only in simulation, the virtual robot moved 1.29m (in 10s) but when the
same controller was applied on the physical robot, it only moved 0.41m. With
the transferability approach, the obtained solution walked 1.19m in simulation and
1.09m in reality. These results were found with only 11 tests on the physical robot
and 200, 000 evaluations in simulation. This approach has also been applied for
humanoid locomotion (Oliveira et al., 2013) and damage recovery on a hexapod
robot (Koos et al., 2013a).

2.2.6 Partial conclusion

The previous examples of applications of EAs in robotics and also in the other
application domains (like structures, objects, pictures, creatures generation) show
the ability of EAs to create and generate a large variety of things, a kind of creativity
ability (Nguyen et al., 2015). The creativity is a feature that is likely to be required
in learning and adaptation algorithms. For example, a behavior that allows a robot
to walk in spite of a broken leg may be significantly different from the behavior

24 Background

it used when it was intact. Adaptation algorithms thus need to find behaviors
that may be far (in the search space) from the initial starting point (global search
techniques) and for this aspect, EAs seem particularly well suited.

However one of the main drawbacks of EAs is the number of evaluations re-
quired to generate those solutions (between several hundreds to several thousands
trials, see section evolutionary algorithms in table 2.1). This is probably the di-
rect and inevitable consequence of the creativity: being creative requires testing a
large variety of things and all these tests represent a cost in term of learning time.
The balance between creativity and learning time is important for applications like
adaptation to unexpected situations. We cannot imagine a robot trying thousand
actions when it has to adapt for several reasons: first, because the power resources
are often limited on autonomous robots (battery) and second, because of safety
reasons (the robot can be damaged during intensive learning session).

2.3 Policy search algorithms

2.3.1 Common principles

Reinforcement learning (RL) is a research field that has been significantly growing
during the three last decades and that shows impressive results. A recent illustration
of these results is the work from Mnih et al. (2015), in which a reinforcement learning
algorithm coupled with a deep learning algorithm is able to learn to play a large
variety of Atari games. As mentioned previously in this chapter (see section 2.1),
traditional RL algorithms are, in the vast majority, designed to work with small
and discrete state and action spaces, while Learning in robotics involves most of
the time using continuous and high dimensional state spaces and action spaces. It
is why most of applications of RL in robotics use Policy Search algorithms (PS),
which is known to have a better scalability and to work in continuous domains
(Sutton et al., 1999; Deisenroth et al., 2013b).

Most of PS algorithms can be decomposed into one loop of three steps (depicted
in Fig: 2.3): (1) The exploration step in which the current policy is somehow per-
turbed in order to produce variations in robot’s movement; (2) the policy evaluation
step, which aims to assess the quality of the newly generated behaviors and (3) the
policy update step, which changes the policy parameters according to the acquired
data. In the following subsections, we will detail how these different steps are
achieved in some of the most common PS algorithms.

While policy search and evolutionary algorithms are two different research fields
that grew independently, it is interesting to note that they share strong similarities
in their overall structure. For instance, the exploration step of PS algorithms has
the same goal as the mutation operators in EAs and the update step is close to
the selection operators in EAs. Two of the main differences between EAs and PS
algorithms are (1) the evaluation step, which considers episodic evaluations in the
vast majority of EAs and step-based evaluations in PS algorithms, and (2) the
use of a population in EAs while only one policy is kept from one iteration to the

2
.3

.
P

o
licy

sea
rch

a
lg

o
rith

m
s

2
5

Table 2.1: How long many previous robot learning algorithms take to run. While comparisons
between these algorithms are difficult because they vary substantially in their objective, the size of the search
space, and the robot they were tested on, we nonetheless can see that learning times are rarely below 20
minutes, and often take hours.

approach/article starting behavior ⋆ evaluations learning time robot DOFs† param.‡ reward

Evolutionary Algorithm
Chernova and Veloso (2004) random 4,000 5 h quadruped 12 54 external
Zykov et al. (2004) random 500 2 h hexapod 12 72 external
Hornby et al. (2005) non-falling 500 25h quadruped 19 21 internal
Barfoot et al. (2006) random 1,150 10 h hexapod 12 135 external
Yosinski et al. (2011) random 540 2 h quadruped 9 5 external
Bongard et al. (2006)1 random 16 4 h hexapod 12(18) 30 internal

Policy Gradient Methods
Kimura et al. (2001) n/a 10,000 80 min. quadruped 8 72 internal
Kohl and Stone (2004) walking 345*3 3 h quadruped 12 12 external
Tedrake et al. (2005) standing 950 20 min. biped 2 46 internal
Geng et al. (2006) walking n/a 4-5 min. bipedal 4 2 internal

Bayesian optimization
Lizotte et al. (2007) center§ 120 2h quadruped 12 15 internal
Calandra et al. (2014) random 40*3 46 min. biped 4 8 external
Tesch et al. (2011) random 25 n/a snake 16 7 external
⋆Behavior used to initialize the learning algorithm, usually found via imitation algorithms. † DOFs: number of controlled
degrees of freedom. ‡ param: number of learned control parameters.§ center: center of the search space.
1 The authors do not provide time information, reported values come from the implementation made in Koos et al. (2013a).

26 Background

next in PS algorithms. However, these differences tend to fade and the borderline
between EAs and PS algorithms becomes more and more blurry (Stulp and Sigaud,
2013). For example, some of the most recent PS algorithms use episodic evaluations
(Daniel et al., 2012; Stulp and Sigaud, 2012) and some EAs (steady state genetic
algorithms, Syswerda (1991)) generate only one or two individuals per generation.
These similarities are well illustrated by a few algorithms that are considered both
as efficient EAs and PS algorithms, like the CMA-ES algorithm (Hansen, 2006),
which is a generic optimization algorithm used in both the fields of policy search
(Stulp and Sigaud, 2013) and artificial evolution (Igel, 2003).

In the following sections we will present some of the most common concepts in
PS algorithms for robot learning and some well-known algorithms. In particular,
we will see that two approaches exist to perform the exploration of the search
space and the evaluation of the policies: (1) The first approach considers the whole
execution of the policy (episodic) while (2) the second approach considers each
time-step of the execution. It is common that algorithms that use one of these
approaches for the exploration use the same approach for the evaluation step, and
vice versa (Deisenroth et al., 2013b). We will also see that the vast majority of
PS methods update their policy by following a local estimate of the gradient of the
performance function. The more advanced methods mainly aim to mitigate some of
the limitations of this gradient based approach, for example to deal with plateaus in
the function or with the sensibility of some parameters. This common principle in
PS algorithms makes these algorithms more related to local search techniques than
to global ones. This aspect is well illustrated by the fact that the vast majority of
experiences using PS algorithms start from a policy learned via an imitation learning
algorithm and are used to improve its quality. In this section we will deliberately
focus our analysis on model-free policy search methods because the last section of
this chapter will present in detail the Bayesian Optimization algorithm (see section
2.4), which is a model-based policy search algorithm and which is known to perform
more global optimization than model-free approaches (Jones et al., 1998)

In addition to all the details presented in this chapter, we invite the interested
readers to refer to Deisenroth et al. (2013b) and Kober et al. (2013). These two
reviews cover a large part of work done in this domain and they go in very deep
details on a large number of algorithms. Most of the information presented in this
section comes from these two reviews.

2.3.1.1 Exploration

In PS algorithms, the policy is, in the majority of work, parametrized by a parameter
vector θ (Kober and Peters, 2011; Kohl and Stone, 2004; Kormushev et al., 2010).
During the exploration step, PS algorithms generate several variations of the current
policy. The whole execution of a policy is called a rollout. Two main exploration
strategies are considered in the literature: (1) exploration in the action space and
(2) exploration in the parameter space.

The exploration in the action space uses the parameters of the current policy

2.3. Policy search algorithms 27

θ

Evaluation

Update

Exploration

rollout1
rollout2
rollout3
rollout4

rolloutk

reward1

reward2

reward3

reward4

rewardk

θ =θ +δθ

Figure 2.3: Generic Policy Search iteration. The current policy defined with the
parameter vector θ is used to generate k rollouts thanks to perturbations on the
parameters or on the motor commands. Each rollout is evaluated on the system
and is associated to a reward value or several intermediate rewards. Based on these
rewards, the current policy is updated and the process repeats.

(θ) for all the rollouts and adds a random (most of the time Gaussian) perturbation
to the commands that are sent to the motors. This perturbation is most of the time
re-sampled at every time step and the corresponding commands are recorded to be
used during the update policy step. This approach is one of the first exploration
strategies that appeared in the literature (Williams, 1992; Deisenroth et al., 2013b).

The exploration in the parameter space directly perturbs the parameter of the
current policy. Thus, the policy parameters of the kth rollout is equal to θk = θ +
N (0, Σ). Note that with this exploration strategy, the motor commands generated
by the new policies are no longer altered via a random perturbation because the
rollouts use different parameters and are thus already different. Like with the action
space exploration, these modifications of the parameters can be done only at the
beginning of the evaluation (episodic) or at every time step (Deisenroth et al.,
2013b).

In these two exploration strategies, the applied perturbations are most of the
time Gaussian using diagonal covariance matrix (Σ). However, non diagonal ma-
trices can also be used to perform correlated exploration For example, CMA-ES
uses such correlated exploration strategy: the covariance matrix used for the explo-
ration is updated (or adapted, for consistency with the algorithm’s name) according
to the previous evaluations. In Deisenroth et al. (2013b), the authors highlight that
using a full covariance matrix increases significantly the algorithm learning speed
(Stulp and Sigaud, 2012) but also that estimating this matrix can be very difficult
when the search space becomes very large as it requires a large number of samples
(Rückstiess et al., 2010).

2.3.1.2 Evaluation of the policy

The goal of the evaluation step is to assess the quality of the policy and to gather
data about its execution that will be used during the policy update step. The data
acquired during the evaluation of each policy are typically the explored states, the

28 Background

actual motor commands used and the intermediate rewards. As mentioned in the
beginning of this section, the evaluation of the policy quality can consider every
time steps of its execution or its full execution (episodic evaluation).

In most of PS algorithms using time-step evaluations, the quality of the policy
is assessed by the sum of the future rewards that the system will receive at every
time step until the end of the episode (at time step T). This quality is computed
for every time step, leading to the quality Qt that corresponds to the state-action
value function:

Qt(xt, ut) = E

[

T
∑

h=t

rh(xh, uh)

]

Such a function is in practice very difficult to compute in large state and action
spaces and it is often required using approximation methods, like Monte-Carlo
(Metropolis and Ulam, 1949), to estimate its value. However, these approximation
algorithms lead most of the time to a large variance in their results or require a
very large number of samples. Fortunately, most PS algorithms are robust enough
to deal with noisy approximation of the quality. Therefore, most PS algorithms use
directly the sum of the immediate reward (Deisenroth et al., 2013b):

Qt(xt, ut) =
T
∑

h=t

rh(xh, uh)

This quality function is used in the most common PS algorithms like REINFORCE
algorithm (Williams, 1992), the POWER algorithm (Kober and Peters, 2011) and
PI2 (Theodorou et al., 2010). A discount factor over time is often used in order to
reduce the influence of future time steps (with γ ≤ 1):

Qt(xt, ut) =
T
∑

h=t

γhrh(xh, uh)

Episodic evaluations can rely on this quality definition too by taking the quality
of the policy at the first time step (Q0), but many other reward functions can be
employed in the context of episodic evaluations. For example, the reward function
can directly consider the quality of a whole episode without the constraint of de-
composing the reward into intermediate ones. This constraint is important, as a
large number of quality functions cannot be decomposed into several intermediate
rewards. For example, learning a walking gait on a legged robot and trying to
maximize its velocity is typically a task where it is difficult to define intermediate
rewards as the robot needs to walk for a few seconds in order to assess its average
speed. In general, the episodic return of policy θ is called J(θ) instead of Qt. In
the following sections, we will mainly consider episodic evaluations and thus use
this notation when it is appropriate.

The PS approaches that have initially been designed to deal with step-based or
episode-based evaluations have, most of the time, been extended to work with the
other type of evaluations. For example the episodic Natural Actor Critic algorithm

2.3. Policy search algorithms 29

(eNAC) that we will present in the following sections has also a step-based variant
presented in the same paper (Peters and Schaal, 2008a). The use of one type
of evaluation rather than the other depends mainly on the problem. Step-based
evaluations are likely to provide more data (one at every time step) and thus being
more informative but such evaluation type cannot be applied to all the robotic
applications (Deisenroth et al., 2013b).

2.3.1.3 Update of the policy

The update policy step uses the evaluated rollouts and the recorded data (quality,
intermediate rewards, states trajectory) and updates the parameters of the current
policy (θ) in the direction that will most likely improve its quality. In this section
we will present some of the most common update strategies in order to illustrate
the different inspirations that are used in PS algorithms. This section does not aim
to be exhaustive as there exist a very large variety of update strategies and a deep
comparison of these methods would be off of the scope of this manuscript.

Policy Gradient One of the most common approach to update the policy pa-
rameter is the local gradient of the quality function (according to the parameters’
dimensions):

θ = θ + α∇θJ(θ)

where α is the learning rate and ∇θJ(θ) is the gradient of J(θ) according to θ.
The gradient of the quality function cannot be analytically computed as the quality
function is unknown. Consequently, the methods relying on the gradient actually
use an approximation of its value. A very simple and commonly used (Kohl and
Stone, 2004; Peters and Schaal, 2008b, 2006) way to approximate the gradient is to
use the finite difference method. This method uses a first-order Taylor-expansion
of the quality function based on the rewards obtained from the rollouts to perform
a linear regression that estimates the gradient:

∇θJ(θ) =
[

∆θ0 ∆θ1 . . . ∆θk

]+

⎡

⎢

⎢

⎢

⎢

⎣

∆J(θ0)
∆J(θ1)

...
∆J(θk)

⎤

⎥

⎥

⎥

⎥

⎦

where ∆θi is a perturbation vector applied on the original parameter vector θ (θi−
θ) and ∆J(θi) is the quality difference between the rollout i and the current policy
quality (J(θi) − J(θ)). The pseudo-inversion (symbolized by the “+” exponent)
performs a least mean square regression between the applied perturbations and the
variations of the quality. This simple approach, while being a local search technique,
is very powerful on smooth or not too noisy quality function but it is very sensitive
to its parameters like the learning rate α the number of rollouts k and the amplitude
of the perturbations (Kober et al., 2013). In order to mitigate these limitations and
to increase the convergence speed, other methods to approximate the gradient have

30 Background

been developed (Peters and Schaal, 2006), like the likelihood ratio methods (also
known as the REINFORCE trick, Williams (1992)) or the natural gradient methods
(Peters and Schaal, 2008a). We will detail these two approaches in the following
paragraphs.

The likelihood ratio methods assumes that each rollout, generated thanks to the
current stochastic policy θ, has a trajectory τ and an accumulated reward r(τ) =
∑T

k=0 αkrk(τ). The quality of the θ parameters is computed as the expectation of
this reward according to potential trajectories:

J(θ) = E[r(τ)] =
∫

p(τ |θ)r(τ)dτ

The gradient is thus equal to:

∇θJ(θ) =
∫

∇θp(τ |θ)r(τ)dτ

The probability of each trajectory given θ can be analytically computed as
(Deisenroth et al., 2013b):

p(τ |θ) = p(x0)
T
∏

t=0

p(xt+1|xt, ut)πθ(xt|ut)

The gradient of this expression is in practice very hard to compute, first because
of the transition model that defines p(xt+1|xt, ut) is most of the time unknown and
also because of the derivative of this product may lead to analytic equations that
may be not tractable.

In order to deal with this situation, the likelihood ratio can be used to simplify
the equation as it states that (Glynn, 1987):

∇θp(τ |θ) = p(τ |θ)∇θ log p(τ |θ) (2.5)

Thanks to this identity, the gradient of the quality can be reduced to:

∇θJ(θ) =
∫

p(τ |θ)∇θ log p(τ |θ)r(τ)dτ
= E

[

∇θ log p(τ |θ)r(τ)
]

= E
[
∑T

t=0 ∇θ log(πθ(xt|ut))r(τ)
]

This last expression has been obtained thanks to the log operator of the likeli-
hood ratio that transformed the probability product into a sum. Moreover, the
p(xt+1|xt, ut) term can be removed as it does not depend on θ, which is the case
as long as the policy is stochastic (Kober et al., 2013; Deisenroth et al., 2013b).
Finally, the gradient can be approximated thanks to a Monte-Carlo sampling to
assess the expectation of this last expression. Algorithms using the likelihood ratio
to approximate the gradient usually add a baseline to the reward function in order
to reduce the variance introduced by the Monte-Carlo sampling. For more details,
readers can refer to Kober et al. (2013) and to Deisenroth et al. (2013b).

2.3. Policy search algorithms 31

It is worth noting that this approach to approximate the gradient performs the
exploration by itself as it estimates the gradient based on the variations generated
by the stochastic policy. This approach has been proved to converge to a good
estimate of the gradient faster than the finite difference method (Glynn, 1987) (it
requires fewer samples to obtain an accurate estimate of gradient than the finite
difference method). Unfortunately this approach requires using stochastic policy
(otherwise a model of the transition function has to be used), which limits the
type of controller that can be used with this method. The REINFORCE algorithm
introduced in Williams (1992) uses the likelihood ratio and can be considered as
one of the first PS algorithm. It has, for example, been used to find the weights of
a neural network (containing stochastic units).

The natural gradient (Amari, 1998) is another improvement of the traditional
gradient optimization. It has initially been proposed to make it easier to cross
plateaus in the quality function (regions with only small variations). The main
idea of this method consists in finding the variation of the parameter vector (∆θ)
that remains as close as possible to the actual gradient (∇θJ) but at a fixed dis-
tance between the prior distribution p(τ |θ) and the next one (p(τ |θ + ∆θ)). In
natural gradient approaches, like the episodic Natural Actor Critic (eNAC, Peters
and Schaal (2008a)), this distance is computed thanks to the Kullback-Leibler di-
vergence (dKL, Kullback and Leibler (1951)) defined with the Fisher-information
matrix (Fθ) as follow:

Fθ = E

[

∇θ log p(τ |θ)∇θ log p(τ |θ)ᵀ
]

dKL

(

p(τ |θ), p(τ |θ + ∆θ)
)

= ∆ᵀ

θFθ∆θ

The perturbation of the parameter vector that is the most similar to the actual
gradient but with a predefined distance between the two distributions can be ana-
lytically defined as:

∆θ ∝ F¯1
θ ∇θJ(θ)

The distance (included in the proportional operator) is often subsumed into the
learning rate of the gradient descent:

θ = θ + αF¯1
θ ∇θJ(θ)

This approach has to be performed in addition to one of the previously presented
methods as the gradient ∇θJ(θ) still needs to be estimated (for example with
the likelihood ratio method, Williams (1992); Peters and Schaal (2008a)). The
main purpose of this method is to increase the convergence speed of the learning
algorithm, while profiting from most of the advantages of the gradient estimations
methods. However, the computational complexity of this method can prevent the
application of this method in some situations (Deisenroth et al., 2013b).

32 Background

Other approaches Several other approaches have been developed to address lim-
itations or drawbacks raised by gradient policy search methods. For example, the
learning rate of such methods is a very sensitive parameter that directly impacts
the convergence speed and the performance of the algorithms. In order to alleviate
this issue, several algorithms based on the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977) have been developed and used to learn policies in
robotics. This method transforms the reward value of the behaviors into an im-
proper probability distribution of the “reward-event”, which is a binary observation
of success. This transformation is direct when the reward function is bounded as
it can be represented as a ratio between its minimum and maximum value. Re-
wards that are close to the minimum can be considered as a low probability of the
reward event, while high rewards can be seen as a high probability of the reward
event. For unbounded reward function, the rewards can be transformed thanks to
a soft-max function that will map each value between 0 and 1. The EM algorithm
is used to find the policy parameters that maximize the log-marginal likelihood of
the reward-event. It first evaluates the expectation of the current parameters, for
example thanks to a Monte-Carlo sampling, and then uses these samples to update
the parameters in order to maximize the likelihood. The Policy learning by Weight-
ing Exploration with Returns (PoWER) algorithm uses this approach and does not
require specifying a learning rate as the update of the policy parameters is directly
achieved by the maximization step. Unfortunately, such hidden update phases may
lead to unsafe behaviors on the physical robot and do not guarantee the avoidance
of local optima (Kober et al., 2013).

The information theory is another source of inspiration for the update policies,
for example the Relative Entropy Policy Search (REPS, Peters et al. (2010)) algo-
rithm, in which the Kullback-Leibler divergence is used to compute the distance
between the current trajectory distribution and the one obtained after the param-
eter update (similarly to the natural gradient policy search). This algorithm then
uses a weighted average of the likelihood estimate (like in EM methods described
above) to update the policy parameters without requiring a learning rate. It thus
combines the advantages of both natural gradient and EM methods. An application
example of the REPS algorithm is given in the next section.

Policy search algorithms can also take inspiration from optimal control the-
ory to design update policies. For example, in the Policy Improvement with Path
Integrals (PI2, Theodorou et al. (2010)), the problem is expressed into a Hamil-
ton–Jacobi–Bellman equation and then the Feynman-Kac lemma is used to trans-
form this equation into a path integral. Such integral can then be approximated
thanks to a Monte-Carlo sampling.

2.3.1.4 Model-based policy search algorithms

In addition to the model-free algorithms presented in this section, there also exist
several model-based approaches. The goal of such method is to build a model of
the quality function based on the samples acquired on the system and then use this

2.3. Policy search algorithms 33

model to improve the policy. The main challenge of this family of algorithms is to
deal with the inaccuracies of the model because the model is often called recursively
to make long-term predictions, leading to very large errors. The sources of the
inaccuracies are typically inadequate models (linear models applied on non linear
systems) and acquisition noise. Two mains approaches have been considered to build
the model: (1) Locally Weighted Bayesian Regression for example in Bagnell and
Hneider (2001); Ng et al. (2006); Kim et al. (2003) and (2) Gaussian Processes (GPs,
Rasmussen and Williams (2006)) in Ko et al. (2007); Deisenroth and Rasmussen
(2011); Deisenroth et al. (2011). In the last part of this chapter we will see in
details Bayesian Optimization, a model-based optimization algorithm using GPs,
as we will use it in the work presented in this manuscript. Consequently, we will not
elaborate much more about model-based policy search algorithms in this section.

2.3.2 Application in behavior learning in robotics

Like evolutionary algorithms, policy search algorithms have been applied on a large
variety of robotic setups. However, it is important to note that all the experiments
presented in this section, like the majority of studies using PS algorithms in robotics,
start from an initial policy that is either hand-coded, or learned via a demonstration
(imitation learning), and then use the PS algorithm to fine tune the parameters
(Deisenroth et al., 2013b).

The eNAC algorithm has been used by Peters and Schaal (2008b) to allow a
physical robot to learn how to play baseball. Starting from an initial policy learned
by imitation, the robot fine tuned the 70 parameters of its policy and successfully
hit the ball (placed on a T-stick) after between 200 and 300 rollouts. The time-
step based version of NAC (Peters and Schaal, 2008a) has also been used by Ueno
et al. (2006) to control the maintenance phase of a walking gait with a quasi-
passive dynamic bipedal robot. The experiments showed that only about 20 trials
on the physical robot were required to learn the 4 parameters allowing the robot
to walk (starting from initial phase using a hand-tuned controller). In the work of
Kormushev et al. (2010), the PoWER algorithm is used to learn to flip pancakes
with a physical robotic arm. After 50 rollouts the algorithm found a behavior able
to flip pancakes more than 90% of the time.

The ball in the cup is another experiment that has been used several times in
the literature to evaluate PS algorithms. Similarly to the previous example, the
PoWER algorithm has been used to solve this task with a physical robot after only
75 rollouts (Kober and Peters, 2011). This work has then been extended with a more
advanced controller that takes into account the position of the ball (Kober et al.,
2008). In this case, the robot needed between 500 and 600 rollouts (in simulation)
to find the 91 parameters that allow the robot to achieve the task. The authors
report that such long learning time is most probably due to the high variance in
the initial state of the ball. The same experiment has been used in Stulp et al.
(2014) to assess the performance of a variant of PI2 (called PIBB for Black-Box
functions and which is close to CMA-ES) improved with the ability to discover

34 Background

“skill options”. This algorithm required about 90 trials to discover and distinguish
two configurations of the task (two different rope lengths) and then managed to
place the ball in the cup.

In Kupcsik et al. (2014), the authors used a variant of the REPS algorithm
(named GPREPS, that combines learned probabilistic forward models via GPs and
the REPS algorithm, Peters et al. (2010)) to allow a physical robot to play hockey.
In this task the robot had to shoot a puck (by hitting it) at a target puck, in order
to displace this second puck from a predefined distance. The context of each task
is then defined by the x and y position of the target puck and the desired distance
of motion. The goal of this experiment is to show that this learning algorithm
is able to achieve the task and to generalize over the different contexts (which
change between each rollout). After about 80 rollouts, the algorithm inferred the
15 parameters that allow the robot to achieve its task regardless the current context.
Like in the previous experiment, the initial policy was obtained through imitation
learning.

PS algorithms have also been used to learn walking gaits. For example, Kohl
and Stone (2004) used a gradient-based method to optimize the 12 parameters of
predefined foot trajectories of an Aibo robot (four-legged robot). The algorithm
required 345 rollouts (each being repeated 3 times for accurate evaluations) to
perform the optimization. Similarly to the other experiments presented in this
section, the algorithm starts from a walking policy and is only used to increase its
velocity. With a similar technique, Geng et al. (2006) tuned the two parameters
of a artificial neural network, which controls the gait of a physical biped robot.
The question of walking gait learning has also been addressed with reinforcement
learning methods. For example in Kimura et al. (2001), the authors used an actor
critic with a TD learning approach to learn a walking gait for a four-legged robot.
About 10,000 robot’s steps were required to learn a working gait. A stochastic
gradient descent has also been used in Tedrake et al. (2005) to learn a walking gait
on a bipedal robot. The 46 parameters of the controller have been optimized in
about 950 steps of the bipedal robot (performed in about 20 minutes). In these
two last experiments, the difference between episodic-based (rollouts) and time-step
based evaluation is very tight as a robot’s step is both a full episode and a time-step,
making the comparison with the other approaches difficult.

2.3.3 Partial conclusion

In the beginning of this section, we highlighted the similarities between policy search
and evolutionary algorithms. We can see through the different examples of robotic
applications of PS algorithms that these two families of algorithms are used in
similar purposes. However, it is interesting to note that the number of trials required
solve the task is significantly lower in experiments using PS algorithms than in those
using EAs (see table 2.1). For instance, the previous examples required most of the
time about a few hundred rollouts, while evolutionary algorithms require more likely
about several thousands of them.

2.4. Bayesian Optimization 35

One possible explanation is that all PS applications start from an initial policy
obtained thanks to an imitation learning algorithm. This initial policy is thus al-
ready very close to a local (potentially the global) extremum and the PS algorithms
are only used to perform a local search to fine tune the policy. This represents an
important difference between PS algorithms and EAs. In most of EAs experiments,
the initial population of solutions is randomly generated. While faster learning
speed may be very beneficial when a robot has to face unexpected situations, we
cannot suppose that it will always have access to a teacher or a useful initial policy.
For example, in the case where a six-legged robot has to adapt to a mechanical
damage (like a broken leg), it is likely that the initial walking gait (using its six
legs) will be significantly different from a walking gait that works in the damage
condition. In this case, the gait using the six legs will not represent a good initial
policy, and the local search ability of PS algorithm may not be enough to find a
working solution.

2.4 Bayesian Optimization

2.4.1 Principle

Bayesian optimization is a model-based, global, black-box optimization algorithm
that is tailored for very expensive objective functions (like reward or cost functions,
Lizotte et al. (2007); Brochu et al. (2010b); Mockus (2013); Snoek et al. (2012);
Griffiths et al. (2009); Borji and Itti (2013)). As a black-box optimization algorithm,
Bayesian optimization searches for the maximum of an unknown objective function
from which samples can be obtained (e.g., by measuring the performance of a robot).

Like all model-based optimization algorithms (e.g. surrogate-based algorithms
(Booker et al., 1999; Forrester and Keane, 2009; Jin, 2011), kriging (Simpson et al.,
1998), or DACE (Jones et al., 1998; Sacks et al., 1989)), Bayesian optimization
creates a model of the objective function with a regression method, uses this model
to select the next point to acquire, then updates the model and repeats the process.

It is called Bayesian because, in its general formulation (Mockus, 2013), this
algorithm chooses the next point by computing a posterior distribution of the
objective function (P (M | E)) using the likelihood of the data already acquired
(P (E | M)) and a prior on the type of function (P (M)).

P (M | E) ∝ P (E | M)P (M)

The name Bayesian Optimization refers to a generic framework that follows this
equation but several different implementations exist. In the rest of this section we
will present the main components of this framework and in particular those that
are the most commonly used in robotics.

2.4.2 Gaussian Processes

Using Gaussian Process regression to find a model (Rasmussen and Williams, 2006)
is a common choice for Bayesian optimization (Calandra et al., 2014; Griffiths et al.,

36 Background

2009; Brochu et al., 2010b; Lizotte et al., 2007). Gaussian processes (GPs) are par-
ticularly interesting for regression because they not only model the cost function,
but also the uncertainty associated with each prediction. For a cost function f ,
usually unknown, a GP defines the probability distribution of the possible values
f(x) for each point x. These probability distributions are Gaussian, and are there-
fore defined by a mean (µ) and a standard deviation (σ). However, µ and σ can be
different for each x; we therefore define a probability distribution over functions:

P (f(x)|x) = N (µ(x), σ2(x)) (2.6)

where N denotes the standard normal distribution.
To estimate µ(x) and σ(x), we need to fit the Gaussian process to the data. To

do so, we assume that each observation f(χ) is a sample from a normal distribution.
If we have a data set made of several observations, that is, f(χ1), f(χ2), ..., f(χt),
then the vector [f(χ1), f(χ2), ..., f(χt)] is a sample from a multivariate normal dis-
tribution, which is defined by a mean vector and a covariance matrix. A Gaussian
process is therefore a generalization of a n-variate normal distribution, where n is
the number of observations. The covariance matrix is what relates one observation
to another: two observations that correspond to nearby values of χ1 and χ2 are
likely to be correlated (this is a prior assumption based on the fact that functions
tend to be smooth, and is injected into the algorithm via a prior on the likelihood of
functions), two observations that correspond to distant values of χ1 and χ2 should
not influence each other (i.e. their distributions are not correlated). Put differently,
the covariance matrix represents that distant samples are almost uncorrelated and
nearby samples are strongly correlated. This covariance matrix is defined via a
kernel function, called k(χ1, χ2), which is usually based on the Euclidean distance
between χ1 and χ2 (see the “kernels function” sub-section below).

Given a set of observations P1:t = f(χ1:t) and a sampling noise σ2
noise (which is

a user-specified parameter), the Gaussian process is computed as follows (Brochu
et al., 2010b; Rasmussen and Williams, 2006):

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :
µt(x) = µ0 + kᵀK−1(P1:t − µ0)
σ2

t (x) = k(x, x)− kᵀK−1k

K =

⎡

⎢

⎢

⎣

k(χ1, χ1) · · · k(χ1, χt)
...

. . .
...

k(χt, χ1) · · · k(χt, χt)

⎤

⎥

⎥

⎦

+ σ2
noiseI

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

P1:t =

⎡

⎢

⎢

⎣

P1
...

Pt

⎤

⎥

⎥

⎦

(2.7)

where µt is the mean function of the GP after t iterations (corresponding to t trials),

2.4. Bayesian Optimization 37

σt is the corresponding standard deviation and x refers to an untested solution.
Implementations of BO using GP models select the next χ to test by selecting

the maximum of the acquisition function, which balances exploration – improving
the model in the less explored parts of the search space – and exploitation – favoring
parts that the model predicts as promising (see the “Acquisition Functions” section
below). Once the observation is made, the algorithm updates the GP to take the
new data into account. In traditional Bayesian optimization, the GP is initialized
with a constant mean because it is assumed that all the points of the search space
are equally likely to be good. The model is then progressively refined after each
observation (see Fig. 2.4).

2.4.2.1 Kernel Functions

The kernel function is the covariance function of the GP. It defines the influence
of a solution’s performance on the performance and confidence estimations of not-
yet-tested solutions in the search space that are nearby to the tested solution. The
covariance function is a positive semi-definite function. The Squared Exponential
covariance function and the Matérn kernel are the most common kernels for GPs
(Brochu et al., 2010b; Snoek et al., 2012; Rasmussen and Williams, 2006). Both
kernels are variants of the “bell curve”.

Squared Exponential Kernel The Squared Exponential (SE) kernel, also called
Gaussian kernel or “Exponentiated Quadratic” kernel has this form:

k(xi, xj) = exp(− 1

2l2
∥xi − xj∥2) (2.8)

Like all kernel functions, the maximum value is reached when the distance between
the two samples is null and decreases when the distance increases. The l parameter
defines the characteristic length-scale of the kernel. In other words, it defines the
distance at which effects become nearly zero.

This expression of the kernel is isotropic, meaning that the effect is invariant in
every direction of the search space. It may happen that the observations are more
correlated in particular dimensions of the space than in the others. In order to
have an anisotropic expression of the SE kernel we can use the vector l that defines
different characteristic length-scales for each dimension:

k(xi, xj) = exp(−1

2
(xi − xj)T Diag(l)−2(xi − xj)) (2.9)

The values of the hyper-parameter l are commonly obtained thanks to Auto-
matic Relevance Determination (ARD, see “hyper-parameters fitting” section be-
low). Such tuning process is also able to autonomously disregard some dimension
of the search space based on the acquired observations.

The SE kernel is infinitely differentiable, which allows the GPs that use such
kernel functions to be infinitely mean-square differentiable. The notion of mean-
square differentiation is the generalization of the notion of differentiation for ordi-
nary functions to random processes (Rasmussen and Williams, 2006). This notion

38 Background

Unknown objective function

Goal: Finding this solution

GP variance
GP mean

Next evaluated solution

A

B

C D

E F

G

Figure 2.4: Bayesian Optimization of a toy problem. (A) The goal of this toy prob-
lem is to find the maximum of the unknown objective function. (B) The Gaussian
process is initialized, as it is customary, with a constant mean and a constant vari-
ance. (C) The next potential solution is selected and evaluated. The model is then
updated according to the acquired data. (D) Based on the new model, another
potential solution is selected and evaluated. (E-G) This process repeats until the
maximum is reached.

2.4. Bayesian Optimization 39

is important when using gradient descent methods to find the maximum of the in-
formation acquisition function or to automatically adapt the hyper-parameters of
the model.

Matern kernels The Squared Exponential kernel is a very smooth kernel that
may be not well suited for modeling some phenomenon like physical processes (Stein,
1999; Rasmussen and Williams, 2006). The Matern class of kernel is more general
(it includes the Squared Exponential function as a special case) and allows us to
control not only the distance at which effects become nearly zero (as a function of
parameter l), but also the rate at which distance effects decrease (as a function of
parameter ν). This last parameter allows the user to control the smoothness of the
kernel, contrary to the SE kernel.

The Matérn kernel function is computed as follows (Matérn et al., 1960; Stein,
1999):

k(xi, xj) =
1

2ν−1Γ(ν)

(

√
2ν∥xi − xj∥

l

)ν

Hν

(

√
2ν∥xi − xj∥

l

)

(2.10)

where Γ is the gamma function and Hν is a modified Bessel function (Abramowitz
et al. (1966), sec. 9.6). Like the SE kernel, the l parameter controls the characteris-
tic length-scale, while the ν parameter controls the kernel smoothness. Rasmussen
and Williams (2006) recommends to use ν = 3/2 or ν = 5/2 for machine learning
applications. For these two values, the kernel expression can be simplified as follow:

kν=3/2(xi, xj) =
(

1 +

√
3∥xi − xj∥

l

)

exp
(

−
√

3∥xi − xj∥
l

)

(2.11)

kν=5/2(xi, xj) =
(

1 +

√
5∥xi − xj∥

l
+

5∥xi − xj∥2

3l2

)

exp
(

−
√

5∥xi − xj∥
l

)

(2.12)

When ν → ∞, the Matern kernel converges to the SE kernel. In contrast to
the SE kernel, the Matern kernels are not infinitely differentiable but only k-times
differentiable while ν > k (Rasmussen and Williams, 2006) and become infinitely
differentiable when ν →∞.

Several other kernel functions exist, each with different properties and param-
eters, we encourage interested readers to refer to Rasmussen and Williams (2006)
for more details. The selection of the most appropriate kernel function is a ques-
tion that requires lot of experimentation and engineering, but can also be solved
using automatic model selection (Brochu et al., 2010a; MacKay, 1992). The experi-
ments presented in this manuscript that use Bayesian Optimization will be based on
Matern kernels or the SE kernel when the hyper-parameters will be automatically
determined as presented in the next section.

40 Background

2.4.2.2 Hyper-parameter fitting

All the proposed kernel functions have parameters that control their different prop-
erties. For example, the most common parameter is the length-scale. This parame-
ter is one of the most critical parameters as it controls the impact size of the update
after a new observation. A too small length-scale parameter will limit the model’s
ability to spread the new information over the search space and as a consequence the
algorithm will require more samples to update its model over all the search space.
Conversely a too large length-scale may propagate knowledge in regions that are
irrelevant. For example, if the modeled function is rough, the acquired information
only stands for small area and a large length-scale will be not well adapted for a
function that varies quickly.

These different examples shows that ideal parameter values that work in any
situation do not exist, conversely the parameter values often depend on the consid-
ered applications. Resulting from this observation, a promising way to deal with
this problem is to allow the algorithm to autonomously adapt these parameters
according to the acquired data. In the following sections we will present different
methods to automatically tune the hyper-parameters of the model.

2.4.2.3 Marginal log Likelihood

One of the most common methods to automatically tune the model’s hyper-
parameters is to maximize the marginal log likelihood of the model according to
the data (Rasmussen and Williams, 2006):

log p(P1:t|χ1:t, θ) = −1

2
Pᵀ

1:tK
−1P1:t −

1

2
log |K|− n

2
log(2π) (2.13)

This expression is composed of three terms. The first term penalizes the like-
lihood score if the model does not fit the observations (P1:t). The second term,
1

2
log |K|, limits the model’s complexity and depends only on the kernel function.

The last term is a normalization constant. We encourage interested readers to re-
fer to Rasmussen and Williams (2006) for the details about how this expression is
obtained.

A very common way to optimize the marginal log likelihood consists in using
gradient-based methods. The expression of the marginal log likelihood can be differ-
entiated according to the hyper-parameters using this expression (Rasmussen and
Williams, 2006):

∂

∂θi
log p(P1:t|χ1:t, θ) =

1

2
Pᵀ

1:tK
−1 ∂K

∂θi
K−1P1:t −

1

2
tr(K−1 ∂K

∂θi
)

=
1

2
tr

(

(ααᵀ −K−1)
∂K

∂θi

)

where α = K−1P1:t

(2.14)

2.4. Bayesian Optimization 41

The term
∂K

∂θi
can be computed with the derivative of the kernel function. Using

kernel functions that are at least 1-time differentiable allows us to employ opti-
mization algorithms that use the exact expression of the gradient, like the RPROP
algorithm (Riedmiller and Braun, 1993; Blum and Riedmiller, 2013).

One may observe that the equation of the marginal log likelihood (equation 2.13)
imposes a trade-off between the model complexity and the ability of the model to fit
the data. It is also very surprising to see that this equation is not homogeneous, the
first term corresponds to the squared unit of the observation, while the other terms
do not have particular units. Consequently, the trade-off obtained by the likelihood
optimization can be completely different according to the scale of the observations.
For example if the observation are recorded in meters or in centimeters, the first
term will be in one case 10,000 more important than in the other case.

To our knowledge, no automatic normalization procedure is used in the main
Gaussian Processes library (http://www.gaussianprocess.org) and the data from
their examples are not normalized (only centered). Consequently, from our point
of view, the trade-off imposed by the likelihood expression and the data does not
always lead to the model with the best generalization abilities.

2.4.2.4 Cross-Validation

A typical way to improve the generalization abilities of the classifier or models in
general is to select the hyper-parameters thanks to cross-validation. Such approach
is very common in machine learning to prevent over-training of neural networks for
example (Kohavi et al., 1995).

The same approach can be used to select the hyper-parameters of Gaussian
Processes. For example, the application of the Leave One Out cross validation
(LOO-CV, Lachenbruch and Mickey (1968); Stone (1974)) for hyper-parameter op-
timization is discussed in Rasmussen and Williams (2006). This approach consists
in training the GP with all the acquired data but one and then computing the
log predictive probability, which represents the ability of the model to predict the
leaved out sample. This procedure is then repeated for all the samples and all
the log probability are summed to compute the LOO log predictive probability
(also called log pseudo-likelihood). This term can be considered as a performance
estimator and can then be optimized.

The most expensive part of this procedure is to compute the inverted kernel
matrix for all the leaved out samples, but several mathematical properties allow
the complexity to be reduced (like the block-wise matrix inversion theorem, Press
et al. (1996)). Moreover, the derivative of the log pseudo-likelihood can be ana-
lytically computed with respect to the model’s hyper-parameters (Rasmussen and
Williams, 2006). Consequently, gradient based optimization methods can be used
similarly to the marginal log likelihood optimization. According to Rasmussen and
Williams (2006), the computational costs of the LOO cross validation and of the
marginal log likelihood optimization are roughly identical and knowing under which

http://www.gaussianprocess.org

42 Background

circumstances each method might be preferable is still an open question (Bachoc,
2013).

2.4.3 Acquisition function

The acquisition function selects the next solution that will be evaluated on the
system. The selection is made by finding the solution that maximizes the acquisition
function. This step is another optimization problem, but does not require testing
the solution on the system. In general, for this optimization problem we can derive
the exact equation and find a solution with gradient-based optimization (Fiacco
and McCormick, 1990).

Several different acquisition functions exist, such as the probability of improve-
ment, the expected improvement, or the Upper Confidence Bound (Brochu et al.,
2010b). In the following sections, we will introduce these three acquisition functions
and present how the exploitation-exploration trade-off can be handled with their
parameters.

2.4.3.1 Probability of improvement

This acquisition function, proposed by Kushner (1964), selects potential solutions
that have a high probability of being higher-performing than the highest point
already acquired. This probability of improvement (PI) is computed according to
the normal cumulative distribution function (Φ) and the difference between the
predicted performance of the considered point (x) and the maximum performance
obtained up to now. The variance is also taken into account.

PI(x) = P (f(x) ≥ f(x+)

= Φ
(

µ(x)−f(x+)
σ(x)

)

(2.15)

With a high performance difference and a small variance, the probability will be
very high. Conversely, if the difference is low (or negative) or if the variance is
very high, the probability will be lower. However, this acquisition function is based
on pure exploitation of the predicted performance. For example, very small im-
provements with low variance will have a higher probability of improvement than
larger improvements with high variance. As a consequence, the algorithm will select
mainly solutions that are close to the best found so far.

One way to mitigate this behavior consists to add a trade-off parameter (ξ) in
the equation:

PI(x) = P (f(x) ≥ f(x+) + ξ)

= Φ
(

µ(x)−f(x+)−ξ
σ(x)

)

(2.16)

The value of this parameter is set by the user to control the exploitation/exploration
trade-off of the algorithm. A high value will foster solutions that have a significantly
better (predicted) performance that the best one found so far.

2.4. Bayesian Optimization 43

This trade-off parameter can also be changed during the optimization process.
For example, a high value can be used in the beginning to foster the exploration
of the search space and then, near the end of the optimization, a lower value can
be set to focus the exploitation of the generated model to fine-tune the obtained
solution (Kushner, 1964).

One may notice that this information acquisition function only considers the
probability of improvement but the magnitude of the improvement may be of in-
terest too.

2.4.3.2 Expected improvement

As an alternative, Mockus et al. (1978) defined the improvement of the performance
observations:

I(x) = max(0, ft+1(x)− f(x+)) (2.17)

The authors propose to consider the expected improvement as an acquisition func-
tion. The improvement is equal to zero when the performance of the solution tested
at t+1 is lower than the high performance found so far. The improvement is positive
when the performance difference is also positive.

Based on this definition of the improvement and on the integral over the prob-
ability density provided by the GP, the expected improvement (EI) can be analyt-
ically computed (see Mockus et al. (1978); Brochu et al. (2010b) for more details):

EI(x) = E[max(0, ft+1(x)− f(x+))|P1:t, χ1:t]

=
{

(µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where Z = µ(x)−f(x+)
σ(x)

(2.18)

where φ is the probability density function and Φ is the cumulative distribution
function of the standard normal distribution.

In the same way as the PI function, the EI acquisition function can be extended
with a parameter (ξ > 0) that controls the exploitation-exploration trade-off:

EI(x) =
{

(µ(x)− f(x+)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0
0 if σ(x) = 0

where Z = µ(x)−f(x+)−ξ
σ(x)

(2.19)

The influence of this parameter has been discussed in Lizotte (2008). In its PhD-
thesis, the author considered a progressively decreasing ξ value according to the
number of performed acquisitions, however the experimental results showed no ev-
idence of significant improvement. The author underlines that these experiments
are not a proof that such parameter adaptation cannot improve the performance
but they show that the improvement is not systematic and such procedure should
be used carefully.

44 Background

2.4.3.3 Upper Confidence Bound

Another information acquisition function that is used commonly is the Upper-
Confidence Bound function (UCB, Cox and John (1997)) defined with this equation:

UCB(x) = µ(x) + κσ(x) (2.20)

where κ is a user-defined parameter that tunes the trade-off between exploration
and exploitation like in the other acquisition functions. In the UCB function, the
emphasis on exploitation vs. exploration is explicit and easy to adjust. The UCB
function can be seen as the maximum value (argmax) across all solutions of the
weighted sum of the expected performance (mean of the Gaussian, µt(x)) and of
the uncertainty (standard deviation of the Gaussian, σt(x)) of each solution. This
sum is weighted by the κ factor. With a low κ, the algorithm will choose solutions
that are expected to be high-performing. Conversely, with a high κ, the algorithm
will focus its search on unexplored areas of the search space that may have high-
performing solutions.

Similarly to the other acquisition functions, several works studied the influence
of adapting the κ parameter according to the number of acquisitions. For example,
Srinivas et al. (2009) proposed a reduction rate of κ that has a high probability of
minimizing the regret of the acquisitions.

2.4.4 Application in behavior learning in robotics

Even if BO has been introduced recently, it has been used for a relatively large
variety of tasks in robotics. For example in path planning, BO has been used
to select next waypoints that minimize the robot uncertainty about its position
(Martinez-Cantin et al., 2007, 2009) or to minimize the vibration on the robot when
traveling on an uneven terrain (Souza et al., 2014). This approach has also been
used in grasping tasks (Veiga and Bernardino, 2013) and in object recognition tasks
(Defretin et al., 2010). This last example employs the Efficient Global Optimization
algorithm (EGO, (Jones et al., 1998)2 in order to select the next view point that
will provide the most of information.

The applications of BO to learn behaviors are also numerous. For example,
Frean and Boyle (2008) used BO to learn the parameters of a neural network that
controls a (simulated) double pole balancing. In this work, the neural network
grows in complexity when the performances stagnate by adding additional neurons
in the hidden layer. This has been done to avoid bottlenecks coming from simple
neural networks and also to bootstrap the learning process. The algorithm required
about 200 trials to generate neural networks able to balance the pole, but most
of the produced networks used a simple architecture with only one or two hidden
neurons (corresponding to 8 or 16 parameters to tune). The authors also compared
the performance of their algorithm to the NEAT algorithm on the same task. This

2EGO is very close in its application to BO and corresponds to the Kriging algorithm (Simpson
et al., 1998) coupled with a GP and the EI acquisition function

2.4. Bayesian Optimization 45

evolutionary algorithm introduced by Stanley and Miikkulainen (1996) and designed
to augment progressively the topology of neural networks required about 3578 trials
on the same task. This is a good illustration of the speed of BO techniques compared
to evolutionary algorithms.

As another example, Kuindersma et al. (2011) used BO to optimize the 4 param-
eters of a controller that moves the arms of a small, physical, wheeled “humanoid”
robot (which can be considered as a cart-pole with two arms) that allows the robot
to recover after an external shock. The results show that after between 30 and 35
trials the algorithm found controllers that allow the robot to recover its balance
and also to reduce the total energy expenditure in this manoeuvre.

In Tesch et al. (2011), the authors used EGO to learn snake gaits that are
able to climb up slopes and to deal with obstacles in less than 30 evaluations. In
addition to dealing with these environments, the experiments showed that the gaits
learned allowed the physical robotic snake to walk faster than with a hand-tuned
controller. This work has then been extended to multi-objective optimization in
order to simultaneously control both the speed and stability of the robot (Tesch
et al., 2013). After 25 evaluations, the algorithm was able to approximate the
pareto-front and to generate several behaviors corresponding to speed and stability
trades-off.

BO has also been used to generate walking gaits on physical legged robots. For
example, Lizotte et al. (2007) employed this algorithm to optimize the 15 parameters
of a parametrized gait of the AIBO robot. It required about 120 iterations to
produce a gait that is both efficient and smooth. Their work showed that BO is
significantly higher performing than gradient-based PS approaches. In a similar
way, Calandra et al. (2014) used BO to learn the 4 parameters of the finite state
machine controlling a bipedal robot. The experiments required 40 evaluations (each
being repeated 3 times for robust observations) to find high performing gaits.

In Kober et al. (2012), the authors do not use BO exactly, but the proposed
method employs the same tools as BO and is a good illustration of the potential ap-
plications of the BO framework in a more general context. The proposed algorithm
learns a mapping between the current state of the system and the meta-parameters
that have to be used to achieve a task. This mapping is obtained thanks to mod-
ified GP that the authors named Cost-regularized Kernel Regression. The input
space of the GP is the current state of the system, the output space represents
the distribution over the optimal meta-parameters and the variance of the GP rep-
resents the cost of the best solution, found so far, for this state. This contrasts
with the standard way of using GP in BO in which the input space corresponds to
the controller parameters (sometimes extended to the current state, see Deisenroth
and Rasmussen (2011)) and the output space models the distribution of the perfor-
mance. The BO optimization process aims to find the location in the input space
that maximizes the performance of the robot, while in the proposed methods the
algorithm aims to find, for a fixed input (state), the output of the GP that min-
imizes the cost function. The mapping proposed by the authors allows the robot
to adjust its policy continuously according to its state. The approach has been

46 Background

successfully tested on a large variety of tasks (throwing darts and balls to different
targets, playing table tennis) and on several physical robots. The performances
of this algorithm cannot be directly compared with the previously presented al-
gorithms because it searches, not only for a single solution, but for one solution
per state and also because it starts with an initial behavior learned by imitation.
Nonetheless, it is worth noting that it manages to find these solutions in only 70 to
250 evaluations, depending on the task.

The PILCO framework is another approach more or less related to BO, intro-
duced by Deisenroth and Rasmussen (2011), that uses a GP to model the dynamic
function of the robot and then uses this model to “simulate” the robot’s states for
several steps ahead and updating its policy according to these predictions. The
policy is then executed for one step on the robot and the action’s consequences
are recorded to update the GP (the dynamic model) and the process repeats until
reaching the target. The authors applied this framework on several physical robots,
like a cart-pole (Deisenroth and Rasmussen, 2011) and a robotic arm (Deisenroth
et al., 2011, 2015). In both of these systems, the algorithm was able to find a
behavior solving the task in about a dozen of trials, which can be considered as
the state of the art for these relatively simple systems. However, according to the
authors (Deisenroth and Rasmussen, 2011), the framework has some limitations in
the discovered policy as there is no guarantees of global optimality and that the
obtained solutions are mainly locally optimal, but these limitations are commonly
shared with most of the policy search methods and EAs. Moreover, applying this
framework on more complex systems, like legged robots, seems not trivial. For ex-
ample, we can wonder if it is possible to build models of complex interactions, like
those between the ground and the robot’s legs, in only a dozen of trials and to use
them when the state space is very large.

2.4.5 Partial conclusion

Bayesian Optimization is a promising model-based policy search method for sev-
eral reasons: BO is able (1) to deal with noisy observations and (2) shows similar
learning speed than model-free PS algorithms (a few hundred trials). More im-
portantly, (3) BO does not require starting from a good initial policy (like those
obtained via imitation), which constitute a fundamental difference between BO and
PS algorithms. None of the BO applications presented in this section require such
initialization procedure. This shows the global optimization ability of the BO al-
gorithm, even if it depends on the initialization of the GP, which is most of the
time performed through a random sampling. Nevertheless this ability also highly
depends on the size of the search space. In large search spaces, a very large number
of random samples will be required to obtain a beneficial initial model of the per-
formance function. This limitation explains why most of the applications presented
previously use relatively small search spaces (a maximum of a dozen of parameters).

Unfortunately, this limitation on the size of the search space may also limit the
adaptation abilities of the robots, as the search space should contain solutions that

2.5. Conclusion 47

work in spite of the damage. Small search spaces are likely to reduce the number
of behavior families that the robot may use and consequently reduce the number of
situations in which the robot is able to adapt.

2.5 Conclusion

In this chapter, we presented three families of learning algorithms: Evolutionary
algorithms (EAs), Policy Search algorithms (PS) and Bayesian Optimization (BO).
We highlighted that each of these families has its own advantages and drawbacks.
EAs are creative optimization algorithms that are able to deal with large search
spaces and to evolve a large variety of solution types (like parameter vectors, graph
or shapes). They are also less affected by local optima than the other approaches
thanks to methods like the behavioral diversity. The main downside of EAs is
undoubtedly the number of evaluations required by the optimization algorithm,
which makes very challenging all EA applications on physical robots.

PS algorithms allow robots to learn behaviors significantly faster than EAs
(about one order of magnitude faster), but this learning speed is mainly explained
by the fact PS algorithms are mainly local search approaches, needing good initial
policy. A good illustration of this aspect of PS algorithms is the fact that most
the experiences we are aware of used an initial policy obtained thanks to an imi-
tation learning algorithm and a human demonstration. This kind of initialization
procedure cannot be used in every situation. For example, if a robot on a remote
planet has to learn a new behavior to adapt to an unexpected situation, a human
demonstration is unlikely to be available.

In the last section we saw that BO finds solutions as fast as PS algorithms.
However, the fact that this algorithm does not need to be initialized with an imita-
tion algorithm proves that it is less affected by local extrema than PS algorithms.
Unfortunately, this ability is tempered by the limited size of the search spaces,
which rarely exceeds a dozen dimensions. Such small search spaces are likely to
limit the diversity of behaviors that the robot will potentially be able to use to
adapt. With large search spaces, the number of different behavior families (given
a type of controller) will be larger than with small search spaces. Consequently, to
allow robots to face a large variety of situations the search space should be as large
as possible.

Taking everything into account, we can conclude that an ideal learning algo-
rithm that might allow robots to adapt will require the creativity of EAs and the
learning speed of PS and BO algorithms. The objective of the work presented in
this manuscript is thus to combine the advantages of the three algorithm families
and alleviate all their drawbacks. The main idea consists in encapsulating the cre-
ativity of evolutionary algorithms in a container that we call a behavioral repertoire
or a behavioral map, and then use this condensed source of creativity with BO to
profit of its learning speed. The behavioral repertoires are autonomously designed
in simulation while they are used on physical robots for the adaptation. The links

48 Background

and differences between the reality and the simulation (called the reality gap prob-
lem, Koos et al. (2013b)) play an important role in this manuscript, as we will show
that using information provided by the simulation is one of the keys to make fast
adaptation possible with physical robots.

In the next chapter we will present in details the concept of behavioral reper-
toires and we will introduce two new algorithms to create these repertoires. We
will then show in the chapter 4 how these repertoires can be combined with BO
to allow fast adaptation to mechanical damages. Before the conclusion and the
discussion, we will present in the chapter 5, how these results can be extended to
deal with usual problems and questions in robotics. More precisely we will see how
it is possible to adapt a whole family of behaviors by transferring knowledge from
one task to the next ones. We will also deal with the problem of solutions that
cannot be evaluated (for safety reasons for instance) or that failed to be assessed.
Finally, we will see how to handle behavioral repertoires that contain inconsistency
according to the reality and that may be more misleading than useful.

Chapter 3

Behavioral Repertoire

The results and text of this chapter have been partially published the following
articles.

Main articles:

• Cully, A., and Mouret, J. B. (2015). Evolving a behavioral repertoire for a
walking robot. Evolutionary computation.

• Cully, A., and Mouret, J. B. (2013). Behavioral repertoire learning in
robotics. In Proceedings of the 15th annual conference on Genetic and evolu-
tionary computation (pp. 175-182). ACM.

Related articles:

• Maestre, C., Cully, A., Gonzales, C., and Doncieux, S. (2015, August). Boot-
strapping interactions with objects from raw sensorimotor data: a Novelty
Search based approach. In IEEE International Conference on Developmental
and Learning and on Epigenetic Robotics.

Other contributors:

• Jean-Baptiste Mouret, Pierre and Marie Curie University (Thesis supervisor)

Author contributions:

• for the both of the papers: A.C. and J.-B.M. designed the study. A.C.
performed the experiments. A.C. and J.-B.M. analyzed the results and wrote
the papers.

Contents
3.1 Introduction . 50

3.1.1 Evolving Walking Controllers 50

3.1.2 Evolving behavioral repertoires 52

3.2 The TBR-Evolution algorithm 54

3.2.1 Principle . 54

3.2.2 Experimental validation . 58

3.3 The MAP-Elites algorithm . 76

3.3.1 Principle . 76

3.3.2 Experimental validation . 80

3.4 Conclusion . 87

50 Behavioral Repertoire

3.1 Introduction

As presented in the previous chapter, the creativity of evolutionary algorithms
stems from their ability to deal with large search spaces. Nevertheless, while this
creativity can allow robot to find solutions in a large number of damage situations,
the large number of evaluations often counterbalances their benefits and makes
these algorithms unemployable with physical robots. During most of evolutionary
processes, we can observe that most of the evaluations lead to degenerated behaviors
that are unlikely to work, even on the intact robot. Conversely, some solutions that
work on the intact robot can still work once the robot is damaged. For example,
behaviors that do not use the damaged part are likely to perform similarly on
the intact robot and when it is damaged. Consequently, a promising way to save
evaluations could be to avoid such degenerated behaviors and to focus on solutions
that work at least on the intact robot.

In the rest of this manuscript, we will hypothesize that such behaviors exist.
Focusing the exploration of the search space on behaviors that work on the intact
robot implies that our algorithms know how to find these behaviors in advance.
However, determining all the behaviors that work on a robot, intact or damaged,
represents a challenge that remains open.

Numerous algorithms have been proposed to allow robots to learn behaviors
(see chapter 2). However, the vast majority of these algorithms is devised to learn
a single behavior, like walking in a straight line or reaching a single goal. In this
chapter, we introduce two novel evolutionary algorithms that attempt to discover
many possible behaviors for a robot by learning simultaneously and autonomously
several hundreds or even thousands of simple behaviors in a single learning process.
Walking robots are a good illustration of systems that can perform several types of
behaviors. For example, they can walk in every direction or they can walk in very
different manners (in a static or dynamic way, by hopping or by using differently
their legs). We will use this kind of system as an application example in this
chapter and propose methods that will allow legged robots to learn a large variety
of behaviors, like walking in every direction, in only one learning process.

3.1.1 Evolving Walking Controllers

Evolving gaits for legged robots has been an important topic in evolutionary com-
putation for the last 25 years (de Garis, 1990; Lewis et al., 1992; Kodjabachian and
Meyer, 1998; Hornby et al., 2005; Clune et al., 2011; Yosinski et al., 2011; Samuelsen
and Glette, 2014). That legged robots is a classic of evolutionary robotics is not
surprising (Bongard, 2013): legged locomotion is a difficult challenge in robotics
that evolution by natural selection solved in nature; evolution-inspired algorithms
may do the same for artificial systems. As argued in many papers, evolutionary
computation could bring many benefits to legged robotics, from making it easier
to design walking controllers (e.g., Hornby et al. (2005)), to autonomous damage
recovery (e.g., Bongard et al. (2006); Koos et al. (2013a)). In addition, in an embod-
ied cognition perspective (Wilson, 2002; Pfeifer and Bongard, 2007; Pfeifer et al.,

3.1. Introduction 51

2007), locomotion is one of the most fundamental skills of animals, and therefore it
is one of the first skills needed for embodied agents.

It could seem more confusing that evolutionary computation has failed to be
central in legged robotics, in spite of the efforts of the evolutionary robotics com-
munity (Raibert, 1986; Siciliano and Khatib, 2008). In our opinion, this failure
stems from at least two reasons: (1) most evolved controllers are almost useless in
robotics because they are limited to walking in a straight line at constant speed (e.g.
Hornby et al. (2005); Bongard et al. (2006); Koos et al. (2013a)), whereas a robot
that only walks in a straight line is obviously unable to accomplish any mission; (2)
evolutionary algorithms typically require evaluating the fitness function thousands
of times, which is very hard to achieve with a physical robot.

We call Walking Controller the software module that rhythmically drives the
motors of the legged robot. We distinguish two categories of controllers: un-driven
controllers and inputs-driven controllers. An un-driven controller always executes
the same gait, while an inputs-driven controller can change the robot’s movements
according to an input (e.g. a speed or a direction reference). Inputs-driven con-
trollers are typically combined with decision or planning algorithms (Russell et al.,
2010; Currie and Tate, 1991; Dean and Wellman, 1991; Kuffner and LaValle, 2000)
to steer the robot. These two categories contain, without distinctions, both open-
loop and closed-loop controllers, and can be designed using various controller and
genotype structures. For example, walking gait evolution or learning has been
achieved on legged robots using parametrized periodic functions (Koos et al., 2013a;
Chernova and Veloso, 2004; Hornby et al., 2005; Tarapore and Mouret, 2014a,b),
artificial neural networks with either direct or generative encoding (Clune et al.,
2011; Valsalam and Miikkulainen, 2008; Tarapore and Mouret, 2014a,b), Central
Pattern Generators (Kohl and Stone, 2004; Ijspeert et al., 2007), or graph-based
genetic programming (Filliat et al., 1999; Gruau, 1994).

When dealing with physical legged robots, the majority of studies only consid-
ers the evolution of un-driven walking controllers and, most of the time, the task
consists in finding a controller that maximizes the forward walking speed (Zykov
et al., 2004; Chernova and Veloso, 2004; Hornby et al., 2005; Berenson et al., 2005;
Yosinski et al., 2011; Mahdavi and Bentley, 2006). Papers on alternatives to evo-
lutionary algorithms, like policy gradients (Kohl and Stone, 2004; Tedrake et al.,
2005) or Bayesian optimization (Calandra et al., 2014; Lizotte et al., 2007), are also
focused on robot locomotion along a straight line.

Comparatively few articles deal with controllers able to turn or to change the
walking speed according to an input, especially with a physical robot. Inputs-driven
controllers usually need to be tested on each possible input during the learning pro-
cess or to be learned with an incremental process, which significantly increases both
the learning time and the difficulty compared to learning an un-driven controller.
Filliat et al. (1999) proposed such a method that evolves a neural network to con-
trol a hexapod robot. Their neural network is evolved in several stages: first, the
network is evolved to walk in a straight line; in a second stage, a second neural
network is evolved on top of the walking controller to be able to execute turning

52 Behavioral Repertoire

A B

Figure 3.1: (Left) The hexapod robot. It has 18 degrees of freedom (DOF), 3 for
each leg. Each DOF is actuated by position-controlled servos (Dynamixel actua-
tors). A RGB-D camera (Asus Xtion) is screwed on the top of the robot. The
camera is used to estimate the forward displacement of the robot thanks to a RGB-
D Simultaneous Localization And Mapping (SLAM, Durrant-Whyte and Bailey
(2006); Angeli et al. (2009)) algorithm (Endres et al., 2012) from the ROS frame-
work (Quigley et al., 2009). (Right) Goal of TBR-Learning. Our algorithm allows
the hexapod robot to learn to walk in every direction with a single run of the
evolutionary algorithm.

manoeuvres. In a related task (flapping-wing flight), Mouret et al. (2006) used a
similar approach, in which an evolutionary algorithm is used to design a neural
network that pilots a simulated flapping robot; the network was evaluated by its
ability to drive the robot to 8 different targets and the reward function was the sum
of the distances to the targets.

Overall, many methods exist to evolve un-driven controllers, while methods
for learning inputs-driven controllers are very time-expensive, difficult to apply on
a physical robot, and require an extensive amount of expert knowledge. To our
knowledge, no current technique is able to make a physical robot learning to walk
in multiple directions in less than a dozen hours. In this paper, we sidestep many
of the challenges raised by input-driven controllers while being able to drive a robot
in every direction: we propose to abandon input-driven controllers, and, instead,
search for a large number of simple, un-driven controllers, one for each possible
direction.

3.1.2 Evolving behavioral repertoires

In this chapter we propose to see the question of walking in every direction as a
problem of learning how to do many different – but related – tasks. Indeed, some

3.1. Introduction 53

complex problems are easier to solve when they are split into several sub-problems.
Thus, instead of using a single and complex solution, it is relevant to search for
several simple solutions that solve a part of the problem. This principle is often
successfully applied in machine learning: mixtures of experts (Jacobs et al., 1991)
or boosting (Schapire, 1990) methods train several weak classifiers on different sub-
parts of a problem. Performances of the resulting set of classifiers are better than
those of a single classifier trained on the whole problem.

The aim of this chapter is to enable the application of this principle to robotics
and, particularly, to legged robots that learn to walk. In this case, an evolutionary
algorithm could search for a repertoire of simple controllers that would contain a
different controller for each possible direction. These simple controllers can then be
combined with high level algorithms (e.g. planning algorithms, or neural networks
like in (Godzik et al., 2003; ?)) that successively select controllers to drive the
robot. Nevertheless, evolving a controller repertoire typically involves as many
evolutionary processes as there are target points in the repertoire. Evolution is
consequently slowed down by a factor equal to the number of targets. With existing
evolution methods, repertoires of controllers are in effect limited to a few targets,
because 20 minutes (Koos et al., 2013a) to dozens of hours (Hornby et al., 2005)
are needed to learn how to reach a single target.

In this chapter, we present two algorithms, TBR-Evolution and MAP-Elites,
that aim to find such a repertoire of simple controllers, but in a single run. They
are based on a simple observation: with a classic evolutionary algorithm, when a
robot learns to reach a specific target, the learning process explores many different
potential solutions, with many different outcomes. Most of these potential solutions
are discarded because they are deemed poorly-performing. Nevertheless, while be-
ing useless for the considered objective, these inefficient behaviors can be useful for
other objectives. For example, a robot learning to walk in a straight line usually
encounters many turning gaits during the search process, before converging towards
straight-line locomotion.

TBR-Evolution The first algorithm presented here, named the Transferability-
based Behavioral Repertoire Evolution algorithm (TBR-Evolution), exploits this
idea by taking inspiration from the “Novelty Search” algorithm (Lehman and Stan-
ley, 2011a), and in particular its variant the “Novelty Search with Local Compe-
tition” (see section 2.2.3). Instead of rewarding candidate solutions that are the
closest to the objective, this recently introduced algorithm explicitly searches for
behaviors that are different from those previously seen. The local competition
variant adds the notion of a quality criterion, which is optimized within each indi-
vidual’s niche. As shown in the rest of this chapter, searching for many different
behaviors during a single execution of the algorithm allows the evolutionary process
to efficiently create a repertoire of high-performing walking gaits.

To further reduce the time required to obtain a behavioral repertoire for the
robot, TBR-Evolution relies on the transferability approach (see section 2.2.5),

54 Behavioral Repertoire

which combines simulations and tests on the physical robot to find solutions that
perform similarly in simulation and in reality. The advantage of the transferabil-
ity approach is that evolution occurs in simulation but the evolutionary process is
driven towards solutions that are likely to work on the physical robot. In recent
experiments, this approach led to the successful evolution of walking controllers for
quadruped (Koos et al., 2013b), hexapod (Koos et al., 2013a), and biped robots
(Oliveira et al., 2013), with no more than 25 tests on the physical robot.

We evaluate this algorithm on two sets of experiments. The first set aims to show
that learning simultaneously all the behaviors of a repertoire is faster than learning
each of them separately. We chose to perform these experiments in simulation to
gather extensive statistics. The second set of experiments evaluates our method on a
physical hexapod robot (Fig. 3.1, left) that has to walk forward, backward, and turn
in both directions, all at different speeds (Fig. 3.1, right). We compare our results
to learning independently each controller. All our experiments utilize embedded
measurements to evaluate the fitness, an aspect of autonomy only considered in a
handful of gait discovery experiments (Kimura et al., 2001; Hornby et al., 2005).

MAP-Elites The second algorithm introduced in this chapter is named Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites) and has initially been cre-
ated by Mouret and Clune (2015) to generate graphics that illustrate the fitness
landscape of the retina problem (Clune et al., 2013). However, it shows itself to be
a simple but high-performing algorithm to learn simultaneously a very large variety
of behaviors. This algorithm and more specifically the Behavior-Performance Maps
(which are similar to behavioral repertoires) that it generates will be used in the
next chapter to allow our robots to adapt to a large variety of mechanical damages.

We first evaluate the ability of this algorithm to learn large collection of actions
on the same task as the TBR-Evolution algorithm, in which a hexapod robot has
to learn to walk in every direction. With this experiment, we can see how MAP-
Elites compares to our first algorithm. In a second experiment, we investigate the
ability of the algorithm to find a large number of different ways to achieve the
same task. In our case we ask our robot to learn a maximum of ways to walk in
a straight line as fast as possible. Both of these experiments are performed only
in simulation, as we will introduce in the next chapter an algorithm that uses the
behavioral-performance maps to allow physical robots to learn or to adapt quickly.

In the two following sections, we introduce the TBR-Evolution algorithm and
the MAP-Elites algorithm in details and present the experimental results.

3.2 The TBR-Evolution algorithm

3.2.1 Principle

As mentioned previously, learning independently dozens of controllers is pro-
hibitively expensive, especially with a physical robot. To avoid this issue, the

3.2. The TBR-Evolution algorithm 55

TBR-Evolution algorithm transforms the problem of learning a repertoire of con-
trollers into a problem of evolving a heterogeneous population of controllers. This
problem can be solved with an algorithm derived from novelty search with local
competition (Lehman and Stanley, 2011b): instead of generating virtual creatures
with various morphologies that execute the same behavior, as presented in section
2.2.3, TBR-Evolution generates a repertoire of controller, each executing a differ-
ent behavior, working on the same creature. By simultaneously learning all the
controllers without the discrimination of a specified goal, the algorithm recycles
interesting controllers, which are typically wasted with classical learning methods.
This enhances its optimizing abilities compared to classic optimization methods.

Furthermore, our algorithm incorporates the transferability approach (Koos
et al., 2013b) to reduce the number of tests on the physical robot during the evolu-
tionary process. The transferability approach and novelty search with local compe-
tition can be combined because they are both based on multi-objective optimization
algorithms. By combining these two approaches, the behavioral repertoire is gen-
erated in simulation with a virtual robot and only a few controller executions are
performed on the physical robot. These trials guide the evolutionary process to
solutions that work similarly in simulation and in reality (Koos et al., 2013a,b).

The minimization of the number of tests on the physical robot and the simulta-
neous evolution of many controllers are the two assets that allow the TBR-Evolution
algorithm to require significantly less time than classical methods.

More technically, the TBR-Evolution algorithm relies on four principles, detailed
in the next sections:

• a stochastic, black box, multi-objective optimization algorithm simultaneously
optimizes 3 objectives, all evaluated in simulation: (1) the novelty of the gait,
(2) the local rank of quality and (3) the local rank of estimated transferability:

maximize

⎧

⎪

⎨

⎪

⎩

Novelty(c)
−Qrank(c)

−T̂rank(c)

• the transferability function is periodically updated with a test on the physical
robot;

• when a controller is novel enough, it is saved in the novelty archive;

• when a controller has a better quality than the one in the archive that reaches
the same endpoint, it substitutes the one in the archive.

Algorithm 1 describes the whole algorithm in pseudo-code.

3.2.1.1 Objectives

The novelty objective fosters the exploration of the reachable space. A controller
is deemed as novel when the controlled individual reaches a region where none,

56 Behavioral Repertoire

Algorithm 1 TBR-Evolution algorithm (G generations, T transfers’ period)

procedure TBR-Evolution
pop← {c1, c2, . . . , cS} (randomly generated)
archive← ∅

for g = 1→ G do

for all controller c ∈ pop do

Execution of c in simulation

if g ≡ 0[T] then

Transferability Update(c)

for all controller c ∈ pop do

Objective Update(c)
Archive Management(c)

Iteration of NSGA-II on pop

return archive
procedure Transferability Update(c)

Random selection of c∗∈ pop ∪ archive and transfer on the robot
Estimation of the endpoint Ereal(c∗)

Estimation of the exact transferability value
∣

∣

∣
Esimu(c∗)− Ereal(c∗)

∣

∣

∣

Update of the approximated transferability function T̂

procedure Objectives Update(c)
N (c)← The 15 controllers(∈ pop ∪ archive) closest to Esimu(c)
Computation of the novelty objective:

Novelty(c) =

∑

j∈N (c)
∥Esimu(c)−Esimu(j)∥

|N (c)|
Computation of the local rank objectives:

Qrank(c) = |j ∈ N (c), quality(c) < quality(j)|
T̂rank(c) = |j ∈ N (c), T̂ (des(c)) < T̂ (des(j)|

procedure Archive Management(c)
if Novelty(c) > ρ then

Add the individual to archive
cnearest ← The controller ∈ archive nearest to Esimu(c)
if T̂ (des(c)) > τ and quality(c) > quality(cnearest) then

Replace cnearest by c in the archive
else if T̂ (des(c)) > T̂ (des(c

nearest
)) then

Replace cnearest by c in the archive

3.2. The TBR-Evolution algorithm 57

or few of the previously encountered gaits were able to go (starting from the same
point). The novelty score of a controller c (Novelty(c)) is set as the average distance
between the endpoint of the current controller (Ec) and the endpoints of controllers
contained in its neighborhood (N (c)):

Novelty(c) =

∑

j∈N (c)
∥Esimu(c)−Esimu(j)∥

card(N (c))
(3.1)

To get high novelty scores, individuals have to follow trajectories leading to end-
points far from the rest of the population. The population will thus explore all the
area reachable by the robot. Each time a controller with a novelty score exceeds
a threshold (ρ), this controller is saved in an archive. Given this archive and the
current population of candidate solutions, a neighborhood is defined for each con-
troller (N (c)). This neighborhood regroups the k controllers that arrive closest to
the controller c (the parameters’ values are detailed in appendix C.1).

The local quality rank promotes controllers that show particular properties,
like stability or accuracy. These properties are evaluated by the quality score
(quality(c)), which depends on implementation choices and particularly on the
type of controllers used (we will detail its implementation in section 3.2.2.1). In
other words, among several controllers that reach the same point, the quality score
defines which one should be promoted. For a controller c, the rank (Qrank(c))
is defined as the number of controllers from its neighborhood that outperform its
quality score: minimizing this objective allows the algorithm to find controllers with
better quality than their neighbors.

Qrank(c) = card(j ∈ N (c), quality(c) < quality(j)) (3.2)

The local transferability rank (̂Trank(c), equation 3.3) works as a second local
competition objective, where the estimation of the transferability score (T̂ (des(c)))
replaces the quality score. Like in (Koos et al., 2013b), this estimation is obtained
by periodically repeating three steps: (1) a controller is randomly selected in the
current population or in the archive and then downloaded and executed on the
physical robot, (2) the displacement of the robot is estimated thanks to an em-
bedded sensor, and (3) the distance between the endpoint reached in reality and
the one in simulation is used to feed a regression model (T̂ , here a support vector
machine (Chang and Lin, 2011)). This distance defines the transferability score of
the controller. This model maps a behavioral descriptor of a controller (des(c)),
which is obtained in simulation, with an approximation of the transferability score.

Thanks to this descriptor, the regression model predicts the transferability score
of each controller in the population and in the archive.

T̂rank(c) = card(j ∈ N (c), T̂ (des(c)) < T̂ (des(j))) (3.3)

3.2.1.2 Archive management

In the original novelty search with local competition (Lehman and Stanley, 2011b),
the archive aims at recording all encountered solutions, but only the first individuals

58 Behavioral Repertoire

Time (sec.)

C
on
tr
ol
si
gn
al
(r
ad
.)

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Figure 3.2: (Left) Snapshot of the simulated robot in our ODE-based physics sim-
ulator. (Center) Kinematic scheme of the robot. The cylinders represent actuated
pivot joints. (Right) Control function γ(t, α, φ) with α = 1 and φ = 0.

that have a new morphology are added to the archive. The next individuals with
the same morphology are not saved, even if they have better performances. In the
TBR-Evolution algorithm, the novelty archive represents the resulting repertoire of
controllers, and thus has to gather only the best controllers for each region of the
reachable space.

For this purpose, the archive is differently managed than in the novelty search:
during the learning process, if a controller of the population has better scores
(quality(c) or T̂ (c)) than the closest controller in the archive, the one in the
archive is replaced by the better one. These comparisons are made with a pri-
ority among the scores to prevent circular permutations. If the transferability score
is lower than a threshold (τ), only the transferability scores are compared, other-
wise we compare the quality scores. This mechanism allows the algorithm to focus
the search on transferable controllers instead of searching efficient, but not transfer-
able, solutions. Such priority is important, as the performances of non-transferable
controllers may not be reproducible on the physical robot.

3.2.2 Experimental validation

3.2.2.1 Methods

We evaluate the TBR-Evolution algorithm on two different experiments, which both
consist in evolving a repertoire of controllers to access to the entire reachable space
of the robot. In the first experiment, the algorithm is applied on a simulated robot
(Fig. 3.2, left), consequently the transferability aspect of the algorithm is disabled.
The goal of this experiment is to show the benefits of evolving simultaneously all
the behaviors of the repertoire instead of evolving them separately. The second
experiment applies the algorithm directly on a physical robot (Fig 3.1, left). For
this experiment, the transferability aspect of the algorithm is enabled and the ex-
periment shows how the behavioral repertoire can be learned with a few trials on
the physical robot.

The pseudo-code of the algorithm is presented in Algorithm 1. The TBR-

3.2. The TBR-Evolution algorithm 59

Evolution algorithm uses the same variant of NSGA-II (Deb et al., 2002) as the
novelty search with local competition (Lehman and Stanley, 2011b), which replaces
the diversity mechanism along the non-dominated front with a separate objective
explicitly reward the genotypic diversity. The simulation of the robot is based
on the Open Dynamic Engine (ODE) and the transferability function T̂ uses the
ν-Support Vector Regression algorithm with linear kernels implemented in the li-
brary libsvm (Chang and Lin, 2011) (learning parameters set to default values). All
the algorithms are implemented in the Sferesv2 framework (Mouret and Doncieux,
2010) (parameters and source code are detailed in appendix). The simulated parts
of the algorithms are computed on a cluster of 5 quad-core Xeon-E5520@2.27GHz
computers.

The evolved genotype and the corresponding controller used in these experi-
ment are defined in the appendix A.2.1. However, compared to classic evolutionary
algorithms, TBR-Evolution only changes the way individuals are selected. As a
result, it does not put any constraint on the type of controllers, and many other
controllers are conceivable (e.g. bio-inspired central pattern generators (Sproewitz
et al., 2008; Ijspeert, 2008), dynamic movement primitives (Schaal, 2003) or evolved
neural networks (Yosinski et al., 2011; Clune et al., 2011)).

3.2.2.2 Endpoints of a controller

The endpoint of a controller (in simulation or in reality) is the position of the center
of the robot’s body projected in the horizontal plane after running the controller
for 3 seconds:

E (c) =

{

centerx(t = 3s)− centerx(t = 0s)
centery(t = 3s)− centery(t = 0s)

}

When the controller is executed on the physical robot, the location of the robot is
assessed thanks to a SLAM algorithm (see Fig.3.1)

3.2.2.3 Quality Score

To be able to sequentially execute saved behaviors, special attention is paid to
the final orientation of the robot. Because the endpoint of a trajectory depends
on the initial orientation of the robot, we need to know how the robot ends its
previous movement when we plan the next one. To facilitate chaining controllers,
we encourage behaviors that end their movements with an orientation aligned with
their trajectory.

The robot cannot execute arbitrary trajectories with a single controller because
controllers are made of simple periodic functions. For example, it cannot begin
its movement by a turn and then go straight. With this controller, the robot can
only follow trajectories with a constant curvature, but it still can move sideways,
or even turn around itself while following an overall straight trajectory. We chose
to focus the search on circular trajectories, centered on the lateral axis, with a
variable radius (Fig. 3.3A), and for which the robot’s body is pointing towards the

60 Behavioral Repertoire

tangent of the overall trajectory. Straight, forward (or backward) trajectories are
still possible with the particular case of an infinite radius. This kind of trajectory
is suitable for motion control as many complex trajectories can be decomposed in
a succession of circle portions and lines. An illustration of this principle is pictured
on figure 3.3 (D-E-F).

To encourage the population to follow these trajectories, the quality score is
set as the angular difference between the arrival orientation and the tangent of the
circular trajectory that corresponds to the endpoint (Fig. 3.3B):

quality(c) = −|θ(c)| = −|α(c)− β(c)| (3.4)

3.2.2.4 Transferability score

The transferability score of a tested controller c∗ is computed as the distance be-
tween the controller’s endpoint reached in simulation and the one reached in reality:

transferability(c∗) = −|Esimu − Ereal| (3.5)

In order to estimate the transferability score of untested controllers, a regression
model is trained with the tested controllers and their recorded transferability score.
The regression model used is the ν-Support Vector Regression algorithm with linear
kernels implemented in the library libsvm (Chang and Lin, 2011) (learning param-
eters are set to default values), which maps a behavioral descriptor (des(c)) with
an estimated transferability score (T (des(c))). Each controller is described with a
vector of Boolean values that describe, for each time-step and each leg, whether the
leg is in contact with the ground (the descriptor is therefore a vector of size N × 6,
where N is the number of time-steps). This kind of vector is a classic way to de-
scribe gaits in legged animals and robots (Raibert, 1986). During the evolutionary
process, the algorithm performs 1 transfer every 50 iterations.

3.2.2.5 Experiments on the Virtual Robot

This first experiment involves a virtual robot that learns a behavioral repertoire to
reach every point in its vicinity. The transferability objective is disabled because
the goal of this experiment is to show the benefits of learning simultaneously all
the behaviors of the repertoire instead of learning them separately. Using only
the simulation allows us to perform more replications and to implement a higher
number of control experiments. This experiment also shows how the robot is able
to autonomously:

• discover possible movements;

• cover a high proportion of the reachable space;

• generate a behavioral repertoire.

The TBR-Evolution experiment and the control experiments (described in the
next section) are replicated 40 times to gather statistics.

3.2. The TBR-Evolution algorithm 61

!

" β

-0.4 -0.2 0 0.2 0.4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Trajectory provided by a path planner Decomposition of the trajectory

D E

2345

6

5
66

A B C

Figure 3.3: (A) Examples of trajectories following a circle centered on the lateral
axis with several radii. (B) Definition of the desired orientation. θ represents the
orientation error between α, the final orientation of the robot, and β, the tangent
of the desired trajectory. These angles are defined according to the actual endpoint
of the individual, not the desired one. (C) Reachable area of the robot viewed from
top. A region of interest (ROI) is defined to facilitate post-hoc analysis (gray zone).
The boundaries of the region are defined by two lines at 60 degrees on each side
of the robot. The curved frontier is made of all the reachable points with a curvi-
linear abscissa lower than 0.6 meters (these values were set thanks to experimental
observations of commonly reachable points). Dots correspond to targets selected
for the control experiments. (D-E-F) Illustration of how a behavioral repertoire
can be used with a hexapod robot. First, a path-planning algorithm computes a
trajectory made of lines and portions of circles (LaValle, 2006; Siciliano and Khatib,
2008). Second, to follow this trajectory, the robot sequentially executes the most
appropriate behavior in the repertoire (here numbered on E and F). For closed-
loop control, the trajectory can be re-computed at each time-step using the actual
position of the robot.

62 Behavioral Repertoire

Control Experiments To our knowledge, no previous study directly tackles the
question of learning simultaneously all the behaviors of a repertoire, thus we cannot
compare our approach with an existing method. As a reference point, we imple-
mented a naive method where the desired endpoints are preselected. A different
controller will be optimized to reach each different wanted point individually.

We define 100 target points, spread thanks to a K-means algorithm (Seber, 1984)
over the defined region of interest (ROI) of the reachable area (see Fig. 3.3C). We
then execute several multi-objective evolutionary algorithms (NSGA-II, Deb et al.
(2002)), one for each reference point. At the end of each execution of the algorithm,
the nearest individual to the target point in the Pareto-front is saved in an archive.
This experiment is called “nearest” variant. We also save the controller with the
best orientation (quality score described previously) within a radius of 10 cm around
the target point and we call this variant “orientation”. The objectives used for the
optimization are:

minimize

{

Distance(c) = ∥Ec − EReference∥
Orientation(c) = |α(c)− β(c)|

We also investigate how the archive management added in TBR-Evolution im-
proves the quality of produced behavioral repertoires. To highlight these improve-
ments, we compared our resulting archives with archives issued from the Novelty
Search algorithm (Lehman and Stanley, 2011a) and from the Novelty Search with
Local Competition algorithm (Lehman and Stanley, 2011b), as the main difference
between these algorithms is archive management procedure. We apply these algo-
rithms on the same task and with the same parameters as in the experiment with
our method. We call these experiments “Novelty Search”(NS) and “NS with Local
Competition”. For both of these experiments we will analyze both the produced
archives and the resulting populations.

For all the experiments we will study the sparseness and the orientation error
of the behavioral repertoires generated by each approach. All these measures are
computed within the region of interest previously defined. The sparseness of the
archive is computed by discretizing the ROI with a one-centimeter grid (G), and
for each point p of that grid the distance from the nearest individual of the archive
(A) is recorded. The sparseness of the archive is the average of all the recorded
distances:

sparseness(A) =

∑

p∈G mini∈A (distance(i, p))

card(G)
(3.6)

where card(G) denotes the number of elements in G .

The quality of the archive is defined as the average orientation error for all the
individuals inside the ROI:

Orientation Error(A) =

∑

i∈A ∈ROI θ(i)

card(A ∈ ROI)
(3.7)

3.2. The TBR-Evolution algorithm 63

C
on

tro
l E

xp
er

im
en

t N
ea

re
st

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

C
on

tro
l E

xp
er

im
en

t O
rie

nt
at

io
n

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

Forward displacement (m)

TB
R

-E
vo

lu
tio

n

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

Forward displacement (m)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

1 000 000 evaluations100 000 evaluations

Figure 3.4: Comparison between the typical results of the TBR-Evolution algo-
rithm, the “nearest”, and the “orientation” variants. The archives are displayed
after 100,000 evaluations (left) and after 1,000,000 evaluations (right). Each dot
corresponds to the endpoint of a controller. The solid lines represent the final ori-
entation of the robot for each controller, while the gray dashed lines represent the
desired orientation. The orientation errors are the angle between solid and dashed
lines.

64 Behavioral Repertoire

Forward displacement (m)

TB
R

-E
vo

lu
tio

n

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

Forward displacement (m)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

N
ov

el
ty

 S
ea

rc
h

(N
S

)

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

N
S

 w
ith

 L
oc

al
 C

om
pe

tit
io

n

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

1 000 000 evaluations100 000 evaluations

Figure 3.5: Comparison between the typical results of the TBR-Evolution algo-
rithm, the Novelty Search, and the NS with Local Competition algorithm. The
archives are displayed after 100,000 evaluations and after 1,000,000 evaluations.
Each dot corresponds to the endpoint of a controller. The solid lines represent the
final orientation of the robot for each controller, while the gray dashed lines repre-
sent the desired orientation. The orientation errors are the angle between solid and
dashed lines.

3.2. The TBR-Evolution algorithm 65

Forward displacement (m)

TB
R

-E
vo

lu
tio

n

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

Forward displacement (m)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

-0
.8

-0
.6

-0
.4

-0
.20

0.
2

0.
4

0.
6

0.
8

P
op

ul
at

io
n

of
 N

S

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

P
op

ul
at

io
n

of
 N

S
LC

La
te

ra
l d

is
pl

ac
em

en
t (

m
)

-0
.7

-0
.5

-0
.3

-0
.1

0.
1

0.
3

0.
5

0.
7

1 000 000 evaluations100 000 evaluations

Figure 3.6: Comparison between typical results of the TBR-Evolution algorithm,
the population of Novelty Search, and the population of NS with Local Competition.
The archives/populations are displayed after 100,000 evaluations and after 1,000,000
evaluations. Each dot corresponds to the endpoint of a controller. The solid lines
represent the final orientation of the robot for each controller, while the gray dashed
lines represent the desired orientation. The orientation errors are the angle between
solid and dashed lines.

66 Behavioral Repertoire

Results Resulting behavioral repertoires from a typical run of TBR-Evolution
and the control experiments are pictured on figures 3.4, 3.5 and 3.6. The endpoints
achieved with each controller of the repertoire are spread over the reachable space
in a specific manner: they cover both the front and the back of the robot, but less
the lateral sides. These limits are not explicitly defined, but they are autonomously
discovered by the algorithm.

For the same number of evaluations, the area is less covered with the control
experiments (nearest and orientation) than with TBR-Evolution (Fig. 3.4). With
only 100,000 evaluations, this area is about twice larger with TBR-Evolution than
with both control experiments. At the end of the evolution (1,000,000 evaluations),
the reachable space is denser with our approach. With the “nearest” variant of the
control experiment, all target points are reached (see Fig. 3.3C), this is not the
case for the “orientation” variant.

The archives produced by Novelty Search and NS with Local Competition both
cover a larger space than the TBR-Evolution algorithm (Fig. 3.5). These results
are surprising because all these experiments are based on novelty search and differ
only in the way the archive is managed. These results show that TBR-Evolution
tends to slightly reduce the exploration abilities of NS and focuses more on the
quality of the solutions.

We can formulate two hypotheses to explain this difference in exploration. First,
the “local competition” objective may have a higher influence in the TBR-Evolution
algorithm than in the NS with Local Competition: in NS with local competition, the
individuals from the population are competing against those of the archive; since
this archive is not updated if an individual with a similar behavior but a higher
performance is encountered, the individuals from the population are likely to always
compete against low-performing individuals, and therefore always get a similar local
competition score; as a result, the local competition objective is likely to not be
very distinctive and most of the selective pressure can be expected to come from the
novelty objective. This different selective pressure can explain why NS with local
competition explores more than TBR-Evolution, and it echoes the observation that
the archive obtained with NS and NS with local competition are visually similar
(Fig. 3.5). The second hypothesis is that the procedure used to update the archive
may erode the borderline of the archive: if a new individual is located close to the
archive’s borderline, and if this individual has a better performance than its nearest
neighbor in the archive, then the archive management procedure of TBR-Evolution
will replace the individual from the archive with the new and higher-performing
one; as a consequence, an individual from the border can be removed in favor of a
higher-performing but less innovative individual. This process is likely to repeatedly
“erode” the border of the archive and hence discourage exploration. These two
hypotheses will be investigated in future work.

The primary purpose of Novelty Search with Local Competition is to maintain
a diverse variety of well-adapted solutions in its population, and not in its archive.
For this reason, we also plotted the distribution of the population’s individuals for
both Novelty Search and NS with Local Competition (Fig. 3.6). After 100,000

3.2. The TBR-Evolution algorithm 67

evaluations, and at the end of the evolution, the population covers less of the
robot’s surrounding than TBR-Evolution. The density of the individuals is not
homogeneous and they are not arranged in a particular shape, contrary to the
results of TBR-Evolution. In particular, the borderline of the population seems to
be almost random.

The density of the archive is also different between the algorithms. The density
of the archives produced by TBR-Evolution is higher than the other approaches,
while the threshold of novelty (ρ) required to add individuals in the archive is the
same. This shows that the archive management of the TBR-Evolution algorithm
increases the density of the regions where solutions with a good quality are easier to
find. This characteristic allows a better resolution of the archive in specific regions.

The orientation error is qualitatively more important in the “nearest” control
experiment during all the evolution than with the other experiments. This error
is important at the beginning of the “orientation” variant too, but, at the end,
the error is negligible for the majority of controllers. The Novelty Search, NS
with local competition and the population of the Novelty Search have a larger
orientation error, the figures 3.5 and 3.6 show that the orientation of the controllers
seems almost random. With such repertoire, chaining behaviors on the robot is
more complicated than with the TBR-Evolution’s archives, where a vector field is
visible. Only the population of the NS with Local Competition seems to show lower
orientation error. This illustrates the benefits of the local competition objective on
the population’s behaviors.

The TBR-Evolution algorithm consistently leads to very small orientation errors
(Fig. 3.4 and Fig. 3.9); only few points have a significant error. We find these points
in two regions, far from the starting point and directly on its sides. These regions are
characterized by their difficulty to be accessed, which stems from two main causes:
the large distance to the starting point or the complexity of the required trajectory
given the controller and the possible parameters (Appendix 3.2.2.1). For example
the close lateral regions require executing a trajectory with a very high curvature,
which cannot be executed with the range of parameters of the controller. Moreover,
the behaviors obtained in these regions are most of the time degenerated: they take
advantages of inaccuracies in the simulator to realize movement that would not be
possible in reality. Since accessing these points is difficult, finding better solutions is
difficult for the evolutionary algorithm. We also observe a correlation between the
density of controllers, the orientation error and the regions difficult to access (Fig.
3.9): the more a region is difficult to access, the less we find controllers, and the
less these controllers have a good orientation. For the other regions, the algorithm
produces behaviors with various lengths and curvatures, covering all the reachable
area of the robot.

In order to get a statistical point of view, we studied the median, over 40 runs,
of the sparseness and the quality of controllers inside a region of interest (ROI)
(Fig. 3.7, Top). The TBR-Evolution algorithm achieved a low sparseness value
with few evaluations. After 100,000 evaluations, it was able to generate behaviors
covering the reachable space with an interval distance of about 3 cm. At the end

68 Behavioral Repertoire

Evaluation number (x103 evaluations)m
ed

ia
n

di
st

an
ce

 o
f n

ea
re

st
 p

oi
nt

 (c
m

)

Sparseness Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Evaluation number (x103 evaluations)

m
ed

ia
n

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

)

Orientation error Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

TBR-Evolution

Control Experiment Nearest
Control Experiment Orientation
Population of NS
Population of NSLC

Novelty Search (NS)
NS with Local Competition (NSLC)

TBR-Evolution

Population of NSLC
Control Experiment Orientation

Control Experiment Nearest

Novelty Search (NS)
Population of NS
NS with Local Competition (NSLC)

Figure 3.7: (Top) Variation of the sparseness of the controller repertoire. For
each point of a one-centimeter grid inside the ROI (Fig. 3.3), the distance from
the nearest controller is computed. The sparseness value is the average of these
distances. This graph plots the first three quartiles of the sparseness computed with
40 runs for each algorithm. (Bottom) Variation of the median of the orientation
error over all the controllers inside the region of interest. This graph also plots the
three first quartiles (25%, 50%, 75%) computed with 40 runs for each algorithm.

3.2. The TBR-Evolution algorithm 69

of the process, the sparseness value is near 2 cm. With the “nearest” and the
“orientation” experiments, the variation is slower and reaches a significantly higher
level of sparseness (p-values = 1.4 × 10−14 with Wilcoxon rank-sum tests). The
“orientation” variant of the control experiment exhibits the worst sparseness value
(> 4cm). This result is expected because this variant favors behaviors with a good
orientation even if they are far from their reference point. This phenomenon leads
to a sample of the space less evenly distributed. The “nearest” variant achieves
every target points, thus the sparseness value is better than with the “orientation”
variant (3 cm vs. 4cm, at the end of the experiment). The Novelty Search and
the NS with Local Competition experiments follow the same progression (the two
lines are indistinguishable) and reach their final value faster ass the TBR-Evolution
algorithm. As our algorithm can increase the density of controller in particular
regions, at the end of the evolution, the final value of sparseness of TBR-Evolution
is better than all the control experiments. The sparseness of the populations of
Novelty Search and NS with Local Competition are indistinguishable too, but also
constant over all the evolution and larger than all the tested algorithms, mainly
because of the uneven distribution of their individuals (fig. 3.6)

From the orientation point of view (Fig. 3.7, bottom), our approach needs few
evaluations to reach a low error value (less than 5 degrees after 100,000 evaluations
and less than 1.7 degrees at the end of the evolutionary process). The variation
of the “orientation” control experiment is slower and needs 750,000 evaluations to
cross the curve of TBR-Evolution. At the end of the experiment this variant reaches
a significantly lower error level (p-values = 3.0 × 10−7 with Wilcoxon rank-sum
tests), but this corresponds to a difference of the medians of only 0.5 degrees. The
“nearest” variant suffers from significantly higher orientation error (greater than 15
degrees, p-values = 1.4 × 10−14 with Wilcoxon rank-sum tests). This is expected
because this variant selects behaviors taking into account only the distance from the
target point. With this selection, the orientation aspect is neglected. The Novelty
Search and the NS with Local Competition experiments lead to orientation errors
that are very high and almost constant over all the evolution. These results come
from the archive management of these algorithms that do not substitute individuals
when a better one is found. The archive of these algorithms only gathers the first
encountered behavior of each reached point. The orientation error of the NS with
Local Competition is lower than the Novelty Search because the local competition
promotes behavior with a good orientation error (compared to their local niche)
in the population, which has an indirect impact on the quality of the archive but
not enough to reach a low error level. The same conclusion can be drawn with the
population of these two algorithms: while the populations of the Novelty Search
have a similar orientation error than its archives, the populations of the NS with
Local Competition have a lower orientation error than its archives.

With the sets of reference points, we can compute the theoretical minimal sparse-
ness value of the control experiments (Fig. 3.8, Left). For example, changing the
number of targets from 100 to 200 will change the sparseness value from 3.14 cm
to 2.22 cm. Nonetheless, doubling the number of points will double the required

70 Behavioral Repertoire

Evaluation number (kilo evaluation)

m
ed

ia
n

di
st

an
ce

 o
f n

ea
re

st
 p

oi
nt

 (c
m

)

Density Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Control Experiment extrapolations

TBR-Evolution

Number of target points

M
ax

im
um

 c
ov

er
ag

e
(c

m
)

Coverage variation

0 100 200 300 400 500
1.5

2

2.5

3

3.5

4

4.5

Figure 3.8: (Left) Theoretical sparseness of the control experiments according to
the number of points. With more points, the sparseness value will be better (lower).
(Right) Extrapolations of the variation of the sparseness for the “nearest” variant
of the control experiment according to different number of targets. Each line is an
extrapolation of the variation of the sparseness of the “nearest variant”, which is
based on a number of points starting from 50 to 400, with a 50 points step. The
variation of TBR-Evolution is also plotted for comparison.

number of evaluations. Thanks to these values we can extrapolate the variation of
the sparseness according to the number of points. For example, with 200 targets, we
can predict that the final value of the sparseness will be 2.22 and thus we can scale
the graph of our control experiment to fit this prediction. Increasing the number of
targets will necessarily increase the number of evaluations, for example using 200
targets will double the number of evaluations. Following this constraint, we can
also scale the temporal axis of our control experiment. We can thus extrapolate the
sparseness of the archive with regard o the number of target, and compare it to the
sparseness of the archive generated with TBR-Evolution.

The extrapolations (Fig. 3.8, right) show higher sparseness values compared to
TBR-Evolution within the same execution time. Better values will be achieved with
more evaluations. For instance, with 400 targets the sparseness value reaches 1.57
cm, but only after 4 millions of evaluations. This figure shows how our approach is
faster than the control experiments regardless the number of reference points.

Figures 3.7 and 3.8 demonstrate how TBR-Evolution is better both in the sparse-
ness and in the orientation aspects compared than the control experiments. Within
few evaluations, reachable points are evenly distributed around the robot and cor-
responding behaviors are mainly well oriented.

(An illustrating video is available on: http://youtu.be/2aTIL_c-qwA)

http://youtu.be/2aTIL_c-qwA

3.2. The TBR-Evolution algorithm 71

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1.5 2 2.5 3 3.5 4 4.5 5

-0.5
0

0.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.5
0

0.5
-0.5

0
0.5

-0.5
0

0.5

0 2 4 6 8 10 12 14 16 18 20

forward displacement (m)
Orientation error (degree) Density of controller (controller/dm²)

0
 E

v
a
lu

a
tio

n
2

5
0

.0
0

0
 E

v
a
lu

a
tio

n
s

5
0

0
.0

0
0

 E
v
a
lu

a
tio

n
s

1
.0

0
0

.0
0

0
 E

v
a
lu

a
tio

n
s

la
te

ra
l d

isp
la

ce
m

e
n
t (m

)

forward displacement (m)

la
te

ra
l d

isp
la

ce
m

e
n
t (m

)
la

te
ra

l d
isp

la
ce

m
e
n
t (m

)
la

te
ra

l d
isp

la
ce

m
e
n
t (m

)

Figure 3.9: (Right) Variation of density of controller (number of controllers per
dm2). (Left) Variation of the orientation error (given by the nearest controller)
along a typical run in simulation.

72 Behavioral Repertoire

3.2.2.6 Experiments on the Physical Robot

In this second set of experiments, we apply the TBR-Evolution algorithm on a
physical hexapod robot (see Fig. 3.1 left). The transferability component of the
algorithm allows it to evolve the behavioral repertoire with a minimum of evalua-
tions on the physical robot. For this experiment, 3, 000 generations are performed
and we execute a transfer (evaluation of one controller on the physical robot) every
50 generations, leading to a total of 60 transfers. The TBR-Evolution experiments
and the reference experiments are replicated 5 times to gather statistics1.

Reference Experiment In order to compare the learning speed of the TBR-
Evolution algorithm, we use a reference experiment where only one controller is
learned. For this experiment, we use the NSGA-II algorithm with the transferabil-
ity approach to learn a controller that reaches a predefined target. The target is
situated 0.4m in front and 0.3m to the right: a point not as easy to be accessed as
going only straight forward, and not as hard as executing a U-turn. It represents a
good difficulty trade-off and thus allows us to extrapolate the performances of this
method to more points.

The main objective is the distance (Distance(c)) between the endpoint of the
considered controller and the target. The algorithm also optimizes the estimated
transferability value (T̂ (des(c))) and the orientation error (perf(c)) with the same
definition as in the TBR-Evolution algorithm:

minimize

⎧

⎪

⎨

⎪

⎩

Distance(c)

T̂ (des(c))
perf(c)

To update the transferability function, we use the same transfer frequency as in
TBR-Evolution experiments (every 50 generations). Among the resulting trade-offs,
we select as final controller the one that arrives closest to the target among those
with an estimated transferability T̂ (des(c)) < 0.10m. This represents a distance
between the endpoint reached in simulation and the one reached in reality lower
than 10 cm.

Results After 3,000 iterations and 60 transfers, TBR-Evolution generates a reper-
toire with a median number of 375 controllers (min = 352, max = 394). This is
achieved in approximately 2.5 hours. One of these repertoires is pictured in fig-
ure 3.10, left. The distribution of the controllers’ endpoints follows the same pat-
tern as in the virtual experiments: they cover both the front and the rear of the
robot, but not the lateral sides. Here again, these limits are not explicitly defined,
they are autonomously discovered by the algorithm.

1Performing statistical analysis with only 5 runs is difficult but it still allows us to understand the
main trends. The current set of experiments (5 runs of TBR-Evolution and the control experiment)
requires more than 30 hours with the robot and it is materially challenging to use more replications.

3.2. The TBR-Evolution algorithm 73

-0.5 0 0.5

simulation
reality

Lateral displacement (meter)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.5 0 0.5

A
Behavioral Repetoire Transferability Map Execution on the Physical

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Lateral displacement (meter) Lateral displacement (meter)

Fo
rw

a
rd

 d
is

p
la

ce
m

e
n
t

(m
e
te

r)

Tra
n
sfe

ra
b
ility

 v
a
lu

e
 (m

e
te

r)

Figure 3.10: Typical repertoire of controllers obtained with the TBR-Evolution
algorithm. (Left) The dots represent the endpoints of each controller. The solid
lines are the final orientations of the robot while the dashed ones are the desired
orientations. The angle between these two lines is the orientation error. (Center)
Transferability map. For each point of the reachable space, the estimated trans-
ferability of the nearest controller, within a radius of 5cm, is pictured. (Right)
Execution on the physical robot. The 30 selected controllers are pictured with
square and their actual endpoint with circles. The size and the color of the markers
are proportional to their accuracy. To select the tested controllers, the reachable
space is split into 30 regions. Their boundaries are defined by two lines at 60 degrees
on each side of the robot and by two curved frontiers that regroup all reachable
points with a curvi-linear abscissa between 0.2 and 0.6 m. These regions are then
segmented into 15 parts for both the front and the rear of the robot. All of these
values are set from experimental observations of commonly reachable points.

Similarly to the experiments on the virtual robot, the majority of the controllers
have a good final orientation and only the peripheries of the repertoire have a
distinguishable orientation error. TBR-Evolution successfully pushes the repertoire
of controllers towards controllers with a good quality score and thus following the
desired trajectories.

From these results we can draw the same conclusion as with the previous ex-
periment: the difficulty of accessing peripheral regions explains the comparatively
poor performances of controllers from these parts of archive. The large distance to
the starting point or the complexity of the required trajectory meets the limits of
the employed controllers.

The transferability map (Fig. 3.10, center) shows that the majority of the con-
trollers have an estimated value lower than 15cm (dark regions). Nevertheless, some
regions are deemed non-transferable (light regions). These regions are situated in
the peripheries too, but are also in circumscribed areas inside of the reachable
space. Their occurrence in the peripheries have the same reasons as for the orienta-

74 Behavioral Repertoire

1 2 3 4 5
In

ac
cu

ra
cy

 (m
et

er
)

Runs

2

RunsAll

All reference
experiments

8 14 20

TBR-Learning experiments

Transfers-controllers ratio
222222 1 4

0

0.1

0.2

0.3

0.4

0.5

Figure 3.11: Accuracy of the controllers. The accuracy is measured as the dis-
tance between the endpoint reached by the physical robot and the one reached in
simulation (30 points for each run, see text). The results of the TBR-Evolution
experiments are, for each run, separately pictured (Left) and also combined for an
overall point of view (Center). The performances of the reference experiments are
plotted according to the number of transfers performed (Right). In both cases, one
transfer is performed every 50 iterations of the algorithm.

tion (section 3.2.2.5), but those inside the reachable space show that the algorithm
failed to find transferable controllers in few specific regions. This happens when
the performed transfers do not allow the algorithm to infer transferable controllers.
To overcome this issue, different selection heuristics and transfer frequencies will be
considered in future work.

In order to evaluate the hundreds of behaviors contained in the repertoires on
the physical robot, we select 30 controllers in each repertoire of the 5 runs. The
selection is made by splitting the space into 30 areas (Fig. 3.10) and selecting the
controllers with the best estimated transferability in each area.

Most of these controllers have an actual transferability value lower than 15 cm
(Fig. 3.11, left), which is consistent with the observations of the transferability
map (Fig. 3.10, center) and not very large once taken into consideration the SLAM
precision, the size of the robot and the looseness in the joints. Over all the runs, the
median accuracy of the controllers is 13.5 cm (Fig. 3.11, center). Nevertheless, every
run presents outliers, i.e. controllers with a very bad actual transferability value,
which originate from regions that the transferability function does not correctly
approximate.

3.2. The TBR-Evolution algorithm 75

Number of transfers

N
um

be
r o

f c
on

tro
lle

rs
de

em
ed

 tr
an

sf
er

ab
le

0 10 20 30 40 50 60
0

50

100

150

200

250

300

Figure 3.12: Evolution of the number of controllers deemed transferable. At each
transfer (i.e. every 50 iterations), the number of controllers with an estimated
transferability lower than 15cm is pictured for all the 5 runs. The bold black line
represents the median value, the dark region the first and third quartile and the
light one the lower and upper bounds. The variability of the curve is due to the
periodic transfers, which update the transferability function and thus the estimated
transferability values.

In order to compare the efficiency of our approach to the reference experiment,
we use the “transfers-controllers ratio”, that is the number of performed transfers
divided by the number of produced controllers at the end of the evolutionary pro-
cess. For instance, if we reduce the produced behavioral repertoires to the 30 tested
controllers, this ratio is equal to 60/30 = 2 for the TBR-Evolution experiments,
since we performed 60 transfers.

The performances of the control experiments depend on the number of per-
formed transfers (Fig. 3.11, right) and thus on this ratio. For an equal ratio,
the reference experiments are 74% less accurate than TBR-Evolution (13.5 cm vs.
23.4 cm, p-value= 0.12 with the Wilcoxon ranksum test), while the accuracies of
both experiments are not statistically different (13.5 cm vs. 15.6 cm and 10.6 cm,
p-value= 0.23 and respectively 0.35) if the reference algorithm uses from 8 to 14
transfers to learn one controller (i.e. a process 4 to 7 times longer). The reference
experiment only takes advantage of its target specialisation when 20 transfers are
performed. With a transfers-controllers ratio equals to 20, the accuracy of the ref-
erence controllers outperforms the controllers generated with the TBR-Evolution
algorithm (13.5 cm vs. 4.5 cm, p-value= 0.06). Nevertheless, with such a high ratio,
the reference experiment only generates 3 controllers, while our approach generates
30 of them with the same running time (60 transfers and 3,000 generations).

76 Behavioral Repertoire

We previously only considered the 30 post evaluated controllers, whereas TBR-
Evolution generates several hundreds of them. After 60 transfers, the repertoires
contain a median number of 217 controllers that have an estimated transferability
lower than 0.15 m (Fig. 3.12). The previous results show that more than 50%
of the tested controllers have an actual transferability value lower than 0.15 m
and 75% lower than 0.20 m. We can consequently extrapolate that between 100
and 150 controllers are exploitable in a typical behavioral repertoire. Once taking
into consideration all these controllers, the transfers-controllers ratio of the TBR-
Evolution experiments falls between 0.4 and 0.6 and thus our approach is about 25
times faster than the reference experiment, for a similar accuracy.

3.3 The MAP-Elites algorithm

3.3.1 Principle

In this last part of this chapter, we explore the use of a second algorithm, called the
multi-dimensional archive of phenotypic elites (MAP-Elites) algorithm, to create
behavioral repertoires (Mouret and Clune, 2015). We call the repertoires gener-
ated with this algorithm behavior-performance maps. MAP-Elites searches for the
highest-performing solution for each point in a user-defined space. For example,
when designing controllers for legged robot, the user may be interested in seeing
the highest-performing solution at each point in a two-dimensional space where one
axis is the speed of the robot and the other axis is the direction of the movement.
Alternatively, a user may wish to see speed vs. final orientation, or see solutions
throughout a 3D space of speed vs. direction vs. orientation. Any dimension that
can vary could be chosen by the user. There is no limit on the number of dimensions
that can be chosen, although it becomes computationally more expensive to fill the
behavior-performance map and store it as the number of dimensions increases. It
also becomes more difficult to visualize the results. We refer to this user-defined
space as the “behavior space”, because usually the dimensions of variation measure
behavioral characteristics. Note that the behavioral space can refer to other aspects
of the solution, like physical properties of mechanical designs.

If the behavior descriptors and the parameters of the controller are the same
(i.e. if there is only one possible solution for each location in the behavioral space),
then creating the behavior-performance map is straightforward: one simply needs
to simulate the solution at each location in the behavior space and record the
performance. However, if it is not known a priori how to produce a controller
that will end up in a specific location in the behavior space (i.e. if the parameter
space is of higher dimension than the behavioral space: e.g., in our example, if
there are many different controllers of a specific speed, direction, and orientation,
or if it is unknown how to make a description that will produce a controller with
a specific speed, direction, and orientation), then MAP-Elites is beneficial. It will
efficiently search for the highest-performing (for example, the most stable) solution
at each point of the low-dimensional behavioral space. It is more efficient than a

3.3. The MAP-Elites algorithm 77

random sampling of the search space because high-performing solutions are often
similar in many ways, such that randomly altering a high-performing solution of
one type can produce a high-performing solution of a different type (as already
pointed in the previous parts of this chapter). For this reason, searching for high-
performing solutions of all types simultaneously is much quicker than separately
searching for each type. For example, to generate controllers that make the robot
quickly turn left with a high stability, it is often more effective and efficient to
modify an existing controller of a fast and stable behavior rather than randomly
generate new controllers from scratch or launch a separate search process for each
new type of controller.

MAP-Elites begins by generating a set of random candidate solutions. It then
evaluates the performance of each solution and records where that solution is located
in the behavior space (e.g. if the dimensions of the behavior space are the speed
and direction, it records the speed and the direction of each behavior in addition
to its performance). For each solution, if its performance is better than the current
solution at that location in the behavior-performance map, then it is added to
the behavior-performance map, replacing the solution in that location. In other
words, it is only kept if it is the best of that type of solution, where “type” is
defined as a location in the behavior space. There is thus only one solution kept
at each location in the behavior space (keeping more could be beneficial, but for
computational reasons we only keep one). If no solution is present in the behavior-
performance map at that location, then the newly generated candidate solution is
added at that location.

Once this initialization step is finished, MAP-Elites enters a loop that is similar
to stochastic, population-based, optimization algorithms, such as evolutionary al-
gorithms (see section 2.2): the solutions that are in the behavior-performance map
form a population that is improved by random variation and selection. In each
generation, the algorithm picks a solution at random via a uniform distribution,
meaning that each solution has an equal chance of being chosen. A copy of the se-
lected solution is then randomly mutated to change it in some way, its performance
is evaluated, its location in the behavioral space is determined, and it is kept if it
outperforms the current occupant at that point in the behavior space (note that
mutated solutions may end up in different behavior space locations than their “par-
ents”). This process is repeated until a stopping criterion is met (e.g. after a fixed
amount of time has expired). This main loop is depicted in figure 3.13. Because
MAP-Elites is a stochastic search process, each resultant behavior-performance map
can be different, both in terms of the number of locations in the behavioral space
for which a candidate is found, and in terms of the performance of the candidate
in each location.

The pseudo-code of the algorithm is defined in Algorithm 2.
MAP-Elites can be seen as an evolutionary algorithm working on multiple

niches, in which competition only occurs between individuals from the same niche.
Individuals from one niche can invade other niches only if, after being mutated, the
new individuals can survive in a new niche and that their fitness overrun the former

78 Behavioral Repertoire

Evaluation in
simulationRandom

parameter
variation

Replace if
best so far of this

behavior type

Random
selection

from the Map

Behavior-Performance Map

Behavioral descriptor

Current best solution
for this behavior type

Previously encountered
solutions (not stored)

Pe
rf

o
rm

a
n

ce

Figure 3.13: The MAP-Elites main loop. After initializing the map with a few
random behaviors, MAP-Elites randomly selects, via an uniform distribution, a
behavior in the map and generates a mutated copy of this behavior. During the
evaluation of this new behavior in simulation, its performance and behavior descrip-
tor are recorded. If the cell corresponding to this new behavior descriptor is empty,
then the new behavior is added to the map, otherwise, the behavior with the highest
performance is kept in the cell. This simple loop, which can easily be performed in
parallel, is repeated several millions of time, which progressively increases both the
coverage of the map and the quality of the behaviors.

Algorithm 2 MAP-Elites Algorithm (I evaluations, N random evaluations)

(P ← ∅, C ← ∅) ◃ Creation of an empty behavior-performance map (empty
N-dimensional grid).
for iter = 1→ I do ◃ Repeat during I iterations (here we choose I).

if iter < N then
c′ ← random_controller() ◃ The first N controllers are generated randomly.

else ◃ The next controllers are generated using the map.
c← random_selection(C) ◃ Randomly select a controller c in the map.
c′ ← random_variation(c) ◃ Create a randomly modified copy of c.

x′ ←behavioral_descriptor(simu(c′)) ◃ Simulate the controller and
record its behavioral descriptor.

p′ ←performance(simu(c′)) ◃ Record its performance.
if P(x′) = ∅ or P(x′) < p′ then ◃ If the cell is empty or if p′ is better than

the current stored performance.
P(x′)← p′ ◃ Store the performance of c′ in the map according

to its behavioral descriptor x′.
C (x′)← c′ ◃ Associate the controller with its behavioral descriptor.

return behavior-performance map (P and C)

3.3. The MAP-Elites algorithm 79

individuals of this niche. In MAP-Elites, each cell of the map is a different niche
and its main loop (Fig. 3.13) tends to mimic this natural process.

While MAP-Elites and TBR-Evolution (and thus Novelty Search with Local
Competition) are based on two different ideas, a few parallels can be drawn. First,
both of these algorithms do not optimize a single objective but rather search for a
set of diverse and high performing solutions. This new family of evolutionary algo-
rithms, which has been named Quality Diversity algorithms by Pugh et al. (2015),
contains currently only MAP-Elites and Novelty Search with Local Competition
(including TBR-Evolution). A second parallel is that they both use an archive or a
map that keeps a kind of history of the individuals that have been encountered dur-
ing the evolutionary process. This information is then used in the selection process
of the algorithms. In TBR-Evolution, the archive is used to maintain a population
containing only novel and locally high-performing behaviors, while in MAP-Elites
the selection is randomly performed among the whole map. The selection process
is crucial in evolutionary algorithms, as it influences the stepping stones that the
algorithms may encounter, which can lead to new types of solution. The Novelty
Search algorithm makes the hypothesis that to find these stepping stones, the algo-
rithm can focus on individuals that are novel. Nonetheless, this hypothesis actually
adds a bias in exploration strategy and stepping stones may come from individ-
ual that are neither novel nor high-performing. MAP-Elites removes this bias and
the following experimental results suggest that focusing on novel behaviors may be
counterproductive.

Pugh et al. (2015) also investigated the differences between MAP-Elites and
Novelty-based approaches. In particular, they used a variant of the novelty search
algorithm that fills maps similar to those of MAP-Elites. This variant is thus analo-
gous to the TBR-Evolution algorithm (without the Transferability objective). The
authors analyzed the quality of the maps (percentage of filled cells and their perfor-
mance) produced with the algorithms according to different behavioral descriptors.
Their experiments revealed that the algorithm that should be employed depends on
the alignment of the behavioral descriptor with the performance criteria. Indeed,
behavioral descriptor can be directly related to the performance function. For ex-
ample, one of the behavioral descriptor presented in the “QD-Maze” experiment of
Pugh et al. (2015) is the end-point of the robot’s trajectory, while the performance
is the distance to the exit of the maze. In this case, the behavioral descriptor
and the performance function are perfectly aligned because the performance can
be directly computed from the behavioral descriptor. Conversely, the final orienta-
tion of the robot is behavioral descriptor orthogonal to the performance function,
as the orientation is unrelated to the robot’s position. The conclusion of the au-
thors is that if the behavioral descriptor is aligned with the performance function
then novelty-based approaches produced the best maps, while when the behavioral
descriptor and the performance function are orthogonal then MAP-Elites is more
instrumental than the other approaches.

80 Behavioral Repertoire

3.3.2 Experimental validation

We evaluated the quality of the behavior-performance maps generated by MAP-
Elites on two tasks. The first one is similar to the experiment presented in the pre-
vious section. Our hexapod robot has to learn to walk in every direction and at var-
ious speeds. The goal of this experiment is to produce behavior-performance maps
that are similar to the behavioral repertoires generated with the TBR-Evolution
algorithms, in order to compare these two algorithms. The second experiment con-
sists in finding all the possible ways to walk on a straight line with our hexapod
robot. In order words, the robot has to discover how to walk by using only some of
its legs (for example with only 5 or 4 legs) and also many other ways like moving
forward by hopping. For each of these walking manners, the robot has to find the
fastest behaviors. For example, the fastest walking gait that uses the 6 legs, the
fastest hopping behaviors etc.

These two experiments are only conducted in simulation, as MAP-Elites requires
a large number of evaluations (like most EAs). Nonetheless, we will present in
the next chapter how to use the produced behavior-performance maps to allow a
physical robot to learn to walk and to adapt to damage situations in only a handful
of evaluations.

3.3.2.1 Learning to walk in every direction

Methods In this first experiment, in which our hexapod robot (fig 3.2 left) learns
to walk in every direction, the behavioral descriptor is defined as the end-point of
the robot’s trajectory after running the controller during 3 seconds. The behavioral
space is a 2-dimensional rectangle (2 meters by 1.4 meters). The frontal axis is
discretized in 51 chunks while the frontal axis is discretized in 35 chunks. This
leads to a total of 1785 cells in the map and each cell is a 4 x 4cm location in
the robot’s vicinity. This cell size has been chosen to produce maps with the same
density of behaviors as the behavioral repertoires from the previous experiments.

Like in the previous experiment, the performance criterion is the orientation
error (see section 3.2.2.3) and it is used to foster behaviors to follow circular tra-
jectories (see Fig. 3.3A). MAP-Elites is allowed to perform 1,000,000 evaluations
during the map generation process (like in the TBR-Evolution experiments). The
type of controller evolved in this experiment is the same as in the TBR-Evolution’s
experiments. Like TBR-Evolution, MAP-Elites can be used with any type of con-
troller. Here again, we choose to use a simple controller in order to show that the
abilities of our robot come from our learning algorithms and not from a particular
controller type. This experiment has been replicated 40 times.

Results The results show that MAP-Elites is significantly better than TBR-
Evolution in many aspects. First qualitatively, we can see that the maps produced
by MAP-Elites cover a larger space around the robot than the behavioral reper-
toire from TBR-Evolution (see Fig. 3.14). This difference appears very soon in the

3.3. The MAP-Elites algorithm 81

T
B
R
-E
v
o
lu
ti
o
n

M
A
P
-E
li
te
s

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Lateral displacement (m)
-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Lateral displacement (m)
-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

1 000 000 evaluations100 000 evaluations

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

)

Figure 3.14: Comparison between a typical behavior-performance map obtained
with MAP-Elites and a behavioral repertoire generated with the TBR-Evolution
algorithm. The archives are displayed after 100,000 evaluations (left) and after
1,000,000 evaluations (right). Each dot corresponds to the endpoint of a controller.
The solid lines represent the final orientation of the robot for each controller, while
the gray dashed lines represent the desired orientation. The orientation error is the
angle between solid and dashed lines.

82 Behavioral Repertoire

generation process, as the map and the behavior repertoire are already different
after only 100,000 evaluations. After 1,000,000 evaluations, the maps generated
with MAP-Elites contain about 1270 controllers (median: 1271 controllers, 5th and
95th percentiles: [1159.5; 1325] controllers) corresponding to about 70% of the map
cells, while the behavioral repertoires from TBR-Evolution only contain about 470
behaviors (468.5 [429.3; 502.45] evaluations). The controllers in the map show a
good orientation error, as a clear vector field can be seen in the figure that suggest
that the behaviors follow the desired circular trajectories.

From a quantitative point of view, we can see in figure 3.15 that MAP-Elites has
always a better sparseness than TBR-Evolution during all the experiment (median:
1.74 vs. 2.10; p-value: 10−13). In particular, we can observe that TBR-Evolution
reaches a sparseness value similar to MAP-Elites only at the end of the experiment.
The same conclusion can be drawn with the orientation error. MAP-Elites becomes
rapidly better than TBR-Evolution and converges to an error close to zero (median
0.06 degrees vs. 1.83; p-values: 10−13).

While the final sparseness values are influenced by some algorithm’s parameters
(for example, the ρ value of TBR-Evolution or the discretization of the grid in
MAP-Elites), we can observe that MAP-Elites has an higher convergence speed
than TBR-Evolution. In less than 200,000 evaluations, both the sparseness and the
orientation error converged to a stable value, which is at least 5 times faster than
TBR-Evolution. The sparseness decreases rapidly and converges in less than 50,000
evaluations. Once most of the map’s cells are filled, their quality progressively
increases before converging after about 200,000 evaluations. This shows that MAP-
Elites benefits from using its whole map as a current population and not only the
current most novel individuals like in TBR-Evolution. Furthermore, it may suggest
that the random selection of MAP-Elites over its whole map is a more efficient way
to find stepping stones than focusing on novel behaviors.

With this experiment we saw that, while MAP-Elites is a very simple algorithm,
it shows results that outperform the TBR-Evolution algorithm. For this reasons,
we will use MAP-Elites to generate the maps that will be used in the following
chapters.

3.3.2.2 Discovering large number of ways to walk straight in a line

Methods In this experiment, the “mission” of the robot is to go forward as fast
as possible and also to find many different ways to do it. Each of these different
ways is a different cell of the behavioral-performance map, which has a different
behavioral descriptor, and the goal of this experiment is thus to find a behavior in
each cell of the map and to maximize their performance.

The behavioral descriptor is a 6-dimensional vector that corresponds to the
proportion of time that each leg is in contact with the ground (also called duty
factor). When a controller is simulated, the algorithm records at each time step
(every 30 ms) whether each leg is in contact with the ground (1: contact, 0: no
contact). The result is 6 Boolean time series (Ci for the ith leg). The behavioral

3.3. The MAP-Elites algorithm 83

Evaluation number (x103 evaluations)m
ed

ia
n

di
st

an
ce

 o
f n

ea
re

st
 p

oi
nt

 (c
m

) Sparseness Vs Evaluation number

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Evaluation number (x103 evaluations)

m
ed

ia
n

or
ie

nt
at

io
n

er
ro

r (
de

gr
ee

)

Orientation error Vs Evaluation number

TBR-Evolution
MAP-Elites

TBR-Evolution
MAP-Elites

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Figure 3.15: (Top) Variation of the sparseness of the behavioral repertoires or maps.
For each point of a one-centimeter grid inside the ROI (Fig. 3.3), the distance from
the nearest controller is computed. The sparseness value is the average of these
distances. This graph plots the first three quartiles of the sparseness computed with
40 runs for each algorithm. (Bottom) Variation of the median of the orientation
error over all the controllers inside the region of interest. This graph also plots the
three first quartiles (25%, 50%, 75%) computed with 40 runs for each algorithm.

84 Behavioral Repertoire

descriptor is then computed with the average of each time series:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
C1(t)

numTimesteps(C1)
...

∑

t
C6(t)

numTimesteps(C6)

⎤

⎥

⎥

⎥

⎦

(3.8)

During the generation of the behavior-performance map, the behaviors are
stored in the maps’s cells by discretizing each dimension of the behavioral descriptor
space with these five values: {0, 0.25, 0.5, 0.75, 1}. With this behavioral descriptor,
the robot will try to find all the ways to walk while using its six legs differently.
Some behavior will use evenly the 6 legs, some of them will use only 5 or 4. Some
other areas of the behavioral space require being more creative, for example it may
seem impossible to walk with few or no legs. We call this behavioral descriptor the
duty-factor descriptor. In the next chapter we will see that many other behavioral
descriptors can be use to generate behavior-performance maps.

The performance of a controller is defined as how far the robot moves in a pre-
specified direction in 5 seconds. The controller used in this experiment is different
from the one used in the previous experiment. This new controller, detailed in
appendix A.2.2, has additional parameters that define the duty cycle of each joint’s
periodic motion. The duty cycle is the proportion of one period in which the joint
is in its higher position. In total, this controller is defined by 36 parameters (6 per
leg).

Control Experiment The MAP-Elites algorithm is a stochastic search algorithm
that attempts to fill a discretized map with the highest-performing solution at
each point in the map. As explained previously, each cell of the map represents a
different type of behavior, as defined by the behavioral dimension of the map. MAP-
Elites generates new candidate points by randomly selecting a location in the map,
changing the parameters of the controller that is stored there, and then saving that
controller in the appropriate map location if it is better than the current occupant
at that location. Intuitively, generating new candidate solutions from the best
solutions found so far should be better than generating a multitude of controllers
randomly and then keeping the best one found for each location in the map. In this
section we report on experiments that confirm that intuition.

To understand the advantages of MAP-Elites over random sampling, we com-
pared the two algorithms by generating data with the simulated hexapod. The
experiments have the same virtual robot, environment, controller, performance
function, and behavioral descriptors as in the main experiments. We analyzed
the number of cells for which a solution is found (an indication of the diversity of
behavior types the algorithms generate), the average performance of behaviors in
the map, and the maximum performance discovered.

We replicated each experiment 8 times, each of which included 20 million eval-
uations on the simulated robot. Note that the 8 replications of MAP-Elites are

3.3. The MAP-Elites algorithm 85

Dim 1

D
im

 2

D
im

 6

Dim 5

D
im

 4

Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

40%

<20% P
ro

p
o
rt

io
n
 o

f
th

e
 m

a
x
im

u
m

 e
x
p
e
ct

e
d
 p

e
rf

o
rm

a
n
ce

60%

80%

100%

Figure 3.16: An example behavior-performance map. This map stores high-
performing behaviors at each point in a six-dimensional behavior space. Each di-
mension is the portion of time that each leg is in contact with the ground. The
behavioral space is discretized at five values for each dimension (0; 0.25; 0.5; 0.75;
1). Each colored pixel represents the highest-performing behavior discovered dur-
ing map creation at that point in the behavior space. The matrices visualize the
six-dimensional behavioral space in two dimensions according to the legend in the
top-left. The behavior-performance map is created with a simulated robot (bottom
left) in the Open Dynamics Engine physics simulator (http://www.ode.org). The
matrix is a map produced by the MAP-Elites algorithm.

then allowed to continue for a total of 40 millions of evaluations to ensure a com-
plete convergence of the algorithm, while only 20 million evaluations are enough to
compare MAP-Elites and a random sampling.

Results One of the eight maps produced with MAP-Elites after 40 million evalu-
ations can be seen in figure 3.16. We can see that a very large portion of the map is
filled, as only a few cells remain in white. The maps contain about 13,000 different
behaviors. A video that illustrates some of the different types of behavior that can
be found in the map can be seen here: https://youtu.be/IHQgnpSphEI Moreover,
some regions of the map are filled while they are supposed to be impossible or very
challenging. For example, the most extreme bottom left cell represents the behav-
ioral descriptor with all its values set to zero, meaning that the robot has to find
a way to walk without touching the ground. The results show that the algorithm
was able to find a solution even in this seemingly impossible case. After looking
to the corresponding behaviors, it appears that the robot found a way to flip over
and to walk on its knees. As the contact with the ground, used to compute the

https://youtu.be/IHQgnpSphEI

86 Behavioral Repertoire

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

14,000

12,000

10,000

8,000

6,000

4,000

2,000

0

MAP-Elites Random Sampling

a b cNumber of behaviors Average performance (m/s) Maximum performance (m/s)

Number of evaluations Number of evaluations Number of evaluationsx 10 6 x 10 6 x 106

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 3.17: Comparing MAP-Elites and random sampling for generating
behavior-performance maps. (a) The number of points in the map for
which a behavior is discovered. (b) The mean performance of the behav-
iors in the map. (c) The maximum performance of the behaviors in the
map. For all these figures, the middle lines represent medians over 8 independently
generated maps and the shaded regions extend to the 25th and 75th percentiles, even
for (a) and (b), where the variance of the distribution is so small that it is difficult
to see. See Supplementary Experiment S4 for methods and analysis.

behavioral descriptor, are only recorded on the tips of each leg, walking on its knees
is considered by the algorithm as not touching the ground. This type of behavior
typically illustrates the creativity of MAP-Elites and how it is able to find solutions
to various problems. This behavior can be seen in the previous video.

When comparing MAP-Elites with a random sampling, the results show that
the MAP-Elites algorithm outperforms random sampling on each of the proposed
measures (Fig. 3.17). After 20 million evaluations, about 13,000 cells (median:
12968, 5th & 95th percentiles: [12892; 13018]) are filled by MAP-Elites (about 83%
percent of the map), whereas random sampling only filled approximately 8600 (8624
[8566; 8641]) cells (about 55% percent of the map) (Fig. 3.17a). The difference
between the two algorithms is large and appears early (Fig. 3.17a); after only 1
million evaluations, MAP-Elites filled 10670 [10511; 10775] cells (68% of the map),
whereas random sampling filled 5928 [5882; 5966] cells (38% of the map).

The solutions discovered by MAP-Elites are not only more numerous, but also
outperform those found by random sampling (Supplementary Fig. 3.17b): with
MAP-Elites, after 20 million evaluations the average performance of filled cells is
0.22 [0.22; 0.23] m/s, whereas it is 0.06 [0.06; 0.06] m/s with random sampling,
which is similar to the performance obtained with the reference controller on a

3.4. Conclusion 87

damaged robot (Fig. 3). These two results demonstrate that MAP-Elites is a
much better algorithm than random sampling to find a map of the diverse, “elite”
performers in a search space.

In addition, MAP-Elites is a better optimization algorithm, as measured by the
performance of the best single solution produced. The performance of the best
solution in the map after 20 million evaluations is 0.40 [0.39;0.41] m/s with MAP-
Elites, compared to 0.21 [0.20; 0.22] m/s with random sampling.

With this second experiment, we showed that MAP-Elites can be used not only
to learn to achieve several tasks (like walking in every directions) but also to learn
many different ways to solve the same task (here moving forward as fast as possible).
Our experiments demonstrated that MAP-Elites is higher performing than TBR-
Evolution and consequently than other algorithms of quality-diversity search (like
Novelty Search or Novelty Search with Local Competition). They also proved that
one of the main advantage of MAP-Elites comes from the fact that MAP-Elites can
rely on its whole map as a sort of population, while TBR-Evolution (and Novelty
Search) only uses the current most novel behaviors.

3.4 Conclusion

In this chapter, we introduced two algorithms to generate behavioral repertoires or
maps: TBR-Evolution and MAP-Elites. These algorithms generate a large num-
ber of efficient behaviors without requiring to learn each of them separately (with
independent learning processes), or to test complex controllers for each condition.
Behavioral repertoires or behavior-performance maps are an interesting way to en-
capsulate the creativity of evolutionary algorithms (EAs), as they project the large
search spaces of EAs into small behavioral spaces containing only high performing
solutions. If the behavioral descriptors are well chosen, the diversity of solution
contained in these containers can be enough to deal with a large variety of tasks or
situations. In the footsteps of Novelty Search, these new algorithms thus highlight
that evolutionary robotics can be more than black-box optimization (Doncieux and
Mouret, 2014): evolution can simultaneously optimize in many niches, each of them
corresponding to a different, but high-performing, behavior.

We first investigated how TBR-Evolution can be used to allow a physical robot
to learn to walk in every direction. With this experiment, we showed that, thanks
to its ability to recycle solutions usually wasted by standard evolutionary algorithm,
TBR-Evolution generates behavioral repertoires faster than by evolving each solu-
tion separately. We also showed that its archive management allows it to generate
behavioral repertoires with a significantly higher quality than the Novelty Search
algorithm (Lehman and Stanley, 2011a). With the TBR-Evolution algorithm, our
physical hexapod robot was able to learn several hundreds of controllers with only
60 transfers of 3 seconds on the robot, which was achieved in 2.5 hours (including
computation time for evolution and the SLAM algorithm). The repartition of these
controllers over all the reachable space has been autonomously inferred by the al-

88 Behavioral Repertoire

Figure 3.18: Illustration of the results obtained with TBR-Evolution. These 5 typi-
cal trajectories correspond to controllers obtained with TBR-Evolution as recorded
by the SLAM algorithm. The supplementary video shows a few other examples of
controllers.

gorithm according to the abilities of the robot. Our experiments also showed that
our method is about 25 times faster than learning each controller separately. These
experiments show that the TBR-Evolution algorithm is a powerful method for learn-
ing multiple tasks with only several dozens of tests on the physical robot by taking
advantage of the transferability approach. Figure 3.18 and the supplementary video
illustrate the resulting ability of the robot to walk in every direction.

In the second part of this chapter, we introduced MAP-Elites. We compared its
performance to those of TBR-Evolution and random sampling. The results showed
that this simple algorithm provides impressive results. On the same task, MAP-
Elites generates a map 5 times faster than TBR-Evolution and with a quality, in
terms of orientation error, 30 times better. We tested MAP-Elites in a second ex-
periment in which the robot has to find different ways for walking straight in a line
as fast as possible. This experiment highlighted the creativity of this algorithm, as
some of the produced behaviors showed non-trivial strategies that solved seemingly
impossible tasks. We will show in the next chapter how these maps, and the cre-
ativity they contain, can be used to allow our physical robots to learn and adapt
in less than a dozen trials.

Chapter 4

Damage Recovery

The results and text of this chapter have been partially published the following
articles.

Main articles:

• Cully, A., Clune, J., Tarapore, D., and Mouret, J. B. (2015). Robots that
can adapt like animals. Nature, 521(7553), 503-507.

• Koos, S., Cully, A., and Mouret, J. B. (2013). Fast damage recovery in
robotics with the t-resilience algorithm. The International Journal of Robotics
Research, 32(14), 1700-1723.

Other contributors:

• Jean-Baptiste Mouret, Pierre and Marie Curie University (Thesis supervisor)

• Danesh Tarapore, Pierre and Marie Curie University (Post-doc)

• Sylvain Koos, Pierre and Marie Curie University (Post-doc)

• Jeff Clune, University of Wyoming (Assistant Prof.)

Author contributions:

• for the paper in Nature: A.C. and J.-B.M. designed the study. A.C. and
D.T. performed the experiments. A.C., J.-B.M., D.T. and J.C. analyzed the
results and wrote the paper.

• for the paper in IJRR: S.K. and J.-B.M. designed the study. A.C. and S.K.
performed the experiments. S.K., A.C., and J.-B.M. analyzed the results and
wrote the paper.

Contents
4.1 Introduction . 90

4.1.1 Learning for resilience . 91

4.1.2 Resilience with a self-model 92

4.1.3 Dealing with imperfect simulators to make robots more robust 95

4.2 The T-Resilience algorithm 97

4.2.1 Motivations and principle . 97

4.2.2 Method description . 97

4.2.3 Experimental validation . 99

4.2.4 Results . 104

90 Damage Recovery

4.2.5 Partial conclusion . 109

4.3 The Intelligent Trial and Error algorithm 109

4.3.1 Motivations and principle . 109

4.3.2 Method description . 112

4.3.3 Experimental validation . 115

4.3.4 Partial conclusion . 139

4.4 Conclusion . 140

4.1 Introduction

Autonomous robots are inherently complex machines that have to cope with a
dynamic and often hostile environment. They face an even more demanding context
when they operate for a long time without any assistance, whether when exploring
remote places (Bellingham and Rajan, 2007) or, more prosaically, in a house without
any robotics expert (Prassler and Kosuge, 2008). As famously pointed out by
Corbato (2007), when designing such complex systems, “[we should not] wonder if
some mishap may happen, but rather ask what one will do about it when it occurs”.
In autonomous robotics, this remark means that robots must be able to pursue their
mission in situations that have not been anticipated by their designers. Legged
robots clearly illustrate this need to handle the unexpected: to be as versatile as
possible, they involve many moving parts, many actuators and many sensors (Kajita
and Espiau, 2008); but they may be damaged in numerous different ways. These
robots would therefore greatly benefit from being able to autonomously find a new
behavior if some legs are ripped off, if a leg is broken or if one motor is inadvertently
disconnected.

Fault tolerance and resilience are classic topics in robotics and engineering. Cur-
rent damage recovery methods in deployed robots typically involves two phases: (1)
performing a self-diagnosis thanks to the embedded sensors and then (2) selecting
the best, pre-designed contingency plan available (Verma et al., 2004; Blanke and
Schröder, 2006; Bongard et al., 2006; Kluger and Lovell, 2006; Visinsky et al., 1994;
Koren and Krishna, 2007; Görner and Hirzinger, 2010; Jakimovski and Maehle,
2010; Mostafa et al., 2010; Schleyer and Russell, 2010). For instance, if a hexapod
robot diagnoses that one of its legs is not reacting as expected, it can drop it and
adapt the position of the other legs accordingly (Jakimovski and Maehle, 2010;
Mostafa et al., 2010).

These methods undoubtedly proved their usefulness in space, aeronautics and
numerous complex systems. However, such self-diagnosing robots are expensive,
because self-monitoring sensors are expensive, and are difficult to design, because
robot engineers cannot foresee every possible situation. Moreover, this approach
often fails either because the diagnosis is incorrect (Bongard et al., 2006; Verma

4.1. Introduction 91

Compensatory behaviorLearning guided by self-knowledge

1st trial

0.30 m/s

0.11 m/s

0.22 m/s

3rd trial

2nd trial

Goal: Fast, straight walking

Figure 4.1: With learning algorithms, robots, like animals, can quickly
adapt to recover from damage. After damage occurs, in this case making
the robot unable to walk straight, damage recovery via Intelligent Trial and Error
begins. The robot tests different types of behaviors from an automatically generated
map of the behavior-performance space. After each test, the robot updates its
predictions of which behaviors will perform well despite the damage. This way, the
robot rapidly discovers an effective compensatory behavior.

et al., 2004) or because an appropriate contingency plan is not provided (Kluger
and Lovell, 2006).

Another classic approach to fault tolerance is to employ robust controllers that
can work in spite of damaged sensors or hardware inefficiencies (Goldberg and
Chen, 2001; Caccavale and Villani, 2002; Qu et al., 2003; Lin and Chen, 2007).
Such controllers usually do not require diagnosing the damage, but this advantage
is tempered by the need to integrate the reaction to all faults in a single controller.

4.1.1 Learning for resilience

Injured animals respond differently: they learn by trial and error how to compensate
for damage (e.g. learning which limp minimizes pain, Jarvis et al. (2013); Fuchs
et al. (2014)). Based on this observation, an alternative to traditional recovery
methods and a promising line of thought is to let the robot learn on its own the
best behavior for the current situation (see figure 4.1). If the learning process is
open enough, then the robot should be able to creatively discover compensatory
behaviors without being limited to their designers’ assumptions about how damage
may occur and how to compensate for each damage type.

As presented previously in this manuscript, numerous learning algorithms,
like policy search or evolutionary algorithms, have been experimented in robotics
(see chapter 2), with different levels of openness and various a priori constraints.
Nonetheless, only a few of these learning methods have been explicitly tested in
situations in which a robot needs to adapt itself to unexpected situations (see table
4.1). One of the reasons that explain this lack of interest is that current state-of-
the-art learning algorithms are impractical because of the “curse of dimensionality”
(Kober et al., 2013): the fastest algorithms constrain the search to a few behaviors
(e.g. tuning only 2 parameters, requiring 10-25 minutes) or require human demon-

92 Damage Recovery

strations. Algorithms without these limitations take several hours (see tables 2.1
and 4.1). Damage recovery would be much more practical and effective if robots
adapted as creatively and quickly as animals (e.g. in minutes) in larger search
spaces and without expensive, self-diagnosing sensors.

It is interesting to note that all policy gradient and evolutionary algorithms
spend most of their running time in evaluating the quality of controllers by testing
them on the target robot. Since, contrary to simulation, reality cannot be sped
up, their running time can only be improved by finding strategies to evaluate fewer
candidate solutions on the physical robot. In their “starfish robot” project, Bongard
et al. (2006) designed a general approach for resilience that makes an important step
in this direction. The authors highlighted how an internal simulation and physical
tests can be combined to allow the algorithms to reduce the number of evaluations
on the physical robot. The simulation of the robot is called a self-model1 (Metzinger,
2004, 2007; Vogeley et al., 1999; Bongard et al., 2006; Holland and Goodman, 2003;
Hoffmann et al., 2010). In effect, this algorithm transfers most of the learning time
to a computer simulation, which makes it increasingly faster when computers are
improved (Moore, 1975).

4.1.2 Resilience with a self-model

Taking advantage of a self-model while learning behaviors is a promising way to
reduce the number of evaluation on the physical robot. However, simulations are
never perfect and most of behaviors learned in simulation do not work as expected
in reality. This well known problem, called reality gap (Koos et al., 2013b), is even
worse when considering resilient robotics because the simulation do not model the
undergone damage. In this situation, a first idea consists in updating the self-model
to include the damage, which corresponds to performing a diagnosis. As mentioned
previously, such diagnosis is expensive and may fail, as the number of situation
that can be correctly diagnosed depends on the sensors embedded on the robot.
Updating the model via a diagnosis leads consequently to the same shortcomings
as traditional damage recovery algorithms.

As an alternative to the traditional ways of performing a diagnosis, Bongard
et al. (2006) propose to infer the damage and to update the self-model by choos-
ing motor actions and measuring their consequences on the behavior of the robot.
The algorithm then relies on the updated model of the robot to learn a new be-
havior in simulation. This approach has been successfully tested on a starfish-like
quadrupedal robot, which managed to update its self-model and to discover a new
walking gait after the loss of one of its legs (Bongard et al., 2006; Zykov, 2008).

In Bongard’s algorithm, the identification of the self-model is based on an active

1 Following the literature in psychology (Metzinger, 2004, 2007; Vogeley et al., 1999) and ar-
tificial intelligence (Bongard et al., 2006; Holland and Goodman, 2003), we define a self-model as
a forward, internal model of the whole body that is accessible to introspection and instantiated in
a model of the environment. In the present manuscript, we only consider a minimal model of the
environment (a horizontal plane).

4
.1

.
In

tro
d

u
ctio

n
9

3

Table 4.1: How long many previous robot damage recovery algorithms take to run. While comparisons between these
algorithms are difficult because they vary substantially in their objective, the size of the search space, and the robot they were
tested on, we nonetheless can see that damage recovery times are rarely below 20 minutes, and often take hours.

approach/article starting behavior ⋆ evaluations learning time robot DOFs† param.‡ reward

Policy Gradient Methods
Christensen et al. (2013) n/a 180 10 min quadruped 8 8 external

Evolutionary Algorithm
Berenson et al. (2005) random 200 2 h quadruped 8 36 external
Mahdavi and Bentley (2006) random 600 10 h snake 12 1152 external
Bongard et al. (2006)1 random 15 4 h hexapod 12(18) 30 internal

Reinforcement learning
Erden and Leblebicioğlu (2008) 2 standing 150 15-25min. hexapod 18 n/a internal

Our approaches
Koos et al. (2013a)

random 25 20 min. hexapod 12(18) 24 internal
T-Resilience

Cully et al. (2015)
random 8 1 min. hexapod 12 (18) 36 internal

Intelligent Trial and Error
⋆Behavior used to initialize the learning algorithm.
† DOFs: number of controlled degrees of freedom.
‡ param: number of learned control parameters.
1 The original authors do not provide time information, reported values come from the implementation of Koos et al. (2013)Koos et al. (2013a).
2 Free-State generation with reinforcement learning.

94 Damage Recovery

learning loop that is itself divided into an action selection loop and a model selection
loop. The action selection loop aims at selecting the action that will best distinguish
the models of a population of candidate models, while the model selection loop looks
for the models that best predict the outcomes of the actions as measured on the
robot. In the “starfish” experiment (Bongard et al., 2006), the following steps are
repeated:

1.1. action selection (exploration): Each of 36 possible actions is tested on each of
the 16 candidate models to observe the orientation of robot’s body predicted
by the model. The action for which models of the population disagree at most
is selected. This action is tested on the robot and the corresponding exact
orientation of robot’s body is recorded by an external camera;

1.2. model selection loop (estimation): An evolutionary algorithm is used to op-
timize the population of models so that they accurately predict what was
measured with the robot, for each tested action;

Once this loop has been repeated 15 times, the best model found so far is used
to learn a new behavior using an EA:

2. controller optimization (exploitation): An evolutionary algorithm is used to
optimize a population of controllers so that they maximize forward displace-
ment within the simulation of the self-model. The best controller found in
the simulation is transferred to the robot, making it the new controller.

With these two loops, only 15 tests on the physical robot are required to up-
date the self-model in their experiments, as most of the evaluation are executed in
simulation. The speed of this algorithm directly depends on the performance of the
employed computers. Nonetheless, significant computing times are still required for
the optimization of the population of models.

In the results reported by Bongard et al. (2006), only half of the runs led to
correct self-models. As Bongard’s. approach implies identifying a full model of the
robot, it would arguably require many more tests to be reasonably certain to find
the correct self-model. For comparison, results obtained by the same authors but in
a simulated experiment required from 600 to 1500 tests to consistently identify the
model (Bongard and Lipson, 2005). It should also be noted that these authors did
not measure the orientation of robot’s body with internal sensors, whereas noisy
internal measurements could significantly impair the identification of the model.
Other authors experimented with self-modeling process similar to the one of Bon-
gard et al., but with a humanoid robot (Zagal et al., 2009). Preliminary results
suggest that thousands of evaluations on the robot would be necessary to correctly
identify 8 parameters of the global self-model. Alternative methods have been pro-
posed to build self-models for robots and all of them require numerous tests, e.g.
on a manipulator arm with about 400 real tests (Sturm et al., 2008) or on a hexa-
pod robot with about 240 real tests (Parker, 2009). Overall, experimental costs

4.1. Introduction 95

for building self-models appear expensive in the context of resilience applications
in both the number of tests on the real robot and in computing time.

Moreover, the approach has a few important shortcomings. First, actions and
models are undirected: the algorithm can “waste” a lot of time to improve parts
of the self-model that are irrelevant for the task. Second, it is computationally
expensive because it includes a full learning algorithm (the second stage, in simu-
lation) and an expensive process to select each action that is tested on the robot.
Third, there is often a “reality gap” between a behavior learned in simulation and
the same behavior on the target robot (Jakobi et al., 1995; Zagal et al., 2004; Koos
et al., 2013b), but nothing is included in Bongard’s algorithm to prevent such gap
to happen: the controller learned in the simulation stage may not work well on the
real robot, even if the self-model is accurate.

4.1.3 Dealing with imperfect simulators to make robots more ro-
bust

Instead of updating or improving the simulation, we propose in this chapter that
a damaged robot discovers new original behaviors using the initial, hand-designed
self-model. The model of the undamaged robot is obviously not accurate because it
does not model the damage. Nonetheless, since damage cannot radically change the
overall morphology of the robot, this “undamaged” self-model can still be viewed as
a reasonably accurate model of the damaged robot. Most of the degrees of freedom
are indeed correctly positioned, the mass of components should not change much
and the body plan is most probably not radically altered.

Based on this observation, we hypothesis that there exist some behaviors in
the search space that work similarly both with the virtual, intact robot and with
the physical, damaged robot. For instance, if a hexapod robot breaks a leg, then
gaits that do not critically rely on this leg should lead to similar trajectories in the
self-model and on the damaged robot. Such gaits are numerous: those that make
the simulated robot lift the broken leg so that it never hits the ground; those that
make the robot walk on its “knees”; those that are robust to leg damage because
they are closer to crawling than walking. Similar ideas can be found for most robots
and for most mechanical and electrical damage, provided that there are different
ways to achieve the mission. For example, any redundant robotic manipulator with
a blocked joint should be able to follow a less efficient but working trajectory that
does not use this joint.

The algorithms proposed in this chapter aim to find behaviors that work sim-
ilarly in simulation and in reality, in spite of the damage. However, finding such
behaviors is not a question restricted to damage recovery: it is a well known and
an unavoidable issue when robotic controllers are first optimized in simulation then
transferred to a real robot, even when the robot is intact. Evolutionary robotics
is probably one of the most affected fields, because of his emphasis on opening the
search space as much as possible and as a consequence, behaviors found within the
simulation are often not anticipated by the designer of the simulator. Therefore, it’s

96 Damage Recovery

not surprising that they are often wrongly simulated. Researchers in evolutionary
robotics explored three main ideas to cross this “reality gap”: (1) automatically im-
proving simulators (Bongard et al., 2006; Pretorius et al., 2012; Klaus et al., 2012),
(2) trying to prevent optimized controllers from relying on the unreliable parts of
the simulation (in particular, by adding noise) (Jakobi et al., 1995), and (3) model
the difference between simulation and reality (Hartland and Bredeche, 2006; Koos
et al., 2013b).

Translated to resilient robotics, the first idea is equivalent to improving or adapt-
ing the self-model, with the aforementioned shortcomings. The second idea corre-
sponds to encouraging the robustness of controllers so that they can deal with an
imperfect simulation. It could lead to improvements in resilient robotics but it re-
quires that the designer anticipates most of the potential damage situations. The
third idea is more interesting for resilient robotics because it acknowledges that sim-
ulations are never perfect and mixes reality and simulation during the optimization.
Among the algorithms of this family, the recently-proposed transferability approach
(see chapter 2.2.5 or Koos et al. (2013b)) explicitly searches for high-performing
controllers that work similarly in both simulation and reality. It led to successful
solutions for quadruped robot (2 parameters to optimize) and for a Khepera-like
robot in a T-maze (weights of a feed-forward neural networks to optimize) (Koos
et al., 2013b; Koos and Mouret, 2011).

In this chapter, we present two algorithms that follow this idea of modeling the
difference between the simulation and reality to allow robots to adapt to unantici-
pated situations. The first algorithm, named T-Resilience, is based on the transfer-
ability approach, which uses a machine-learning algorithm (regression algorithm)
to guide an evolutionary algorithm towards solutions that are transferable. In our
second algorithm, named the Intelligent Trial and Error algorithm, we do the oppo-
site: a behavioral repertoire (see chapter 3) generated by an evolutionary algorithm
is used to guide a machine learning algorithm (policy search algorithm) toward
solutions that are both high-performing and diverse.

In both of these algorithms, the vast majority of controller evaluations is per-
formed in simulation and only a few physical trials are required to allow our robots
to adapt to the damage situations. We evaluate both of the algorithms on our
hexapod robot injured in several ways, including damaged, broken, and missing
legs. Results show that only 25 trials and 20 minutes are required for the robot to
adapt with the T-Resilience algorithm while less than 2 minutes are enough with the
Intelligent Trial and Error algorithms. For all these experiments, the performance
of the behaviors are assessed on-board thanks to a RGB-D sensor coupled with
state-of-the-art Simultaneous Localization And Mapping (SLAM, Durrant-Whyte
and Bailey (2006); Angeli et al. (2009)) algorithms (Endres et al., 2012; Dryanovski
et al., 2013). These two algorithms can work with many different types of robot,
provided that they have several ways to achieve their tasks. To highlight this prop-
erty, we also tested the Intelligent Trial and Error algorithm on a robotic arm with
joints broken in 14 different ways.

4.2. The T-Resilience algorithm 97

4.2 The T-Resilience algorithm

4.2.1 Motivations and principle

As mentioned in section 2.2.5, the transferability approach captures the differences
between the self-model and reality through the transferability function (Mouret
et al., 2012; Koos et al., 2013b):

Definition 9 (transferability function) A transferability function T is a func-
tion that maps a vector b ∈ Rm of m solution descriptors (e.g. control parameters
or behavior descriptors) to a transferability score T (b) that represents how well
the simulation matches the reality for this solution (e.g. performance variation):

T : Rm /→ R

b /→ T (b)

This function is usually not accessible because this would require testing every
solution both in reality and in simulation (see Mouret et al. (2012) and Koos et al.
(2013b) for an example of exhaustive mapping). The transferability function can,
however, be approximated with a regression algorithm (neural networks, support
vector machines, etc.) by recording the behavior of a few controllers in reality an
in simulation.

To cross the reality gap, the transferability approach essentially proposes op-
timizing both the approximated transferability and the performance of controllers
with a stochastic multi-objective optimization algorithm. This approach can be
adapted to make a robot resilient by seeing the original, “un-damaged” self-model
as an inaccurate simulation of the damaged robot, and if the robot only uses internal
measurements to evaluate the discrepancies between predictions of the self-model
and measures on the real robot. Resilient robotics is thus a related, yet new appli-
cation of the transferability concept. We call this new approach to resilient robotics
“T-Resilience” (for Transferability-based Resilience).

4.2.2 Method description

The T-Resilience algorithm relies on three main principles (Fig. 4.3 and Algorithm
3):

• the self-model of the robot is not updated;

• the approximated transferability function is learned “on the fly” thanks to a
few periodic tests conducted on the robot and a regression algorithm;

• three objectives are optimized simultaneously:

maximize

⎧

⎪

⎨

⎪

⎩

Fself (c)

T̂ (bself (c))
diversity(c)

98 Damage Recovery

where Fself (c) denotes the performance of the candidate solution c that is predicted
by the self-model (e.g. the forward displacement in the simulation); bself (c) denotes
the behavior descriptor of c, extracted by recording the behavior of c in the self-
model; T̂ (bself (c)) denotes the approximated transferability function between the
self-model and the damaged robot, which is separately learned using a regression
algorithm; and diversity(c) is a application-dependent helper-objective that helps
the optimization algorithm to mitigate premature convergence (see chapter 2.2.2.1
or Toffolo and Benini (2003); Mouret and Doncieux (2012)).

Evaluating these three objectives for a particular controller does not require
any real test: the behavior of each controller and the corresponding performance
are predicted by the self-model; the approximated transferability value is computed
thanks to the regression model of the transferability function. The update of the
approximated transferability function is therefore the only step of the algorithm that
requires a real test on the robot. Since this update is only performed every N
iterations of the optimization algorithm, only a handful of tests on the real robot
have to be done.

At a given iteration, the T-Resilience algorithm does not need to predict the
transferability of the whole search space, it only needs these values for the candi-
date solutions of the current population. Since the population, on average, moves
towards better solutions, the algorithm has to periodically update the approxima-
tion of the transferability function. To make this update simple and unbiased, we
chose to select the solution to be tested on the robot by picking a random individual
from the population. We experimented with other selection schemes in preliminary
experiments, but we did not observe any significant improvement.

The three objectives are simultaneously optimized thank to the NSGA-II algo-
rithm (Deb et al., 2002; Deb, 2001), one of the most widely used multi-objective op-
timization algorithm (see section 2.2.2); however, any Pareto-based multi-objective
algorithm can replace this specific EA in the T-Resilience algorithm.

At the end of the optimization algorithm, the MOEA discards diversity values
and returns a set of non-dominated solutions based on performance and transfer-
ability. We then need to choose the final controller. Let us define the “transferable
non-dominated set” as the set of non-dominated solutions whose transferability val-
ues are greater than a user-defined threshold. To determine the best solution of a
run, the solution of the transferable non-dominated set with the highest perfor-
mance in simulation is transferred onto the robot and its performance in reality is
assessed. The final solution of the run is the controller that leads to the highest
performance on the robot among all the transferred controllers (Fig. 4.2).

Three choices depend on the application:

• the performance measure Fself (i.e. the reward function);

• the diversity measure;

• the regression technique used to learn the transferability function and, in
particular, the inputs and outputs of this function.

4.2. The T-Resilience algorithm 99

controller c1

After the run

1 transfer

covered distance
(simulation)

approximated
transferability

best transferable
solution c* w.r.t.

best controller of the run =

During the run

25 transfers

controller c2

controller c25

transferable

not
transferable

performance

controller with highest real fitness
value among the 26 transfers

threshold
{
{

Figure 4.2: Choice of the final solution at the end of the T-Resilience algorithm.

We will discuss and describe each of these choices for our resilient hexapod robot
in the next section.

Algorithm 3 T-Resilience (T real tests)

pop← {c1, c2, . . . , cS} (randomly generated)
data← ∅

for i = 1→ T do

random selection of c∗ in pop

computation of bself (c∗), vector of m values describing c∗ in the self-model
transfer of c∗ on the robot
estimation of performance Freal(c

∗) using internal measurements (B)
estimation of transferability score T (bself (c∗)) = ||Fself (c∗)−Freal(c

∗)||
data← data ∪ {[bself (c∗), T (bself (c∗))]}
learning of new approximated transferability function T̂ , based on data

N iterations of MOEA on pop by maximizing Fself (c), T̂ (bself (c)), diversity(c) (A)

selection of the new controller

4.2.3 Experimental validation

We evaluate the performance of our algorithm on the same hexapod robot and the
same type of controller as in the previous chapter. Like in the previous experiments,
the performance of the robot is assessed thanks to an embedded SLAM algorithm,
which autonomously infers the walking speed of the robot. The self-model of the
robot is also identical to the simulation used in the previous chapter. The details

100 Damage Recovery

population
(control parameters)

MOEA

(A) Discovery loop, each iteration
(B) Update of transferability,
every N iterations

approximated
transferability function

robot
self-model

(dynamic simulation)
behavior description
of the self-model
(e.g. contacts)

distance covered
in the self-model

distance covered
on the robot

(internal measures)
update of approx.
transferability
by regression

approximated transferability
corresponding to controller

transfer of
onto the robot

randomly selected in
the population

for each controller
in the population

exact transferability value
for the controller

Figure 4.3: Schematic view of the T-Resilience algorithm (see algorithm 3 for an
algorithmic view). (A) Discovery loop: each controller of the population is eval-
uated with the self-model. Its transferability score is approximated according to
the current model T̂ of the exact transferability function T . (B) Transferability
update: every N iterations, a controller of the population is randomly selected and
transferred onto the real robot. The model of the transferability function is next
updated with the data generated during the transfer.

about the robots and the employed encoding for the controller and the self-model
can be found in the appendix A.1 and A.2.1.

A classic tripod gait (Wilson, 1966; Saranli et al., 2001; Schmitz et al., 2001;
Ding et al., 2010; Steingrube et al., 2010), designed by using the same controller,
is used as a reference point to compare the performance of the proposed algorithm
compared to hand-coded behaviors. The description and the parameters of this
behavior are available in appendix A.2.1.

4.2.3.1 Implementation choices for T-Resilience

Performance function. The mission of our hexapod robot in this experiment is
to go forward as fast as possible, regardless of its current state and of the undergoing
damage. The performance function to be optimized is the forward displacement of
the robot predicted by its self-model. Such a high-level function does not constrain
the features of the optimized behaviors, so that the search remains as open as
possible, possibly leading to original gaits (Nelson et al., 2009):

Fself (c) = pt=E,SELF
x (c)− pt=0,SELF

x (c) (4.1)

4.2. The T-Resilience algorithm 101

where pt=0,SELF
x (c) denotes the x-position of the robot’s center at the beginning of

the simulation when the parameters c are used and pt=E,SELF
x (c) its x-position at

the end of the simulation.

Because each trial lasts only a few seconds, this performance function does
not strongly penalize gaits that do not lead to straight trajectories. Using longer
experiments would penalize these trajectories more, but it would increase the total
experimental time too much to perform comparisons between approaches. Other
performance functions are possible and will be tested in future work.

Diversity function. The diversity score of each individual is the average Eu-
clidean distance to all the other candidate solutions of the current population.
Such a parameter-based diversity objective enhances the exploration of the control
space by the population (Toffolo and Benini, 2003; Mouret and Doncieux, 2012)
and allows the algorithm to avoid many local optima. This diversity objective is
straightforward to implement and does not depend on the task.

diversity(c) =
1

N

∑

y∈Pn

√

√

√

√

24
∑

j=1

(cj − yj)2 (4.2)

where Pn is the population at generation n, N the size of P and cj the jth parameter
of the candidate solution c. Other diversity measures (e.g. behavioral measures, like
in (Mouret and Doncieux, 2012)) led to similar results in preliminary experiments.

Regression model. When a controller c is tested on the real robot, the cor-
responding exact transferability score T is computed as the absolute difference
between the forward performance predicted by the self-model and the performance
estimated on the robot based on the SLAM algorithm.

T (c) =
∣

∣

∣pSELF
t=E (c)− pREAL

t=0 (c)
∣

∣

∣ (4.3)

The transferability function is approximated by training a SVM model T̂ using
the ν-Support Vector Regression algorithm with linear kernels implemented in the
library libsvm2 (Chang and Lin, 2011) (learning parameters are set to default val-
ues).

T̂ (bself (c)) = SVM(b(1)
t=0, · · · , b(1)

t=E , · · · , b(6)
t=0, · · · , b(6)

t=E) (4.4)

where E is the number of time-steps of the control function (equation A.1) and:

b(n)
t =

{

1 if leg n touches the ground at that time-step
0 otherwise

(4.5)

2http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm

102 Damage Recovery

We chose to describe gaits using contacts3, because it is a classic representation
of robotic and animal gaits (e.g. Delcomyn (1971)).

We chose SVMs to approximate the transferability score because of the high
number of inputs of the model and because there are many available implementa-
tions. Contrary to other classic regression models (neural networks, Kriging, ...),
SVMs are indeed not critically dependent on the size of the input space (Smola and
Vapnik, 1997; Smola and Schölkopf, 2004). They also provide fast learning and fast
prediction when large input spaces are used.

4.2.3.2 Test cases and compared algorithms

To assess the ability of T-Resilience to cope with many different failures, we consider
the six following test cases (Fig. 4.4):

• A. the hexapod robot is not damaged;

• B. the left middle leg is no longer powered;

• C. the terminal part of the front right leg is shortened by half;

• D. the right hind leg is lost;

• E. the middle right leg is lost;

• F. both the middle right leg and the front left leg are lost.

We compare the T-Resilience algorithm to three representative algorithms from
the literature (see appendix D.1.1 for the exact implementations of each algorithm
and appendix D.1.2 for the validation of the implementations):

• a stochastic local search (Hoos and Stützle, 2005), because of its simplicity;

• a policy gradient method inspired from Kohl and Stone (2004), because this
algorithm has been successfully applied to learn quadruped locomotion;

• a self-modeling process inspired from Bongard et al. (2006).

To make the comparisons as fair as possible, we designed our experiments to
compare algorithms after the same amount of running time or after the same num-
ber of real tests (see appendix D.1.3 for their median durations and their median
numbers of real tests). In all the test cases, the T-Resilience algorithm required
about 19 minutes and 25 tests on the robot (1000 generations of 100 individuals).
Consequently, two key values are recorded for each algorithm (see Appendix D.1.1
for exact procedures):

3When choosing the input of a predictor, there is a large difference between using the control
parameters and using high-level descriptors of the behavior (Mouret and Doncieux, 2012). Intu-
itively, most humans can predict that a behavior will work on a real robot by watching a simulation,
but their task is much harder if they can only see the parameters. More technically, predicting
features of a complex dynamical system usually requires simulating it. By starting with the output
of a simulator, the predictor avoids the need to re-invent physical simulation and can focus on
discrimination.

4.2. The T-Resilience algorithm 103

A B CB C

D E F

Figure 4.4: Test cases considered in our experiments. (A) The hexapod robot is
not damaged. (B) The left middle leg is no longer powered. (C) The terminal part
of the front right leg is shortened by half. (D) The right hind leg is lost. (E) The
middle right leg is lost. (F) Both the middle right leg and the front left leg are lost.

• the performance of the best controller obtained after about 25 real tests4;

• the performance of the best controller obtained after about 19 minutes.

The experiments for the four first cases (A, B, C and D) showed that only the
stochastic local search is competitive with the T-Resilience. To keep experimental
time reasonable, we therefore chose to only compare T-Resilience with the local
search algorithm for the two last failures (E and F).

Preliminary experiments with each algorithm showed that initializing them with
the parameters of the reference controller did not improve their performance. We
interpret these preliminary experiments as indicating that the robot needs to use
a qualitatively different gait, which requires substantial changes in the parameters.
This observation is consistent with the gaits we tried to design for the damaged
robot. As a consequence, we chose to initialize each of the compared algorithms
with random parameters instead of initializing them with the parameters of the
reference controller. By thus starting with random parameters, we do not rely on
any a priori about the gaits for the damaged robot: we start with the assumption
that anything could have happened.

We replicate each experiment 5 times to obtain statistics. Overall, this compari-
son requires the evaluation of about 4000 different controllers on the real robot. The

4Depending on the algorithm, it is sometimes impossible to perform exactly 25 tests (for in-
stance, if two tests are performed for each iteration).

104 Damage Recovery

Test cases A B C D E F

Perf. (CODA) 0.78 0.26 0.25 0.00 0.15 0.10
Perf. (SLAM) 0.75 0.17 0.26 0.00 0.04 0.16

Table 4.2: Performances in meters obtained on the robot with the reference gait in
all the considered test cases. Each test lasts 3 seconds. The CODA line corresponds
to the distance covered by the robot according to the external motion capture
system. The SLAM line corresponds to the performance of the same behaviors
but reported by the SLAM algorithm. When internal measures are used (SLAM
line), the robot can easily detects that a damage occurred because the difference in
performance is very significant (column A versus the other columns).

different values of parameters used in these experiments are defined in appendix C.2

We use 4 Intel(R) Xeon(R) CPU E31230 3.20GHz, each of them including
4 cores. Each algorithm is programmed in the Sferesv2 framework (Mouret and
Doncieux, 2010). The MOEA used in Bongard’s algorithm and in the T-Resilience
algorithm is distributed on 16 cores using MPI.

Final performance values are recorded with a CODA cx1 motion capture sys-
tem (Charnwood Dynamics Ltd, UK) so that reported results do not depend on
inaccuracies of the internal measurements. However, all the tested algorithms have
only access to the internal measurements.

4.2.4 Results

4.2.4.1 Reference controller

Table 4.2 reports the performances of the reference controller for each tested failure,
measured with both the CODA scanner and the on-board SLAM algorithm. At
best, the damaged robot covered 35% of the distance covered by the undamaged
robot (0.78 m with the undamaged robot, at best 0.26 m after a failure). In cases
B, C and E, the robot also performs about a quarter turn; in case D, it falls over;
in case F, it alternates forward locomotion and backward locomotion.

This performance loss of the reference controller clearly shows that an adap-
tation algorithm is required to allow the robot to pursue its mission. Although
not perfect, the distances reported by the on-board RGB-D SLAM are sufficiently
accurate to easily detect when the adaptation algorithm must be launched.

4.2.4.2 Comparison of performances

Fig. 4.5 shows the performance obtained for all test cases and all the investi-
gated algorithms. Table 4.3 reports the improvements between median perfor-
mance values. P-values are computed with the Wilcoxon rank-sum tests (ap-
pendix D.1.4). The horizontal lines in Figure 4.5 show the efficiency of the ref-
erence gait in each case. Videos of the typical behaviors obtained with the T-
Resilience on every test case are available here: https://youtu.be/MSwdmC0dZ74

https://youtu.be/MSwdmC0dZ74

4.2. The T-Resilience algorithm 105

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

● ●

●

●

tests
time

tests
time

tests
time

 Local search Policy search Self−modeling T−Resilience

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(a) Undamaged hexapod robot.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

tests
time

tests
time

tests
time

 Local search Policy search Self−modeling T−Resilience

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(b) Middle left leg not powered.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●
●

tests
time

tests
time

tests
time

 Local search Policy search Self−modeling T−Resilience

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(c) Front right leg shortened by half.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

tests
time

tests
time

tests
time

 Local search Policy search Self−modeling T−Resilience

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(d) Hind right leg lost.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

●

T−ResilienceLocal search
tests

Local search
time

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(e) Middle right leg lost.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

●

T−ResilienceLocal search
tests

Local search
time

Fo
rw

ar
d

di
sp

la
ce

m
en

t (
m

.)

(f) Middle right leg and front left leg lost.

Figure 4.5: Performances obtained in each test case (distance covered in 3 seconds).
On each box, the central mark is the median; the edges of the box are the lower
hinge (defined as the 25th percentile) and the upper hinge (the 75th percentile).
The whiskers extend to the most extreme data point, which is no more than 1.5
times the length of the box away from the box. Each algorithm has been run
5 times and distances are measured using the external motion capture system.
Except for the T-Resilience, the performance of the controllers found after about
25 transfers (tests) and after about 20 minutes (time) are depicted (all T-Resilience
experiments last about 20 minutes and use 25 transfers). The horizontal lines denote
the performances of the reference gait, according to the CODA scanner (dashed line)
and according to the SLAM algorithm (solid line).

106 Damage Recovery

Local search Policy search Self-modeling
reference gait

tests time tests time time tests

A 4.5 2.5 3.3 4.5 6.3 19.0 1.0
B 2.3 2.2 2.3 2.3 +++ 3.2 2.3
C 2.8 1.7 2.8 2.8 +++ +++ 1.8
D 1.4 1.1 2.1 3.0 +++ +++ +++
E 3.4 2.8 4.3
F 1.7 1.3 4.5

global median 2.8 2.0 2.6 2.9 +++ +++ 3.3

(a) Ratios between median performance values.

Local search Policy search Self-modeling
reference gait

tests time tests time time tests

A +59 +45 +53 +59 +64 +72 - 2
B +34 +33 +34 +34 +63 +42 +35
C +29 +18 +29 +29 +63 +74 +20
D + 9 + 2 +16 +20 +38 +30 +30
E +46 +42 +50
F +18 +10 +35

global median +32 +26 +32 +32 +63 +57 +33

(b) Differences between median performance values (cm).

Table 4.3: Performance improvements of the T-Resilience compared to other algo-
rithms. For ratios, the symbol +++ indicates that the compared algorithm led to
a negative or null median value.

and https://youtu.be/dncuBUnfkA4

Performance with the undamaged robot (case A). When the robot is not
damaged, the T-Resilience algorithm discovered controllers with the same level of
performance as the reference hexapod gait (p-value = 1). The obtained controllers
are from 2.5 to 19 times more efficient than controllers obtained with other algo-
rithms (Table 4.3).

The poor performance of the other algorithms may appear surprising at first
sight. Local search is mostly impaired by the very low number of tests that are
allowed on the robot, as suggested by the better performance of the “time” variant
(20 minutes / 50 tests) versus the “tests” variant (10 minutes / 25 tests). Surpris-
ingly, we did not observe any significant difference when we initialized the control
parameters with those of the reference controller (data not shown). The policy
gradient method suffers even more than local search from the low number of tests
because a lot of tests are required to estimate the gradient. As a consequence, we
were able to perform only 2 to 4 iterations of the algorithm. Overall, these results
are consistent with those of the literature because previous experiments used longer
experiments and often simpler systems. Similar observations have been reported
previously by other authors (Yosinski et al., 2011).

Bongard’s algorithm mostly fails because of the reality gap between the self-
model and the real robot. Optimizing the behavior only in simulation leads – as

https://youtu.be/dncuBUnfkA4

4.2. The T-Resilience algorithm 107

expected – to controllers that perform well with the self-model but that do not work
on the real robot. This performance loss is sometimes high because the controllers
make the robot flip over or go backward.

Resilience performance (cases B to F). When the robot is damaged, gaits
found with the T-Resilience algorithm are always faster than the reference gait
(p-value = 0.0625, one-sample Wilcoxon signed rank test).

After the same number of tests (variant tests of each algorithm), gaits obtained
with T-Resilience are at least 1.4 times faster than those obtained with the other
algorithms (median of 3.0 times) with median performance values from 30 to 65 cm
in 3 seconds. These improvements are all stastically significant (p-values ≤ 0.016)
except for the local search in the case D (loss of a hind leg; p-value = 0.1508).

After the same running time (variant time of each algorithm), gaits obtained
with T-Resilience are also significantly faster (at least 1.3 times; median of 2.8 times;
p-values ≤ 0.016) than those obtained with the other algorithms in cases B, E and F.
In cases C (shortened leg) and D (loss of a hind leg), T-Resilience is not statistically
different from local search (shortened leg: p-value = 0.1508; loss of a hind leg: p-
value = 0.5476). Nevertheless, these high p-values may stem from the low number
of replications (only 5 replications for each algorithm). Moreover, as section 4.2.4.3
will show, the execution time of the T-Resilience can be compressed because a large
part of the running time is spent in computer simulations. Consequently, depending
on the hardware, better performances could be achieved in smaller amounts of time.

For all the tested cases, Bongard’s self-modeling algorithm doesn’t find any
working controllers. We observed that it suffers from two difficulties: the optimized
models do not always capture the actual morphology of the robot, and reality gaps
between the self-model and the reality (see the comments about the undamaged
robot). In the first case, more time and more actions could improve the result.
In the second time, a better simulation model could make things better but it is
unlikely to fully remove the effect of the reality gap.

Loss of a leg (case D and E). When the hind leg is lost (case D), the T-
Resilience yields controllers that perform much better than the reference controller.
Nevertheless, the performances of the controllers obtained with the T-Resilience are
not statistically different from those obtained with the local search. This unexpected
result stems from the fact that many of the transfers made the robot tilt down
(fast six-legged behaviors optimized on the self-model of the undamaged robot are
often unstable without one of the hind legs): in this case, the SLAM algorithm
is unreliable (the algorithm often crashed) and we have to discard the distance
measurements. In effect, only a dozen of transfers are usable in case D, making the
estimation of the transferability function especially difficult. Using more transfers
could accentuate the difference between T-Resilience and local search.

If the robot loses a less critical leg (middle leg in case E), it is more stable and
the algorithm can conduct informative tests on the robot. The T-Resilience is then

108 Damage Recovery

0

20

40

60

80

100

Local search
~ 20 min.

Policy search
~ 25 min.

Self−modeling
~ 250 min.

T−resilience
~ 19 min.

D
is

tri
bu

tio
n

of
 ti

m
e

(%
)

experiments
optimization
slam

(a) Distribution of duration (median duration in-
dicated below the graph).

4

6

8

10

12

14

Local search Policy search Self−modeling T−resilience

Ex
pe

rim
en

ta
l t

im
e

(m
in

.)

(b) Experimental time (experiments with the
robot).

Figure 4.6: Distribution of duration and experimental time for each algorithm (me-
dian values on 5 runs of test cases A, B, C, D). All the differences between ex-
perimental times are statistically significant (p-values < 2.5× 10−4 with Wilcoxon
rank-sum tests).

able to find fast gaits (about 3 times faster than with the local search).

4.2.4.3 Comparison of durations and experimental time

The running time of each algorithm is divided into experimental time (actual ex-
periments on the robot), sensor processing time (computing the robot’s trajectory
using RGB-D slam) and optimization time (generating new potential solutions to
test on the robot). The median proportion of time allocated to each of this part of
the algorithms is pictured for each algorithm on figure 4.65.

The durations of the SLAM algorithm and of the optimization processes both
only depend on the hardware specifications and can therefore be substantially re-
duced by using faster computers or by parallelizing computation. Only experimental
time cannot easily be reduced. The median proportion of experimental time is 29%
for the T-Resilience, whereas both the policy search and the local search leads to
median proportions higher than 40% for a similar median duration by run (about
20 minutes). The proportion of experimental time for the self-modeling process is
much lower (median value equals to 1%) because it requires much more time for
each run (about 250 minutes for each run, in our experiments).

The median experimental time of T-Resilience (6.3 minutes) is significantly lower
than those of local search and of policy search (resp. 8.5 and 10.8 minutes, p-
values < 2.5 × 10−4). With the expected increases of computational power, this
difference will increase each year. The self-modeling process requires significantly
lower experimental time (median at 3.6 minutes, p-values < 1.5 × 10−11) because

5Only test cases A, B, C and D are considered to compute these proportions (5 runs for each
algorithm) because the policy search and the self-modeling process are not tested in test cases E
and F

4.3. The Intelligent Trial and Error algorithm 109

it only tests actions that involve a single leg, which is faster than testing a full gait
(3 seconds).

4.2.5 Partial conclusion

All our experiments show that T-Resilience is a fast and efficient learning approach
to discover new behaviors after mechanical and electrical damage (less than 20
minutes with only 6 minutes of irreducible experimental time). Most of the time, T-
Resilience leads to gaits that are several times faster than those obtained with direct
policy search, local search and Bongard’s algorithm; T-Resilience never obtained
worse results. Overall, T-Resilience appears to be a versatile algorithm for damage
recovery, as demonstrated by the successful experiments with many different types
of damage. These results validate the combination of the principles that underlie
our algorithm: (1) using a self-model to transform experimental time with the
robot into computational time inside a simulation, (2) learning a transferability
function that predicts performance differences between reality and the self-model
(instead of learning a new self-model) and, (3) optimizing both the transferability
and performance to learn behaviors in simulation that will work well on the real
robot, even if the robot is damaged. These principles can be implemented with
alternative learning algorithms and alternative regression models.

During our experiments, we observed that the T-Resilience algorithm was less
sensitive to the quality of the SLAM than the other investigated learning algorithms
(policy gradient and local search). Our preliminary analysis shows that the sen-
sitivity of these classic learning algorithms mostly stems from the fact that they
optimize the SLAM measurements and not the real performance. For instance, in
several of our experiments, the local search algorithm found gaits that make the
SLAM algorithm greatly over-estimate the forward displacement of the robot. The
T-Resilience algorithm relies only on internal sensors as well. However, these mea-
sures are not used to estimate the performance but to compute the transferability
values. Gaits that lead to over-estimations of the covered distance have low trans-
ferability scores because the measurement greatly differs from the value predicted
by the self-model. As a consequence, they are avoided like all the behaviors for
which the prediction of the self-model does not match the measurement. In other
words, the self-model acts as a “credibility check” of the SLAM measurements,
which makes T-Resilience especially robust to sensor inaccuracies. If sensors were
redundant, this credibility check could also be used by the robot to continue its
mission when a sensor is unavailable.

4.3 The Intelligent Trial and Error algorithm

4.3.1 Motivations and principle

In the previous section, our experiments demonstrated that using a simulation of the
intact robot allows the physical robot to quickly adapt to unforeseen situations. In

110 Damage Recovery

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

Walking robot

A
da

pt
at

io
n

St
ep

e

M
ap

 C
re

at
io

n
St

ep

a

Confidence
level

Performance
Simulation

(undamaged)

High-dimensional (original)
search space Low-dimensional (behavior)

search space

b

d

Behavioral
dimensions

Damaged robot

c

Initial map First map update Final map

Figure 4.7: (A & B). Creating the behavior-performance map: A user re-
duces a high-dimensional search space to a low-dimensional behavior space by defin-
ing dimensions along which behaviors vary. In simulation, the high-dimensional
space is then automatically searched to find a high-performing behavior at each
point in the low-dimensional behavior space, creating a “behavior-performance”
map of the performance potential of each location in the low-dimensional space.
In our hexapod robot experiments, the behavior space is six-dimensional: the por-
tion of time that each leg is in contact with the ground. The confidence regard-
ing the accuracy of the predicted performance for each behavior in the behavior-
performance map is initially low because no tests on the physical robot have been
conducted. (C & D) Adaptation Step: After damage, the robot selects a promis-
ing behavior, tests it, updates the predicted performance of that behavior in the
behavior-performance map, and sets a high confidence on this performance pre-
diction. The predicted performances of nearby behaviors–and confidence in those
predictions–are likely to be similar to the tested behavior and are thus updated
accordingly. This select/test/update loop is repeated until a tested behavior on the
physical robot performs better than 90% of the best predicted performance in the
behavior-performance map, a value that can decrease with each test (Fig. 4.8). The
algorithm that selects which behavior to test next balances between choosing the
behavior with the highest predicted performance and behaviors that are different
from those tested so far. Overall, the Intelligent Trial and Error approach presented
here rapidly locates which types of behaviors are least affected by the damage to
find an effective, compensatory behavior.

4.3. The Intelligent Trial and Error algorithm 111

the T-Resilience algorithm, this speed improvement requires to be able to perform a
significant amount of simulations between each trial, which significantly slows down
the learning process. In the previous experiments, the robot was actually moving
only 6 or 7 minutes over the 20 minutes taken by the learning process. A common
way to reduce the time spent in simulation is to reduce the number of iterations in
simulation. However, such approach often results in a decrease of the quality in the
obtained solutions.

In this section, we introduce a second algorithm, based on the same principles as
the T-Resilience algorithm, but in which all the learning time is spent in testing be-
haviors on the physical robot. With this algorithm, we show that rapid adaptation
can be achieved by guiding a learning algorithm with an automatically generated,
pre-computed, behavioral repertoire that predicts the performance of thousands of
different behaviors. We call this behavioral repertoire a behavior-performance map.
By pre-computing the behavior-performance map, the algorithm is no longer lim-
ited by the trade-off between time spent in simulation and quality of the solutions
like with the T-Resilience algorithm, and can spend as much time as needed to
improve the behaviors in simulation.

As mentioned previously, current learning algorithms either start with no knowl-
edge of the search space (Kober et al., 2013) or with minimal knowledge from a few
human demonstrations (Kober et al., 2013; Argall et al., 2009). Our intuition is
that animals understand the space of possible behaviors and their value from pre-
vious experience (Wolpert et al., 2001), which they use to adapt by intelligently
selecting tests that validate or invalidate whole families of promising compensatory
behaviors. The key insight of our approach is that robots could do the same.

We propose to have robots that store knowledge from previous experience in
the form of a map of the behavior-performance space. Guided by this map, a
damaged robot tries different types of behaviors that are predicted to perform well
and, as tests are conducted, updates its estimates of the performance of those types
of behaviors. The process ends when the robot predicts that the most effective
behavior has already been tested. We call this algorithm “Intelligent Trial and
Error”. This approach relies on the same hypothesis than the rest of this chapter:
information about many different behaviors on the undamaged robot will still be
useful after damage, because some of these behaviors will still be functional despite
the damage. In addition to the results from the previous section, the results of
the experiments presented here support this assumption for all types of damage we
tested, revealing that a robot can quickly discover a way to compensate for damage
without a detailed mechanistic understanding of its cause, as occurs with animals.

The behavior-performance map is created with the MAP-Elites algorithm pre-
sented in chapter 3.3 and a self-model of the robot, which either can be a standard
physics simulator or can be automatically discovered (Bongard et al., 2006). The
robot’s designers only have to describe the dimensions of the space of possible be-
haviors and a performance measure. For instance, walking gaits could be described
by how much each leg touches the ground (a behavioral measure) and speed (a
performance measure). An alternate gait behavioral measure could be the percent

112 Damage Recovery

of time a robot’s torso has positive pitch, roll, and yaw angles. For grasping, perfor-
mance could be the amount of surface contact, and it has been demonstrated that
90% of effective poses for the 21-degree-of-freedom human hand can be captured by
a 3-dimensional behavioral space describing the principle components of ways that
hand-poses commonly vary (Santello, 1998). To fill in the behavior-performance
map, the MAP-Elites algorithm simultaneously searches for a high-performing so-
lution at each point in the behavioral space (Fig. 4.7a,b and Fig. 4.8). This step
requires simulating millions of behaviors, but needs to be performed only once per
robot design before deployment.

A low confidence is assigned to the predicted performance of behaviors stored in
this behavior-performance map because they have not been tried in reality (Fig. 4.7b
and Fig. 4.8). During the robot’s mission, if performance drops below a user-defined
threshold (either due to damage or a different environment), the robot selects the
most promising behavior from the behavior-performance map, tests it, and measures
its performance. The robot subsequently updates its prediction for that behavior
and nearby behaviors, assigns high confidence to these predictions (Fig. 4.7c and
Fig. 4.8), and continues the select-test-update process until it finds a satisfactory
compensatory behavior (Fig. 4.7d and Fig. 4.8).

All of these ideas are technically captured via a Gaussian process model (Ras-
mussen and Williams, 2006), which approximates the performance function with
already acquired data, and a Bayesian optimization procedure (Mockus, 2013; Borji
and Itti, 2013), which exploits this model to search for the maximum of the per-
formance function (see chapter 2.4). The robot selects which behaviors to test
by maximizing the acquisition function that balances exploration (selecting points
whose performance is uncertain) and exploitation (selecting points whose perfor-
mance is expected to be high). The selected behavior is tested on the physical robot
and the actual performance is recorded. The algorithm updates the expected per-
formance of the tested behavior and lowers the uncertainty about it. These updates
are propagated to neighboring solutions in the behavioral space by updating the
Gaussian process. These updated performance and confidence distributions affect
which behavior is tested next. This select-test-update loop repeats until the robot
finds a behavior whose measured performance is greater than some user-defined
percentage (here, 90%) of the best performance predicted for any behavior in the
behavior-performance map (see appendix D.2.2).

4.3.2 Method description

The Intelligent Trial and Error Algorithm consists of two major steps (Fig. 4.8):
the behavior-performance map creation step and the adaptation step (while here
we focus on damage recovery, Intelligent Trial and Error can search for any type
of required adaptation, such as learning an initial gait for an undamaged robot,
adapting to new environments, etc.). The behavior-performance map creation step
is accomplished via the MAP-Elites algorithm, while the adaptation step is accom-
plished via a new algorithm called the map-based Bayesian optimization algorithm

4.3. The Intelligent Trial and Error algorithm 113

Uncertainty

Pe
rfo

rm
an

ce

Behavioral descriptor

Expected performance

Actual performance
(unknown)

Uncertaintyb1
Performance

threshold

Evaluation in
simulationRandom

parameter
variation

Replace if
best so far of this

behavior type

Random
selection

from the map

Behavior-Performance Map
Behavioral descriptor

Current best solution
for this behavior type

Previously encountered
solutions (not stored)

Pe
rfo

rm
an

ce

Behavior-Performance
Map Generation Online adaptation on the robot

a

a1

a2

Pe
rfo

rm
an

ce

Behavioral descriptor

b2

Pe
rfo

rm
an

ce

Behavioral descriptor

b3

b4

Evaluation on the
damaged robot

b4

Evaluation on the
damaged robot

b

Updated
expectations

Lowered
performance

threshold

Stop because a solution is
above the performance threshold

Figure 4.8: An overview of the Intelligent Trial and Error Algorithm.
(A) Behavior-performance map creation. After being initialized with ran-
dom controllers, the behavioral map (A2), which stores the highest-performing
controller found so far of each behavior type, is improved by repeating the pro-
cess depicted in (A1) until newly generated controllers are rarely good enough to
be added to the map (here, after 40 million evaluations). This step, which occurs
in simulation, is computationally expensive, but only needs to be performed once
per robot (or robot design) prior to deployment. In our experiments, creating one
map involved 40 million iterations of (A1), which lasted roughly two weeks on one
multi-core computer (see appendix D.2.5). (B) Adaptation. (B1) Each behav-
ior from the behavior-performance map has an expected performance based on its
performance in simulation (dark green line) and an estimate of uncertainty regard-
ing this predicted performance (light green band). The actual performance on the
now-damaged robot (black dashed line) is unknown to the algorithm. A behav-
ior is selected to try on the damaged robot. This selection is made by balancing
exploitation—trying behaviors expected to perform well—and exploration—trying
behaviors whose performance is uncertain (see section 2.4.3). Because all points
initially have equal, maximal uncertainty, the first point chosen is that with the
highest expected performance. Once this behavior is tested on the physical robot
(B4), the performance predicted for that behavior is set to its actual performance,
the uncertainty regarding that prediction is lowered, and the predictions for, and
uncertainties about, nearby controllers are also updated (according to a Gaussian
process model, see section 2.4.2.1, section “kernel function”), the results of which
can be seen in (B2). The process is then repeated until performance on the dam-
aged robot is 90% or greater of the maximum expected performance for any behavior
(B3). This performance threshold (orange dashed line) lowers as the maximum ex-
pected performance (the highest point on the dark green line) is lowered, which
occurs when physical tests on the robot underperform expectations, as occurred in
(B2).

114 Damage Recovery

(M-BOA).
The key concept of M-BOA is to use the output of MAP-Elites as a prior for

the Bayesian Optimization algorithm: thanks to the simulations, we expect some
behaviors to perform better than others on the robot. In our implementation of
BO, we use Gaussian Process (GP) regression (Rasmussen and Williams, 2006) to
model the unknown function, which is a common choice for Bayesian optimization
(Calandra et al., 2014; Griffiths et al., 2009; Brochu et al., 2010b; Lizotte et al.,
2007). Here is a reminder of the traditional formulation of a GP (see chapter 2.4):

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :
µt(x) = µ0 + kᵀK−1(P1:t − µ0)
σ2

t (x) = k(x, x)− kᵀK−1k

K =

⎡

⎢

⎢

⎣

k(χ1, χ1) · · · k(χ1, χt)
...

. . .
...

k(χt, χ1) · · · k(χt, χt)

⎤

⎥

⎥

⎦

+ σ2
noiseI

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]

P1:t =

⎡

⎢

⎢

⎣

P1
...

Pt

⎤

⎥

⎥

⎦

(4.6)

To incorporate the information provided by the behavior-performance map into
the Bayesian optimization, M-BOA models the difference between the prediction of
the map and the actual performance on the real robot, instead of directly modeling
the objective function. This idea is incorporated into the Gaussian process by
modifying the update equation for the mean function (µt(x), equation 4.6):

µt(x) = P(x) + kᵀK−1(P1:t −P(χ1:t)) (4.7)

where P(x) is the performance of x according to the simulation and P(χ1:t) is
the performance of all the previous observations, also according to the simulation.
Replacing P1:t (eq. 4.6) by P1:t−P(χ1:t) (eq. 4.7) means that the Gaussian process
models the difference between the actual performance P1:t and the performance
from the behavior-performance map P(χ1:t). The term P(x) is the prediction of
the behavior-performance map. M-BOA therefore starts with the prediction from
the behavior-performance map and corrects it with the Gaussian process.

In our implementation, we decided to use the Matérn kernel function for the
GP (with ν = 5/2, see section 2.4.2.1) because it allows us to control not only
the distance at which effects become nearly zero (as a function of parameter ρ, see
appendix figure D.3a), but also the rate at which distance effects decrease (as a
function of parameter ν). Because the model update step directly depends on ρ, it
is one of the most critical parameters of the Intelligent Trial and Error Algorithm.
We selected its value after extensive experiments in simulation detailed in appendix
D.2.4.

4.3. The Intelligent Trial and Error algorithm 115

For the acquisition function of the BO algorithm, we chose the Upper Confidence
Bound because it provided the best results in several previous studies (Brochu
et al., 2010b; Calandra et al., 2014). To perform the “inner-optimization” of this
function, instead of using a gradient descent or another optimization algorithm,
we exhaustively compute the acquisition value of each solution of the behavior-
performance map and then choose the maximum value. Indeed, for the specific
behavior space in the example problem in this chapter, the discretized search space
of the behavior-performance map is small enough that an exhaustive exploration is
computationally tractable. We describe how we chose the value of the parameter
that controls the exploitation/exploration trade-off (κ) value in appendix D.2.4.

The pseudo-code of the entire algorithm is available in the algorithm 4, while
more details about BO can be found in chapter 2.4.

4.3.3 Experimental validation

We test the Intelligent Trial and Error algorithm on five different experimental
setups in order to evaluate, not only its overall performance over different situa-
tions, but also to determine which of its components contribute to the observed
performances.

In our two first experiments, we evaluate the performance of our algorithm
on two physical systems: (1) our hexapod robot (see appendix A.1) and (2) on
a robotic arm with 8 degrees of freedom (see appendix B.1). The first objective
of these experiments is to show that the algorithm allows these robots to cope
with a large variety of damage situations. Among these situations, the hexapod
robot suffers from a damaged, broken, or missing legs, and the robotic arm has
joints broken in 14 different ways. The second objective of these experiments is
to illustrate that our algorithm can be applied to many different types of robot,
provided that they can execute the same task in different ways.

The three other experiments are performed in simulation and aim to gather
extensive data to analyse the different properties of the Intelligent Trial and Error
algorithm. We first investigate how the performance of the algorithm is altered when
we deactivate one of its subcomponents or replaced it with an alternative algorithm
from the literature. The goal of this experiment is to highlight the components
of the algorithm that contribute the most to its performance. In particular, this
experiment shows how our algorithm competes against state-of-the-art algorithms.
In a second experiment, we consider another major challenge in robotics: adapting
to new environments. In particular, we demonstrate how the Intelligent Trial and
Error algorithm can help our robot to learn to walk on a slopped terrain. In our
last experiment, we show that the choice of the behavioral descriptor, which may
seem to be a critical parameter of the algorithm, does not affect the performance
of the algorithm. Concretely, we test our algorithm with 12 different behavioral
characterizations, including randomly choosing the 6 dimensions of the description
among 63 possibilities and show that the performance of the algorithm remains
unchanged.

116 Damage Recovery

Algorithm 4 The Intelligent Trial and Error Algorithm. Notations are described
in the appendix D.2.1

procedure Intelligent Trial and Error Algorithm
Before the mission:

Create behavior-performance map
◃ (via the MAP-Elites algorithm in simulation)

while In mission do
if Significant performance fall then

Adaptation Step (via M-BOA algorithm)

procedure MAP-Elites Algorithm
(P ← ∅, C ← ∅) ◃ Creation of an empty behavior-performance map

(empty N-dimensional grid).
for iter = 1→ I do ◃ Repeat during I iterations

(here we choose I = 40 million iterations).
if iter < 400 then

c
′ ← random_controller() ◃ The first 400 controllers are generated randomly.

else ◃ The next controllers are generated using the map.
c← random_selection(C) ◃ Randomly select a controller c in the map.
c

′ ← random_variation(c) ◃ Create a randomly modified copy of c.

x
′ ←behavioral_descriptor(simu(c′)) ◃ Simulate the controller and

record its behavioral descriptor.
p′ ←performance(simu(c′)) ◃ Record its performance.
if P(x′) = ∅ or P(x′) < p′

then ◃ If the cell is empty or if p′ is better than
the current stored performance.

P(x′)← p′ ◃ Store the performance of c
′ in the behavior-performance map

according to its behavioral descriptor x
′.

C (x′)← c
′ ◃ Associate the controller with its behavioral descriptor.

return behavior-performance map (P and C)

procedure M-BOA (Map-based Bayesian Optimization Algorithm)
∀x ∈ map: ◃ Initialisation.

P (f(x)|x) = N (µ0(x), σ2
0(x)) ◃ Definition of the Gaussian Process.

where
µ0(x) = P(x) ◃ Initialize the mean prior from the map.
σ2

0(x) = k(x, x) + σ2
noise ◃ Initialize the variance prior (in the common case,

k(x, x) = 1).
while max(P1:t) < α max(µt(x)) do ◃ Iteration loop.

χt+1 ← arg maxx(µt(x) + κσt(x)) ◃ Select next test (argmax of acquisition function).
Pt+1 ← performance(physical_robot(C (χt+1))). ◃ Evaluation of xt+1

on the physical robot.
P (f(x)|P1:t+1, x) = N (µt+1(x), σ2

t+1(x)) ◃ Update the Gaussian Process.
where
µt+1(x) = P(x) + k

ᵀ
K

−1(P1:t+1 −P(χ1:t+1)) ◃ Update the mean.
σ2

t+1(x) = k(x, x) + σ2
noise − k

ᵀ
K

−1
k ◃ Update the variance.

K =

⎡

⎢

⎣

k(χ1, χ1) · · · k(χ1, χt+1)
...

. . .
...

k(χt+1, χ1) · · · k(χt+1, χt+1)

⎤

⎥

⎦

+ σ2
noiseI ◃ Compute

the observations’ correlation matrix.
k =

[

k(x, χ1) k(x, χ2) · · · k(x, χt+1)
]

◃ Compute the x vs. observation
correlation vector.

4.3. The Intelligent Trial and Error algorithm 117

4.3.3.1 Experiments on the physical hexapod robot

Methods In this first experiment, we evaluate the Intelligent Trial and Error
algorithm on our hexapod robot that needs to walk as fast as possible (see appendix
A.1). The robot’s performance is recorded thanks to a visual odometry algorithm,
which records the position of the robot in real time and average its velocity after 5
seconds of execution (see appendix D.2.2). The behavior-performance maps used in
this experiment are the ones generated in the previous chapter (see section 3.3.2.2),
which contain approximately 13,000 different gaits that are governed by a controller
with 36 real-values (see appendix A.2.2). The behavior-performance maps have 6
dimensions, where each dimension is the proportion of time the ith leg spends in
contact with the ground (i.e. the duty factor) (Siciliano and Khatib, 2008) (see
section 3.3.2.2).

We test the adaptation abilities of our robot in six different conditions: un-
damaged (Fig. 4.9a:C1), four different structural failures (Fig. 4.9a:C2-C5), and
a temporary leg repair (Fig. 4.9a:C6). Like in the previous experiments with the
T-Resilience algorithm, we compare the walking speed of resultant gaits with a
widely-used, classic, hand-designed tripod gait (Siciliano and Khatib, 2008) (see
appendix A.2.2). For each of the 6 damage conditions, we ran our adaptation step
5 times for each of 8 independently generated behavior-performance maps (with
the default “duty factor” behavioral description), leading to 6 × 5 × 8 = 240 ex-
periments in total. We also ran our adaptation step 5 times on 8 independently
generated behavior-performance maps defined by an alternate behavioral descrip-
tion which consider the orientation of the body (see appendix D.2.2) on two damage
conditions (Fig. 4.9b-c), leading to 2× 5× 8 = 80 additional experiments. The im-
plementation details of the behavioral descriptors, the performance function and
the stopping criterion can be found in appendix D.2.2. A video of the typical
results obtained with the Intelligent Trial and Error algorithm is available here:
https://youtu.be/T-c17RKh3uE

Results When the robot is undamaged (Fig. 4.9a:C1), our approach yields dy-
namic gaits that are 30% faster than the classic reference gait (Fig. 4.9b, median
0.32 m/s, 5th and 95th percentiles [0.26; 0.36] vs. 0.24m/s), suggesting that In-
telligent Trial and Error is a good search algorithm for automatically producing
successful robot behaviors, putting aside damage recovery. In all the damage sce-
narios, the reference gait is no longer effective ((0.04 m/s for the four damage
conditions, Fig. 4.9b:C2-C5). After Intelligent Trial and Error, the compensatory
gaits achieve a reasonably fast speed (> 0.15m/s) and are between 3 and 7 times
more efficient than the reference gait for that damage condition (in m/s, C2: 0.24
[0.18; 0.31] vs. 0.04; C3: 0.22 [0.18; 0.26] vs. 0.03; C4: 0.21 [0.17; 0.26] vs. 0.04;
C5: 0.17 [0.12; 0.24] vs. 0.05; C6: 0.3 [0.21; 0.33] vs. 0.12).

These experiments demonstrate that Intelligent Trial and Error allows the robot
to both initially learn fast gaits and to reliably recover after physical damage. On
the undamaged or repaired robot (Fig. 4.9: C6), Intelligent Trial and Error learns

https://youtu.be/T-c17RKh3uE

118 Damage Recovery

a walking gait in less than 30 seconds (Fig. 4.9c, undamaged: 24 [16; 41] seconds,
3 [2; 5] physical trials, repaired: 29 [16; 82] seconds, 3.5 [2; 10] trials). For the
five damage scenarios, the robot adapts in approximately one minute (66 [24; 134]
seconds, 8 [3; 16] trials). It is possible that for certain types of damage the prior
information from the undamaged robot does not help, and could even hurt, in
learning a compensatory behavior (e.g. if the map does not contain a compensatory
behavior). We did not find such a case in our experiments with the hexapod robot,
but we did find a case with our robotic arm in which the prior information provided
little benefit (see next experiment).

We investigated how the behavior-performance map is updated when the robot
loses a leg (Fig. 4.10 and 4.11)). Initially the map predicts large areas of high
performance. During adaptation, these areas disappear because the behaviors do
not work well on the damaged robot. Intelligent Trial and Error quickly identifies
one of the few, remaining, high-performing behaviors (Fig. 4.10 and 4.11).

Figure 4.9: (A) Conditions tested on the physical hexapod robot. C1: The
undamaged robot. C2: One leg is shortened by half. C3: One leg is unpowered. C4:
One leg is missing. C5: Two legs are missing. C6: A temporary, makeshift repair
to the tip of one leg. (B) Performance after adaptation. Box plots represent
Intelligent Trial and Error. The central mark is the median, the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually. Yellow stars
represent the performance of the handmade reference tripod gait (see appendix
A.2.2). Conditions C1-C6 are tested 5 times each for 8 independently created
behavior-performance maps with the “duty factor” behavior description (i.e. 40
experiments per damage condition). Damage conditions C1 and C3 are also tested
5 times each for 8 independently created behavior-performance maps with the “body
orientation” behavior description. (C) Time and number of trials required
to adapt. Box plots represent Intelligent Trial and Error. (D) Robotic arm
experiment. The 8-joint, planar robot has to drop a ball into a bin. (E) Example
conditions tested on the physical robotic arm. C1: One joint is stuck at 45
degrees. C2: One joint has a permanent 45-degree offset. C3: One broken and
one offset joint. A total of 14 conditions were tested (Fig. 4.12). (F) Time and
number of trials required to reach within 5 cm of the bin center. Each
condition is tested with 15 independently created behavior-performance maps.

⇒

4.3. The Intelligent Trial and Error algorithm 119

C1 C2

C3 C4

C6C5

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Walking Speed (m/s)

Adaptation Time and Number of Trials
C6 C1 C3C5C4C3C2C1

C3

a b

c

Tr
ia

ls

Joint stuck
at 45°

Joint with a
permanent
45° offset

Adaptation Time
and Number of Trials

Tr
ia

ls

C1 C2

C2 C3

d

30

25

20

15

10

5

0

C1

e f

2 min.

3 min.

1 min.

1 min.

30 sec.

Default
Behavioral Descriptor

Alternate
Descriptor

21

18

15

12

9

6

3

C3

C1C6C5C4C3C2C1

Figure 4.9

120 Damage Recovery

Initial Map

Post-Adaptation Map

Pr
op

or
tio

n
of

 th
e

m
ax

im
um

ex
pe

ct
ed

 p
er

fo
rm

an
ce

<20%

40%

60%

80%

100%

Dim 1

D
im

 2

D
im

 6
Dim 5

D
im

 4

Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

Next tested behavior
Currently tested behavior
Tested behavior

Figure 4.10: How the behavior performance map is explored to discover a
compensatory behavior (normalized each iteration to highlight the range

of remaining performance predictions). Colors represent the performance
prediction for each point in the map relative to the highest performing prediction
in the map at that step of the process. A black circle indicates the next behavior
to be tested on the physical robot. A red circle indicates the behavior that was just
tested (note that the performance predictions surrounding it have changed versus
the previous panel). Arrows reveal the order that points have been explored. The
red circle in the last map is the final, selected, compensatory behavior. In this
scenario, the robot loses leg number 3. The six dimensional space is visualized
according to the inset legend.

4.3. The Intelligent Trial and Error algorithm 121

Dim 1

D
im

 2

D
im

 6

Dim 5

D
im

 4
Dim 3

Dim 2Dim 1

Dim 4

Dim 6
Dim 5

Dim 3

Initial Map

Post-Adaptation Map

Next tested behavior
Currently tested behavior
Tested behavior

Pr
op

or
tio

n
of

 th
e

m
ax

im
um

ex
pe

ct
ed

 p
er

fo
rm

an
ce

<20%

40%

60%

80%

100%

Figure 4.11: How the behavior performance map is explored to discover a
compensatory behavior (non-normalized to highlight that performance
predictions decrease as it is discovered that predictions from the simu-
lated, undamaged robot do not work well on the damaged robot). Colors
represent the performance prediction for each point in the map relative to the high-
est performing prediction in the first map. A black circle indicates the next behavior
to be tested on the physical robot. A red circle indicates the behavior that was just
tested (note that the performance predictions surrounding it have changed versus
the previous panel). Arrows reveal the order that points have been explored. The
red circle in the last map in the sequence is the final, selected, compensatory be-
havior. In this scenario, the robot loses leg number 3. The six dimensional space
is visualized according to the inset legend. The data visualized in this figure are
identical to those in the previous figure: the difference is simply whether the data
are renormalized for each new map in the sequence.

122 Damage Recovery

4.3.3.2 Experiments on the physical robotic arm

Methods The same damage recovery approach can be applied to any robot, such
as a robotic arm. We tested 14 different damage conditions with a planar, 8-
joint robotic arm, which has to release a ball into a target bin (Fig. 4.9d-f and
Fig. 4.12). The behavior-performance map’s behavioral dimensions are the x, y
position of the end-effector. To show that the map-generating performance measure
can be different from the ultimate performance measure, and to encourage smooth
arm movements, the performance measure during map-generation is minimizing
the variance of the 8 specified motor angles (see appendix B.1). During adaptation,
performance is measured as distance to the target.
For each of the 14 damage scenarios, we replicated experiments on the physical
robot with 15 independently generated behavior-performance maps (210 runs in to-
tal). We also replicated control experiments, which consist of traditional Bayesian
optimization directly in the original parameter space (i.e. without behavior-
performance maps), 15 times for each of the 14 damage conditions (210 runs in
total). For both the experimental and control treatments, each experiment in-
volved 30 evaluations on the physical robot (31 if the initial trial is counted). In
many cases, not all 30 evaluations were required to reach the target, so we report
only the number of trials required to reach that goal. The implementation details
of the behavioral descriptors, the performance function and the stopping criterion
can be found in appendix D.2.3.

Results After running the MAP-Elites algorithm for 20 million evaluations, each
of the 15 generated maps contain more than 11, 000 behaviors (11,209 [1,1206;
1,1217] behaviors, Fig. 4.12c).
In all the generated maps, the regions of different performance values for behav-
iors are arranged in concentric shapes resembling cardioids (inverted, heart-shaped
curves) that cover the places the robot can reach (Fig. 4.12c). The black line drawn
over the shown map corresponds to all the positions of the end-effector for which all
the degrees of freedom are set to the same angle (from −π/4 to +π/4), that is, for
the theoretically highest achievable performance (i.e. the lowest possible variance
in servo angles). The performance of the behaviors tends to decrease the further
they are from this optimal line. This result illustrates how MAP-Elites is able to
find both a large variety of solutions but also the optimal ones.
Like with the hexapod robot, our approach discovers a compensatory behavior in
less than 2 minutes, usually in less than 30 seconds, and with fewer than 10 trials
(Fig. 4.9f and Fig. 4.12). The adaptation results (Fig. 4.12e) show that the
Intelligent Trial and Error algorithm manages to reach the goal of being less than
5 cm from the center of the bin for all the runs in all the tested scenarios except
two (scenarios 11 & 12). For these two scenarios, the algorithm still reaches the
target 60% and 80% of the time, respectively. For all the damage conditions, the
Intelligent Trial and Error algorithm reaches the target significantly more often than
the Bayesian optimization algorithm (p < 10−24). Specifically, the median number

4.3. The Intelligent Trial and Error algorithm 123

of iterations to reach the target (Fig. 4.12f) is below 11 iterations (27.5 seconds)
for all scenarios except 11 and 12, for which 31 and 20 iterations are required,
respectively. When the robot is not able to reach the target, the recorded number
of iterations is set to 31, which explains why the median number of iterations for
the Bayesian optimization algorithm is equal to 31 for most damage conditions.
For all the damage conditions except one (scenario 11), the Intelligent Trial and
Error algorithm used fewer trials to reach the target than the traditional Bayesian
optimization algorithm.
If the robot is allowed to continue its experiment after reaching the 5 cm radius
tolerance, for a total of 31 iterations (Fig. 4.12g), it reaches an accuracy around
1 cm for all the damage conditions except the two difficult ones (scenarios 11 and
12). This level of accuracy is never achieved with the classic Bayesian optimization
algorithm, whose lowest median accuracy is 2.6cm.
Scenarios 11 and 12 appear to challenge the Intelligent Trial and Error algorithm.
While in both cases the success rate is improved, though not substantially, in case
11 the median accuracy is actually lower. These results stem from the fact that
the difference between the successful pre-damage and post-damage behaviors is so
large that the post-damage solutions for both scenarios lie outside of the map.
This illustrates a limit of the proposed approach: if the map does not contain a
behavior able to cope with the damage, the robot will not be able to adapt. This
limit mainly comes from the behavioral descriptor choice: we chose it because of
its simplicity, but it does not capture all of the important dimensions of variation
of the robot. More sophisticated descriptors are likely to allow the algorithm to
cope with such situations. On the other hand, this experiment shows that with a
very simple behavioral descriptor, using only the final position of the end-effector,
our approach is able to deal with a large variety of different target positions and is
significantly faster than the traditional Bayesian optimization approach (Fig. 4.12d,
maximum p-value over each time step < 10−16), which is the current state of the
art technique for direct policy search in robotics (Lizotte et al., 2007; Tesch et al.,
2011; Calandra et al., 2014; Kober et al., 2013).

124 Damage Recovery

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

-0.35

-0.4

-0.45

-0.5

30

25

20

15

10

5

0

Intelligent Trial and Error
Traditional Bayesian Optimization

VideoCamera

Robot

Bin

8Joints

Joint with a
permanent 45° offset

76540 1 2 3

8 9 10 11 12 13

Joint stuck
at 45°

b
a

5 6 72 8 90 1 3 4 12 1310 11

5 10 15 20 25 30

c

e

d

f g

10
-1

10
-2

10
-3

Pe
rfo

rm
an

ce
 (r

ad
2)

Learning progress for all 14 damage conditions

Number of trials on the physical robot

Accuracy after 30 physical trials

Damage conditionDamage condition

Number of iterations to reach stopping criteria

Success rate (5 cm accuracy)

Su
cc

es
s

pe
rc

en
ta

ge
N

um
be

r o
f i

te
ra

tio
ns

Ac
cu

ra
cy

 (m
)

0.9
0.8
0.7
0.6

1

0.5
0.4
0.3
0.2
0.1

0

-0.01
-0.02

0

-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.1 5 6 72 8 90 1 3 4 12 1310 11

Ac
cu

ra
cy

 (m
)

Figure 4.12

4.3. The Intelligent Trial and Error algorithm 125

Figure 4.12: Intelligent Trial and Error works on a completely differ-
ent type of robot: detailed data from the robotic arm experiment. (A)
The robotic arm experimental setup. (B) Tested damage conditions.
(C) Example of behavior performance maps (colormaps) and behaviors
(overlaid arm configurations) obtained with MAP-Elites. Left: A typi-
cal behavior-performance map produced by MAP-Elites with 5 example behaviors,
where a behavior is described by the angle of each of the 8 joints. The color of
each point is a function of its performance, which is defined as having low variance
in the joint angles (i.e. a zigzag arm is lower performing than a straighter arm
that reaches the same point). Right: Neighboring points in the map tend to have
similar behaviors, thanks to the performance function, which would penalize more
jagged ways of reaching those points. That neighbors have similar behaviors justi-
fies updating predictions about the performance of nearby behaviors after a testing
a single behavior on the real (damaged) robot. (D) Performance vs. trial num-
ber for Intelligent Trial and Error and traditional Bayesian optimization.
The experiment was conducted on the physical robot, with 15 independent replica-
tions for each of the 14 damage conditions. Performance is pooled from all of these
14 × 15 = 210 experiments. (E) Success for each damage condition. Shown
is the success rate for the 15 replications for each damage condition, defined as the
percentage of replicates in which the robot reaches within 5 cm of the bin center.
(F) Trials required to adapt. Shown is the number of iterations required to
reach within 5 cm of the basket center. (G) Accuracy after 30 physical trials.
Performance after 30 physical trials for each damage condition (with the stopping
criterion disabled).

⇐

4.3.3.3 The contribution of each subcomponent of the Intelligent Trial
and Error Algorithm

Methods The Intelligent Trial and Error Algorithm relies on three main concepts:
(1) the creation of a behavior-performance map in simulation via the MAP-Elites
algorithm, (2) searching this map with a Bayesian optimization algorithm to find
behaviors that perform well on the physical robot, and (3) initializing this Bayesian
optimization search with the performance predictions obtained via the MAP-Elites
algorithm: note that the second step could be performed without the third step
by searching through the MAP-Elites-generated behavior-performance map with
Bayesian optimization, but having the initial priors uniformly set to the same value.
We investigated the contribution of each of these subcomponents by testing five
variants of our algorithm : in each of them, we deactivated one of these three
subcomponents or replaced it with an alternative algorithm from the literature.
We then tested these variants on the hexapod robot. The variants are as follows:

• Variant 1 (MAP-Elites in 6 dimensions + random search): evaluates the ben-
efit of searching the map via Bayesian optimization by searching that map
with random search instead. Each iteration, a behavior is randomly selected

126 Damage Recovery

from the map and tested on the robot. The best one is kept.

• Variant 2 (MAP-Elites in 6 dimensions + Bayesian optimization, no use of
priors): evaluates the contribution of initializing the Gaussian process with the
performance predictions of the behavior-performance map. In this variant, the
Gaussian process is initialized with a constant mean (the average performance
of the map: 0.24 m/s) at each location in the behavior space and a constant
variance (the average variance of the map’s performance: 0.005 m2/s2). As is
customary, the first few trials (here, 5) of the Bayesian optimization process
are selected randomly instead of letting the algorithm choose those points,
which is known to improve performance (Calandra et al., 2014).

• Variant 3 (MAP-Elites in 6 dimensions + policy gradient): evaluates the
benefit of Bayesian optimization compared to a more classic, local search
algorithm (Kober et al., 2013; Kohl and Stone, 2004); there is no obvious way
to use priors in policy gradient algorithms.

• Variant 4 (Bayesian optimization in the original parameter space of 36 di-
mensions): evaluates the contribution of using a map in a lower-dimensional
behavioral space. This variant searches directly in the original 36-dimensional
parameter space instead of reducing that space to the lower-dimensional (six-
dimensional) behavior space. Thus, in this variant no map of behaviors is
produced ahead of time: the algorithm searches directly in the original, high-
dimensional space. This variant corresponds to one of the best algorithms
known to learn locomotion patterns (Lizotte et al., 2007; Calandra et al.,
2014). In this variant, the Gaussian process is initialized with a constant
mean set to zero and with a constant variance (0.002m2/s2). As described
above, the five first trials are selected from pure random search to prime the
Bayesian optimization algorithm (Calandra et al., 2014).

• Variant 5 (Policy gradient in the original parameter space of 36 dimensions):
a stochastic gradient descent in the original parameter space (Kohl and Stone,
2004). This approach is a classic reinforcement learning algorithm for loco-
motion (Kober et al., 2013) and it is a baseline in many papers (e.g. (Lizotte
et al., 2007)).

It was necessary to compare these variants in simulation because doing so on the
physical robot would have required months of experiments and would have repeat-
edly worn out or broken the robot. We modified the simulator from the previous
experiments (section A.1: Simulator) to emulate 6 different possible damage con-
ditions, each of which involved removing a different leg. For variants in which
MAP-Elites creates a map (variants 1, 2 and 3), we used the same maps from the
previous experiments (the eight independently generated maps, which were all gen-
erated with a simulation of the undamaged robot): In these cases, we launched ten
replicates of each variant for each of the eight maps and each of the six damage
conditions. There are therefore 10×8×6 = 480 replicates for each of those variants.

4.3. The Intelligent Trial and Error algorithm 127

For the other variants (4 and 5), we replicated each experiment 80 times for each
of the six damage conditions, which also led to 80× 6 = 480 replicates per variant.
In all these simulated experiments, to roughly simulate the distribution of noisy
odometry measurements on the real robot, the simulated performance values were
randomly perturbed with a multiplicative Gaussian noise centered on 0.95 with a
standard deviation of 0.1.
We analyze the fastest walking speed achieved with each variant after two different
numbers of trials: the first case is after 17 trials, which was the maximum number
of iterations used by the Intelligent Trial and Error Algorithm (Fig. 4.9, maximum
17 trials, median 6 trials), and the second case is after 150 trials, which is approxi-
mately the number of trials used in previous work (Kohl and Stone, 2004; Lizotte
et al., 2007; Calandra et al., 2014).

Results After 17 trials on the robot, Intelligent Trial and Error significantly out-
performs all the variants (Fig. 4.13b, p < 10−67, median Intelligent Trial and Error
performance: 0.26 [0.20; 0.33] m/s), demonstrating that the three main components
of the algorithm are needed to quickly find high-performing behaviors. Among the
investigated variants, the random search in the map performs the best (Variant 1:
0.21 [0.16; 0.27] m/s), followed by Bayesian optimization in the map without prior
(Variant 2: 0.20 [0.13; 0.25] m/s), and policy gradient in the map (Variant 3: 0.13
[0; 0.23] m/s). Variants that search directly in the parameter space did not find any
working behavior (Variant 4, Bayesian optimization: 0.04 [0.01; 0.09] m/s; Variant
5, policy gradient: 0.02 [0; 0.06] m/s).
There are two reasons that random search performs better than one might expect.
First, the map only contains high-performing solutions, which are the result of the
intense search of the MAP-Elites algorithm (40 million evaluations in simulation).
The map thus already contains high-performing gaits of nearly every possible type.
Therefore, this variant is not testing random controllers, but is randomly selecting
high-performing solutions. Second, Bayesian optimization and policy gradient are
not designed for such a low number of trials: without the priors on performance
predictions introduced in the Intelligent Trial and Error Algorithm, the Bayesian
optimization process needs to learn the overall shape of the search space to model
it with a Gaussian process. 17 trials is too low a number to effectively sample six
dimensions (for a uniform sampling with only two possible values in each dimension,
26 = 64 trials are needed; for five possible values, 56 = 15, 625 samples are needed).
As a consequence, with this low number of trials, the Gaussian process that models
the performance function is not informed enough to effectively guide the search.
For the policy gradient algorithm, a gradient is estimated by empirically measuring
the partial derivative of the performance function in each dimension. To do so,
following (Kohl and Stone, 2004), the policy gradient algorithm performs 15 trials
at each iteration. Consequently, when only 17 trials are allowed, it iterates only
once. In addition, policy gradient is a local optimization algorithm that highly
depends on the starting point (which is here chosen randomly), as illustrated by

128 Damage Recovery

Pe
rfo

rm
an

ce
 (m

 /
s)

Pe
rfo

rm
an

ce
 (m

 /
s)

Pe
rfo

rm
an

ce
 (m

 /
s)

Intelligent

Trial and Error

Variant 1

Variant 3

Variant 2

Variant 5

Variant 4

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

0.3

Variants using
MAP-Elites

Variants not using
MAP-Elites

31 2 4 5

Int
ell

ige
nt

Tri
al

an
d E

rro
r

Int
ell

ige
nt

Tri
al

an
d E

rro
r

Variants

5421 3

Variants

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p < 10-67
b After 17 trials

p < 10-94
c After 150 trials

a

Variant Behavior-performance map Priors on Search equivalent
creation performance algorithm approach

Intelligent Trial and Error MAP-Elites yes -Bayesian Optimization
Variant 1 MAP-Elites none -Random Search
Variant 2 MAP-Elites none -Bayesian Optimization
Variant 3 MAP-Elites none -Policy Gradient
Variant 4 none none Lizotte et al. (2007)Bayesian Optimization
Variant 5 none none Kohl et al. (2004)Policy Gradient

Figure 4.13: The contribution of each subcomponent of the Intelligent
Trial and Error Algorithm. (A) Adaptation progress versus the num-
ber of robot trials. The walking speed achieved with Intelligent Trial and Error
and several “knockout” variants that are missing one of the algorithm’s key compo-
nents. Some variants (4 and 5) correspond to state-of-the-art learning algorithms
(policy gradient: Kohl and Stone (2004); Bayesian optimization: Lizotte (2008);
Tesch et al. (2011); Calandra et al. (2014)). The bold lines represent the medians
and the colored areas extend to the 25th and 75th percentiles. (B, C) Adaptation
performance after 17 and 150 trials. Shown is the the speed of the compen-
satory behavior discovered by each algorithm after 17 and 150 evaluations on the
robot, respectively. For all panels, data are pooled across six damage conditions
(the removal of each of the 6 legs in turn).

4.3. The Intelligent Trial and Error algorithm 129

the high variability in the performance achieved with this variant (Fig. 4.13b).
The issues faced by Bayesian optimization and policy gradient are exacerbated
when the algorithms search directly in the original, 36-dimensional parameter space
instead of the lower-dimensional (six-dimensional) behavior space of the map. As
mentioned previously, no working controller was found in the two variants directly
searching in this high-dimensional space.
Overall, the analysis after 17 trials shows that:

• The most critical component of the Intelligent Trial and Error Algorithm is the
MAP-Elites algorithm, which reduces the search space and produces a map
of high-performing behaviors in that space: p < 5 × 10−50 when comparing
variants searching in the behavior-performance map space vs. variants that
search in the original, higher-dimensional space of motor parameters.

• Bayesian optimization critically improves the search, but only when it is ini-
tialized with the performance obtained in simulation during the behavior-
performance map creation step (with initialization: 0.26 [0.20; 0.33] m/s,
without initialization: 0.20 [0.13; 0.25] m/s, p = 10−96).

To check whether these variants might perform better if allowed the number of
evaluations typically given to previous state-of-the-art algorithms (Kohl and Stone,
2004; Lizotte et al., 2007; Calandra et al., 2014), we continued the experiments until
150 trials on the robot were conducted (Fig. 4.13c). Although the results for all the
variants improved, Intelligent Trial and Error still outperforms all them (p < 10−94;
Intelligent Trial and Error: 0.31 [0.26; 0.37] m/s, random search: 0.26 [0.22; 0.30]
m/s, Bayesian optimization: 0.25 [0.18; 0.31] m/s, policy search: 0.23 [0.19, 0.29]
m/s). These results are consistent with the previously published results (Kohl and
Stone, 2004; Lizotte et al., 2007; Calandra et al., 2014; Kober et al., 2013), which
optimize in 4 to 10 dimensions in a few hundred trials. Nevertheless, when MAP-
Elites is not used, i.e. when we run these algorithms in the original 36 dimensions
for 150 evaluations, Bayesian optimization and policy gradient both perform much
worse (Bayesian optimization: 0.08 [0.05; 0.12]; policy gradient: 0.06 [0.01; 0.12]
m/s). These results shows that MAP-Elites is a powerful method to reduce the
dimensionality of a search space for learning algorithms, in addition to providing
helpful priors about the search space that speed up Bayesian optimization.
Overall, these experiments demonstrate that each of the three main components
of the Intelligent Trial and Error Algorithm substantially improves performance.
The results also indicate that Intelligent Trial and Error significantly outperforms
previous algorithms for both damage recovery (Erden and Leblebicioğlu, 2008; Bon-
gard et al., 2006; Christensen et al., 2013; Mahdavi and Bentley, 2006; Koos et al.,
2013a) and gait learning (Hornby et al., 2005; Kohl and Stone, 2004; Barfoot et al.,
2006; Sproewitz et al., 2008; Koos et al., 2013c; Lizotte et al., 2007; Tesch et al.,
2011; Calandra et al., 2014; Kober et al., 2013; Yosinski et al., 2011).

130 Damage Recovery

0.5

0.4

0.3

0.2

0.1

0

25

20

15

10

5

0
-20 -10 0 10 20

Slope Angle (degree)

Undamaged robot

Ad
ap

ta
tio

n
Ti

m
e

(it
er

at
io

ns
)

Pe
rfo

rm
an

ce
 (m

 /
s)

0.5

0.4

0.3

0.2

0.1

0

25

20

15

10

5

0
-20 -10 0 10 20

Slope Angle (degree)

Damaged robota b

Ad
ap

ta
tio

n
Ti

m
e

(it
er

at
io

ns
)

Pe
rfo

rm
an

ce
 (m

 /
s)

Figure 4.14: The Intelligent Trial and Error Algorithm is robust to envi-
ronmental changes. Each plot shows both the performance and required adap-
tation time for Intelligent Trial and Error when the robot must adapt to walk on
terrains of different slopes. (A) Adaptation performance on an undamaged
robot. On all slope angles, with very few physical trials, the Intelligent Trial and
Error Algorithm (pink shaded region) finds fast gaits that outperform the refer-
ence gait (black dotted line). (B) Adaptation performance on a damaged
robot. The robot is damaged by having each of the six legs removed in six differ-
ent damage scenarios. Data are pooled from all six of these damage conditions. The
median compensatory behavior found via Intelligent Trial and Error outperforms
the median reference controller on all slope angles. The middle, black lines repre-
sent medians, while the colored areas extend to the 25th and 75th percentiles. In
(A), the black dashed line is the performance of a classic tripod gait for reference.
In (B), the reference gait is tried in all six damage conditions and its median (black
line) and 25th and 75th percentiles (black colored area) are shown.

4.3.3.4 Robustness to environmental changes

Methods The map creation algorithm (MAP-Elites) uses an undamaged robot
on flat terrain. The previous experiments show that this algorithm provides useful
priors for damage recovery on a flat terrain. In this experiment, we evaluated, in
simulation, if the map created on flat terrain also provides a useful starting point
for discovering gaits for sloped terrains.
We first evaluated the effect slopes have on undamaged robots (Fig. 4.14a). We
launched 10 replicates for each of the eight maps and each one-degree increment
between −20◦ and +20◦, for a total of 10 × 8 × 41 = 3280 experiments. As in the
previous experiment, to roughly simulate the distribution of noisy odometry mea-
surements on the real robot, we perturbed performance values with a multiplicative
Gaussian noise centered on 0.95 with a standard deviation of 0.1.

4.3. The Intelligent Trial and Error algorithm 131

Results The results show that, when the slope is negative (descending), the In-
telligent Trial and Error approach finds fast gaits in fewer than than 3 trials. For
reference, a hand-designed, classic, tripod gait (see appendix A.2.2) falls on slopes
below −15◦ degrees. When the slope is positive (ascent), Intelligent Trial and Er-
ror finds slower behaviors, as is expected, but even above 10◦ the gait learned by
Intelligent Trial and Error outperforms the reference gait on flat ground. Overall,
for every slope angle, the controller found by Intelligent Trial and Error is faster
than the hand-designed reference controller.
We further evaluated damage recovery performance for these same slopes with the
same setup as Experiments S1 (6 damage conditions). We launched 10 replicates
for each damage condition, for 8 independently generated behavior-performance
maps, and each two-degree increment between −20◦ and +20◦ degrees. There are
therefore 480 replicates for each degree between −20◦ and +20◦, for a total of
480× 21 = 10080 experiments.
Intelligent Trial and Error is not critically affected by variations of slope between
−10◦ and +10◦ (Fig. 4.14b): for these slopes, and for all 6 damage conditions,
Intelligent Trial and Error finds fast gaits (above 0.2 m/s) in less than 15 tests on
the robot despite the slope. As expected, it finds faster gaits for negative slopes
(descent) and slower gaits for positive slopes (ascent). For slopes below −10◦ and
above 10◦, the algorithm performs worse and requires more trials. We can sup-
pose that these results likely are caused by the constraints placed on the controller
and the limited sensors on the robot, rather than the inabilities of the algorithm.
Specifically, the controller was kept simple to make the experiments clearer, more
intuitive, and more reproducible. Those constraints, of course, prevent it from per-
forming the more complex behaviors necessary to deal with highly sloped terrain.
For example, the constraints prevent the robot from keeping its legs vertical on
sloped ground, which would substantially reduce slippage. Nevertheless, the me-
dian Intelligent Trial and Error compensatory gait still outperforms the median
performance of the reference gait on all slope angles.

4.3.3.5 Alternate behavioral descriptors

Methods To create a map with MAP-Elites, one has to define the dimensions
of the behavioral space, i.e. the behavioral descriptors. The previous experiments
show that using a predefined behavioral descriptor (the proportion of time that each
leg of a hexapod robot is in contact with the ground, i.e. the duty factor) creates
a map that provides useful priors for damage recovery.
This section describes how we tested (in simulation) how performance is affected by
alternate behavioral descriptors, including descriptors that have a different number
of dimensions. We also evaluated how performance is affected if the behavioral
descriptors are randomly selected from a large list of potential descriptors. This
test simulates the algorithm’s performance if the behavioral descriptors are chosen
without insight into the problem domain.
The behavioral descriptors we tested are as follows:

132 Damage Recovery

1. Duty factor (6-dimensional): This descriptor is the default one from the previ-
ous experiment. It corresponds to the proportion of time each leg is in contact
with the ground:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
C1(t)

numTimesteps
...

∑

t
C6(t)

numTimesteps

⎤

⎥

⎥

⎥

⎦

(4.8)

where Ci(t) denotes the Boolean value of whether leg i is in contact with the
ground at time t (1: contact, 0: no contact).

2. Orientation (6-dimensional): This behavioral descriptor characterizes changes
in the angular position of the robot during walking, measured as the propor-
tion of 15ms intervals that each of the pitch, roll and yaw angles of the robot
frame are positive (three dimensions) and negative (three additional dimen-
sions):

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
K

∑

k U(ΘT (k)− 0.005π)
1
K

∑

k U(−ΘT (k)− 0.005π)
1
K

∑

k U(ΨT (k)− 0.005π)
1
K

∑

k U(−ΨT (k)− 0.005π)
1
K

∑

k U(ΦT (k)− 0.005π)
1
K

∑

k U(−ΦT (k)− 0.005π)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.9)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw angles, respec-
tively, of the robot torso (hence T) at the end of interval k, and K denotes the
number of 15ms intervals during the 5 seconds of simulated movement (here,
K = 5s/0.015s ≈ 334). The unit step function U(·) returns 1 if its argu-
ment exceeds 0, and returns 0 otherwise. To discount for insignificant motion
around 0 rad, orientation angles are only defined as positive if they exceed
0.5% of π rad. Similarly, orientation angles are only defined as negative if
they are less than −0.5% of π rad.

3. Displacement (6-dimensional): This behavioral descriptor characterizes
changes in the position of the robot during walking. It is measured as the pro-
portion of 15ms intervals that the robot is positively or negatively displaced
along each of the x, y, and z axes:

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
K

∑

k U(∆x(k)− 0.001)
1
K

∑

k U(−∆x(k)− 0.001)
1
K

∑

k U(∆y(k)− 0.001)
1
K

∑

k U(−∆y(k)− 0.001)
1
K

∑

k U(∆z(k)− 0.001)
1
K

∑

k U(−∆z(k)− 0.001)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.10)

4.3. The Intelligent Trial and Error algorithm 133

where [∆x(k), ∆y(k), ∆z(k)] denote the linear displacement in meters of the
robot during interval k, and K denotes the number of 15ms intervals during 5
seconds of simulated movement (here, K = 5s/0.015s ≈ 334). The unit step
function U(·) returns a value of 1 if its argument exceeds 0, and returns a
value of 0 otherwise. To ignore insignificant motion, linear displacements are
defined to be positive if they exceed 1mm, and are defined to be negative if
they are less than −1mm.

4. Total energy expended per leg (6-dimensional): This behavioral descriptor
captures the total amount of energy expended to move each leg during 5
seconds of movement:

x =

⎡

⎢

⎢

⎣

E1
ME
...

E6
ME

⎤

⎥

⎥

⎦

(4.11)

where Ei denotes the energy utilized by leg i of the robot during 5 seconds
of simulated movement, measured in N.m.rad. ME is the maximum amount
of energy available according to the servo model of the simulator, which for 5
seconds is 100 N.m.rad.

5. Relative energy expended per leg (6-dimensional): This behavioral descriptor
captures the amount of energy expended to move each leg relative to the
energy expended by all the legs during 5 seconds of simulated movement:

x =

⎡

⎢

⎢

⎢

⎣

E1
∑

i=1..6
Ei

...
E6

∑

i=1..6
Ei

⎤

⎥

⎥

⎥

⎦

(4.12)

where Ei denotes the energy utilized by leg i of the robot during 5 seconds of
simulated movement, measured in N.m.rad.

6. Deviation (3-dimensional): This descriptor captures the range of deviation of
the center of the robot frame versus the expected location of the robot if it
traveled in a straight line at a constant speed.

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.95
(

max
t

(x(t))−min
t

(x(t))
)

0.2

0.95
(

max
t

(y(t)−
yfinal

5 ×t)−min
t

(y(t)−
yfinal

5 ×t)
)

0.2

0.95
(

max
t

(z(t))−min
t

(z(t))
)

0.2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.13)

where [x(t), y(t), z(t)] denote the position of robot’s center at time t, and
[xfinal, yfinal, zfinal] denote its final position after 5 seconds.

134 Damage Recovery

The robot’s task is to move along the y-axis. Its starting position is (0,0,0).
The deviation along the x and z axes is computed as the maximum difference
in the robot’s position in those dimensions at any point during 5 seconds. For
the y axis, yfinal

5 corresponds to the average speed of the robot (the distance
covered divided by total time), therefore yfinal

5 × t is the expected position at
timestep t if the robot was moving at constant speed. The deviation from the
y axis is computed with respect to this “theoretical” position.

To obtain values in the range [0,1], the final behavioral descriptors are mul-
tiplied by 0.95 and then divided by 20 cm (these values were determined
empirically).

7. Total ground reaction force per leg (6-dimensional): This behavioral descrip-
tor corresponds to the amount of force each leg applies to the ground, mea-
sured as a fraction the total possible amount of force that a leg could apply
to the ground. Specifically, the measurement is

x =

⎡

⎢

⎢

⎣

F1
MF
...

F6
MF

⎤

⎥

⎥

⎦

(4.14)

where Fi denotes the ground reaction force (GRF) each leg i generates, aver-
aged over 5 seconds of simulated movement. MF is the maximum such force
that each leg can apply, which is 10N.

8. Relative ground reaction force per leg (6-dimensional): This behavioral de-
scriptor corresponds to the amount of force each leg applies to the ground,
relative to that of all the legs:

x =

⎡

⎢

⎢

⎢

⎣

F1
∑

i=1..6
Fi

...
F6

∑

i=1..6
Fi

⎤

⎥

⎥

⎥

⎦

(4.15)

where Fi denotes the ground reaction force (GRF) each leg i generates, aver-
aged over 5 seconds of simulated movement.

9. Lower-leg pitch angle (6-dimensional): This descriptor captures the pitch an-
gle for the lower-leg with respect to the ground (in a global coordinate frame),
averaged over 5 seconds:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
ΘL

1 (t)
π×N1

...
∑

t
ΘL

6 (t)
π×N6

⎤

⎥

⎥

⎥

⎦

(4.16)

4.3. The Intelligent Trial and Error algorithm 135

where ΘL
i (t) is the pitch angle of lower-leg i (hence the L in ΘL

i) when it is
in contact with the ground at time t, and Ni is the number of time-steps for
which lower-leg i touches the ground. The foot pitch angles are in range [0, π]
(as the leg can not penetrate the ground) and normalized to [0, 1].

10. Lower-leg roll angle (6-dimensional): This descriptor captures the roll angle
for the lower-leg with respect to the ground (in a global coordinate frame),
averaged over 5 seconds:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
ΨL

1 (t)
π×N1

...
∑

t
ΨL

6 (t)
π×N6

⎤

⎥

⎥

⎥

⎦

(4.17)

where ΨL
i (t) is the roll angle of lower-leg i (hence L in ΨL

i) when it is in
contact with the ground at time t, and Ni is the number of time-steps for
which lower-leg i touches the ground. The foot roll angles are in range [0, π]
(as the leg can not penetrate the ground) and normalized to [0, 1].

11. Lower-leg yaw angle (6-dimensional): This descriptor captures the yaw angle
for the lower-leg with respect to the ground (in a global coordinate frame),
averaged over 5 seconds:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
ΦL

1 (t)+π
2π×N1

...
∑

t
ΦL

6 (t)+π
2π×N6

⎤

⎥

⎥

⎥

⎦

(4.18)

where ΦL
i (t) is the yaw angle of lower-leg i (hence L in ΦL

i) when it is in contact
with the ground at time t,and Ni is the number of time-steps for which lower-
leg i touches the ground. The foot yaw angles are in range [−π, π] and are
normalized to [0, 1].

12. Random (6-dimensional): The random behavioral descriptor differs from the
other intentionally chosen descriptors in that it does not consist of one type of
knowledge, but is instead randomly selected as a subset of variables from the
previously described 11 behavioral descriptors. This descriptor is intended to
simulate a situation in which one has little expectation for which behavioral
descriptor will perform well, so one quickly picks a few different descriptor
dimensions without consideration or experimentation. Instead of generating
one such list in this fashion, we randomly sample from a large set to find the
average performance of this approach over many different possible choices.

For the random descriptor, each of the 6-dimensions is selected at random
(without replacement) from the 1×3+10×6 = 63 available behavior descriptor

136 Damage Recovery

dimensions described in the previous 11 descriptors (1 of the above descriptors
is three-dimensional and the other 10 are six-dimensional):

x =

⎡

⎢

⎢

⎣

R1
...

R6

⎤

⎥

⎥

⎦

(4.19)

where Ri denotes the ith dimension of the descriptor, randomly selected uni-
formly and without replacement from the 63 available dimensions in behavior
descriptors 1-11.

It was necessary to compare these behavioral descriptors in simulation because doing
so on the physical robot would have required months of experiments and would have
repeatedly worn out or broken the robot. We modified the simulator from the pre-
vious experiments (section A.1) to emulate 6 different possible damage conditions,
each of which involved removing a different leg. The MAP-Elites algorithm, run
for 3 million iterations, was used to create the behavior-performance maps for each
of the behavioral descriptors (using a simulation of the undamaged robot). During
the generation of the behavior-performance maps, the behaviors were stored in the
map’s cells by discretizing each dimension of the behavioral descriptor space with
these five values: {0, 0.25, 0.5, 0.75, 1} for the 6-dimensional behavioral descriptors,
and with twenty equidistant values between [0, 1] for the 3-dimensional behavioral
descriptor. During the adaptation phase and like in the previous experiments, the
behaviors were used with their actual values and thus not discretized.
We independently generated eight maps for each of the 11 intentionally chosen
behavioral descriptors. Twenty independently generated maps were generated for
the random behavioral descriptor. We launched ten replicates of each descriptor for
each of the maps (eight for intentionally chosen behavioral descriptors and twenty
for random behavioral descriptor) and each of the six damage conditions. There are
therefore 10×8×6 = 480 replicates for each of the intentionally chosen descriptors,
and 10× 20× 6 = 1200 replicates for the random descriptor. In all these simulated
experiments, to roughly simulate the distribution of noisy odometry measurements
on the real robot, the simulated performance values were randomly perturbed with
a multiplicative Gaussian noise centered on 0.95 with a standard deviation of 0.1.
We analyze the fastest walking speed achieved with each behavioral descriptor after
two different numbers of trials: the first case is after 17 trials, and the second case
is after 150 trials.

Results The following results include 17 trials on the simulated robot, which was
the maximum number of trials required for Intelligent Trial and Error to find a
compensatory gait in the previous experiment. The post-adaptation performance
achieved with our alternate, intentionally chosen behavioral descriptors (numbers
2-11) was similar to the original duty factor behavioral descriptor (number 1) (Fig.
4.15a).

4.3. The Intelligent Trial and Error algorithm 137

Pe
rfo

rm
an

ce
 (m

 /
s)

Pe
rfo

rm
an

ce
 (m

 /
s)

Reference
gait

Duty
factor

Reference
gait

Duty
factor

Du
ty

fa
cto

r
Or

ien
ta

tio
n

Di
sp

lac
em

en
t

En
er

gy
 (T

ot
al)

En
er

gy
 (R

ela
tiv

e)

De
via

tio
n

GR
F

(T
ot

al)
GR

F
(R

ela
tiv

e)
Lo

we
r-le

g a
ng

le
(P

itc
h)

Lo
we

r-le
g a

ng
le

(R
oll

)
Lo

we
r-le

g a
ng

le
(Y

aw
)

Ra
nd

om

a After 17 trials

Du
ty

fa
cto

r
Or

ien
ta

tio
n

Di
sp

lac
em

en
t

En
er

gy
 (T

ot
al)

En
er

gy
 (R

ela
tiv

e)

De
via

tio
n

GR
F

(T
ot

al)
GR

F
(R

ela
tiv

e)
Lo

we
r-le

g a
ng

le
(P

itc
h)

Lo
we

r-le
g a

ng
le

(R
oll

)
Lo

we
r-le

g a
ng

le
(Y

aw
)

Ra
nd

om

b After 150 trials

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Figure 4.15

All 11 alternate, intentionally chosen descriptors (numbers 2-11) led to a median
performance within 17% of the duty factor descriptor (median performance: 0.241
[0.19; 0.29] m/s). The difference in performance was effectively nonexistent with
the deviation descriptor (0.241 [0.14; 0.31] m/s), the total GRF descriptor (0.237
[0.15; 0.30] m/s), and the lower-leg roll angle descriptor (0.235 [0.14; 0.31] m/s).
The lowest performance was discovered with the relative GRF descriptor (16.7%
lower than the duty factor descriptor, 0.204 [0.08; 0.31] m/s). In terms of statisti-
cal significance, the performance achieved with the duty factor descriptor was no
different from the deviation (p = 0.53) and total GRF (p = 0.29) descriptors. With
all the remaining descriptors, the difference in performance was statistically signif-
icant (p < 10−3), but it did not exceed 0.04m/s. Additionally, the compensatory
behaviors discovered with all our 11 alternate, intentionally chosen descriptors were
always faster than the reference gait for all damage conditions.

138 Damage Recovery

Figure 4.15: The Intelligent Trial and Error Algorithm is largely robust
to alternate choices of behavior descriptors. (A, B) The speed of the com-
pensatory behavior discovered by Intelligent Trial and Error for various choices of
behavior descriptors. Performance is plotted after 17 and 150 evaluations in panels
A and B, respectively. Experiments were performed on a simulated, damaged hexa-
pod. The damaged robot has each of its six legs removed in six different damage
scenarios. Data are pooled across all six damage conditions. The evaluated behav-
ior descriptors characterize the following: (i) Time each leg is in contact with the
ground (Duty factor); (ii) Orientation of the robot frame (Orientation); (iii) In-
stantaneous velocity of the robot (Displacement); (iv) Energy expended by the
robot in walking (Energy (Total), Energy (Relative)); (v) Deviation from a
straight line (Deviation); (vi) Ground reaction force on each leg (GRF (Total),
GRF (Relative)); (vii) The angle of each leg when it touches the ground (Lower-
leg angle (Pitch), Lower-leg angle (Roll), Lower-leg angle (Yaw)); and
(viii) A random selection without replacement from subcomponents of all the avail-
able behavior descriptors (i-vii) (Random). For the hand-designed reference gait
(yellow) and the compensatory gaits found by the default duty factor behavior de-
scriptor (green), the bold lines represent the medians and the colored areas extend
to the 25th and 75th percentiles of the data. For the other treatments, including the
duty factor treatment, black circles represent the median, the colored area extends
to the 25th and 75th percentiles of the data, and the colored circles are outliers.

To check whether our alternate, intentionally chosen behavioral descriptors lead
to better performance if allowed a higher number of evaluations, we extended the
experiments to 150 trials on the robot (Fig. 4.15b). After 150 trials, the differ-
ence in performance between the duty factor behavioral descriptor (0.277 [0.24;
0.34] m/s) and our alternate behavioral descriptors was further reduced. For all
but three alternate, intentionally chosen descriptors (displacement, total GRF and
lower-leg yaw angle), the median performance was within 4% of the duty factor
descriptor. The difference in performance was at ±3.6% with the orientation (0.274
[0.22; 0.32] m/s), total energy (0.274 [0.19; 0.33] m/s), relative energy (0.273 [0.20;
0.32] m/s), deviation (0.287 [0.21; 0.34] m/s), relative GRF (0.266 [0.15; 0.35] m/s),
lower-leg pitch angle (0.271 [0.21; 0.34] m/s) and lower-leg roll angle (0.268 [0.17;
0.34] m/s) descriptors. In the three remaining behavioral descriptors, displacement,
total GRF, and lower-leg yaw angle, the performance was 0.264 [0.18; 0.32] m/s,
0.299 [0.25; 0.35] m/s and 0.255 [0.18; 0.32] m/s, respectively (difference at ±7.8%
of duty factor descriptor in all three cases). In terms of statistical significance, the
performance achieved with the duty factor descriptor was barely statistically sig-
nificantly different from the deviation descriptor (p = 0.041). In all the remaining
descriptors, the performance difference was statistically significant (p < 10−2), but
no larger than 0.02m/s.

4.3. The Intelligent Trial and Error algorithm 139

Our random behavioral descriptor also performed similarly to the duty factor de-
scriptor. After 17 trials, the performance of M-BOA with the maps generated by
the random descriptor was 0.232 [0.14; 0.30] m/s (4.2% lower than the duty factor
descriptor performance). While the difference is statistically significant (p < 10−3),
the difference in performance itself was negligible at 0.01m/s. This difference in
performance was further reduced to 3.6% after 150 trials (random descriptor per-
formance: 0.274 [0.21; 0.34] m/s, duty factor description performance: 0.277 [0.24;
0.34] m/s, p = 0.002). Moreover, as with the intentionally chosen behavioral de-
scriptors, the compensatory behavior discovered with the random descriptor was
also faster than the reference gait.
These experiments show that the selection of the behavioral dimensions is not crit-
ical to get good results. Indeed, all tested behavioral descriptors, even those ran-
domly generated, perform well (median > 0.20 m/s after 17 trials). On the other
hand, if the robot’s designers have some prior knowledge about which dimensions of
variation are likely to reveal different types of behaviors, the algorithm can benefit
from this knowledge to further improve results (as with the duty factor descriptor).

4.3.4 Partial conclusion

These five experiments demonstrate that Intelligent Trial and Error allows the robot
to both initially learn fast gaits and to reliably recover after physical damage in
less than 2 minutes. The results prove that these capabilities are substantially
faster than state-of-the-art algorithms (Bayesian optimization and Policy Gradient).
Moreover, we saw that Intelligent Trial and Error can help robots to adapt to new
environments (e.g. differently sloped terrain) and that our results are qualitatively
unchanged when using different behavioral characterizations, including randomly
chosen behavioral descriptors. Finally we highlighted through these experiments
that reducing the high-dimensional parameter space to a low-dimensional behavior
space via the behavior-performance map is the key component for Intelligent Trial
and Error (standard Bayesian optimization in the original parameter space does
not find working controllers) and that other six-dimentional descriptors perform
similarly in simulation than those that have been applied on the physical robot.
While natural animals do not use the specific algorithm we present, there are par-
allels between Intelligent Trial and Error and animal learning. Damage recovery in
animals may occur without learning—for instance, due to the built-in robustness
of evolved control loops (Grillner, 2003)—but if such pre-programmed robustness
fails, many animals turn to learning (Wolpert et al., 2001). Like our robot, such
learning likely exploits an animal’s intuitions about how its intact body works to
experiment with different behaviors to find what works best. Also like animals
(Benson-Amram and Holekamp, 2012), Intelligent Trial and Error allows the quick
identification of working behaviors with a few, diverse tests instead of trying be-
haviors at random or trying small modifications to the best behavior found so far.
Additionally, the Bayesian optimization procedure followed by our robot appears
similar to the technique employed by humans when they optimize an unknown func-

140 Damage Recovery

tion (Borji and Itti, 2013), and there is strong evidence that animal brains learn
probability distributions, combine them with prior knowledge, and act as Bayesian
optimizers (Pouget et al., 2013; Körding and Wolpert, 2004).
An additional parallel is that Intelligent Trial and Error primes the robot for cre-
ativity during a motionless period, after which the generated ideas are tested. This
process is reminiscent of the finding that some animals start the day with new ideas
that they may quickly disregard after experimenting with them (Derégnaucourt
et al., 2005), and more generally, that sleep improves creativity on cognitive tasks
(Wagner et al., 2004). A final parallel is that the simulator and Gaussian process
components of Intelligent Trial and Error are two forms of predictive models, which
are known to exist in animals (Ito, 2008; Bongard et al., 2006). All told, we have
shown that combining pieces of nature’s algorithm, even if differently assembled,
moves robots more towards animals by endowing them with the ability to rapidly
adapt to unforeseen circumstances.

4.4 Conclusion

In this chapter, we proposed to consider the question of damage recovery as a trial-
and-error learning problem. Indeed, learning appears to be a promising way for
robots to autonomously cope with damage conditions or environmental changes,
without requiring expensive sensors or engineers attempting to forecast all the sit-
uations robots may encounter and the corresponding contingency plans. However,
the review of the literature about learning algorithms, made in chapter 2 and in
the introduction of this chapter, illustrates that learning algorithms require most of
the time several hundreds of trial to learn a behavior, which make their application
challenging on physical robots. Through the algorithms presented in this chapter,
we show that combining simulation with physical tests is a successful approach to
reduce the number of trials required to learn new behaviors and to cope with the
reality gap problem.
We propose two different algorithms that are both based on the hypothesis that:
simulations of the intact robot provide useful information that allows damaged, phys-
ical robots to quickly adapt. The experimental results of these two algorithms show
that this hypothesis holds for a large set of damage situations and allows the al-
gorithms to require only a few dozen of physical trials. Situations in which this
hypothesis does not hold are likely to exist, but our experiments reveal that they
are rare. In chapter 6, we discuss in more details the situations in which no working
solutions can be found in the behavioral-performance maps.
With our first algorithm, T-Resilience, we proposed to consider damage situations
as a source of reality gap, which can be handled by the transferability approach.
This approach, which guides an evolutionary process toward solutions that work
similarly in simulation and in reality, allowed our robot to cope with a large variety
of damage situations in only 20 minutes and 25 physical trials. However, with
this algorithm, the majority of the learning time is spent to run the evolutionary

4.4. Conclusion 141

algorithm in simulation for a dozen of generations between each trial and it requires
a significant computational power accessible to the robot.
Based on these first results, we designed our second algorithm, the Intelligent Trial
and Error algorithm, which uses pre-computed behavior-performance maps gener-
ated via an evolutionary algorithm to guide a policy search algorithm. Our method
allows robots to adapt to a large variety of situations in less than two minutes and a
dozen of trials. The videos of the experimental results show that the behaviors gen-
erated with this algorithm are more dynamic and insect like than those generated
with the T-Resilience. This observation stems from the ability of the Intelligent
Trial and Error algorithm to produce behaviors that are finely tuned in simulation
without slowing down the adaption process.
Our experiments revealed that the abilities of our robot to cope with a large variety
of situations come form large diversity of high-performing behaviors included in the
behavior-performance maps generated with MAP-Elites. This type of behavioral
repertoires is an effective way to encapsulate the creativity of evolutionary algo-
rithms by creating a smaller search space only filled by high-performing behaviors.
By seeding a Gaussian Process with the information contained in the maps, M-
BOA maximizes the usefulness of this source of knowledge and allows our robot
to adapt in less than 2 minutes. It also worth noting that M-BOA requires little
computational power and can run on an embedded computer or a smartphone, as
its main step consists in inverting a matrix.
In the next chapter, we will show how the Intelligent Trial and Error algorithm
can be extended to deal with three question or problems that commonly affect
robotic experiments: (1) transferring knowledge from one task to the next ones; (2)
dealing with solutions that cannot be evaluated on the physical robot and may hurt
the learning process; and (3) adapting prior knowledge (like behavior-performance
maps), that may be initially misleading in some circumstances, to maximize their
usefulness. With these extensions, the Intelligent Trial and Error algorithm aims
to become a generic framework that can be applied to many types of robot to allow
them to quickly learn a large variety of tasks.

Chapter 5

Knowledge Transfer, Missing
Data, and Misleading Priors

The results and text of this chapter have not yet been published.

Other contributors:

• Jean-Baptiste Mouret, Pierre and Marie Curie University (Thesis supervisor)

Author contributions:

• A.C. and J.-B.M. designed the study. A.C. performed the experiments.
A.C. and J.-B.M. analyzed the results.

Contents
5.1 Introduction . 144

5.2 Knowledge Transfer . 145

5.2.1 Motivations . 145

5.2.2 Principle . 146

5.2.3 Method Description . 148

5.2.4 Multi-Channels Regression with Bayesian Optimization . . . 151

5.2.5 Experimental Validation . 157

5.3 Missing Data . 165

5.3.1 Motivations . 165

5.3.2 Principle . 165

5.3.3 Method Description . 167

5.3.4 Experimental Validation . 169

5.4 Misleading Priors . 172

5.4.1 Motivations . 172

5.4.2 Principle . 173

5.4.3 Method Description . 173

5.4.4 Experimental Validation . 175

5.5 Evaluation on the physical robot 180

5.5.1 The whole framework . 180

5.5.2 Experimental setup . 181

5.5.3 Experimental Results . 184

5.6 Conclusion . 184

144 Knowledge Transfer, Missing Data, and Misleading Priors

5.1 Introduction

In the previous chapter, we saw how the creativity of evolutionary algorithms can
be used to automatically discover vast varieties of behaviors. These range from
walking in every direction, to the numerous possible ways to walk in a straight
line. We also saw how this creativity can be combined with machine learning
algorithms (Support Vector Machines, (Cortes and Vapnik, 1995; Schölkopf and
Smola, 2002), and Bayesian Optimization (Mockus, 2013)) to allow our robot to
deal with unforeseen situations; like mechanical damages. However, these advances
are far from solving all the issues that usually affect learning experiments applied on
physical robots. During long term missions, like planet or deep ocean exploration
(Sanderson, 2010; Yoerger, 2008), autonomous robots have to use a large variety of
behaviors, to adapt each of these behaviors according to the encountered situations,
to deal with sensing problems, or to adapt to the inaccuracies of the information
that have been provided to the robot.
In this chapter, we will consider three aspects that often prevent robots from being
fully autonomous and robust in practical problems. In the following section, we
will present a method that allows robots to transfer knowledge between tasks. Such
ability is beneficial because the methods proposed in the previous chapter allow
the robot to adapt its behaviors to the current situation, but only one behavior
at a time. Consequently, the robot will have to repeat this process for all the
behaviors contained in its repertoire. This can make the adaptation process very
time consuming, even if it takes less than two minutes per behavior. Transferring
knowledge across tasks should reduce the required time to learn how to achieve the
subsequent tasks.
In the second part of this chapter, we will propose an extension of our Intelli-
gent Trial and Error algorithm to deal with solutions or behaviors that cannot be
evaluated. This may happen for various reasons, such as safety issues or sensor
limitations, and may result in missing data during the learning phase. Depending
on the way this missing data is handled, the learning performances can be dramat-
ically impacted. Our method allows the robot to be robust to missing data and
minimize its negative impact on learning performance.
In the third section of this chapter, we consider the use of prior information that is
not well-suited to the robot and may hurt the learning performance. For example,
using a forward model with a metric scale may mislead a robot that perceives its
position in pixels. However, when the prior information is initially not well-suited,
it does not mean that it does not contain any useful information. We propose an
extension of our algorithm to automatically adapt the prior information to maximize
their potential utility.
These three extensions of our framework will be evaluated individually with simu-
lated experiments in order to gather statistics and to demonstrate their benefits. In
the last part of this chapter, the entire framework will be evaluated on a physical
setup where all these improvements are required to be able to complete the robot’s
mission.

5.2. Knowledge Transfer 145

5.2 Knowledge Transfer

5.2.1 Motivations

In order to accomplish their missions, which will become steadily more complex,
robots have to be able to perform not only a single task, but also a large variety of
them. For example, a legged robot has to be able to walk in every direction (see
chapter 3), or a robotic arm needs to be able to reach multiple targets. Moreover,
some of these tasks may depend on the current situation, or on unpredictable fac-
tors. The robot might also be confronted with additional tasks that have not been
anticipated. For example, a new bin can be added to the scene and the robotic
arm can be asked to reach it after having learned to reach the already present bins.
For these reasons, it is likely that the number of tasks or the tasks themselves are
unknown at the beginning of the robot’s mission.
As a consequence of this variety of tasks, in an unexpected situation (e.g., like after
mechanical damage), the robot will have to adapt not only one, but all its behaviors
to continue its mission. Even if fast adaptation is possible (see chapter 4), it seems
ineffective to re-learn (adapt) each behavior independently, as some knowledge can
be common between them. Transferring this knowledge from one learning phase
to another may improve the adaptation abilities of our robots and allow them to
learn new, unanticipated tasks faster. For example, the robotic arm could re-use
the information gathered when learning how to reach the first bin in order to reach
the second bin faster. Similarly, the hexapod robot could use the knowledge that
avoiding the use of certain legs allows it to walk forward, to learn how to walk
backward.
Knowledge transfer is a long-standing question in artificial intelligence that initially
emerged from classification problems, where information can be transferred from
one data set to others (Thrun and Pratt, 1998). In classification, some features can
be shared among different classes in different data sets (or classification scenarios).
For example, learning how to classify buses can be aided by features of cars, or mo-
torbikes by features of bicycles. After learning one of these instances, we can expect
to learn to recognize the second one quicker. This concept of transferring knowl-
edge has several names in the literature, for example, Transfer Learning (Taylor and
Stone, 2009; Taylor et al., 2007; Singh, 1992), Multi-Task Learning (Micchelli and
Pontil, 2004; Bonilla et al., 2007; Williams et al., 2009; Yu et al., 2005), or Contex-
tual Policy Search (Kupcsik et al., 2014). It also has several definitions, for example,
Taylor and Stone (2009) state that “the insight behind transfer learning is that gen-
eralization may occur not only within tasks, but also across tasks.” However, one
may argue that Knowledge Transfer is more than across-tasks-transfer; it can be
across environments (which may be considered as different tasks as well), or across
several robots. For example, in social learning (Galef and Laland, 2005) the source
of knowledge is not only the past experience of the agent, but also the experience
of the other individuals. Knowledge Transfer has been applied in several research
domains, for example, psychology, or ethology (Thorndike and Woodworth, 1901;

146 Knowledge Transfer, Missing Data, and Misleading Priors

Skinner, 1953; Billing, 2007; Galef and Laland, 2005), machine learning (classifica-
tion or regression) (Thrun and Pratt, 1998; Thrun, 1996), reinforcement learning
(Taylor and Stone, 2009; Konidaris and Barto, 2006), neural networks (Caruana,
1997; Shultz and Rivest, 2000), and robotics (Doncieux, 2013; Kupcsik et al., 2014;
Benureau and Oudeyer, 2013).
In spite of all these studies concerning the concept of knowledge transfer, several
questions remain open. In Pan and Yang (2010), the authors highlight three funda-
mental questions: “In transfer learning, we have the following three main research
issues: (1) what to transfer, (2) how to transfer, (3) when to transfer”. However,
from our point of view, one of the main questions may be “what is in common to
all the robot’s tasks or environments?” and the answer of this question would likely
solves the three previously exposed questions.
It is very likely that what is common to all the tasks is the robot itself. In most
robotics applications, the tasks can be expressed according to the robot’s state.
For example, reaching a target with a robotics arm means to place the robot’s end
effector at a particular location and walking forward can be expressed as moving the
center of mass of the robot. For robotics manipulation, the state of the robot can
include the state of the manipulated object. In the same way, all the observations
can be expressed as a part of the robot’s state.
Consequently, knowledge can be easily transferred if all the acquisitions are related
to robot’s state, and if all the tasks are expressed in terms of the robot’s state (as
in state-space control, Friedland (2012)). In other words, by building a generic
knowledge centered on the robot itself (the robot state function), all this knowledge
can be used for each tasks, contrary to the performance functions associated to the
tasks that are task specific (for example; the distance to a target).
In the following sections, we will present a simple way to integrate this knowledge
transfer ability in Bayesian Optimization (BO, see section 2.4) and in our Intelligent
Trial and Error algorithm (see chapter 4). While the presented method is fully
compatible with the Intelligent Trial and Error algorithm, in these sections, we will
only consider the traditional expressions of BO, in order to keep the equations as
simple as possible.

5.2.2 Principle

In the traditional Bayesian Optimization framework, like in most learning algo-
rithms (see chapter 2), the task (or problem) is formalized as a cost or reward
function that needs to be optimized. We can take the example of the robotic arm
reaching a target bin; its cost function is usually defined as the distance between
its gripper and the target (here expressed as a reward function that has to be
maximized, with x as a potential solution):

Reward(x) = −dist(Target− State(x)) (5.1)

The learning algorithm then performs several evaluations and uses the correspond-
ing observations of the reward values to train the GP that approximates the reward

5.2. Knowledge Transfer 147

function (see fig. 5.1A). The acquisition function exploits this model of the reward
function to select the next potential solution that will be tested:

Observations = Reward(χ1:t)

Model(x) = GP (Observations) = R̃eward(x)
Acquisition(x) = UCB(Model(x)) = µ(x) + α.σ(x)

(5.2)

where GP stands for Gaussian Process and UCB refers to an acquisition function
(see section 2.4.3). χ1:t corresponds to the trials performed up to the time-step t.
We can observe that in this context the observations, the model and the acquisition
function depend on the “Target” variable. They are thus task-specific and need to
be changed each time the robot considers a different target.
When our robotic arm has to reach several targets, each of these targets corresponds
to a sub-reward function:

Rewardi(x) = −dist(Targeti − State(x)) (5.3)

Two alternatives can be considered to deal with these multiple targets. Probably,
the most common one is to consider all these targets as a single task (i.e., reaching
targets), for example by summing or averaging the sub-reward functions:

Reward(x) = − 1

N

N
∑

i=1

dist(Targeti − State(x)) (5.4)

The learning algorithm then searches for the solution (or the set of solutions) that
maximizes this global reward function. Nonetheless, in this case, the number of
targets and the targets themselves have to be known a priori to define this reward
function, which prevents the algorithm to precisely deal with unanticipated new
tasks. In some cases depending on the type of controller, the solutions may have
generalization abilities. For example, close-loop controllers that take in input a
target location, may be able to generalize over new targets after being trained on a
few predefined ones. However, in this case, the performance of the algorithm directly
depends on the generalization ability of the solutions, which is a long standing
question in machine learning (Cesa-Bianchi et al., 2004; Cohn et al., 1994).
The second alternative consists in considering the targets individually by their cor-
responding reward functions (Rewardi(x)). In this case, the robot has several tasks
to solve (because it has several reward functions) and these tasks can be initially
unknown and added during the robot’s mission. The method can be seen like sev-
eral learning processes running in parallel to solve independently all the tasks. In
this situation, the knowledge transfer across these learning processes can be very
beneficial, as it can allow the algorithm to achieve the new tasks faster. Unfortu-
nately, this transfer is impossible if we use the common BO framework presented
above (or most of other learning algorithms’ framework), because everything, from
the observations to the acquisition functions, is task-specific (i.e., relative to one
target).

148 Knowledge Transfer, Missing Data, and Misleading Priors

The method that we will introduce in the next section will rely on this second
alternative solution (that considers each target as an individual task) but we will
slightly change the traditional BO framework to make it robot-specific instead of
task-specific. By doing so, the algorithms will be able to solve all the tasks and to
transfer knowledge across them.

5.2.3 Method Description

As introduced before, the robot’s state function is the common part of all the robot’s
tasks. The main idea of our method is thus to transfer knowledge about this state
function instead of knowledge about the reward functions. This idea of state-based
knowledge transfer can be integrated into Bayesian Optimization by estimating the
robot’s state function via Gaussian Processes (see section 2.4.2). This model of the
state function, which is robot-specific, can be specialized according to a current
task in order to generate a model of the reward function of this task, which can
then be used to learn the task. This specialization of state function model can be
done for all the tasks that the robot has to address. The Bayesian Optimization
framework can easily handle these specializations by computing the reward function
in the acquisition function based on the mean of the Gaussian Process.
In state-based Bayesian optimization, the observations and thus the model (GP)
represent the robot state function (see fig. 5.1B). Based on this generic knowledge
about the robot, we can specialize the acquisition function according to the current
task (or target):

Observations = State(χ1:t)

Model(x) = GP (Observations) = S̃tate(x)

Acquisition(x) = UCB
(

Reward
(

Model(x)
)

)

= −dist(Target− µ(x)) + α.σ(x)

(5.5)

Here, only the acquisition function is specific to the tasks and needs to be changed
when the robot switches from one task to another. New tasks can be added by
changing the target variable too, and all the observations obtained so far will be
used to solve this new task. This method progressively builds up and refines the
model of the robot’s state function based on all the observations acquired during
each task, and uses this model to perform the tasks. This method thus builds and
exploits at the same time its model while learning to achieve the different tasks that
the robot accomplishes. Such an approach has already been used and proved to be
effective, for example in Kupcsik et al. (2014); Deisenroth and Rasmussen (2011).
However, in these studies, the built models are used to predict the step-based reward
(or state) values several time-steps ahead, which is computationally costly, and
they use these prediction to update the policy thanks to, for example, the REPS
algorithms (see section 2.3 and (Peters et al., 2010)). In this chapter, we propose to
use the model to directly update and compute the acquisition function of the BO
algorithm according to the current target. This methods is both computationally

5.2. Knowledge Transfer 149

effective and easy to implement.
Figure 5.1 shows the differences between the standard reward-based BO and the
State-based BO. It also shows that some situations can be deceptive and how these
two different approaches handle this situation. According to its two observations,
the reward-based BO (fig. 5.1A) expects a growth of the reward function and thus
proposes to test a sample far from the actual position of the target. The state-based
BO deals easily with this situation because it obtains more information from the
observations. In this example, one observation says that the target is on the left,
the second says that the target is on the right, thus the algorithm knows that it has
to select a sample in between. This property may allow the algorithm to perform
better in some difficult situations, as it will be suggested by the experimental results
presented in this chapter.
This approach has several advantages. Firstly, it is able to consider on the fly
new tasks that have not been anticipated. For example, after having learned to
reach 20 targets, the robot can learn to reach an additional target randomly gen-
erated. When using algorithms that consider all the different targets as a single
task, this situation is typically handled by the generalization ability of the obtained
controllers, which may be ineffective when the task space is large and the number of
training targets low. An important aspect of our approach is that all observations
acquired when learning the previous tasks are used to learn the new ones, maximiz-
ing the knowledge transfer abilities of the algorithms. Moreover, nothing prevents
our approach to change its current task arbitrarily during the learning processes,
instead of considering them only consecutively. This ability may be useful if the
robot needs to improve its performance simultaneously on several tasks or if one
task becomes suddenly a priority. For example, if a walking robot learns to walk in
every direction, it can change its current task (i.e., the considered direction of the
movement) according to the situation, even if it has not reached a stopping criterion.
Typically, if the robot learns to walk forward as fast as possible, it will be useful for
the robot to change its target direction and start learning to turn before reaching an
obstacle, even if the maximum forward speed has not been reached yet. Secondly,
the computational cost of changing tasks or adding new ones is very low because the
same state function model is used for all the tasks and the task specification is only
needed when looking at the maximum of the acquisition function. Consequently,
no costly matrix inversion or hyper-parameter tuning is required when considering
different tasks. Lastly, the ability of the algorithm to progressively build its model
according to the tasks it has to solve makes the algorithm data efficient. This active
learning 1 property of our approach allows the model to be very accurate on regions
actually useful for the robot’s mission, instead of trying to model accurately the

1This property corroborates the observation from (Baranes and Oudeyer, 2013) saying that
sampling the goal space (goal babbling) is more efficient than sampling the motor space (motor
babbling), because of the potential high redundancy in the motor space. Indeed, several solutions
in the motor space may lead to the same state (or behavior), thus learning a mapping between
the entire motor space to the state space can be inefficient if the objective is to find only motor
solutions that complete the task.

150 Knowledge Transfer, Missing Data, and Misleading Priors

(Unknown) State Function

(Unknown) Reward Function Acquisition Function

Target

Estimated Reward
Function

Next Sample

Target

Next Sample

Acquisition Function

Estimated State
Function

(Unknown) State Function

Reward-based Bayesian Optimization

State-based Bayesian Optimization

A

B

Figure 5.1: Differences between reward-based and State-based Bayesian Optimiza-
tion. (A) In reward-based Bayesian Optimization, the acquisition function (for
example UCB, see chapter 2.4.3) is computed based on the observations of the re-
ward function. (B) In State-based Bayesian Optimization, the acquisition function
is computed based on the observations of the state function, and it is specialized
according to the target location. Changing the task only requires changing the
target location without changing the state function model (i.e., the GP).

5.2. Knowledge Transfer 151

entire state function of the robot that may contain useless regions.
Robots’ state is often expressed with multi-dimensional vectors. For example, the
state of the robotic arm can be the final position of the end-effector, which is
a 3 dimensional vector. However, in the vast majority of Bayesian Optimization
studies, the functions approximated with the Gaussian Process are scalar functions.
In the following sections, we will show how Gaussian Processes can be extended to
multi-dimensional regression in order to allow our method to be applied on multi-
dimensional state functions. In the experimental results section, we will show how
this method can be applied on our robotic arm to successively learn 20 randomly
generated targets and how it performs compared to traditional methods.

5.2.4 Multi-Channels Regression with Bayesian Optimization

5.2.4.1 Related works

In most of experiments that use Gaussian Processes (GP), GP are employed to ap-
proximate mono-dimensional functions, like reward or cost function (Lizotte et al.,
2007; Calandra et al., 2014; Kober et al., 2012; Martinez-Cantin et al., 2007, 2009):

f : Rn → R (5.6)

Nevertheless, the robots state functions are most of the time multi-dimensional
functions (for example the 3D position of the end effector of a robotic arm):

f : Rn → Rm (5.7)

For the remaining of this manuscript, we will distinguish the input space (Rn) and
the output space (Rm) by calling the dimensions of the output space “channel”.
In this section, we will demonstrate that Gaussian Processes can be extended to
deal with functions that have multi-dimensional input space and multiple output
channels.
There are two alternatives to achieve multi-channel regression with Gaussian Pro-
cesses: (1) Considering each channel separately and using on GP per channel, or (2)
considering all the channels together and using one single model for all the channels.
The first method, also known as multi-kriging (Williams and Rasmussen, 1996),
considers independently each channel of the function. It has, for example, been
used in Kupcsik et al. (2014) in which the authors used individual GP models
for each output channel in order to approximate states of the robot and the envi-
ronment. They applied their method on two robotic setups where robots had to
throw projectiles to distinct targets. Based on the acquired state function model,
their algorithm predicts the expected reward used afterward in a policy search algo-
rithm that efficiently learns robot skills. While, using independent GPs is relatively
straightforward, it suffers from a scalability problem. The computational cost will
be strictly proportional to the number of channels, as this approach requires com-
puting the inverse kernel matrix and to optimize the likelihood for each GP. For
some situations where a large amount of data (several hundreds) is required, the

152 Knowledge Transfer, Missing Data, and Misleading Priors

computational cost of one GP starts to be all but negligible and may prevent the re-
gression of multi-dimensional functions. In Kupcsik et al. (2014), the computation
time seems to represents one of the major obstacles that the authors addressed. For
example, they investigated the impact of using GPUs on the computational time
when sampling and computing predictions. The authors also investigated the use
of sparse Gaussian Processes (Snelson and Ghahramani, 2005; Quiñonero-Candela
and Rasmussen, 2005; Titsias, 2009) that are devoted to approximate the GPs by
reducing the size of the kernel matrix by selecting a few samples that represent all
the data set.
The second alternative consists in using a single model for all the channels, which
may allow data acquired about one channel to influence the other channels. This
link between the different channels can be useful when a strong correlation exists
between the channels. For example, when the channels are sampled independently,
the algorithm can infer the shape of the function in channels that are not well
sampled based on the samples coming from other channels. In Seeger et al. (2005),
the authors give the example of estimating the concentration map of Uranium. The
problem is that detecting uranium concentration is difficult, while detecting carbon
is easier. The idea was to sample more densely the concentration of carbon in order
to infer the concentration of uranium because these two “outputs” are strongly
correlated.
One method (Rasmussen and Williams, 2006) that exploits this correlation consists
in defining different covariance functions to deal with samples coming from the
different channels (ki,j(xi, xj)). One covariance function is used to compare samples
that come from the same channel (in this case i = j), while samples that come from
different channels (for example samples of uranium density and samples of carbon
density) are compared with a different covariance function (in this case i ̸= j). We
can note that typically there is one covariance function of each channel (ki,i ̸= kj,j)
and one covariance function for each couple of channels (ki,j ̸= kj,k). Now, let
consider M different data sets, one for each channel i ∈ M , Di : {xi, yi}. The
observations from all channels are concatenated and processed together using the
standard Gaussian Process framework:

5.2. Knowledge Transfer 153

P (f(x)i|DN , x) = N (µi
t(x), σi 2

t (x))

where :
µi

t(x) = µi
0 + kiᵀK−1(P1:t − µ0)

σi 2
t (x) = kii(x, x)− kiᵀK−1ki

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K1,1 · · · K1,i · · · K1,M

...
. . .

...
Ki,1 · · · Ki,i · · · Ki,M

...
. . .

...
KM,1 · · · KM,i · · · KM,M

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Ki,j =

⎡

⎢

⎢

⎣

ki,j(χi
1, χj

1) · · · ki,j(χi
1, χj

tj
)

...
. . .

...

ki,j(χi
ti

, χj
1) · · · ki,j(χi

ti
, χj

tj
)

⎤

⎥

⎥

⎦

ki =
[

ki,1(x, χ1
1) · · · ki,1(x, χ1

t1
) · · · ki,M (x, χM

1) · · · ki,M (x, χM
tn

)
]ᵀ

P1:t =
[

P 1
1 . . . P 1

t1
. . . P M

1 . . . P M
tn

]ᵀ

µ0 =
[

µ1
0 . . . µ1

0 . . . µM
0 . . . µM

0

]ᵀ

(5.8)
P m

t represents the tth observation on the mth channel and µm
0 corresponds to the

initial mean value for the mth channel. The correlations between the different
channels are automatically inferred thanks to the different hyper-parameters of
each ki,j function that are autonomously defined by the log-likelihood optimization
(see chapter 2.4.2.2). This method is promising when the samplings differ from one
channel to the others (i.e., when xi ̸= xj , Seeger et al. (2005)) because it allows the
algorithm to use data from the other channels to make more accurate predictions
on areas that have not been sampled in the considered channel. Unfortunately,
this approach also increases dramatically the computational cost, as the size of the
kernel matrix is equal to the total number of samples on all channels:

size(K) =
∑

i∈M

ti (5.9)

This growth of the kernel size directly impacts the computational cost of the algo-
rithm, as the complexity of the matrix inversion is O(n3). In the cases where all the
channels are sampled simultaneously (xi = xj and ti = tj ∀i, j ∈ M), this means
that the computation cost is multiplied by M3, M being the number of channels.
Moreover, here we only consider the inversion of the kernel matrix; the optimiza-
tion of the hyper-parameters is even more impacted in this method. The number
of hyper-parameters is multiplied by M ∗ (M + 1)/2 (or M2 if ki,j = kj,i) increasing
the complexity, and the required time, of the likelihood optimization. These points
show clearly that this method cannot be extended to a large number of channels
(scalability problem). Several works try to mitigate this limitation thanks to com-
putational approximations of the kernel matrix (Micchelli and Pontil (2004); Seeger
et al. (2005); Boyle and Frean (2005)).

154 Knowledge Transfer, Missing Data, and Misleading Priors

This approach of multiple covariance functions for multi-tasks and knowledge trans-
fer has inspired several works using various techniques to combine the covariance
functions. For example, Boyle and Frean (2005) define two covariance functions,
one for the auto-covariance (i.e., from the same channel) and another for the cross-
covariance (i.e., between two different channels). Bonilla et al. (2007) use a Kro-
necker product to combine covariance functions and then tune an inter-task covari-
ance matrix thanks to likelihood optimization. This technique has been employed
to control a robotic arm in different payload context to reach different targets
(Williams et al., 2009; Yeung and Zhang, 2009)

5.2.4.2 Fast multi-Channels regression

In this chapter, our objective is to extend the abilities of our algorithms without
losing in computational speed. We decided to use a single model for all the channels,
but, in order to mitigate the scalability issue and reduce the computational cost,
the regression is achieved by using the same kernel matrix and the same hyper-
parameters for each channel and only changing the initial mean function and the
observations according to the considered channel. This approach is equivalent to
having one GP per channel but, in this case, the GPs share the same kernel matrix
and hyper-parameters. Because the vast majority of the computational cost comes
from the hyper-parameter optimization and the inversion of the kernel matrix, shar-
ing these components over the GPs makes the computational cost independent of
the number of channels. This method can consequently be applied on functions
with a large number of channels, but it makes the assumption that every channel
can be approximated using the same hyper-parameters. For the experiments of this
chapter, we validated this assumption by independently modeling each channel with
different GPs (first alternative) and comparing the hyper-parameters obtained after
likelihood optimization. The results (not presented in this manuscript) showed that
the hyper-parameters converged to the same values. One of our hypotheses that
may explain why this assumption holds in our case is that the channels are sam-
pled simultaneously (each sampled point provides information for all the channels),
which is not always possible (see the uranium mapping example exposed before).
Another hypothesis is that, in our experiment, the two channels are likely to be
similarly influenced by each observation, as the variations of the X or Y coordi-
nates are likely similar. For example, with a one degree of freedom robot, the X/Y
coordinates correspond to L ∗ cos(θ), L ∗ sin(θ), which show the same variations
(with an offset of π/2).

5.2. Knowledge Transfer 155

From a mathematical point of view, this approach can be formulated by:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :
µt(x)ᵀ = µ0 + kᵀK−1(Pc1:t − µc0)
σ2

t (x) = k(x, x)− kᵀK−1k

K =

⎡

⎢

⎢

⎣

k(χ1, χ1) + σ2
noise · · · k(χ1, χt)

...
. . .

...
k(χt, χ1) · · · k(χt, χt) + σ2

noise

⎤

⎥

⎥

⎦

k =
[

k(x, χ1) k(x, χ2) · · · k(x, χt)
]ᵀ

Pc1:t =

⎡

⎢

⎢

⎣

P x
1 . . . P z

1
...

. . .
...

P x
t . . . P z

t

⎤

⎥

⎥

⎦

µc0 =

⎡

⎢

⎢

⎣

µ0

...
µ0

⎤

⎥

⎥

⎦

µ0 =
[

µx
0 . . . µz

0

]

(5.10)

The main differences with the classic Gaussian Process expression (see section 2.4.2)
are in blue. The idea consists in changing the P1:t vector, which usually contains
the scalar observation when the approximated function has a single channel, into
a matrix where each line represents a multi-dimensional observation. We call this
matrix Pc1:t. The mean constant is also extended into a matrix in order to set
the initial mean at different values according to the channel. Each line of µc0 is
identical and contains the initial mean value of the each channel (µ0). Thanks to
these two modifications, the mean function of the GP outputs a line vector gathering
all channels of the approximated functions in one vector.
Usually, vectors are represented in column. The previous expression can be adapted
in order to output column vectors simply by transposing the expression:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :
µt(x) = µ0

ᵀ + (Pcᵀ1:t − µc0
ᵀ)K−1k

σ2
t (x) = k(x, x)− kᵀK−1k

(5.11)

This method is completely scalable to the number of channels and has a negligi-
ble impact on the computation cost. This aspect will allow us to model multi-
dimensional robot state function and transfer knowledge from one task to another.

5.2.4.3 Likelihood Optimization of Multi-Channels models

The hyper-parameters of a multi-channels Gaussian Process can be automatically
determined in the same way as with standard Gaussian Processes by using the log-
likelihood optimization (see chapter 2.4.2.2 and Rasmussen and Williams (2006)).

156 Knowledge Transfer, Missing Data, and Misleading Priors

As a reminder, here is the original log-likelihood expression:

log p(P1:t | χ1:t, θ) = −1

2
(P1:t − µ0)ᵀK−1(P1:t − µ0)− 1

2
log | K | −n

2
log 2π

(5.12)
Our multi-channels GP can be decomposed on several independent mono-channel
GPs, one for each channel (see the previous section). Based on this observation,
we can compute the likelihood of the multi-channels model as the product of the
likelihood of each channel. The log operator and the matrix representation of the
different observation over all the channel (Pc1:t) allows the expression to be similar
to the original one (equation 5.12):

log p(P1
1:t . . . PM

1:t | χ1:t, θ) = log
∏M

k=1 p(Pk
1:t | χ1:t, θ)

=
∑M

k=1 log p(Pk
1:t | χ1:t, θ)

= −1

2
tr((Pc1:t − µc0)ᵀK−1(Pc1:t − µc0))

−M

2
log | K | −n ∗M

2
log 2π

(5.13)

The differences are depicted in blue in the final expression. According to our knowl-
edge, the trade-off between data-fit term and the complexity penalty defined in
Rasmussen (1996) is not perfect and may lead to over-learning phenomenon usually
counterbalanced with cross validation (see chapter 2.4.2.2). One of the differences
between the equations 5.12 and 5.13 consists in multiplying by M the term that reg-
ulates the model complexity (Rasmussen and Williams, 2006) in order to conserve
the same trade-off. Interestingly this modification did not provide the expected
results during our preliminary experiments, most likely because of early conver-
gence to local maximum during the log-likelihood optimization. A modification
that reduces the complexity penalty will systematically be more interesting (for the
optimization process) than a modification that improves the data-fit term because
it is very unlikely that this modification improves in the same way all the channels
(to get a improvement multiplied by a factor of M). Consequently, the optimiza-
tion process will be attracted by the local maximum that tends to have the simplest
models. For this reason we decided for our experiments to remove this M factor in
the likelihood expression, which leads to this simplified expression:

log p(Pc1:t | χ1:t, θ) = −1

2
tr((Pc1:t − µc0)ᵀK−1(Pc1:t − µc0))

−1

2
log | K | −n

2
log 2π

(5.14)

The gradient of this expression can be easily computed as the sum of the gradient

5.2. Knowledge Transfer 157

of the different data-fit terms (one observation vector per channel):

∂

∂θj
log p(Pc1:t | χ1:t, θ) =

1

2

∑M
k=1(Pk

1:t − µk
0)ᵀK−1 ∂K

∂θj
K−1(Pk

1:t − µk
0)

−1

2
tr

(

K−1 ∂K

∂θj

)

=
1

2

∑M
k=1 tr

(

(αkαkᵀ)
∂K

∂θj

)

− 1

2
tr

(

K−1 ∂K

∂θj

)

where αk = K−1(Pk
1:t − µk

0)

=
1

2
tr

(

(K−1∑M
k=1

(

(Pk
1:t − µk

0)(Pk
1:t − µk

0)ᵀ
)

K−1)
∂K

∂θj

)

−1

2
tr

(

K−1 ∂K

∂θj

)

(5.15)
The structure of Pc1:t, which is composed of one column of observations for each
channel, allows the expression to be simplified thanks to this equality:

M
∑

k=1

Pk
1:tP

kᵀ
1:t = Pc1:tPcᵀ1:t (5.16)

With this simplification, the gradient of the log-likelihood is exactly the same as
the original expression of standard GP but with the matrix representation of the
observations (Pc1:t, see the previous section):

∂

∂θj
log p(Pc1:t | χ1:t, θ) =

1

2
tr

(

(ααᵀ −K−1)
∂K

∂θj

)

where α = K−1(Pc1:t − µc0)

(5.17)

5.2.5 Experimental Validation

We evaluate the performance improvement provided by the knowledge transfer abil-
ity of our algorithm on the second setup of the robotic arm (see appendix B.2). In
this experiment, the robot has to sequentially reach 20 targets defined in the cam-
era’s image, by using the same controller as in the previous chapter (see chapter 4
and appendix B.3), which only defines the final angular position of the eight joints.
The robot state is defined as the X and Y coordinates of the laser point in the
camera’s image. The aim of this experiment is to show that transferring the obser-
vations acquired when learning to reach one target decreases the number of trials
required to reach the subsequent targets.
The relative position of the targets has a strong impact on the learning perfor-
mances: learning to reach a target close to the previous targets can be particularly
easy, while learning to reach a target in an area never explored can be a challenging
task. Moreover, the order of the target has an impact too: if the first target is really

158 Knowledge Transfer, Missing Data, and Misleading Priors

difficult to reach and requires intensively exploring the search space, the subsequent
targets will greatly benefit from this initial step. In order to have experimental re-
sults that are not impacted by these factors, we decided to completely randomize
the targets’ position and to perform a large number of replicates to gather statistics.
Unfortunately, performing a very high number of replicates is materially impossible
on the physical robot, thus we run these experiments only in simulation. In the last
section of this chapter, we will evaluate our algorithm and its additional features
details on the physical robot.
In order to ensure that all the targets are actually reachable by the robot, the
targets are randomly generated following this procedure: The targets are first ran-
domly generated in the reachable space of the robot and are defined by two polar
coordinates chosen between ±0.9× π/2 for the angular position and between 10%
and 90% of the robot’s total length for the distance. We selected these values in
order to remove the borders of the reachable space that may be too difficult to be
reached. If these two coordinates were selected through a uniform random distri-
bution, the target locations will not be uniform in the Cartesian space (they will be
more concentrated close to the center of the reachable space). For this reason, we
used the square root of the random variable used for the radius coordinate. This
procedure allows the target to be evenly spread over the reachable space of the
robot. These random targets are then multiplied by a transformation matrix to
define them in pixels and in the camera’s frame (see appendix B.2). The values of
the parameters used for these experiments can be found in appendix C.4.

5.2.5.1 Reference Experiments

In addition to the experimental validation of our algorithm, we implemented three
reference algorithms:

• Random Search

• Traditional Bayesian Optimization (BO)

• State-based Bayesian Optimization (without knowledge transfer)

These algorithms allow us to highlight the impacts of sub-part of the proposed
method on the robot’s learning abilities.
The first reference algorithm is a naive random search, where random joint positions
are successively generated until reaching the desired target. This experiment aims
at showing that this task cannot be solved without a minimum of learning skills.
The second reference algorithm is the usual Bayesian Optimization algorithm where
the performance function is the distance between the position of the gripper (at
the end of the motion) and the target. Because all the techniques presented in
this chapter are based on Bayesian Optimization, this experiment will be used
as a reference when comparing the performance of the proposed algorithms. The
third reference algorithm consists in using the State-Based Bayesian Optimization
algorithm, presented in this section, but without knowledge transfer between each

5.2. Knowledge Transfer 159

target (the observations are discarded). This experiment will show how modeling
the robot’s state, instead of the performance function, affects the results. The
benefits provided by the knowledge transfer will be highlighted by comparing our
approach to all the considered reference experiments that do not transfer knowledge
between each target.
We assumed at the beginning of this chapter that the active learning ability of our
approach, which makes it focus on regions that are useful for the robot’s mission,
is likely to improve its data efficiency. We evaluate this aspect with two other
reference algorithms:

• A pre-trained Gaussian Process (GP)

• The PILCO algorithm (Deisenroth and Rasmussen, 2011)

The pre-trained GP is constructed with 151 samples covering all the motor space
and is then used to make the robot reach the targets. The 151 samples, which
correspond to the maximum number of samples allowed for the other methods, are
generated thanks to a BO algorithm that only considers the standard deviation
of the GP in the acquisition function (i.e., pure exploration). This automatically
evenly distributes the samples to minimize the uncertainty over all the motor space.
Once these 151 samples have been generated and a GP trained, this model is used
to select one behavior that is the most likely to reach the current target. In this
experiment, the robot can perform only one trial to reach the target, but it relies
on a model built with 151 samples. This experiment evaluates the generalization
ability of the trained GP.
The PILCO algorithm is a model-based, data-efficient policy search approach, which
uses GPs to actively build a forward model of the robot (typically, the dynamic
model of the robot). The algorithm updates its policy via a gradient-based opti-
mization based on the predictions provided by the model. The policy is then tested
on the robot and the resulting observations are used to improve the model. This
process is then repeated until the robot reaches the desired state.
PILCO is designed to be a "step-based algorithm" (see section 2.3), whereas in this
thesis we consider tasks for which we can only evaluate the reward (and possibly
the state) at the end of each episode. Assessing the robot’s reward or state at the
end of each trial allows us to use inexpensive tracking systems (for instance, the
simple tracking used in the present experiments, see appendix B.2) and/or on-board
sensing. In addition, in experiments with the hexapod robot, the complete state
would need to be described by many variables (at least 42 if we only consider the
position and velocity of the six legs and the main body), which makes it hard to
learn. In order to compare directly PILCO with our approach, we configured it
to be an “episode-based algorithm” by setting the prediction horizon to 1 step2.

2It is very likely that PILCO would requires fewer trials (episodes) to reach the goal if it could
rely on the data of the intermediate states of each episode, typically at each time step. However,
this would not respect the constraints of our experimental setup and it is likely that the performance
of Intelligent Trial and Error algorithm would also be improved if each trial provides more data.

160 Knowledge Transfer, Missing Data, and Misleading Priors

With this modification, PILCO and our approach are relatively similar: 1) they
both build a model that predicts the robot’s final state according to the commands
(or the corresponding parameters) that are executed; 2) they both select the next
trial based on a reward function that combines the predictions of the model and
the goal; 3) each trial on the robot generates data that is used to improve the
model. However, they differ in the way the policy is updated. While our approach
updates the policy parameters by maximizing the acquisition function, with a global
optimization approach (CMAES, with different starting points and several restarts),
PILCO maximizes the expected reward (which is equivalent to our performance
function) based on the gradients provided by the reward function, the model and
the controller. This gradient-descent starts from the current policy and makes the
policy update thus more “local” than ours. The implementation of this reference
algorithm is based on the MATLAB-code provided by Deisenroth et al. (2013a).
The algorithm is applied on the same (virtual) experimental setup as the other
algorithms, and the parameters are set to their default value. The employed policy
type is based on the linear controller, but with no input (i.e., by only using the
controller’s bias), which is equivalent to the open-loop controllers used in the other
experiments.

5.2.5.2 Results

The algorithms consider that the target has been reached when the laser point (from
the laser pointer attached on the gripper, see appendix B.3) is within a radius of
50 pixels, which roughly corresponds to 3.3 centimeters. The maximum number of
attempts to reach one target is limited to 151. Each experiment is replicated 200
times.
We analyze how many iterations are required to reach one (random) target (see
Fig. 5.2 A). The random search algorithm is able to reach the target in only 43%
of the replicates and 75% of these replicates require more than 40 trials to reach
the target (unsuccessful replicates are stopped after 151 trials). The traditional BO
and the state-based BO experiments perform much better and are not statistically
different (p-value=0.75), the classic Bayesian algorithm is successful in 96.5% of
the replicates and the State-Based Bayesian Optimization is successful in 99% of
them (see Fig: 5.3). The median number of required trials for these two reference
experiments is respectively 20 and 20.5 trials.
This first comparison shows that the modifications we made to model the robot
state function instead of the performance function has no effects on the learning
performance of the algorithm. We can also hypothesize that the small success rate
improvement is due to the additional information provided by modeling the robot
state as presented in the previous section (section 5.2.3).
After this first target, the algorithms have to reach subsequently 19 additional
targets (for a total of 20 targets). We consider the cumulative number of trials
required to reach every target because the number of trials to reach one specific
target is clearly influenced by the number of trials, the location and the difficulty

5.2. Knowledge Transfer 161

Random Search

Traditional BO

State-Based BO

State-Based BO with Transfer

1

0

50

100

150

Target number
0 2 4 6 8 10 12 14 16 18

0

100

200

300

400

500

600

700

800

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

tr
ia

ls

N
u
m

b
e
r

o
f

sa
m

p
le

s
re

q
u
ir

e
d

to
 r

e
a
ch

 t
h
e
 f

ir
st

 t
a
rg

e
t

0 2 4 6 8 10 12 14 16 18
0
10
20
30
40
50

Target number

A B

C

N
u
m

b
e
r

o
f

tr
ia

l
p
e
r

ta
rg

e
t

Figure 5.2: The benefits of transferring knowledge. (A) Number of trials required
to reach the first target. The results of State-based BO with transfer (that are not
shown in this pannel) are similar to the State-based BO because we consider here
only the first target. (B) Cumulative number of trials required to reach subsequently
each of the 20 targets. (C) Number of trials required to reach each target when using
knowledge transfer. The decrease of the number of trials shown here is due to the
knowledge transfer between each task. The middle, solid lines represent medians,
while the colored areas extend to the 25th and 75th percentiles. The experiment
has been replicated 200 times in simulation for each of the 4 tested algorithms.

162 Knowledge Transfer, Missing Data, and Misleading Priors

of the previous targets. For example, reaching a new target can require a large
number of trials if the algorithm performed few trials before and it can require very
few trials if the search space has been extensively explored before trying to reach
this new target. Recording the cumulative number of trials and performing multiple
replicates of the experiments reduce these biases in the presented results. For each
new target, the number of required trials contains both the number of trials used to
reach this new target but also the number of trials required to reach all the previous
targets (see Fig 5.2 B).
Before actually starting the learning process, 10 random trials are performed in
order to initialize the algorithm’s model. This kind of procedure is customary when
algorithms start from scratch (Lizotte et al., 2007; Calandra et al., 2014; Cully
et al., 2015). However, in the number of trials reported in this chapter, we only
consider trials that have been intentionally chosen and the 10 initial random trials
are not taken into account. Indeed, there is no certainty that these samples have
participated in the success of the algorithm and counting them may artificially
penalize the learning speed of the reference algorithms. This is why, we chose to
ignore these samples in our comparison to prove that the performance differences
between our algorithm and the reference ones are not induced by this artificial
initialization procedure.
The reference experiments do not transfer knowledge between each target, for this
reason the cumulative number of trials required to reach the targets is a linear
progression with the slope corresponding to the number of trials to reach the first
target (see Fig. 5.2 A). Like for the first target, the classic Bayesian Optimization
algorithm and the State-based Bayesian Optimization algorithm perform very sim-
ilarly. When knowledge transfer is enabled, the State-based Bayesian Optimization
clearly shows a large improvement of its learning abilities. While about 600 trials
(median: 606 trials for State-based BO and 587.5 trials for BO) are required to
reach the 20 targets without transfer, this number falls to a median of 191 trials
with the State-based Bayesian Optimization with Knowledge Transfer. For the last
targets, the additional number of trials to reach new targets becomes very low:
more than 75% of the 200 replicates reach the targets in one shot between the 12th

and 20th targets (Fig. 5.2 C). The remaining 25% are likely to require more trials
because of the reasons exposed before (e.g., dependency to the prior experiences,
relative position of the targets).
The conclusion that can be drawn from these experimental results is that the mod-
ification of standard Gaussian Processes that allows the algorithm to model the
multi-dimensional (or channel) robot state function has little impact on the opti-
mization performance. Moreover, this modification allows the algorithm to trans-
fer knowledge from one task to another and this significantly (p-value< 10−66,
Wilcoxon rank sum test) reduces the time needed to achieve next tasks.

5.2. Knowledge Transfer 163

Random Search

Traditional BO

State-Based BO

Pre-trained GP

43%

96.5%

99%

4%

85%PILCO

0

50

100

150

Random Search

Traditional BO

State-Based BO

PILCO

B

A

Figure 5.3: Reaching the first target. A) Success rate for reaching the first target
with the five compared algorithms. B) Comparison of the number of trials required
to reach the first target. The experiment has been replicated 200 times in simulation
for each of the tested algorithms.

164 Knowledge Transfer, Missing Data, and Misleading Priors

5.2.5.3 Comparison with PILCO and with a pre-trained GP

In the control experiment using a pre-trained GP, the robot is allowed to perform
only one trial to reach the target, but it relies on a model built with 151 samples.
Like in the previous experiments, this experiment has been replicated 200 times
with the same random targets as before. The results (see Fig: 5.3A) show a success
rate of only 4%, which illustrates how the active learning ability of our approach
significantly improves its performances. It may appear surprising that the random
search performs better than this “pre-trained GP” alternative. The reason is that
only the single trial of this alternative approach is taken into account. This means
that even if some of the 151 trials performed to build the model reached the targets,
the algorithm has to select again a point that will reach the target, which appears to
be difficult. One explanation of this difficulty can be the inaccuracies of the model
that appear when the model tries to cover the entire search space. This aspect is
highlighted by the success rate of the other tested algorithms, which select their
next trial in an active fashion (i.e., based on the previous trials and the observed
performance).
With active learning approaches, the success rate is significantly higher: 85% for
PILCO, 96.5% for the traditional BO, and 99% for the State-based BO. All these
differences are statically significant with the p-values< 10−4 (based on the Fisher’s
exact test) (except between traditional BO and State-based BO, p-value=0.1747),
and show that using active learning approaches, which focus on regions that are
useful for the robot’s mission, is more effective than building global models.
While our approach has a better success rate than PILCO, we can see that PILCO
requires about two times less trials than the other approaches to reach the first tar-
get (see Fig: 5.3B, median: 10 trials for PILCO versus 20.5 trials for State-based
BO, p-value= 10−5). We can hypothesize that this performance difference comes
from the way that the policies are updated, since the generation of the model is
very similar in these two approaches. The policy update process of PILCO, which
is more “local” than our approach, is likely an advantage in the experimental setup
that we consider in this chapter because it is relatively smooth and convex and thus
suitable for gradient-based approaches (e.g., classic visual servoing techniques can
be used to solve the task, Espiau et al. (1992)). Moreover, the high redundancy
of the robot leads to not only one solution, but rather an hyper-plan of solutions
(i.e., several different configurations lead the robot to the desired location). This
variety of solutions does not affect PILCO, as it will reach the closest configuration
according to its starting policy, but does affect our approach because the global
exploration of the acquisition function (here, UCB) tends to simultaneously investi-
gate all the possible alternatives, which is likely to slow the process down. However,
this advantage in this particular setup may be a disadvantage in other ones, typi-
cally those with local extrema. Finally, we can also hypothesize that the relatively
low success-rate of PILCO compared to State-based BO is due to unlucky initial-
izations of the GP that may make PILCO start too far from a good solution. It
would be interesting to perform the same kind of comparison on more challenging

5.3. Missing Data 165

experimental setups to see how the differences between these two approaches are
affected.

5.3 Missing Data

5.3.1 Motivations

When performing experiments, some behaviors cannot be properly evaluated on
the physical robot. This can happen for different reasons: (1) The robot may
be outside the sensor’s range, for example when the robot is not visible from the
camera’s point of view, making it impossible to assess its performance. (2) The
sensor may return intractable values (infinity, NaN,...). A typical situation where
this kind of illogical values may occur is when the SLAM algorithm diverges and is
unable to infer the robot’s position. (3) The behavior may fail a sanity check, which
is executed before running the behavior on the robot and prevent the behavior from
damaging the robot. A classic sanity check can be to check if a behavior is likely
to produce self-collisions when it’s applied on a robotic arm. For example, this
check can be performed in simulation before testing the behavior in reality. All
these situations generate missing data about the behaviors’ performance and this
represents a significant problem that may impact the algorithms’ results.
While it is very likely that most of experiments are affected by these situations,
the way the authors deal with them are unfortunately rarely specified. Moreover,
making the hypothesis that it is always possible to evaluate a behavior is a strong
limitation for the robot’s autonomy and in this case should be clearly mentioned in
research articles.

5.3.2 Principle

Different solutions exist to deal with missing data. The simplest way consists in
redoing the evaluation. This may work, but only if the problem is not deterministic,
otherwise the algorithm will be continuously redoing the same, not working, eval-
uation. A second solution consists in assigning a very low value to the behavior’s
performance, like a punishment. This approach will work with evolutionary algo-
rithms because the corresponding individual will very likely be removed from the
population in the next generation. By contrast, this approach will have a dramatic
effect on algorithms using models of the reward function, like Bayesian Optimiza-
tion, as the models will be completely distorted. Figure 5.4 B shows how setting a
missing data to zero affects the estimated reward function in a Bayesian optimiza-
tion process. With these model based algorithms, another solution may be to set
the missing data to the value previously predicted by the model, but the drawback
of this approach is that it will attach the model to a potentially wrong value (see
Fig. 5.4 C).
These different methods to deal with missing data do not fit well with the Bayesian
Optimization framework. For this reason we propose in this section a new approach,

166 Knowledge Transfer, Missing Data, and Misleading Priors

(Unknown) Reward Function

Acquisition Function

Estimated Reward
Function

Next Sample

Initial ModelA

B

Sample

Sample with missing data

Missing data set to a punishment value

C Missing data set to previous prediction

Figure 5.4: Common ways to deals with solutions that cannot be evaluated. (A)
Initial model, the performance of the “next sample” cannot be assessed. The two
other sub-panels show the impact of commonly used techniques to deal with missing
data. (B) Samples with missing data receive a punishment value (here 0), distorting
the model as a consequence. (C) Samples with missing data receive the value
previously predicted by the model, fixing it to a potentially wrong value.

5.3. Missing Data 167

compatible with Bayesian Optimization, which preserves the model’s stability. The
overall idea is to encourage the algorithm to avoid regions around behaviors that
could not be evaluated, which may contain other behaviors that are not evaluable
too, but without providing any performance value, which is likely to increase the
model’s instability.
The behaviors’ attractiveness is defined based on the acquisition function (see sec-
tion 2.4.3), which is mainly governed by the expected performance and variance
around this prediction, which represents how much the search space has been ex-
plored in the behavior’s vicinity. As shown in the previous section, most of model in-
stabilities come from attempts to change the expected performance. Consequently,
our idea consists in providing to the algorithm the information that a behavior has
already been tried, in order to reduce its variance, but without fixing the expected
performance to a hazardous value.

5.3.3 Method Description

In order to provide the information that some behaviors have already been tried, we
propose to define a blacklist of samples. Each time a behavior cannot be properly
evaluated, this behavior is added into the blacklist (and not in the pool of tested
behaviors). Because the performance value is not available, only the behavior’s
location in the search space is added to the blacklist. In other words, the blacklists
are a list of samples with missing performance data.
Thanks to this distinction between valid samples and blacklisted ones, the algorithm
can consider only the valid samples when computing the mean of the Gaussian
Process and both valid and blacklisted samples when computing the variance. By
ignoring blacklisted samples, the mean will remain unchanged (Fig. 5.5 B) and free
to move according to future observations (Fig. 5.5 C). By contrast, the variance
will consider both valid and blacklisted samples and will “mark” them as already
explored (Fig. 5.5).
The mathematical formulation of this idea is relatively straightforward. The mean
equation, µt(x), remains unchanged, while the kernel of the variance equation,
σ2

t (x), is extended to the blacklisted samples (bl). Note that, while the mathe-
matical description is given based on the classic Bayesian Optimization algorithm
for reading convenience, this idea is fully compatible with the previously described
multi-channel Bayesian Optimization algorithm and the Intelligent Trial and Error
algorithm.

168 Knowledge Transfer, Missing Data, and Misleading Priors

(Unknown) Reward Function

Acquisition Function

Estimated Reward
Function

Next Sample

A

B

Sample

Blacklisted Sample

C

Figure 5.5: Blacklist principles. (A) Initial model (the same as Fig. 5.4). (B)
The variance around the blacklisted sample is reduced but the mean of the model
remains unchanged. (C) After testing another solution, the model can adapt to the
new observation because the performance value predicted for the blacklisted sample
is not fixed.

5.3. Missing Data 169

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :
µt(x) = µ0 + kᵀK−1(P1:t − µ0)
σ2

t (x) = k(x, x)− kbl
ᵀKbl

−1kbl

Kbl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k(χ1, bl1) · · · k(χ1, bln)

K
...

. . .
...

k(χt, bl1) · · · k(χt, bln)
k(bl1, χ1) · · · k(bl1, χt) k(bl1, bl1) + σ2

noise · · · k(bl1, bln)
...

. . .
...

...
. . .

...
k(bln, χ1) · · · k(bln, χt) k(bln, bl1) · · · k(bln, bln) + σ2

noise

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

kbl =
[

k(x, χ1) · · · k(x, χt) k(x, bl1) · · · k(x, bln)
]

(5.18)
This representation uses the same definitions as in equation 5.19 in section 2.4 and
changes are depicted in blue to highlight how to add the blacklist of samples.
The extension of the kernel matrix increases the computational cost of this method,
as this second matrix needs to be inverted too and is larger than matrix used for
the mean. However, this addition cost can be significantly mitigated by using the
block-wise inversion theorem (Press et al., 1996):

[

A B
C D

]−1

=

[

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]

(5.19)
This theorem says if we known A−1 then computing the inverse of the global matrix
only requires computing the inverse of this expression (D − CA−1B) (depicted
in blue in the previous equation). In our case this is very useful, as the A−1 is
the inverse of the mean’s kernel matrix (thus already inverted) and the size of
(D−CA−1B) is equal to the number of black listed samples, which is likely to be
notably lower than the number of correct samples. Consequently, thanks to this
theorem, computing the variance of the GP with blacklist only additionally requires
to inverse a small matrix and to perform a few matrix products.

5.3.4 Experimental Validation

We replicated the experiment from the previous section (section 5.2.5) but in this
section each sample evaluation has a 5% chance to fail, generating missing data.
This experiment is also replicated 200 times for each compared algorithms.
We first evaluated the impact of these missing data on the learning algorithms when
they are handled with “punishment values”. In this experiment, the punishment
values are set to −1500 pixels (corresponding roughly to −1 meter) for the reward
based algorithm and [−1500;−1500] for the stated based algorithms.
We take as a reference point the total number of trials required to reach the 20
targets when there are no missing data (i.e., the 5% chance that it occurs is dis-

170 Knowledge Transfer, Missing Data, and Misleading Priors

N
u
m

b
e
r

o
f

tr
ia

ls
 r

e
q
u
ir

e
d

to
 r

e
a
ch

 2
0

 t
a
rg

e
ts

Bayesian Optimization (BO)
State-Based BO
State-Based BO with Transfer

No missing data
Blacklisted samples

Punished samples

111111 1

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 5.6: Impact of missing data on the learning performance. For the three
tested algorithms we compared the total number of trials required to reach 20
targets. Each trial has a 5% chance to fail and to generate missing data. For each
algorithm, the number of trials for the experiments without missing data is plotted
for reference and the approach using blacklists of samples or punishment values are
compared. The experiment has been replicated 200 times in simulation for each of
the 3 tested algorithms and their 3 variants.

5.3. Missing Data 171

1

0

50

100

150

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

sa
m

p
le

s

N
u
m

b
e
r

o
f

sa
m

p
le

s
re

q
u
ir

e
d

to
 r

e
a
ch

 t
h
e
 f

ir
st

 t
a
rg

e
t

Target number

0 2 4 6 8 10 12 14 16 18
0
10
20
30
40
50Random Search

Traditional BO

State-Based BO

State-Based BO with Transfer

Target number

N
u
m

b
e
r

o
f

tr
ia

l
p
e
r

ta
rg

e
t

A B

C

Figure 5.7: Blacklists of samples do not affect the learning performance. (A)
Number of trials required to reach the first target. (B) Cumulative number of trials
required to reach subsequently 20 targets. (C) Number of trials required to reach
each target. The decrease shown here is due to the knowledge transfer between each
task. The middle, solid lines represent medians, while the colored areas extend to
the 25th and 75th percentiles. Both experiments have been replicated 200 times in
simulation for each of the 5 tested algorithms.

abled). Theoretically, this number should increase by about 5% if the missing data
are well managed. The results show, as expected, that the punishment values have
a important impact on the number of trials (Fig. 5.6). For all the tested algo-
rithms (standard Bayesian Optimization (BO), state-based BO, and state-based
BO with knowledge transfer), the number of trials increases by about 50% (BO:
43.3%, state-based BO 48.3%, state-based BO with knowledge transfer 72.3%, all
these differences are statistically significant: p-values< 10−28) while when the miss-
ing data are handled with blacklists this number of trials only increases by about 3%
(BO: 6.9%, state-based BO 3.6%, state-based BO with knowledge transfer −1.6%,
the two first increases are statistically significant, p-values <0.02 but not the last
one, p-values=0.35).
This experiment demonstrates that using blacklists of samples to deal with missing
data minimizes their impact on the learning performances. When comparing the
results of algorithms using blacklists (Fig. 5.7) and those without missing data
(Fig. 5.2), the differences are very subtle. For example, thanks to the knowledge
transfer, our algorithm is able to reach the 20 targets in less than 200 trials (median:

172 Knowledge Transfer, Missing Data, and Misleading Priors

197 trials, 5th and 95th percentiles: [123; 316] trials when there are some missing
data, versus 191 [107.5; 324.5] trials when there is no missing data). Moreover,
the ability to reach in one shot the targets after some previous experiments is
preserved. In this case, after the 14th target, more than 75% of the replicates reach
the targets in one shot. The only difference may be the performance difference
between the standard BO and the State-based BO, which seems to be larger than
in the previous experiment. Nevertheless, this difference is not statically significant
(when computing the p-value point by point for all the 20 targets, the p-value varies
between 0.015 and 0.95).
Solutions that cannot be evaluated and which generate missing data is a problem
that impacts most of experiments using real robots and represents one of the nu-
merous problems that prevent learning algorithms from being widely applied on
physical setups. Throughout these experiments, we showed that using blacklists
of samples is a computationally efficient and easy way to setup way to cope with
this issue. While the experiments presented in this section are only performed in
simulation in order to perform a large number of replicates, the last section of this
chapter presents an experiment in which the whole framework of our algorithm,
including the use of blacklists but also additional features presented in the next
section, are evaluated on the physical robot in order to show its benefits in a real
context.

5.4 Misleading Priors

5.4.1 Motivations

As we showed in chapter 4, using priors is one of the key components to achieve fast
adaptation. On the one hand, if well chosen, these priors can guide the search and
provide various information about the search space and/or reduce the search space.
On the other hand, if not well chosen, these priors may be misleading and hurt the
learning performances. For example, the forward kinematic model of the robot arm
is typically a knowledge that can easily be given a priori to the robot, but which
may be misleading for several reasons: (1) they may be not well aligned with the
actual search space, like when forward model is defined based on the robot’s frame
while observations are computed based on the camera’s frame. (2) Another reason is
when units differ: if the forward model is given in meters while the observations are
in pixels, the unknown conversion between these two sources of knowledge prevent
the algorithm from relying on the forward model. (3) The worst situation is when
the priors are strictly uncorrelated with the task, for example if we provide to the
robot arm priors about the hexapod robot. (4) When the robot is damaged, the
priors may also be misleading, as they do not take into account the current situation
of the robot. All these examples show how potentially useful prior knowledge can
become more misleading than helpful.

5.4. Misleading Priors 173

5.4.2 Principle

In this section, we present a method that allows the algorithm to autonomously
adapt these priors to exploit all their potential usefulness or in the worst situation to
disregard them. In most of the examples exposed in the previous paragraph, priors
contain meaningful information, which cannot be used to solve the task because of
conversion or alignment problems.
To address these problems, our idea consists in transforming the priors’ information
to let them match with the acquired observations. One of the most common ways
to transform data is to use linear transformations or, when the data are multi-
dimensional, transformation matrices. Moreover, the information provided by the
priors can be extended to homogeneous coordinates (or projective coordinates) in
order to implement translations thanks to usual transformation matrices. The al-
gorithm will autonomously determine the adequate transformation according to
the observations by maximizing the likelihood of the Gaussian Process (see section
2.4.2.2). This method will allow the robot to maximize the benefits provided by
the prior information or in the worst cases to mitigate their negative impacts.

5.4.3 Method Description

State-based Bayesian Optimization (see section 5.2.2) allows us to model functions
that have multiple output channels. A consequence of this multi-dimensionality is
that the prior knowledge should also have outputs with multiple channels. These
multi-channels priors can easily be extended to homogeneous coordinate by in-
creasing the number of output dimensions by one and by fixing the value of this
additional dimension to 1. With this extension, usual transformation matrices will
be able to scale, rotate, translate and even disregard (with a null matrix) the in-
formation provided by the priors. These matrices (here named Tr) can be added
directly in the traditional GP formulation in which the prior (µ(x)) is a vector:

P (f(x)|P1:t, x) = N (µt(x), σ2
t (x))

where :

µt(x) = Tr

[

µ0(x)
1

]

+ kᵀK−1

(

P1:t −
(

Tr

[

µ0(χ1:t)
1

])ᵀ)

σ2
t (x) = k(x, x)− kᵀK−1k

µ0(x) =

⎡

⎢

⎢

⎣

µ1
0(x)
...

µn
0 (x)

⎤

⎥

⎥

⎦

µ0(χ1:t) =
[

µ0(χ1) . . . µ0(χt)
]

Tr =
[

θ1
T r θ2

T r . . . θn+1
T r

]

(5.20)

While the presented equation only considers the modifications that should be added
to the original GP framework, this technique is fully compatible with all those
presented in this chapter and can be combined into a generic framework that allows

174 Knowledge Transfer, Missing Data, and Misleading Priors

robots to autonomously transfer knowledge between tasks, deal with missing data
and to adapt the provided priors. For example, this expression can be extended to
state-based BO:

P (f(x)|Pc1:t, x) = N (µt(x), σ2
t (x)I)

where :

µt(x) = Tr

[

µ0(x)
1

]

+

(

Pcᵀ1:t −Tr

[

µ0(χ1:t)
1

])

K−1k

σ2
t (x) = k(x, x)− kᵀK−1k

µ0(x) =

⎡

⎢

⎢

⎣

µ1
0(x)
...

µn
0 (x)

⎤

⎥

⎥

⎦

µ0(χ1:t) =
[

µ0(χ1) . . . µ0(χt)
]

Tr =

⎡

⎢

⎢

⎣

θ1,1
T r θ1,2

T r . . . θ1,n+1
T r

...
. . .

...

θp,1
T r θp,2

T r . . . θp,n+1
T r

⎤

⎥

⎥

⎦

(5.21)

The transformation matrix’s coefficients are considered as additional hyper-
parameters of the model and automatically tuned, online, by maximizing the likeli-
hood of the model according to the observations. The likelihood expression remains
unchanged (see equation 5.14) and its derivative according the weights of the trans-
formation matrix (θT r) is defined as:

∂

∂θT r
log p(P1:t | χ1:t, θ) = tr

(

(Pc1:t − µ0)ᵀK−1 ∂

∂θT r

(

Tr

[

µ0(χ1:t)
1

]))

(5.22)
The derivative in this equation can be easily computed, as it involves only a linear
combination of the matrix coefficient and the mean vector. This leads to a simple
expression of the gradient if we consider that vector θT r contains all the coefficients
of the matrix sorted line by line.

∇θT r

(

Tr

[

µ0(χ)
1

])

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M(χ)ᵀ 0 . . . 0

0 M(χ)ᵀ
...

...
. . . 0

0 . . . 0 M(χ)ᵀ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where :

M(χ) =

[

µ0(χ)
1

]

(5.23)

The ability to adapt the priors and thus the model to the observations has several
interesting properties. First, the transformation matrix will adapt globally the prior
over all the search space (e.g. it will find the right alignment and the right scale
factor) and the Gaussian Process will then correct itself locally to take into account

5.4. Misleading Priors 175

local phenomenon or small inaccuracies (e.g. damage situations or inaccuracies
between the priors and the reality). Second, the algorithm has the possibility to
ignore the provided priors by setting all the weights of the transformation matrix
to zero or to very low values. This will be done autonomously when the likelihood
optimization will suggest that a model with a null matrix is the best way to match
the acquired observations. This is an interesting feature as it allows us to provide
several sources of prior knowledge and let the algorithm decide which one, or which
combination of these priors is actually the most helpful.
This last property share some similarities with what Rasmussen and Williams (2006)
(Chapter 2.7) describe in their book. Based on the works from O’Hagan and King-
man (1978) and from Blight and Ott (1975), the authors show how to use the
likelihood optimization to determine a vector that is involved in a scalar product
with another vector, which is composed by the outcomes of several mean functions.
Compared to this approach, the technique presented in this section takes advan-
tage of the multi-channel property introduced previously in this chapter in order
to use transformation matrices and homogeneous coordinates instead of a scalar
product. Moreover, this section aims to show examples where these techniques can
be practically useful.

5.4.4 Experimental Validation

We continue to use the same robotic arm experimental setup (in simulation) to
evaluate this additional extension of our algorithm. For this experiment, the robot
has access to its forward model as a prior knowledge. Concretely, the forward model
is a function that takes as argument the joints’ position of the robot and outputs
the corresponding position of the gripper projected on the ground. Because the
robot has 8 degrees of freedom, the forward model is defined as f : R8 → R2.
In this case, the prior does not reduce the problem dimensionality. The forward
model outputs the position in meter and according to the robot’s base frame, while
the observations and the targets are computed in pixel defined in the camera’s
base frame. These differences of reference frame and scale factor make it difficult
to exploit the information provided by the priors and they may be, in the worst
situations, more misleading than helpful (see the following result section).
The algorithm adapts its prior thanks to a 2 x 3 transformation matrix included
in the model as presented before. This matrix has two lines because the robot
state function has two channel (the X and the Y coordinates of the gripper) and
three columns in order to perform rotations and translations of the coordinates
that are outputted by the forward model. These outputs are extended by one ad-
ditional dimension to turn these coordinates into homogeneous coordinates. There
are consequently 6 hyper-parameters that have to be optimized by the likelihood
optimization (in addition to the other hyper-parameters for the kernel function,
see section 2.4.2.2). All the hyper-parameters of the model are determined after
the initialization procedure and re-computed after each trial in order to take into
account the new data.

176 Knowledge Transfer, Missing Data, and Misleading Priors

In simulation, the virtual robot and its forward model match perfectly and this
makes the task particularly easy. In this case, the algorithm only needs to infer the
right transformation matrix thanks to a few samples and then it can rely on the
forward model to reach every target in “one shot”. The results show that this is
successfully achieved only based on the 10 random trials perform at the beginning
of the experiment to initialize the model (see the following results section). To
increase the task difficulty, we consider situations in which the robot is damaged
to show the ability of the algorithm to globally adapt the priors but also to locally
adapt its model according to the damage. In addition to the situation in which
the robot is intact, four damage conditions are tested in simulation (see Fig. 5.9
C). In the considered situations, the robot’s joint can be affected in two ways: (1)
the joint can be stuck at a particular position (here, 45°) and does not respond
to any received command; (2) the joint has a permanent 45° offset, meaning that
the position reached by the motor will always be displaced by 45° according to the
received command (in this case, the motor is still able to move). We apply these
two types of damage on two different joint locations: (1) close to the base and (2)
close to the gripper. The location of the altered joint may influence the difficulty
of the task.
In this experiment, all the features detailed previously are combined to allow the
robot to transfer knowledge, face missing data and adapt its prior knowledge. Like
in the previous experiment of this chapter, the experiments are replicated 200 times
(for each tested algorithms), each trial has a 5% chance of generating missing data
(and being blacklisted). The target is considered as being reached when the distance
between gripper and the target is lower than 50 pixels. In total, the robot will
have to reach subsequently 20 targets in order to show that the knowledge transfer
abilities remains preserved after these additional changes of the algorithm. The
values of the parameters used for these experiments can be found in appendix C.4.

5.4.4.1 Results

In a first experiment, we investigated the benefits of adapting the priors. We consid-
ered 3 variants of the State-based BO algorithm: (1) without priors, (2) with raw,
not adapted priors (using the “raw” information provided by the forward model) and
(3) with adapted priors (the information from the forward model is autonomously
adapted thanks to transformation matrix in the model). The influence of these
different priors is characterized by the number of samples (or trials) required to
reach the first target. In this experiment the notion of knowledge transfer is not
taken into account because we are considering only one target. Consequently, the
compared algorithms will show the same results as their variant using knowledge
transfer.
Contrary to our expectations, the raw prior does not hurt the learning performances
of our algorithm (see Fig. 5.8). It is even the opposite, as the median number of
trials required to reach the target is lower with the raw priors than with no priors at
all (14 trials with raw priors versus 21 trials without priors), but this difference is not

5.4. Misleading Priors 177

N
u
m

b
e
r

o
f

sa
m

p
le

s
re

q
u
ir

e
d

to
 r

e
a
ch

 t
h
e
 f

ir
st

 t
a
rg

e
t

State-based BO

State-based BO
with raw priors

State-based BO
with adapted priors

0

50

100

150

Figure 5.8: The benefits of autonomously adapting the prior knowledge. The
number of trials required to reach one target is depicted according to the use of
priors that may be misleading. When the algorithm has the ability to autonomously
adapt it priors, the target is reached almost every time in one shot thanks to the
initial 10 random samples of the initialization procedure (not counted in the number
of trial) that were enough to infer the right transformation of the priors.

statistically significant (p-value = 0.08). Moreover, the success rate is better when
the algorithm does not use any prior (99.5% without priors version 95.5 with raw
priors). This phenomenon can likely be explained by the fact that the forward model
outputs values in meters that are relatively small (lower than 1 meter) compared
to the observations in pixels (several hundreds of pixels) and that these different
sources of information are added regardless their units. Consequently, after the 10
random trials that initialize the model, the prior is completely neglected and is just
considered as noise by the model. It is likely that in the opposite situation, i.e., if
the priors are several orders of magnitude larger than the observations, the learning
performance may be dramatically affected.
When the algorithm is able to autonomously adapt its prior according to the obser-
vations, the actual benefits of the prior are revealed: the priors allow the algorithm
to reach each target in almost one trial (median in 1 trial, 5th and 95th percentiles
in [1; 3] trials). The fact that the robot is able to reach the first target in one trial
shows that the algorithm is able to autonomously infer the correct transformation
to adapt the priors in less than the 10 first random trials (performed during the
initialization of the model, and not counted in the total of required samples plotted
in the figures, see section 5.2.5.2).
When the robot has to reach several targets sequentially, the results are similar
(see Fig. 5.9). Like in the previous experiment, as long as the robot remains intact,
the priors allow the algorithm to reach each target in almost one trial (see Fig.

178 Knowledge Transfer, Missing Data, and Misleading Priors

Random Search

Traditional BO

State-Based BO

State-Based BO with Transfer

State-Based BO with Transfer and Priors

A B

C

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

700

800

Joint with a
permanent 45° offset

Joint stuck
at 45°

Target number

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

tr
ia

ls

Target number

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

tr
ia

ls

Intact Robot Damaged Robot

Figure 5.9: The benefits of using prior information. (A) Cumulative number of
trials required by the intact robot to reach 20 targets. (B) In this case, the robot
is damaged in four different ways defined in (C). The middle, solid lines represent
medians, while the colored areas extend to the 25th and 75th percentiles. Both
experiments have been replicated 100 times for each of the 5 tested algorithms and
for each of the damage situations.

5.5. Evaluation on the physical robot 179

5.9 A). The first target is reached in one trial (median in 1 [1; 3] trials) while
reaching subsequently the 20 targets requires 24 trials (24 [17.5; 30] trials). It
is possible to reach 20 targets in less than 20 trials when a movement previously
executed reached the currently considered target. In other words, when the robot
has reached a position, which is afterward specified as a target (or within the 50
pixels radius), the algorithm considers that it already achieved its task, because it
already has a solution for this task and move on the next target. This is why the
5th percentile of the results presented in this experiment needs only 17.5 trials to
reach 20 targets.
The benefits provided by the priors, when they are well adapted, are clearly visible
in this experiment. All the compared approaches, which do not use priors, require
significantly more time to reach the 20 targets, for example the State-based BO with
Transfer needs 202 trials in median (202 [136.5; 307] trials, p < 2.4× 10−34), which
is one order of magnitude slower than the same algorithm but with the adapted
priors.
When the robot is damaged, the task is more challenging for the variant using
prior knowledge. In this situation, the prior (here the forward model) is even more
inconsistent according to the reality, because, in addition to the orientation and
scale problem, the model does not take into account the damage. Nevertheless,
the results show that the priors remain useful, as the algorithm requires about 2.5
times less trials3 to reach the 20 targets than the same variant but without using
the priors (80 [44.4; 148.2] trials for State-based BO with Transfer and Priors versus
185 [105.4; 309.4] trials for State-based BO with Transfer, see Fig. 5.9 B).
With this additional feature that adapts the prior information to the acquired ob-
servations, our algorithm is able to maximize the utility of the priors and accomplish
its missions significantly faster. In our experiments, we showed that our algorithm
is able to turn a forward model initially useless into a valuable tool to reach the
targets instantaneously. We also showed that this new feature does not alter the
robot’s ability to deal with damage situations. In the following section, we will
show that these results hold with the physical robot its inherent inaccuracies.

180 Knowledge Transfer, Missing Data, and Misleading Priors

Algorithm 5 State-Based BO with Transfer, Priors and blacklists

for i < Ninit do
χ← Random
eval_solution(χ)

Optimization_Log-Likelihood
while Remains_target do

T← Select_target(State_space)
∀x ∈ Search_space:

P (f(x)|Pc1:t+1, x) = N (µt+1(x), σ2
t+1(x)I)

χ← arg maxx

(

− dist
(

T− µt+1(x)
)

+ κσt(x)
)

eval_solution(χ)
Optimization_Log-Likelihood

procedure eval_solution
Pc← state(physical_robot(C (χ)))
if Pc ̸= ∅ then

χt+1 ← χ

Pct+1 ← Pc
else

bln+1 ← χ

5.5 Evaluation on the physical robot

5.5.1 The whole framework

In this last section, we evaluate the whole framework of our state-base BO with
Transfer, Priors and blacklists algorithm. This framework is summarized in the
pseudo-code 5. For reading convenience, the mathematical notation are reported
in the appendix D.3
Behind the term P (f(x)|Pc1:t+1, x), the algorithm gathers all the features presented
previously: (1) the state-base BO defined in the equation 5.11 and which allows the
algorithms to transfer knowledge from the previous tasks to the following ones, (2)
the use of blacklists of samples introduced in equation 5.18 and (3) the automatic
adaptation of the priors that can be found in equation 5.21. The optimization
of the log-likelihood follows the equations 5.17 for the kernel’s hyper-parameters

3It is important to mention that in this experiment, contrary to those presented in the previous
chapter, the priors do not reduce the search space. This explains why the reduction of the number
of trials decreases “modestly” (2.5 times) in this experiment while it decreased by an order of
magnitude in the previous chapter. We decided to use the forward model as a prior knowledge
instead of a behavior-performance map because the very fast adaptation abilities provided by the
maps make the benefits provided by the new features introduced in this chapter less visible. For
example, the number of trials decreases from 6 to 4 after transferring knowledge. Is it thanks to
the knowledge transfer that it decreased or just because of the variability of the results (especially
important in these experiments)? The higher difficulty of these experiments, which do not use
behavior-performance maps, allows the results to be unambiguous.

5.5. Evaluation on the physical robot 181

and 5.22 for the coefficient of the transformation matrix (the matrix is visible in
appendix D.3). The values of the parameters used for the experiments presented in
this chapter can be found in appendix C.4.
The Remains_target function returns true while a target remains to be reached
and the Select_Target selects one target in the remaining ones. This last function is
called at the beginning of every iterations, which allows the algorithm to switch his
current target as soon as need, depending on external constraints. In our experiment
the robot changes his target only after reaching its current one. However, we can
imagine situations in which the robot may need to change its target more frequently.
For example, a robot learning to walk in every direction, have to change its current
target (i.e. walking direction) according on appearance of obstacles, even if it did
not managed to completely reach its target yet. Such strategy is fully possible with
the algorithm presented in this chapter, and may, for example, allow robots to learn
to walk and in the same time avoid obstacles, and thus removes the obligation to
replace the robot at its initial position between each trial, like it is customary in
the literature.

5.5.2 Experimental setup

For this last experimental validation, we apply our algorithm on the physical robot
arm (see Appendix B.2) and evaluate its performance on the same task than the
previous experiments performed in simulation (reaching subsequently 20 targets).
The reality through the looseness of the robot’s joints, the inaccuracies of the video
camera and the different light conditions adds another layer of difficulty in the
task. In this situation, the blacklists of samples are particularly useful, as several
situations make it impossible to assess the location of the laser point. For example,
the laser point can be outside the camera’s range (see Fig. 5.10 A-B) or hidden by
an obstacle (here a structure pillar, see Fig. 5.10 C-D). Moreover, light conditions
may affect the tracking system, like when the laser point is in the shadow of the
arm (the celling lamp is placed on the top of the setup).
Another reason that makes it impossible to evaluate samples is the sanity check of
auto-collisions that may fail. Before executing any behavior on the physical robot,
a sanity check is launched to verify, in simulation, that no auto-collisions occur (For
this sanity check, the simulation takes into account the undergoing damage4). If the
sanity check fails, the behavior is not tested on the physical robot and the sample
is blacklisted. This procedure is required to be able to perform several replicates of
the experiment without repeatedly worn the robot. The artificial 5% chance that a
sample becomes blacklisted, used in the simulated experiments, is disabled in this
experiment because there are already too many reasons for blacklisting samples.
In this real context, the ability to adapt the prior is also mandatory to be able
to deal with the different sources of information: the targets are defined in the

4While not realistic, this sanity check is useful to perform a large number of replicates and to
prevent to worn out or break the robot during the experiments. Moreover, the algorithm could
work identically without this sanity check.

182 Knowledge Transfer, Missing Data, and Misleading Priors

Webcam viewOverview
A B

C D

Figure 5.10: Two examples of situation where the laser point is not visible. (A-B)
The laser point is too close from the camera and consequently outside the camera’s
range. (C-D) The laser point is hidden by the pillar of the structure.

Figure 5.11: The reachable space of the robot, in white, has been determined by
recording the position of the laser point when moving the arm while it is completely
unfold. The white region has then been contracted by 10 pixels to remove points
that may be too difficult to be reached (the border of the reachable space). Based on
the resulting reachable area, depicted in white, a k-meansSeber (1984) algorithm has
been used to evenly spread 20 targets. The order of the target has been generated
randomly and is displayed in this picture.

5.5. Evaluation on the physical robot 183

State-Based BO with Transfer
State-Based BO with Transfer and Priors

C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f

tr
ia

ls

Intact Robot Damaged Robot

Joint with a
permanent 45° offset

Joint stuck
at 45°

1 1

0

50

100

150

200

250

300

Figure 5.12: Learning to sequentially reach several targets with a real robot. The
total number of trials required to reach 20 targets is depicted. For the intact robot,
the same algorithm is launched but without prior knowledge in order to show the
benefits it provides. The algorithm is also tested on four damage conditions.

camera’s frame (in pixel), the position of the laser is also assessed in the camera’s
frame (in pixel) but the forward model, used as a prior, is based on the robot’s
base frame and computed in meters (like in the previous experiments). Note that
in this experiment, the camera is placed in an arbitrary position and orientation
that allow it to perceive the entire scene.
We apply the State-based BO with Transfer and Priors on the physical robot and
we consider both the intact robot and the four damage situations (see Fig. 5.9 C).
The experiment is replicated 10 times per situation. For comparison, the State-
base BO with Transfer (but without Priors) is also tested on the physical robot.
This reference experiment is only tested on the intact robot because it requires
a significantly larger number of trials and consequently a larger amount of time
to reach the 20 targets. We conducted 10 replicates of this reference experiment.
Because the number of replicates is lower than in the previous experiments (it is
materially challenging to perform more replicates), the targets are predefined and
always the same for all the runs (see Fig. 5.11). This removes the variability
coming from the random selection of the targets, but imposes relation between the
different targets. For example, reaching the second target after the first one will
be particularly easy (see Fig. 5.11), while the third one will probably not benefit
from any knowledge acquired previously. In order to perform several replicates, the
radius of the targets has been extended to 75 pixels (corresponding approximately
to 5 centimeters) to slightly reduce the learning time.

184 Knowledge Transfer, Missing Data, and Misleading Priors

5.5.3 Experimental Results

The experimental results (see Fig. 5.12) show that the proposed algorithm allows
the robot to quickly reach the 20 targets, even when damaged. When the robot is
intact and uses its forward model as a prior, it reaches the 20 targets in about 55
trials (54.5 [33; 107] trials corresponding to 4.9 [2.9; 12.7] minutes) while without
the prior it requires about 170 trials (171 [126; 288] trials and 29.9 [14.0, 170.8]
minutes). Like in the previous experiment in simulation, the use of prior allows the
robot to divide by about three the number of required trials. By contrast, it requires
twice more trials to reach the 20 targets in reality than in simulation (medians: 24
versus 54.5 trials). This comes from the differences between the theoretical forward
model and real robot (i.e., reality gap problem, Koos et al. (2013b)). While in
simulation, the virtual robot and the forward model match perfectly, the looseness
of the robot and the inaccuracies of the cameras make the physical system notably
different from the forward model.
When the robot is damaged, the number of trials increases modestly (median over
the 4 damage conditions: 84 trials versus 54.5 trials when intact). Globally, when
the robot is damaged, it requires in median 8.1 [5.0; 24.2] minutes to adapt to the
situation and reach the 20 targets. The situations with blocked motor seems to be
more challenging than the other damage conditions, regardless the location of the
damage. It is likely that the algorithm uses its ability to transform its priors in
order to integrate the permanent offset. It also worth noting that even when the
robot is damaged, the algorithm with priors reaches the 20 targets faster than the
algorithm that does not use the priors on the intact robot. Globally, the robot needs
in average between 55 and 85 trials to reach the 20 targets while being damaged or
just to cope with the reality gap problem.
The results present two outliers that may come from a problem during the learning
process. For example, if a motor is blocked or overheats, it switches to a security
mode and stops functioning. Such problem that occurs during the learning process
is dramatic because it makes the previous observation outdated, as they do not
consider the current condition of the robot. A possible way to mitigate this problem
could be add a time stamp on the samples, which can then be taken into account
when computing the covariance matrix. With this information about the acquisition
time, recent samples will more strongly influence the model than older ones.

5.6 Conclusion

In this chapter we presented improvements that allow the intelligent trial and error
algorithm (mainly its adaptation step, using the Model-based Bayesian Optimiza-
tion) to be applied to more complex scenarios or to cope with additional problems.
In particular we described how Gaussian Processes can be extended to model multi-
channel functions and we propose to define the tasks (or the targets) in the state-
space of the robot instead of using score or performance functions. This allows
the algorithm to transfer knowledge between different tasks. While this technique

5.6. Conclusion 185

has no impact on the learning performance when considering a single task, the
knowledge transfer ability that it provides reduced the time required to achieve the
subsequent tasks. We also proposed a way to deal with solutions that cannot be
tested on the system, for different reasons like when it is impossible to measure the
performance or when a sanity check fails and prevents from executing the solution
on the robot. These situations generate missing data that are often a conundrum
when porting a learning algorithm on a physical robot and which can have dramatic
effects on the algorithms’ performance. We proposed to use blacklists of samples
to make Gaussian Processes robust to these missing data. This technique does
not affect the learning performances compared to situations without missing data
and is computationally efficient. Finally, we presented how to add more flexibility
when using prior information. The previous chapter suggested that using such prior
knowledge is one of the keys to accelerate learning processes. Unfortunately, these
priors are not always provided in a form that maximizes the amount of information
that can be exploited. In this chapter we saw several examples of situation that
turn priors into misleading information, like scale factor problems. The proposed
technique allows the algorithm to automatically adapt the priors according to its
observations in order to maximize the potential information that can be exploited.
In the worst situations, the algorithm can also autonomously disregard its priors
and start learning from scratch.
We individually evaluated the benefits of all these features in simulation and applied
the algorithm with all these new features on a physical robotic arm that has to
subsequently reach several targets. All combined, these methods allow the system
to be very flexible and adaptive: without any calibration or configuration, the
robot is able to reach targets defined in the camera image, which is placed in an
arbitrary position. The robot autonomously adapts its prior information about
itself (forward model) and after a few trials reaches the first target. It then uses its
previous experiences to reach the subsequent targets faster until reaching them in
only one shot.
The presented algorithm is not specific to one kind of robot and it makes minimal
assumptions about its morphology or its capabilities. Consequently, the algorithm
can be employed with many different types of robot and may make them easier
to be deployed without requiring extensive calibrations or expensive repairs after
being damaged. For example, this algorithm might allow our hexapod robot to
adapt to damage situations while walking in every direction.

Chapter 6

Discussion

Contents

6.1 Using simulations to learn faster 188

6.2 Gathering collections of solution into Behavioral Repertoires190

6.3 Exploring the information provided by Behavioral Reper-
toires . 193

Throughout this manuscript, we introduced three main concepts that allow robots
to adapt quickly in various situations thanks to learning algorithms that are both
fast and creative:

• Using simulations to learn faster: combining simulations and tests on physical
robots is an efficient way to reduce the time required to learn a behavior.

• Gathering collection of solutions into Behavioral Repertoires: the creativity of
evolutionary algorithms can be encapsulated in Behavioral Repertoires, which
gather large collections of both high performing and diverse solutions that are
sorted according to their behavior (via the behavioral descriptor).

• Exploring the information provided by Behavioral Repertoires: Bayesian Op-
timization (with the extensions introduced in the previous chapter) can em-
ploy the information contained in the behavioral repertoire to rapidly explore
it and find an adequate behavior according to the situation.

In the following sections, we will discuss the limitations of each of these concepts
and give examples of situations in which our methods may be difficult to apply.
We will propose improvements that may mitigate these limitations and potentially
increase the abilities of robots. In particular, we will show that several of the
concepts presented in this manuscript and some of the improvements that we will
propose share similarities with observations made in neuroscience about the learning
processes that happen in mammals’ brain. We will also highlight the links between
our approaches and the field of developmental robotics, which takes inspiration
from the cognitive development of infants and aims to allow robots to autonomously
develop their own representations, to discover their environment and to learn new
skills to be able to face new situations (Lungarella et al., 2003).

188 Discussion

6.1 Using simulations to learn faster

Our experiments show that using the simulation is a promising approach to speed up
learning processes. Indeed, behaviors can be evaluated faster in simulation than in
reality and several behaviors can be evaluated in parallel, which is impossible when a
single robot is available. However, behaviors found in simulation often do not work
as expected in reality because learning (evolutionary) algorithms tend to exploit
inaccuracies of the simulation to artificially boost their performance (Jakobi et al.,
1995; Boeing and Braunl, 2012; Koos et al., 2013b). Across all this manuscript,
we hypothesize that there exist behaviors that work similarly in simulation and in
reality, even when the simulation and the reality differ significantly, like in damage
conditions. Our experimental results illustrate that this hypothesis holds in at
least all the scenarios we tested (see experiments in section 4.3.3.1). Nonetheless, it
may exist situations in which this hypothesis is wrong. For example, manipulation
tasks can be difficult to model in simulation because they often involve complex
interactions. Another example is when the simulated environment is very different
from the real one. Typically, it is unlikely to find a behavior that would allow a
robot to climb stairs in reality if the simulation only relies on a flat ground.
To address this problem, we can imagine to allow the robot to progressively create,
refine or enhance the simulator based on its experience in order to make it as close as
possible to the reality. The algorithm presented by Bongard et al. (2006) (see section
4.1.2), which uses simple tests on the physical robot to infer its morphology, is a
method that can typically be used to improve the simulator. Based on the behaviors
executed during the robot’s mission and corresponding observations, the algorithm
can modify the simulation parameters (e.g., the robot’s virtual morphology, the
parameters of the virtual environment) to reproduce the observations in simulation
or define the actions that have to be performed the following day to remove the
ambiguities. With this updated self-model, the robot may more efficiently continue
its mission and gather additional data that will be used afterward to further improve
the self-model.
The algorithm presented by Schmidt and Lipson (2009) is another example of poten-
tially useful algorithm that can be used to create a simulator from scratch based on
the robot’s experience. This approach uses a multi-objective genetic programming
algorithm to infer the equations that explain the observed data. The algorithm
outputs a set of equations that correspond to different trade-offs between simplicity
and accuracy of the equations. For example, it has been used to infer the equations
of physics that drive the movements of a double pendulum. A similar approach can
be used to let robots build their own simulators by discovering the laws of physics
and the consequences of their actions. Nonetheless, while it is possible to automat-
ically designing a simulator based on noisy observations for simple systems like a
double pendulum, doing the same with complex systems like legged or humanoid
robots remains a serious challenge (Zagal et al., 2009).
The concept of replaying the robot’s actions in simulation is similar to what seems
to occur in the brain of mammals during sleep periods. Indeed, it has been observed

6.1. Using simulations to learn faster 189

that some neural activities that occurred during awake periods are replayed during
the night (Wilson and McNaughton, 1994; Peyrache et al., 2009). For example,
it has been observed with some birds (the Zebra finch) that the pattern of neural
activity produced while the bird is awake and singing, is reproduced while the
bird is sleeping (Dave and Margoliash, 2000). As pointed out by Derégnaucourt
et al. (2005), this observation “suggests the possibility of song rehearsal during
sleep”. The same observation has been made with place cells in rats’ brain. These
cells, which fire depending on the rat’s location (O’keefe and Nadel, 1978; Moser
et al., 2008), produce the same pattern of activity during spatial experiments and
during the following sleep periods (Wilson and McNaughton, 1994; Skaggs and
McNaughton, 1996a; Louie and Wilson, 2001; Peyrache et al., 2009; de Lavilléon
et al., 2015). These experiments suggests that rats are replaying during their dream
the path they followed when they were awake.
Moreover, a large number of studies revealed evidences that these replays during
sleep periods play an important role in the developmental learning of both ani-
mals and humans (Derégnaucourt et al., 2005; Peigneux et al., 2004; Maquet et al.,
2000; Gais and Born, 2004; Hobson and Pace-Schott, 2002). For example, Derég-
naucourt et al. (2005) show that a deterioration in structure of the zebra Finch’s
song happens after night-sleep, and is followed by a rapid improvement after intense
morning singing with a significant variation in the song structure. In de Lavilléon
et al. (2015), the authors artificially produced rewarding stimulation in mice’s brain
during activity replays of place cells in order to create artificial memories. The pro-
duced place-reward association incited the mice to move to this location the follow
day even if they never received rewards in reality. All these studies suggest that
replaying actions or events during off-line periods (like dreams) appear to be impor-
tant parts of the learning process of animals and humans. We can thus imagine that
similar strategies may be instrumental to improve the cognitive abilities of robots.
It is interesting to note that replays of neural activities occur not only during sleep
periods, but also during awake periods: before the task (Diba and Buzsáki, 2007;
Dragoi and Tonegawa, 2011) and after the task (Foster and Wilson, 2006). While
re-activations after the experience (for example, spatial experience) are supposed to
play a role in the evaluation the behaviors, like in a reinforcement learning process,
the pre-activations may suggest that the brain is “simulating” the states the animal
may encounter in order to improve its anticipation or planning abilities (Diba and
Buzsáki, 2007; Ferbinteanu and Shapiro, 2003; Jeannerod, 2001). There are also
several observations that suggest that the brain is using neural simulation in order
to “provide the self with information on the feasibility and the meaning of potential
actions” (Jeannerod, 2001). It has been observed that these replays or pre-plays are
compressed in time by a factor up to 6 or 7 (Euston et al., 2007; Diba and Buzsáki,
2007; Skaggs and McNaughton, 1996b). These properties shares similarities with
our algorithms (Both the T-Resilience and the Intelligent Trial and Error) that first
evaluate solutions in simulation before executing them in reality and take advantage
of the time compression provided by the simulation.

190 Discussion

6.2 Gathering collections of solution into Behavioral
Repertoires

In the chapter 4, we showed that the dimensionality reduction and the information
provided by the behavior-performance maps are the two key factors that allow our
robots to adapt quickly. We presented two algorithms that generate such behavioral
repertoires: TBR-Evolution and MAP-Elites (see chapter 3). These two algorithms
require the users to define the dimensions of the behavioral space in which he
is interested in seeing variation in. This choice is critical because it influences
the types of solution that can be discovered by the algorithms. For example, in
a first experiment, we defined the behavioral descriptors as the X/Y position of
the robot at the end of its movement. The behavioral repertoires produced with
this configuration then contained turning behaviors, as turning allows the robot to
reach new locations (see section 3.3.2.1). In a second experiment, we defined the
behavioral descriptor as the proportion of time that each leg touches the ground, and
in this case, the resulting repertoires contained behaviors that walk in a straight line
(see section 3.3.2.2). The performance function also plays an important role in the
types of solution produced by the algorithms. For instance, the walking behaviors
that walk on a straight line, mainly emerged because the performance function
promoted behaviors with a high forward walking speed. Even if the algorithms that
employ the behavioral repertoires (like the Intelligent trial and Error) can be robust
to the different behavioral descriptors (see experiments in section 4.3.3.5), selecting
the most appropriate behavioral descriptor or performance function remains an
open question or requires knowledge from an expert.
While our concept of behavioral repertoires comes from robotics (i.e., how to learn
several actions, like walking in every direction, see chapter 3), we can note that some
evidences suggest that animals may have a form of behavioral repertoire encoded
brain into their brain. For example, it has been shown (Graziano, 2006; Graziano
and Aflalo, 2007) that primates use different regions of their cortex for different
primitive actions: the excitation of different areas of a monkey’s brain makes the
animal execute different primitive actions, like grasping or hand-mouth interactions.
Moreover, in Graziano and Aflalo (2007), the authors underline that “One way to
describe the topography of the cerebral cortex is that ‘like attracts like.’The cortex is
organized to maximize nearest neighbor similarity or local continuity.” These two
properties are similar to those of behavioral repertoires, which contain several low-
level behaviors (that can be regarded as “primitive”) that are arranged according to
their similarities (behaviors with similar behavioral descriptors are closely located
in the repertoire).
From a higher level perspective, we can observe that the way our algorithms build
behavioral repertoires shares similarities with what happen in the development of
infants. In order to discover the relation between their movements and their percep-
tions, infants perform repeatedly analogous behaviors. This natural developmental
process is called “body babbling”. In Meltzoff and Moore (1997), the authors explain

6.2. Gathering collections of solution into Behavioral Repertoires 191

“what is acquired through body babbling is a mapping between movements and the
organ-relation end states that are attained.” They define organ-relation end states
as the relative position of the organs that can be can be monitored via propriocep-
tion. The authors illustrate this notion with the example of infants that perform
vocal babbling to learn the mapping between the movement of their tongue, mouth
and lips to the auditory consequences.
A direct parallel can be drawn between Behavioral Repertoires and body babbling.
The mapping between movements and perceptions acquired through body babbling
is analogous to a Behavioral Repertoires, which maps the parameter values (that
define the performed movements) to the corresponding behavioral descriptors (that
define the corresponding perceptions). The way both of these mapping are gener-
ated is also similar. The behavioral repertoires and infants’ internal mapping are
both construct by performing random movements.
The concept of body babbling has been particularly studied in the field of devel-
opmental robotics (Lungarella et al., 2003; Demiris and Dearden, 2005; Saegusa
et al., 2009; Baranes and Oudeyer, 2013; Rolf et al., 2010). The presumed central
role of body babbling in the development of infants makes it a promising tool for
developmental robotics. In particular, it has been recently opposed two models of
babbling: (1) motor babbling and (2) goal babbling. The main difference between
these two concepts is that instead of randomly exploring the motor space, like in
motor babbling, goal babbling focuses the exploration around particular goals (de-
fined in the goal space). Several studies showed evidences that the body babbling
of infants is likely goal-directed (Rolf et al., 2010; Von Hofsten, 2004).
Goal-directed babbling has been successfully implemented in robotics (Baranes and
Oudeyer, 2013; Rolf et al., 2010), typically to allow robotic arms to autonomously
discover their inverse kinematic model. For example, the “SAGG-Random” algo-
rithm1 (for Self-Adaptive Goal Generation) (Baranes and Oudeyer, 2013) randomly
selects a goal in the goal space and the robot uses a progressively built model to
reach the goal. Each failed attempt is used to refine the model and allows to the
robot to become more accurate. Once the goal is reached, another goal is selected
and the process repeats. The objective of the algorithm is to build a model that
allows the robotic arm to reach any possible point of its reachable space from any
initial condition.
In order to explore the goal space, the robot has to know what is a “goal” among
its sensory space. Indeed, the sensory space of often larger than the goal space,
which makes the link between goals and observations nontrivial. For example, in
reaching tasks with a robotic arm, the robot needs to know that a goal is defined by
the position of the target, while it can perceive the angular positions of his joints,
the applied torques and potentially much other information. The constraint of

1This algorithm is a variant of the SAGG-Robust Intelligent Adaptive Curiosity. In this al-
gorithm, the goal, instead of being randomly selected, is selected via a heuristic (an artificial
curiosity) that select the goal that is expected to maximize the learning progress of the robot. In
this discussion we consider only the “random” variant because this algorithm is relatively similar
to MAP-Elites.

192 Discussion

pre-defining the goal space contrasts with the objectives of developmental robotics,
as this field aims to allow robots to discover on their own their abilities and in
particular the main structures present in their perception.
Moreover, a goal space is likely to contain goals that are unrealizable, like the points
outside the reachable space of the robot (Baranes and Oudeyer, 2013). Such goals
may mislead goal-babbling approaches, which may spend some time trying to reach
these impossible targets. The probability of selecting an unrealistic goal is likely to
increase with the size of the goal or sensory space. For example, if the sensory space
is the image of the robot’s camera, then the dimensionality of the sensory space is
equal to the number of pixels times the number of color that each pixel can display.
Randomly selecting a goal in such sensory space corresponds to randomly selecting
the color of each pixel. It is then impossible for a robot to find a movement that
generates this type of perception. This is a typical example of a goal space that
cannot be handled with traditional goal-babbling approaches without providing a
noticeable amount of prior-knowledge (i.e., how to extract goals from the images).
While both TBR-Evolution and MAP-Elites can be considered as body-babbling
approaches, they cannot be categorized neither as a motor babbling nor as goal
babbling approach but rather as a combination of these two types of approach.
The exploration of the search space, while performed in the parameter/motor space
(only the parameter values are altered by the algorithms), is focused on particular
regions of the behavioral or goal space. TBR-Evolution focuses on novel behav-
iors and MAP-Elites focuses on elites ones (those that are both diverse and high-
performing). While the notion of behavioral descriptor is related to the notion of
goal space (because both of them are subspaces of the sensory space), our algo-
rithms does not rely on randomly generated goals but rather on descriptors they
actually observed. Thanks to this property, both of the TBR-Evolution algorithm
and MAP-Elites can deal with misleading or large goal spaces. In our previous
example of the camera image, our algorithms will focus on behaviors that generate
images considered as enough interesting to be added into the repertoires (because
they are novel or an elite). These behaviors will then be modified in order to produce
potentially interesting variations of these images and thus progressively explore the
space of the possible images. These properties show that Behavioral Repertoires
and the algorithms used to generate them could be promising tools to study the
body babbling in developmental robotics
The ability of TBR-Evolution to focus on novel behaviors is also related to the
concept of intrinsic motivation. In Oudeyer et al. (2007), the authors defined an
intrinsic motivation as “the maintenance of an abstract dynamic cognitive variable”.
The novelty value of each behavior, computed thanks to the internal archive, is an
abstract variable that determines on which regions of the search space the algo-
rithm will focus. In this sense, the novelty search is similar to an artificial curiosity
because it fosters the algorithm to discover novel behaviors. The definition of ar-
tificial curiosity proposed by Oudeyer et al. (2007) states that it aims to maintain
at a maximal level the learning progress of the argent. In order to continuously
improve his knowledge, the robot is fostered to explore new situations. While the

6.3. Exploring the information provided by Behavioral Repertoires 193

implementations of the Intelligent Adaptive Curiosity (introduced by Oudeyer et al.
(2007)) and the Novelty Search (Lehman and Stanley, 2011a) differ, we can observe
that both of them follow the definition of artificial curiosity. In addition to this link
between the Novelty Search and the artificial curiosity, the different similarities be-
tween our methods and developmental robotics that we highlighted in this section,
like the generation of behavioral repertoire and body babbling, suggest that evolu-
tionary computation can provide new concepts of tools to developmental robotics.
Such cross-fertilisation may be beneficial for both of these two research fields that
have some goals in common (e.g., automatically creating autonomous agents or
exploring unknown sensory-motor spaces, Lungarella et al. (2003); Lehman and
Stanley (2011b); Delarboulas et al. (2010); Baranes and Oudeyer (2013)).

6.3 Exploring the information provided by Behavioral
Repertoires

We saw in this manuscript that considering the behavioral repertoires as a new
search space is an effective method to reduce the number of required trials to learn a
behavior (see chapter 4 and 5). However, this approach imposes a strong hypothesis:
the solution of the problem should be in the repertoire, otherwise it cannot be found
by the algorithm. While we faced only one situation during our experiments in
which the solution was not in the repertoire (see section 4.3.3.2), this problem may
become more frequent if the behavioral space is not well chosen and if it does not
contain diverse enough solutions. This problem is another illustration of the fact
that the choice of the behavioral descriptors is critical.
In order to define the right behavioral descriptors, a typical method consists in
foreseeing the different situations the robot may have to face or the different be-
haviors it may need and to select a behavioral descriptor that embraces a large
variety of behaviors that may be useful to the robot. This procedure is similar to
the traditional method employed in engineering for damage recovery (see chapter
4), which attempts to foresee the different ways a robot can become damaged in
order to pre-design the different contingency plans of the robot. Compared to this
traditional approach, the advantage of behavioral repertoire-based adaptation is
that it works on an higher level, which makes easier to find a good solution that
works on a large variety of situation. Indeed, the Intelligent Trial and Error does
not require to precisely anticipate every situation the robot may face, but rather to
define, via the behavioral descriptors, a family of behaviors that is enough diverse
to contain promising solutions.
While we demonstrated that our approach works for a large variety of situations
and robots, we can imagine to mitigate this limitation with the same alternative
as the one we proposed to address the challenge of anticipating every situations:
we can let robots learn on their own the most adequate behavioral descriptors
based on their own experience. For example, and in addition to updating and
improving the simulation as suggested in section 6.1, the robot can employ the

194 Discussion

information gathered during the beginning of its mission in order to infer which are
the behavioral dimensions that provide most of potentially useful behaviors and then
re-generating or updating the repertoires according to this new behavioral space.
For example, the algorithm can select the behavioral descriptors that produce the
most diverse and high-performing collection of behaviors, or those that generate
the largest diversity of behaviors.
The generation of the new behavioral repertoires can be executed when the robot
is not active, for example during the night, or deported on a remote computing
facilities (on the cloud). Once behavioral repertoire generated, for instance the
day after, the robots may benefit from their improved source of knowledge to more
efficiently carry on their mission and continue to gather data that will be used the
following night. We can imagine that, via such alternation of active and passive
periods that improve both the simulators and the behavioral repertoires, the robots
can progressively become more robust and discover new behaviors or abilities.
This approach of day and night cycles shares several similarities with the restruc-
turings that occur during mammals’ dreams. As mentioned in beginning of this
discussion, actions or events experienced during the day are replayed in the brain
during the night, but dreams appear to be an important component of how the
memory in general, and motor skill in particular, are consolidated, structured and
re-structured (Gais and Born, 2004; Stickgold et al., 2001; Stickgold, 2005). In
particular, it has been shown that dreams are instrumental to find solutions to
problems, as commonly expressed by the concept of “sleeping on a problem” (Stick-
gold, 2005). For example, subjects are more likely to find a better solution to
cognitive, visual or motor tasks after sleep than after wakefulness (Wagner et al.,
2004; Stickgold et al., 2000; Walker et al., 2002; Huber et al., 2004). In the same
vein as bio-inspired robotics (Pfeifer et al., 2007), implementing dream-like pro-
cesses in robots that restructure their experience may allow them to become more
robust, effective and autonomous.
This concept of dreaming robots will be investigate in a European project that
started recently and which is named “DREAM: Deferred Restructuring of Experi-
ence in Autonomous Machines”. The goal of this project is to combine tools from
evolutionary computation or machine learning (like deep learning, LeCun et al.
(2015)) with observations in neuroscience or in Psychology in order to design devel-
opmental learning approach that takes inspiration from the cognitive development
of infants.

Chapter 7

Conclusion

Throughout this manuscript, we defined and evaluated a set of algorithms to make
robots able to deal with unforeseen situations (like a mechanical damage) by learn-
ing on their own an adequate solution. To achieve this objective, the proposed
learning algorithms attempt to combine both speed and creativity. These two prop-
erties are important because quickly finding a solution is critical in many situations,
for instance in search and rescue missions, and creatively discovering new solutions
allow the system to deal with truly unexpected situations.
In our review of the literature (chapter 2), we considered the Evolutionary Al-
gorithms and the Policy Search algorithms, which are the two main families of
learning algorithms used to learn low-level behaviors (motor skills). Evolutionary
Algorithms are more creative than most of optimization algorithms because they
are able to deal with large search spaces without being severely affected by local
optimums. The main drawback of these algorithms is that they usually require
several hundreds or thousands of evaluations to find a solution, which makes them
difficult to apply on physical robots. Conversely, Policy Search algorithms are fast
learning algorithms that are able to find solutions in about a hundred evaluations.
Nonetheless, this learning speed is mainly explained by the fact that Policy Search
algorithms are local search approaches, which need a good initialization procedure
(for example, via an human demonstration) and usually converge toward the closest
local optimum. This constraint limits the application of Policy Search algorithms
on autonomous robots that operate on remote sites, as in such condition no teacher
is available. At the end of our review, we presented the Bayesian Optimization
algorithm, which is one of the fastest Policy Search algorithms. This algorithm is
less affected by local optimums and does not need particular initialization proce-
dure. However, it is limited to small search spaces, which prevents the algorithm
to explore large search spaces to find creative solutions.
In this thesis, we proposed new algorithms that allow to combine the advantages
of these three families of algorithm and to mitigate their limitations. With our
algorithms, robots are able to adapt to many damage conditions in less than two
minutes (which corresponds to a handful of evaluations) and to learn how to achieve
20 tasks in less than 10 minutes.
We first proposed to use Evolutionary Algorithms to generate collections of poten-
tially useful behaviors in simulation. We called these collections “Behavioral Reper-
toires”. The main advantage of these behavioral repertoires is that they project
large parameter search space (with several dozens of dimension) into small behav-

196 Conclusion

ioral spaces (with less than a dozen of dimension). In addition of being smaller and
thus easier to explore, the behavioral space generated by the behavioral repertoires
contains exclusively behaviors that are predicted to be high performing. As a sum-
mary, behavioral repertoires encapsulate the creativity of evolutionary algorithm
into small behavioral spaces that gather large collections of both high performing
and diverse solutions that are sorted according to their behavior (via the behavioral
descriptor).
We presented two algorithms, TBR-Evolution and MAP-Elites, that can be em-
ployed to generate behavioral repertoires (chapter 3). These algorithms generate
several hundreds or thousands of behaviors without requiring learning each of them
separately (with independent learning processes). We illustrated the abilities of our
algorithms in two experiments. In the first experiment, our hexapod robot learned
to walk in every direction, while in the second experiment, it discovered a large va-
riety of ways to walk by differently using its legs. In both of these experiments, the
proposed algorithms have been able to find large varieties of behaviors. Typically,
MAP-Elites found 1270 controllers that allow the robot to walk in every direction
and at different speeds and more about 13 000 different ways to walk on a straight
line.
While the generation of these behavioral repertoires is only feasible in simulation,
as it requires evaluating several million solutions, we showed that the information
contained in these collections of behaviors are instrumental to allow robot to adapt
to unforeseen situations like mechanical damage. Indeed, combining information
coming from a simulator with tests on physical robots is an efficient way to reduce
the time required to learn a behavior.
In particular, we presented the Intelligent Trial and Error algorithm (chapter 4),
which explores the behavioral repertoire via a Bayesian Optimization algorithm.
The Intelligent Trial and Error algorithm takes advantage of the creative solutions
contained in the repertoires and of the speed of Bayesian Optimization to exploit
the information contained in the repertoire to find an adequate behavior according
to the situation. Our experiments revealed that the proposed algorithm allows
robots to adapt to a large variety of damage situations in less than 2 minutes
(i.e., less than 15 trials) while several hours are usually required with traditional
learning methods (see chapter 2 and section 4.1.1). We first tested the algorithm
on a physical hexapod robot injured in five different ways. For all these damages
situations, the robot has been able to adapt in less than 2 minutes, even in the most
difficult scenario in which it lost two legs. We then illustrated the fact that this
algorithm is not specific to one type of robot by testing its performance on a robotic
arm. The results showed that the robot is able to adapt in less than 30 seconds
to the 14 damage scenarios tested. Moreover, we demonstrated that this algorithm
can also be used to adapt to environmental changes, like sloping ground. Finally,
we proved that the algorithm is robust to the choice of behavioral descriptor used
to create the behavioral repertoires, even if this aspect is particularly critical, as it
defines the types of solutions that will be found by the algorithm.
In the last part of this manuscript (chapter 5), we proposed three extensions of the

197

Intelligent Trial and Error algorithm to make it able to deal with three problems
that often affect robotic experiments: (1) transferring knowledge from one task to
faster learn the following ones, (2) dealing with solutions that cannot be evaluated
on the robot, which may hurt learning algorithms and (3) adapting prior information
that may be misleading, in order to maximize their potential utility.
We first proposed to extend the Gaussian Processes, used in the Bayesian Opti-
mization, to allow the algorithm to transfer knowledge across different tasks. This
extension is based on acquiring the observation directly in the state space of the
robot instead of in its rewards space, because a reward is less informative than
a whole state. These enhanced acquisitions allow the algorithm to generalize its
knowledge over the different tasks the robot has to achieve. We evaluated this
property with a robotic arm that has to reach subsequently 20 targets and the re-
sults revealed that the information gathered while reaching the first targets allows
the robot to reach almost instantaneously the last ones.
With our second extension, we considered the problem of solutions that cannot be
evaluated on the robot, which may happen for different reasons (see section 5.3)
and may hurt the learning performance of the algorithms. We proposed to use a
blacklist of solutions, which allows the algorithm to be robust to the missing data
by avoiding problematic solutions. Our experimental validation showed that thanks
to this simple and computationally effective extension, these missing data do not
affect the learning performance of the algorithm.
The last extension of the Intelligent Trial and Error algorithm that we presented
in this manuscript allows the algorithm to maximize the usefulness of prior infor-
mation, for example provided by behavioral repertoires. Exploiting this source of
knowledge is one of the keys that explain the results of the Intelligent Trial and
Error algorithm (see section 4.3.3.3). However, it may happen that the information
contained in the behavioral repertoire is not expressed in a form that is not mean-
ingful for the algorithm. We proposed to make the algorithm able to autonomously
adapt, via an homogeneous transformation, the information provided by the prior
to make it match with the acquired observations and thus to maximize its potential
utility. Our experiments showed that with less than 10 random evaluations, the
algorithm has been able to infer the right transformation between a forward model
(expressed in meter in the robot’s base frame) and the observations of the loca-
tion of the robot’s gripper (expressed in pixel in the camera’s based frame, which
is placed in an arbitrary position close to the robot). Thanks to the discovered
relation between the forward model and the observations, the robot successfully
reached his targets always in the first trial.
With all these extensions, the Intelligent Trial and Error is designed to be a generic
algorithm that can be applied to many types of robot, to adapt to unforeseen
situation, to learn a large variety of actions, and to simultaneously improve the
robot’s performance on several tasks.
While all the algorithms presented in this manuscript stem from an engineering
perspective, several parallels can be drawn between them and observations made
on the neural activities in mammal’s brain (chapter 6). In particular, several ob-

198 Conclusion

servations, like the pre-plays or replays of neural activities, suggest that the brain
uses a “neural simulation” of actions to gather information that is used to improve
its abilities. This neural process is similar to the main concept of our algorithms,
which execute actions in simulation to gather knowledge about their consequences
and to rapidly select the most promising behaviors that has to be tested in reality.
Moreover, the links between our algorithms and the research field of developmental
robotics suggest that Evolutionary algorithms may provide useful tools to this do-
main. For example, the Intelligent Trial and Error can be a valuable tool to generate
a goal-oriented babbling, via the MAP-Elites algorithm. The information gathered
thanks to this babbling can then be exploited to produce complex behaviors or to
generate high-level knowledge, like object affordances from the robot’s interactions
its environment. The Intelligent Trial and Error algorithm is also a promising sub-
strate to design active/passive cycles, which can take inspiration from day and night
cycles that appear to play an important role in the developmental learning of both
animals and humans.

Bibliography

Abramowitz, M., Stegun, I. A., et al. (1966). Handbook of mathematical functions.
Applied Mathematics Series, 55:62. (Cité en page 39.)

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural compu-
tation, 10(2):251–276. (Cité en page 31.)

Angeli, A., Doncieux, S., Meyer, J.-A., and Filliat, D. (2009). Visual topological
slam and global localization. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pages 4300–4305. IEEE. (Cité en pages 52 et 96.)

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469–483.
(Cité en page 111.)

Avriel, M. (2003). Nonlinear programming: analysis and methods. Courier Corpo-
ration. (Cité en page 9.)

Bachoc, F. (2013). Cross validation and maximum likelihood estimations of hyper-
parameters of gaussian processes with model misspecification. Computational
Statistics & Data Analysis, 66:55–69. (Cité en page 42.)

Bagnell, J. A. and Hneider, J. G. S. (2001). Autonomous helicopter control using
reinforcement learning policy search methods. In Robotics and Automation, 2001.
Proceedings 2001 ICRA. IEEE International Conference on, volume 2, pages
1615–1620. IEEE. (Cité en page 33.)

Baldassarre, G. and Mirolli, M. (2013). Intrinsically motivated learning systems:
an overview. Springer. (Cité en page 8.)

Baranes, A. and Oudeyer, P.-Y. (2013). Active learning of inverse models with
intrinsically motivated goal exploration in robots. Robotics and Autonomous
Systems, 61(1):49–73. (Cité en pages 149, 191, 192 et 193.)

Barfoot, T., Earon, E., and D’Eleuterio, G. (2006). Experiments in learning
distributed control for a hexapod robot. Robotics and Autonomous Systems,
54(10):864–872. (Cité en pages 21, 25 et 129.)

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural networks for
adaptive behavior. Adaptive behavior, 1(1):91–122. (Cité en page 21.)

Bellingham, J. G. and Rajan, K. (2007). Robotics in remote and hostile environ-
ments. Science, 318(5853):1098–102. (Cité en page 90.)

Benson-Amram, S. and Holekamp, K. E. (2012). Innovative problem solving by
wild spotted hyenas. Proceedings of the Royal Society B: Biological Sciences,
279(1744):4087–4095. (Cité en page 139.)

200 Bibliography

Benureau, F. and Oudeyer, P.-Y. (2013). Autonomous reuse of motor exploration
trajectories. In Development and Learning and Epigenetic Robotics (ICDL),
2013 IEEE Third Joint International Conference on, pages 1–8. IEEE. (Cité
en page 146.)

Berenson, D., Estevez, N., and Lipson, H. (2005). Hardware evolution of analog
circuits for in-situ robotic fault-recovery. In Proc. of NASA/DoD Conference on
Evolvable Hardware, pages 12–19. (Cité en pages 51 et 93.)

Bernard, A., André, J.-B., and Bredeche, N. (2015). Evolution of cooperation
in evolutionary robotics: The tradeoff between evolvability and efficiency. In
Advances in Artificial Life, ECAL. (Cité en pages 11 et 22.)

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and Bertsekas, D. P. (1995).
Dynamic programming and optimal control, volume 1. Athena Scientific Belmont,
MA. (Cité en page 9.)

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Robot programming
by demonstration. In Springer handbook of robotics, pages 1371–1394. Springer.
(Cité en page 8.)

Billing, D. (2007). Teaching for transfer of core/key skills in higher education:
Cognitive skills. Higher education, 53(4):483–516. (Cité en page 146.)

Blanke, M. and Schröder, J. (2006). Diagnosis and fault-tolerant control. Springer.
(Cité en page 90.)

Blight, B. and Ott, L. (1975). A bayesian approach to model inadequacy for poly-
nomial regression. Biometrika, 62(1):79–88. (Cité en page 175.)

Blum, M. and Riedmiller, M. (2013). Optimization of gaussian process hyperpa-
rameters using rprop. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning. (Cité en page 41.)

Boeing, A. (2009). Design of a physics abstraction layer for improving the validity
of evolved robot control simulations. Citeseer. (Cité en page 22.)

Boeing, A. and Braunl, T. (2012). Leveraging multiple simulators for crossing the
reality gap. In Control Automation Robotics & Vision (ICARCV), 2012 12th
International Conference on, pages 1113–1119. IEEE. (Cité en pages 22 et 188.)

Bongard, J. (2007). Action-selection and crossover strategies for self-modeling ma-
chines. In Proceedings of Genetic and Evolutionary Computation Conference
(GECCO), pages 198–205. ACM. (Cité en page 241.)

Bongard, J. and Lipson, H. (2005). Nonlinear system identification using coevo-
lution of models and tests. IEEE Transactions on Evolutionary Computation,
9(4):361–384. (Cité en page 94.)

Bibliography 201

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines through contin-
uous self-modeling. Science, 314(5802):1118–1121. (Cité en pages 22, 25, 50, 51,
90, 92, 93, 94, 96, 102, 111, 129, 140, 188 et 240.)

Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM,
56(8):74–83. (Cité en page 50.)

Bonilla, E. V., Chai, K. M., and Williams, C. (2007). Multi-task gaussian process
prediction. In Advances in neural information processing systems, pages 153–160.
(Cité en pages 145 et 154.)

Booker, A. J., Dennis Jr, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Tros-
set, M. W. (1999). A rigorous framework for optimization of expensive functions
by surrogates. Structural optimization, 17(1):1–13. (Cité en page 35.)

Borji, A. and Itti, L. (2013). Bayesian optimization explains human active search.
In Advances in Neural Information Processing Systems 26 (NIPS), pages 55–63.
(Cité en pages 35, 112 et 140.)

Boyle, P. and Frean, M. (2005). Dependent gaussian processes. Advances in neural
information processing systems, 17:217–224. (Cité en pages 153 et 154.)

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psychology. MIT press.
(Cité en page 20.)

Brochu, E., Brochu, T., and de Freitas, N. (2010a). A bayesian interactive optimiza-
tion approach to procedural animation design. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 103–112.
Eurographics Association. (Cité en page 39.)

Brochu, E., Cora, V. M., and De Freitas, N. (2010b). A tutorial on bayesian
optimization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599. (Cité
en pages 35, 36, 37, 42, 43, 114 et 115.)

Brooks, R. et al. (1986). A robust layered control system for a mobile robot. Robotics
and Automation, IEEE Journal of, 2(1):14–23. (Cité en page 2.)

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and autonomous systems,
6(1):3–15. (Cité en pages 1 et 2.)

Caccavale, F. and Villani, L., editors (2002). Fault Diagnosis and Fault Tolerance
for Mechatronic Systems: Recent Advances. springer. (Cité en page 91.)

Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P. (2014). An experimen-
tal comparison of bayesian optimization for bipedal locomotion. In Proceedings of
2014 IEEE International Conference on Robotics and Automation (ICRA). (Cité
en pages 25, 35, 45, 51, 114, 115, 123, 126, 127, 128, 129, 151 et 162.)

202 Bibliography

Carlson, J. and Murphy, R. R. (2005). How UGVs physically fail in the field. IEEE
Transactions on Robotics, 21(3):423–437. (Cité en page 2.)

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75. (Cité en
page 146.)

Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2004). On the generalization abil-
ity of on-line learning algorithms. Information Theory, IEEE Transactions on,
50(9):2050–2057. (Cité en page 147.)

Chang, C. and Lin, C. (2011). Libsvm: a library for support vector machines. ACM
Trans. on Intelligent Systems and Technology, 2(3):27. (Cité en pages 57, 59, 60
et 101.)

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Unshackling evolution:
evolving soft robots with multiple materials and a powerful generative encoding.
In Proceedings of the 15th annual conference on Genetic and evolutionary com-
putation, pages 167–174. ACM. (Cité en page 11.)

Chernova, S. and Veloso, M. (2004). An evolutionary approach to gait learning
for four-legged robots. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), volume 3, pages 2562–2567. IEEE. (Cité
en pages 21, 25 et 51.)

Christensen, D. J., Larsen, J. C., and Stoy, K. (2013). Fault-tolerant gait learning
and morphology optimization of a polymorphic walking robot. Evolving Systems,
pages 1–12. (Cité en pages 93 et 129.)

Cliff, D., Husbands, P., and Harvey, I. (1993). Explorations in evolutionary robotics.
Adaptive behavior, 2(1):73–110. (Cité en page 21.)

Clune, J., Beckmann, B., Ofria, C., and Pennock, R. (2009). Evolving coordinated
quadruped gaits with the HyperNEAT generative encoding. In Proceedings of
the IEEE Congress on Evolutionary Computation, pages 2764–2771. (Cité en
page 230.)

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of
modularity. Proceedings of the Royal Society of London B: Biological Sciences,
280(1755):20122863. (Cité en pages 11, 14 et 54.)

Clune, J., Stanley, K., Pennock, R., and Ofria, C. (2011). On the performance of in-
direct encoding across the continuum of regularity. IEEE Trans. on Evolutionary
Computation, 15(3):346–367. (Cité en pages 50, 51, 59, 228 et 230.)

Cohn, D., Atlas, L., and Ladner, R. (1994). Improving generalization with active
learning. Machine learning, 15(2):201–221. (Cité en page 147.)

Corbato, F. (2007). On Building Systems That Will Fail. ACM Turing award
lectures, 34(9):72–81. (Cité en page 90.)

Bibliography 203

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297. (Cité en page 144.)

Cox, D. D. and John, S. (1997). Sdo: A statistical method for global optimization.
Multidisciplinary design optimization: state of the art, pages 315–329. (Cité en
page 44.)

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequen-
tial programs. In Proceedings of the First International Conference on Genetic
Algorithms, pages 183–187. (Cité en page 15.)

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots that can adapt
like animals. Nature, 521(7553):503–507. (Cité en pages 93 et 162.)

Currie, K. and Tate, A. (1991). O-plan: the open planning architecture. Artificial
Intelligence, 52(1):49–86. (Cité en page 51.)

Daniel, C., Neumann, G., and Peters, J. R. (2012). Hierarchical relative entropy
policy search. In International Conference on Artificial Intelligence and Statistics,
pages 273–281. (Cité en page 26.)

Dantzig, G. B. (1998). Linear programming and extensions. Princeton university
press. (Cité en page 9.)

Darwin, C. R. (1859). On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life. (Cité en page 10.)

Dave, A. S. and Margoliash, D. (2000). Song replay during sleep and computa-
tional rules for sensorimotor vocal learning. Science, 290(5492):812–816. (Cité
en page 189.)

de Garis, H. (1990). Genetic programming: Building nanobrains with genetically
programmed neural network modules. In International Joint Conference on Neu-
ral Networks (IJCNN), pages 511–516. IEEE. (Cité en page 50.)

De Jong, K. A. (2006). Evolutionary computation: a unified approach. MIT press.
(Cité en page 14.)

de Lavilléon, G., Lacroix, M. M., Rondi-Reig, L., and Benchenane, K. (2015).
Explicit memory creation during sleep demonstrates a causal role of place cells
in navigation. Nature neuroscience, 18(4):493–495. (Cité en page 189.)

Dean, T. and Wellman, M. (1991). Planning and control. Morgan Kaufmann
Publishers Inc. (Cité en page 51.)

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, vol-
ume 16. John Wiley & Sons. (Cité en pages 15 et 98.)

204 Bibliography

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Com-
putation, 6(2):182–197. (Cité en pages 16, 17, 59, 62 et 98.)

DeDonato, M., Dimitrov, V., Du, R., Giovacchini, R., Knoedler, K., Long, X.,
Polido, F., Gennert, M. A., Padır, T., Feng, S., et al. (2015). Human-in-the-
loop control of a humanoid robot for disaster response: A report from the darpa
robotics challenge trials. Journal of Field Robotics, 32(2):275–292. (Cité en
page 2.)

Defretin, J., Marzat, J., and Piet-Lahanier, H. (2010). Learning viewpoint planning
in active recognition on a small sampling budget: a kriging approach. In Machine
Learning and Applications (ICMLA), 2010 Ninth International Conference on,
pages 169–174. IEEE. (Cité en page 44.)

Deisenroth, M., Mchutchon, A., Hall, J., and Rasmussen, C. E. (2013a). Pilco
policy search framework. http://mloss.org/software/view/508/. (Cité en
page 160.)

Deisenroth, M. and Rasmussen, C. E. (2011). Pilco: A model-based and data-
efficient approach to policy search. In Proceedings of the 28th International Con-
ference on machine learning (ICML-11), pages 465–472. (Cité en pages 33, 45,
46, 148 et 159.)

Deisenroth, M. P., Fox, D., and Rasmussen, C. E. (2015). Gaussian processes for
data-efficient learning in robotics and control. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 37(2):408–423. (Cité en page 46.)

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013b). A survey on policy
search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142. (Cité en
pages 9, 10, 24, 26, 27, 28, 29, 30, 31 et 33.)

Deisenroth, M. P., Rasmussen, C. E., and Fox, D. (2011). Learning to control
a low-cost manipulator using data-efficient reinforcement learning. In Robotics:
Science and Systems Conference. (Cité en pages 33 et 46.)

Delarboulas, P., Schoenauer, M., and Sebag, M. (2010). Open-ended evolutionary
robotics: an information theoretic approach. In Parallel Problem Solving from
Nature, PPSN XI, pages 334–343. Springer. (Cité en pages 8 et 193.)

Delcomyn, F. (1971). The Locomotion of the Cockroach Pariplaneta americana.
Journal of Experimental Biology, 54(2):443–452. (Cité en pages 102 et 228.)

Demiris, Y. and Dearden, A. (2005). From motor babbling to hierarchical learn-
ing by imitation: a robot developmental pathway. International Workshop on
Epigenetic Robotics. (Cité en page 191.)

http://mloss.org/software/view/508/

Bibliography 205

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38. (Cité en page 32.)

Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., and Tchernichovski, O. (2005).
How sleep affects the developmental learning of bird song. Nature, 433(7027):710–
716. (Cité en pages 140 et 189.)

Devert, A., Bredeche, N., and Schoenauer, M. (2008). Unsupervised learning of echo
state networks: A case study in artificial embryogeny. In Artificial Evolution,
pages 278–290. Springer. (Cité en page 11.)

Diba, K. and Buzsáki, G. (2007). Forward and reverse hippocampal place-cell
sequences during ripples. Nature neuroscience, 10(10):1241–1242. (Cité en
page 189.)

Ding, X., Wang, Z., Rovetta, A., and Zhu, J. (2010). Locomotion analysis of
hexapod robot. Proceedings of Conference on Climbing and Walking Robots
(CLAWAR), pages 291–310. (Cité en pages 100 et 228.)

Dinh, H., Aubert, N., Noman, N., Fujii, T., Rondelez, Y., and Iba, H. (2013). An
effective method for evolving reaction networks in synthetic biochemical systems.
Evolutionary Computation, IEEE Transactions on. (Cité en page 11.)

Dissanayake, M. G., Newman, P., Clark, S., Durrant-Whyte, H. F., and Csorba,
M. (2001). A solution to the simultaneous localization and map building (slam)
problem. IEEE Transactions on Robotics and Automation, 17(3):229–241. (Cité
en page 252.)

Doncieux, S. (2013). Transfer learning for direct policy search: A reward shap-
ing approach. In Development and Learning and Epigenetic Robotics (ICDL),
2013 IEEE Third Joint International Conference on, pages 1–6. IEEE. (Cité en
page 146.)

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2):71–
93. (Cité en pages 16 et 87.)

Dorigo, M. and Birattari, M. (2010). Ant colony optimization. In Encyclopedia of
machine learning, pages 36–39. Springer. (Cité en page 15.)

Dragoi, G. and Tonegawa, S. (2011). Preplay of future place cell sequences by
hippocampal cellular assemblies. Nature, 469(7330):397–401. (Cité en page 189.)

Dryanovski, I., Valenti, R. G., and Xiao, J. (2013). Fast visual odometry and
mapping from rgb-d data. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 2305–2310. IEEE. (Cité en pages 96,
227, 246 et 252.)

206 Bibliography

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping:
part i. Robotics & Automation Magazine, IEEE, 13(2):99–110. (Cité en pages 52
et 96.)

Eiben, A. E. and Smith, J. (2015). From evolutionary computation to the evolution
of things. Nature, 521(7553):476–482. (Cité en page 11.)

Eiben, A. E. and Smith, J. E. (2003). Introduction to evolutionary computing.
Springer. (Cité en pages 4, 10, 11, 13 et 14.)

Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard, W.
(2012). An evaluation of the RGB-D SLAM system. In Proc. IEEE ICRA. (Cité
en pages 52 et 96.)

Erden, M. S. and Leblebicioğlu, K. (2008). Free gait generation with reinforcement
learning for a six-legged robot. Robotics and Autonomous Systems, 56(3):199–212.
(Cité en pages 93 et 129.)

Espiau, B., Chaumette, F., and Rives, P. (1992). A new approach to visual servoing
in robotics. Robotics and Automation, IEEE Transactions on, 8(3):313–326. (Cité
en pages 164 et 232.)

Euston, D. R., Tatsuno, M., and McNaughton, B. L. (2007). Fast-forward play-
back of recent memory sequences in prefrontal cortex during sleep. science,
318(5853):1147–1150. (Cité en page 189.)

Ferbinteanu, J. and Shapiro, M. L. (2003). Prospective and retrospective memory
coding in the hippocampus. Neuron, 40(6):1227–1239. (Cité en page 189.)

Fiacco, A. V. and McCormick, G. P. (1990). Nonlinear programming: sequential
unconstrained minimization techniques, volume 4. Siam. (Cité en page 42.)

Filliat, D., Kodjabachian, J., and Meyer, J.-A. (1999). Incremental evolution of
neural controllers for navigation in a 6-legged robot. In Proc. of the Fourth
International Symposium on Artificial Life and Robots. (Cité en page 51.)

Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). Evolutionary conditions
for the emergence of communication in robots. Current biology, 17(6):514–519.
(Cité en page 11.)

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent:
Genetic evolution of a neural network driven robot. In Proceedings of the third
international conference on Simulation of adaptive behavior: From Animals to
Animats 3, number LIS-CONF-1994-003, pages 421–430. MIT Press. (Cité en
pages 11 et 20.)

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial intelligence through
simulated evolution. John Wiley. (Cité en page 15.)

Bibliography 207

Forrester, A. I. J. and Keane, A. J. (2009). Recent advances in surrogate-based
optimization. Progress in Aerospace Sciences, 45(1):50–79. (Cité en page 35.)

Foster, D. J. and Wilson, M. A. (2006). Reverse replay of behavioural sequences
in hippocampal place cells during the awake state. Nature, 440(7084):680–683.
(Cité en page 189.)

Frean, M. and Boyle, P. (2008). Using gaussian processes to optimize expensive func-
tions. In AI 2008: Advances in Artificial Intelligence, pages 258–267. Springer.
(Cité en page 44.)

Friedland, B. (2012). Control system design: an introduction to state-space methods.
Courier Corporation. (Cité en page 146.)

Fuchs, a., Goldner, B., Nolte, I., and Schilling, N. (2014). Ground reaction force
adaptations to tripedal locomotion in dogs. Veterinary journal, 201(3):307–15.
(Cité en pages 3 et 91.)

Gais, S. and Born, J. (2004). Declarative memory consolidation: mechanisms acting
during human sleep. Learning & Memory, 11(6):679–685. (Cité en pages 189
et 194.)

Galef, B. G. and Laland, K. N. (2005). Social learning in animals: empirical studies
and theoretical models. Bioscience, 55(6):489–499. (Cité en pages 145 et 146.)

Geng, T., Porr, B., and Wörgötter, F. (2006). Fast biped walking with a sensor-
driven neuronal controller and real-time online learning. The International Jour-
nal of Robotics Research, 25(3):243–259. (Cité en pages 25 et 34.)

Glynn, P. W. (1987). Likelilood ratio gradient estimation: an overview. In Proceed-
ings of the 19th conference on Winter simulation, pages 366–375. ACM. (Cité en
pages 30 et 31.)

Godzik, N., Schoenauer, M., and Sebag, M. (2003). Evolving symbolic controllers.
In Applications of Evolutionary Computing, pages 638–650. Springer. (Cité en
pages 11 et 53.)

Goldberg, K. and Chen, B. (2001). Collaborative control of robot motion: robust-
ness to error. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 2, pages 655–660. (Cité en page 91.)

Gomez, F. J. (2009). Sustaining diversity using behavioral information distance. In
Proceedings of the 11th Annual conference on Genetic and evolutionary compu-
tation, pages 113–120. ACM. (Cité en page 18.)

Görner, M. and Hirzinger, G. (2010). Analysis and evaluation of the stability of
a biologically inspired, leg loss tolerant gait for six-and ei ght-legged walking
robots. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4728–4735. (Cité en page 90.)

208 Bibliography

Graziano, M. (2006). The organization of behavioral repertoire in motor cortex.
Annual review of neuroscience, 29(May):105–34. (Cité en page 190.)

Graziano, M. S. and Aflalo, T. N. (2007). Mapping behavioral repertoire onto the
cortex. Neuron, 56(2):239–251. (Cité en page 190.)

Griffiths, T. L., Lucas, C., Williams, J., and Kalish, M. L. (2009). Modeling human
function learning with gaussian processes. In Advances in Neural Information
Processing Systems 21 (NIPS), pages 553–560. (Cité en pages 35 et 114.)

Grillner, S. (2003). The motor infrastructure: from ion channels to neuronal net-
works. Nature reviews. Neuroscience, 4(July):573–586. (Cité en page 139.)

Gruau, F. (1994). Automatic definition of modular neural networks. Adaptive
behavior, 3(2):151–183. (Cité en page 51.)

Gutierrez, J. M. P., Hinkley, T., Taylor, J. W., Yanev, K., and Cronin, L. (2014).
Evolution of oil droplets in a chemorobotic platform. Nature communications, 5.
(Cité en page 11.)

Haldane, J. (1932). The causes of evolution. Macmillan. (Cité en page 10.)

Hansen, N. (2006). The cma evolution strategy: a comparing review. In Towards
a new evolutionary computation, pages 75–102. Springer. (Cité en pages 15, 26
et 237.)

Hartland, C. and Bredeche, N. (2006). Evolutionary robotics, anticipation and the
reality gap. In Robotics and Biomimetics, 2006. ROBIO’06. IEEE International
Conference on, pages 1640–1645. IEEE. (Cité en page 96.)

Hastie, T., Tibshirani, R., and Friedman, J. (2009). Unsupervised learning.
Springer. (Cité en page 8.)

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall.
(Cité en page 7.)

Hobson, J. A. and Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep:
neuronal systems, consciousness and learning. Nature Reviews Neuroscience,
3(9):679–693. (Cité en page 189.)

Hoffmann, M., Marques, H., Arieta, A., Sumioka, H., Lungarella, M., and Pfeifer, R.
(2010). Body Schema in Robotics: A Review. IEEE Transactions on Autonomous
Mental Development, 2(4):304–324. (Cité en page 92.)

Holland, O. and Goodman, R. (2003). Robots with internal models a route to
machine consciousness? Journal of Consciousness Studies, 10(4-5):4–5. (Cité en
page 92.)

Hoos, H. H. and Stützle, T. (2005). Stochastic local search: Foundations and appli-
cations. Morgan Kaufmann. (Cité en page 102.)

Bibliography 209

Hornby, G., Lohn, J. D., Linden, D. S., et al. (2011). Computer-automated evolu-
tion of an x-band antenna for nasa’s space technology 5 mission. Evolutionary
computation, 19(1):1–23. (Cité en page 11.)

Hornby, G., Takamura, S., Yamamoto, T., and Fujita, M. (2005). Autonomous
evolution of dynamic gaits with two quadruped robots. IEEE Transactions on
Robotics, 21(3):402–410. (Cité en pages 21, 25, 50, 51, 53, 54 et 129.)

Huber, R., Ghilardi, M. F., Massimini, M., and Tononi, G. (2004). Local sleep and
learning. Nature, 430(6995):78–81. (Cité en page 194.)

Igel, C. (2003). Neuroevolution for reinforcement learning using evolution strategies.
In Evolutionary Computation, 2003. CEC’03. The 2003 Congress on, volume 4,
pages 2588–2595. IEEE. (Cité en page 26.)

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals
and robots: a review. Neural Networks, 21(4):642–653. (Cité en page 59.)

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From swim-
ming to walking with a salamander robot driven by a spinal cord model. science,
315(5817):1416–1420. (Cité en page 51.)

Ito, M. (2008). Control of mental activities by internal models in the cerebellum.
Nature Reviews Neuroscience, 9(4):304–313. (Cité en page 140.)

Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991). Adaptive mixtures of
local experts. Neural computation, 3(1):79–87. (Cité en page 53.)

Jakimovski, B. and Maehle, E. (2010). In situ self-reconfiguration of hexapod robot
oscar using biologically inspired approaches. Climbing and Walking Robots. In-
Tech. (Cité en page 90.)

Jakobi, N. (1998). Running across the reality gap: Octopod locomotion evolved in
a minimal simulation. In Evolutionary Robotics, pages 39–58. Springer. (Cité en
page 22.)

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use
of simulation in evolutionary robotics. Proceedings of the European Conference
on Artificial Life (ECAL), pages 704–720. (Cité en pages 22, 23, 95, 96 et 188.)

Jarvis, S. L., Worley, D. R., Hogy, S. M., Hill, A. E., Haussler, K. K., and Reiser II,
R. F. (2013). Kinematic and kinetic analysis of dogs during trotting after amputa-
tion of a thoracic limb. American journal of veterinary research, 74(9):1155–1163.
(Cité en pages 3 et 91.)

Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor
cognition. Neuroimage, 14(1):S103–S109. (Cité en page 189.)

210 Bibliography

Jensen, M. T. (2005). Helper-objectives: Using multi-objective evolutionary algo-
rithms for single-objective optimisation. Journal of Mathematical Modelling and
Algorithms, 3(4):323–347. (Cité en page 16.)

Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1(2):61–70. (Cité en
page 35.)

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization
of expensive black-box functions. Journal of Global optimization, 13(4):455–492.
(Cité en pages 26, 35 et 44.)

Kajita, S. and Espiau, B. (2008). Handbook of Robotics, chapter Legged Robots,
pages 361–389. Springer. (Cité en page 90.)

Kim, H., Jordan, M. I., Sastry, S., and Ng, A. Y. (2003). Autonomous helicopter
flight via reinforcement learning. In Advances in neural information processing
systems, page None. (Cité en page 33.)

Kimura, H., Yamashita, T., and Kobayashi, S. (2001). Reinforcement learning of
walking behavior for a four-legged robot. In Proceedings of IEEE Conference on
Decision and Control (CDC), volume 1, pages 411–416. IEEE. (Cité en pages 25,
34 et 54.)

Klaus, G., Glette, K., and Tørresen, J. (2012). A comparison of sampling strate-
gies for parameter estimation of a robot simulator. Simulation, Modeling, and
Programming for Autonomous Robots, pages 173–184. (Cité en page 96.)

Kluger, J. and Lovell, J. (2006). Apollo 13. Mariner Books. (Cité en pages 3, 90
et 91.)

Knowles, J. D., Watson, R. A., and Corne, D. W. (2001). Reducing local op-
tima in single-objective problems by multi-objectivization. In Evolutionary multi-
criterion optimization, pages 269–283. Springer. (Cité en pages 16 et 18.)

Ko, J., Klein, D. J., Fox, D., and Haehnel, D. (2007). Gaussian processes and
reinforcement learning for identification and control of an autonomous blimp. In
Robotics and Automation, 2007 IEEE International Conference on, pages 742–
747. IEEE. (Cité en page 33.)

Kober, J., Bagnell, J. A., and Peters, J. (2013). Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, page
0278364913495721. (Cité en pages 4, 8, 9, 10, 26, 29, 30, 32, 91, 111, 123,
126 et 129.)

Kober, J., Mohler, B., and Peters, J. (2008). Learning perceptual coupling for motor
primitives. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, pages 834–839. IEEE. (Cité en page 33.)

Bibliography 211

Kober, J. and Peters, J. (2011). Policy search for motor primitives in robotics.
Machine Learning, 84(1):171–203. (Cité en pages 26, 28 et 33.)

Kober, J., Wilhelm, A., Oztop, E., and Peters, J. (2012). Reinforcement learning
to adjust parametrized motor primitives to new situations. Autonomous Robots,
33(4):361–379. (Cité en pages 45 et 151.)

Kodjabachian, J. and Meyer, J.-A. (1998). Evolution and development of neural
controllers for locomotion, gradient-following, and obstacle-avoidance in artificial
insects. Neural Networks, IEEE Transactions on. (Cité en page 50.)

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, volume 14, pages 1137–1145. (Cité en
page 41.)

Kohl, N. and Stone, P. (2004). Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), volume 3, pages 2619–2624. IEEE. (Cité
en pages 25, 26, 29, 34, 51, 102, 126, 127, 128, 129, 239 et 240.)

Konidaris, G. and Barto, A. (2006). Autonomous shaping: Knowledge transfer in
reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 489–496. ACM. (Cité en page 146.)

Koos, S., Cully, A., and Mouret, J.-B. (2013a). Fast damage recovery in robotics
with the t-resilience algorithm. The International Journal of Robotics Research,
32(14):1700–1723. (Cité en pages 23, 25, 50, 51, 53, 54, 55, 93 et 129.)

Koos, S. and Mouret, J.-B. (2011). Online discovery of locomotion modes for wheel-
legged hybrid robot s: a transferability-based approach. In Proc. of CLAWAR,
pages 70–77. World Scientific Publishing Co. (Cité en page 96.)

Koos, S., Mouret, J.-B., and Doncieux, S. (2013b). The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Trans. on Evolutionary
Computation, pages 122–145. (Cité en pages 22, 23, 48, 54, 55, 57, 92, 95, 96, 97,
184 et 188.)

Koos, S., Mouret, J.-B., and Doncieux, S. (2013c). The transferability approach:
Crossing the reality gap in evolutionary robotics. Evolutionary Computation,
IEEE Transactions on, 17(1):122–145. (Cité en page 129.)

Körding, K. P. and Wolpert, D. M. (2004). Bayesian integration in sensorimotor
learning. Nature, 427(6971):244–247. (Cité en page 140.)

Koren, I. and Krishna, C. M. (2007). Fault-tolerant systems. Morgan Kaufmann.
(Cité en pages 3 et 90.)

212 Bibliography

Kormushev, P., Calinon, S., and Caldwell, D. G. (2010). Robot motor skill coordi-
nation with em-based reinforcement learning. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 3232–3237. IEEE.
(Cité en pages 26 et 33.)

Koza, J. R. (1992). Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press. (Cité en page 15.)

Kuffner, J. J. and LaValle, S. M. (2000). Rrt-connect: An efficient approach to
single-query path planning. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 2, pages 995–1001. IEEE.
(Cité en page 51.)

Kuindersma, S., Grupen, R., and Barto, A. (2011). Learning dynamic arm motions
for postural recovery. In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS
International Conference on, pages 7–12. IEEE. (Cité en page 45.)

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals
of mathematical statistics, pages 79–86. (Cité en page 31.)

Kupcsik, A., Deisenroth, M. P., Peters, J., Loh, A. P., Vadakkepat, P., and Neu-
mann, G. (2014). Model-based contextual policy search for data-efficient gener-
alization of robot skills. Artificial Intelligence. (Cité en pages 34, 145, 146, 148,
151 et 152.)

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Fluids Engineering, 86(1):97–
106. (Cité en pages 42 et 43.)

Lachenbruch, P. A. and Mickey, M. R. (1968). Estimation of error rates in discrim-
inant analysis. Technometrics, 10(1):1–11. (Cité en page 41.)

Larranaga, P. and Lozano, J. A. (2002). Estimation of distribution algorithms: A
new tool for evolutionary computation, volume 2. Springer Science & Business
Media. (Cité en page 15.)

LaValle, S. M. (2006). Planning algorithms. Cambridge university press. (Cité en
page 61.)

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444. (Cité en page 194.)

Lee, S., Yosinski, J., Glette, K., Lipson, H., and Clune, J. (2013). Evolving gaits
for physical robots with the hyperneat generative encoding: the benefits of simu-
lation. In Applications of Evolutionary Computing. Springer. (Cité en page 230.)

Lehman, J., Risi, S., D’Ambrosio, D., and Stanley, K. O. (2013). Encouraging
reactivity to create robust machines. Adaptive Behavior, page 1059712313487390.
(Cité en page 23.)

Bibliography 213

Lehman, J. and Stanley, K. (2011a). Abandoning objectives: Evolution through
the search for novelty alone. Evolutionary computation, 19(2). (Cité en pages 4,
18, 19, 53, 62, 87 et 193.)

Lehman, J. and Stanley, K. (2011b). Evolving a diversity of virtual creatures
through novelty search and local competition. In Proc. of GECCO, pages 211–
218. ACM. (Cité en pages 11, 19, 55, 57, 59, 62 et 193.)

Lenski, R. E., Ofria, C., Collier, T. C., and Adami, C. (1999). Genome complexity,
robustness and genetic interactions in digital organisms. Nature, 400(6745):661–
664. (Cité en pages 11 et 22.)

Lewis, M. A., Fagg, A. H., and Bekey, G. (1994). Genetic algorithms for gait
synthesis in a hexapod robot. Recent trends in mobile robots, pages 317–331.
(Cité en page 20.)

Lewis, M. A., Fagg, A. H., and Solidum, A. (1992). Genetic programming approach
to the construction of a neural network for control of a walking robot. In Robotics
and Automation, 1992. Proceedings., 1992 IEEE International Conference on,
pages 2618–2623. IEEE. (Cité en page 50.)

Lin, C.-M. and Chen, C.-H. (2007). Robust fault-tolerant control for a biped robot
using a recurrent cerebellar model articulation controller. Systems, Man, and
Cybernetics, Part B: Cybernetics, 37(1):110–123. (Cité en page 91.)

Lipson, H. and Pollack, J. B. (2000). Automatic design and manufacture of robotic
lifeforms. Nature, 406(6799):974–978. (Cité en pages 1, 11 et 21.)

Lizotte, D. J. (2008). Practical bayesian optimization. University of Alberta. (Cité
en pages 43 et 128.)

Lizotte, D. J., Wang, T., Bowling, M. H., and Schuurmans, D. (2007). Automatic
gait optimization with gaussian process regression. In Proceedings of the the
International Joint Conference on Artificial Intelligence (IJCAI), volume 7, pages
944–949. (Cité en pages 25, 35, 36, 45, 51, 114, 123, 126, 127, 129, 151 et 162.)

Louie, K. and Wilson, M. A. (2001). Temporally structured replay of awake hip-
pocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1):145–
156. (Cité en page 189.)

Lungarella, M., Metta, G., Pfeifer, R., and Sandini, G. (2003). Developmental
robotics: a survey. Connection Science, 15(4):151–190. (Cité en pages 187, 191
et 193.)

MacKay, D. J. (1992). A practical bayesian framework for backpropagation net-
works. Neural computation, 4(3):448–472. (Cité en page 39.)

Mahdavi, S. and Bentley, P. (2006). Innately adaptive robotics through embodied
evolution. Autonomous Robots, 20(2):149–163. (Cité en pages 51, 93 et 129.)

214 Bibliography

Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., Aerts, J.,
Del Fiore, G., Degueldre, C., Meulemans, T., et al. (2000). Experience-dependent
changes in cerebral activation during human rem sleep. Nature neuroscience,
3(8):831–836. (Cité en page 189.)

Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner,
S. E., and Smith, M. K. (2001). Transatlantic robot-assisted telesurgery. Nature,
413(6854):379–380. (Cité en page 1.)

Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., and Doucet, A.
(2009). A bayesian exploration-exploitation approach for optimal online sensing
and planning with a visually guided mobile robot. Autonomous Robots, 27(2):93–
103. (Cité en pages 44 et 151.)

Martinez-Cantin, R., de Freitas, N., Doucet, A., and Castellanos, J. A. (2007).
Active policy learning for robot planning and exploration under uncertainty. In
Robotics: Science and Systems, pages 321–328. (Cité en pages 44 et 151.)

Matérn, B. et al. (1960). Spatial variation. stochastic models and their application to
some problems in forest surveys and other sampling investigations. Meddelanden
fran statens Skogsforskningsinstitut, 49(5). (Cité en page 39.)

Meltzoff, A. N. and Moore, M. K. (1997). Explaining facial imitation: A theoretical
model. Early Development & Parenting, 6(3-4):179. (Cité en page 190.)

Mendel, G. (1865). Experiments in plant hybridisation. (Cité en page 10.)

Metropolis, N. and Ulam, S. (1949). The monte carlo method. Journal of the
American statistical association, 44(247):335–341. (Cité en page 28.)

Metzinger, T. (2004). Being no one: The self-model theory of subjectivity. MIT
Press. (Cité en page 92.)

Metzinger, T. (2007). Self models. Scholarpedia, 2(10):4174. (Cité en page 92.)

Meyer, J.-A. (1996). Artificial life and the animat approach to artificial intelligence.
Artificial intelligence, pages 325–354. (Cité en page 1.)

Micchelli, C. A. and Pontil, M. (2004). Kernels for multi–task learning. In Advances
in Neural Information Processing Systems, pages 921–928. (Cité en pages 145
et 153.)

Mitchell, T. M. (1997). Machine learning. WCB. McGraw-Hill Boston, MA:. (Cité
en page 7.)

Mitri, S., Floreano, D., and Keller, L. (2009). The evolution of information sup-
pression in communicating robots with conflicting interests. Proceedings of the
National Academy of Sciences, 106(37):15786–15790. (Cité en page 11.)

Bibliography 215

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533.
(Cité en pages 10 et 24.)

Mockus, J. (2013). Bayesian approach to global optimization: theory and applica-
tions. Kluwer Academic. (Cité en pages 35, 112 et 144.)

Mockus, J., Tiesis, V., and Zilinskas, A. (1978). The application of bayesian meth-
ods for seeking the extremum. Towards Global Optimization, 2(117-129):2. (Cité
en page 43.)

Mondada, F., Franzi, E., and Ienne, P. (1994). Mobile robot miniaturisation: A tool
for investigation in control algorithms. Springer. (Cité en pages 20 et 22.)

Montanier, J.-M. and Bredeche, N. (2013). Evolution of altruism and spatial dis-
persion: an artificial evolutionary ecology approach. In Advances in Artificial
Life, ECAL, volume 12, pages 260–267. (Cité en pages 11 et 22.)

Moore, G. E. (1975). Progress in digital integrated electronics. In International
Electron Devices Meeting, volume 21, pages 11–13. IEEE. (Cité en page 92.)

Moriarty, D. E. and Miikkulainen, R. (1996). Evolving obstacle avoidance behavior
in a robot arm. In Proceedings of the Fourth International Conference on Sim-
ulation of Adaptive Behavior, pages 468–475. MIT Press Cambridge, MA. (Cité
en page 21.)

Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place cells, grid cells, and the
brain’s spatial representation system. Annu. Rev. Neurosci., 31:69–89. (Cité en
page 189.)

Mostafa, K., Tsai, C., and Her, I. (2010). Alternative gaits for multiped robots with
leg failures to retain maneuverability. International Journal of Advanced Robotic
Systems, 7(4):31. (Cité en page 90.)

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites.
arXiv preprint arXiv:1504.04909. (Cité en pages 54 et 76.)

Mouret, J.-B. and Doncieux, S. (2009). Using behavioral exploration objectives to
solve deceptive problems in neuro-evolution. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 627–634. ACM. (Cité
en page 18.)

Mouret, J.-B. and Doncieux, S. (2010). Sferesv2: Evolvin’ in the Multi-Core World.
In Proc. of IEEE CEC, pages 4079–4086. (Cité en pages 59 et 104.)

Mouret, J.-B. and Doncieux, S. (2012). Encouraging behavioral diversity in evolu-
tionary robotics: An empirical study. Evolutionary computation, 20(1):91–133.
(Cité en pages 18, 98, 101 et 102.)

216 Bibliography

Mouret, J.-B., Doncieux, S., and Meyer, J.-A. (2006). Incremental evolution of
target-following neuro-controllers for flapping-wing animats. From Animals to
Animats 9. (Cité en page 52.)

Mouret, J.-B., Koos, S., and Doncieux, S. (2012). Crossing the reality gap: a
short introduction to the transferability approach. In Proceedings of the workshop
”Evolution in Physical Systems”, ALIFE. (Cité en pages 23 et 97.)

Mumford, M. D. (2003). Where have we been, where are we going? taking stock
in creativity research. Creativity Research Journal, 15(2-3):107–120. (Cité en
page 3.)

Murphy, R. R. (2004). Trial by fire [rescue robots]. Robotics & Automation Maga-
zine, IEEE, 11(3):50–61. (Cité en page 1.)

Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., and
Erkmen, A. M. (2008). Search and rescue robotics. In Springer Handbook of
Robotics, pages 1151–1173. Springer. (Cité en pages 1 et 2.)

Nagatani, K., Kiribayashi, S., Okada, Y., Otake, K., Yoshida, K., Tadokoro, S.,
Nishimura, T., Yoshida, T., Koyanagi, E., Fukushima, M., and Kawatsuma,
S. (2013). Emergency response to the nuclear accident at the Fukushima Dai-
ichi nuclear power plants using mobile rescue robots. Journal of Field Robotics,
30(1):44–63. (Cité en pages 1 et 2.)

Nelson, A., Barlow, G., and Doitsidis, L. (2009). Fitness functions in evolutionary
robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):345–
370. (Cité en page 100.)

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E.,
and Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement
learning. In Experimental Robotics IX, pages 363–372. Springer. (Cité en page 33.)

Nguyen, A., Yosinski, J., and Clune, J. (2015). Innovation engines: Automated
creativity and improved stochastic optimization via deep learning. In Proceedings
of the Genetic and Evolutionary Computation Conference. (Cité en page 23.)

O’Hagan, A. and Kingman, J. (1978). Curve fitting and optimal design for predic-
tion. Journal of the Royal Statistical Society. Series B (Methodological), pages
1–42. (Cité en page 175.)

O’keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive map, volume 3.
Clarendon Press Oxford. (Cité en page 189.)

Oliveira, M. A. C., Doncieux, S., Mouret, J.-B., and Santos, C. P. (2013). Opti-
mization of humanoid walking controller: Crossing the reality gap. In Proceedings
of Humanoids. (Cité en pages 23 et 54.)

Bibliography 217

Oudeyer, P.-Y., Kaplan, F., and Hafner, V. V. (2007). Intrinsic motivation systems
for autonomous mental development. Evolutionary Computation, IEEE Trans-
actions on, 11(2):265–286. (Cité en pages 8, 192 et 193.)

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. Knowledge and Data
Engineering, IEEE Transactions on, 22(10):1345–1359. (Cité en pages 8 et 146.)

Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial optimization: algo-
rithms and complexity. Courier Corporation. (Cité en pages 9 et 14.)

Pareto, V. (1896). Cours d’économie politique, volume 1. F. Rouge. (Cité en
page 15.)

Parker, G. (2009). Punctuated anytime learning to evolve robot control for area
coverage. Design and Control of Intelligent Robotic Systems, pages 255–277. (Cité
en page 94.)

Peigneux, P., Laureys, S., Fuchs, S., Collette, F., Perrin, F., Reggers, J., Phillips,
C., Degueldre, C., Del Fiore, G., Aerts, J., et al. (2004). Are spatial memo-
ries strengthened in the human hippocampus during slow wave sleep? Neuron,
44(3):535–545. (Cité en page 189.)

Peters, J., Mülling, K., and Altun, Y. (2010). Relative entropy policy search. In
AAAI. (Cité en pages 32, 34 et 148.)

Peters, J. and Schaal, S. (2006). Policy gradient methods for robotics. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 2219–
2225. IEEE. (Cité en pages 29 et 30.)

Peters, J. and Schaal, S. (2008a). Natural actor-critic. Neurocomputing, 71(7):1180–
1190. (Cité en pages 29, 30, 31 et 33.)

Peters, J. and Schaal, S. (2008b). Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697. (Cité en pages 29 et 33.)

Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., and Battaglia, F. P.
(2009). Replay of rule-learning related neural patterns in the prefrontal cortex
during sleep. Nature neuroscience, 12(7):919–926. (Cité en page 189.)

Pfeifer, R. and Bongard, J. (2007). How the body shapes the way we think: a new
view of intelligence. MIT press. (Cité en pages 1, 21 et 50.)

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization, embodiment, and
biologically inspired robotics. science, 318(5853):1088–1093. (Cité en pages 50
et 194.)

Pouget, A., Beck, J. M., Ma, W. J., and Latham, P. E. (2013). Probabilistic
brains: knowns and unknowns. Nature neuroscience, 16(9):1170–1178. (Cité en
page 140.)

218 Bibliography

Prassler, E. and Kosuge, K. (2008). Handbook of Robotics, chapter Domestic
Robotics, pages 1253–1281. Springer. (Cité en page 90.)

Pratt, G. and Manzo, J. (2013). The darpa robotics challenge [competitions].
Robotics & Automation Magazine, IEEE, 20(2):10–12. (Cité en page 2.)

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1996).
Numerical recipes in C, volume 2. Cambridge university press Cambridge. (Cité
en pages 41 et 169.)

Pretorius, C., du Plessis, M., and Cilliers, C. (2012). Simulating robots without con-
ventional physics: A neural network approach. Journal of Intelligent & Robotic
Systems, pages 1–30. (Cité en page 96.)

Pugh, J. K., Soros, L., Szerlip, P. A., and Stanley, K. O. (2015). Confronting the
challenge of quality diversity. In Proceedings of the Annual conference on Genetic
and evolutionary computation (GECCO). ACM. (Cité en page 79.)

Qu, Z., Ihlefeld, C. M., Jin, Y., and Saengdeejing, A. (2003). Robust fault-tolerant
self-recovering control of nonlinear uncertain systems. Automatica, 39(10):1763–
1771. (Cité en page 91.)

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler,
R., and Ng, A. Y. (2009). ROS: an open-source robot operating system. In
Proceedings of ICRA’s workshop on Open Source Software. (Cité en pages 52
et 227.)

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse
approximate gaussian process regression. The Journal of Machine Learning Re-
search, 6:1939–1959. (Cité en page 152.)

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and the BigDog Team (2008).
Bigdog, the rough-terrain quadruped robot. In Proceedings of the 17th World
Congress The International Federation of Automatic Control. (Cité en page 1.)

Raibert, M. H. (1986). Legged robots. Communications of the ACM, 29(6):499–514.
(Cité en pages 51 et 60.)

Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for
non-linear regression. PhD thesis, Citeseer. (Cité en page 156.)

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine
learning. MIT Press. (Cité en pages 33, 35, 36, 37, 39, 40, 41, 112, 114, 152, 155,
156 et 175.)

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In Neural Networks, 1993., IEEE
International Conference on, pages 586–591. IEEE. (Cité en pages 41 et 237.)

Bibliography 219

Rolf, M., Steil, J. J., and Gienger, M. (2010). Goal babbling permits direct learning
of inverse kinematics. Autonomous Mental Development, IEEE Transactions on,
2(3):216–229. (Cité en page 191.)

Rückstiess, T., Sehnke, F., Schaul, T., Wierstra, D., Sun, Y., and Schmidhuber, J.
(2010). Exploring parameter space in reinforcement learning. Paladyn, Journal
of Behavioral Robotics, 1(1):14–24. (Cité en page 27.)

Rummery, G. A. and Niranjan, M. (1994). On-line q-learning using connectionist
systems. (Cité en page 9.)

Russell, S., Norvig, P., and Davis, E. (2010). Artificial intelligence: a modern
approach. Prentice hall Upper Saddle River, NJ. (Cité en pages 1, 7, 9 et 51.)

Sacks, J., Welch, W. J., Mitchell, T. J., Wynn, H. P., et al. (1989). Design and
analysis of computer experiments. Statistical science, 4(4):409–423. (Cité en
page 35.)

Saegusa, R., Metta, G., Sandini, G., and Sakka, S. (2009). Active motor babbling
for sensorimotor learning. In Robotics and Biomimetics, 2008. ROBIO 2008.
IEEE International Conference on, pages 794–799. IEEE. (Cité en page 191.)

Samuelsen, E. and Glette, K. (2014). Some distance measures for morphological
diversification in generative evolutionary robotics. In Proceedings of the 16th
Annual conference on Genetic and evolutionary computation (GECCO). ACM.
To appear. (Cité en page 50.)

Sanderson, K. (2010). Mars rover spirit (2003-10). Nature, 463(7281):600. (Cité en
pages 2 et 144.)

Santello, M. (1998). Postural hand synergies for tool use. The Journal of Neuro-
science, 18(23):10105–10115. (Cité en page 112.)

Saranli, U., Buehler, M., and Koditschek, D. (2001). Rhex: A simple and highly mo-
bile hexapod robot. The International Journal of Robotics Research, 20(7):616–
631. (Cité en pages 100 et 228.)

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in
cognitive sciences, 3(6):233–242. (Cité en page 8.)

Schaal, S. (2003). Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics. In 2nd International Symposium on Adaptive
Motion of Animals and Machines. (Cité en page 59.)

Schapire, R. E. (1990). The strength of weak learnability. Machine learning,
5(2):197–227. (Cité en page 53.)

Schleyer, G. and Russell, A. (2010). Adaptable gait generation for autotomised
legged robots. In Proceedings of Australasian Conference on Robotics and Au-
tomation (ACRA). (Cité en page 90.)

220 Bibliography

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from experi-
mental data. science, 324(5923):81–85. (Cité en pages 15 et 188.)

Schmitz, J., Dean, J., Kindermann, T., Schumm, M., and Cruse, H. (2001). A bio-
logically inspired controller for hexapod walking: simple solutions by exploiting
physical properties. The biological bulletin, 200(2):195–200. (Cité en pages 100
et 228.)

Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: Support vector ma-
chines, regularization, optimization, and beyond. MIT press. (Cité en page 144.)

Seber, G. (1984). Multivariate observations, volume 41. Wiley New York. (Cité en
pages 62 et 182.)

Secretan, J., Beato, N., D Ambrosio, D. B., Rodriguez, A., Campbell, A., and
Stanley, K. O. (2008). Picbreeder: evolving pictures collaboratively online. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 1759–1768. ACM. (Cité en page 11.)

Seeger, M., Teh, Y.-W., and Jordan, M. (2005). Semiparametric latent factor
models. Technical report. (Cité en pages 152 et 153.)

Shultz, T. R. and Rivest, F. (2000). Using knowledge to speed learning: A compar-
ison of knowledge-based cascade-correlation and multi-task learning. In ICML,
pages 871–878. (Cité en page 146.)

Siciliano, B. and Khatib, O. (2008). Springer handbook of robotics. Springer. (Cité
en pages 51, 61, 117, 228 et 233.)

Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F. (1998). Comparison
of response surface and kriging models for multidisciplinary design optimization.
American Institute of Aeronautics and Astronautics, 98(7):1–16. (Cité en pages 35
et 44.)

Sims, K. (1991). Artificial evolution for computer graphics, volume 25. ACM. (Cité
en page 11.)

Sims, K. (1994). Evolving 3d morphology and behavior by competition. Artificial
life, 1(4):353–372. (Cité en page 11.)

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental se-
quential tasks. Machine Learning, 8(3-4):323–339. (Cité en page 145.)

Singh, S. P., Barto, A. G., Grupen, R., and Connolly, C. (1994). Robust reinforce-
ment learning in motion planning. Advances in neural information processing
systems, pages 655–655. (Cité en page 9.)

Skaggs, W. E. and McNaughton, B. L. (1996a). Replay of neuronal firing se-
quences in rat hippocampus during sleep following spatial experience. Science,
271(5257):1870–1873. (Cité en page 189.)

Bibliography 221

Skaggs, W. E. and McNaughton, B. L. (1996b). Theta phase precession in hip-
pocampal. Hippocampus, 6:149–172. (Cité en page 189.)

Skinner, B. F. (1953). Science and human behavior. Simon and Schuster. (Cité en
page 146.)

Smith, J. M. (1992). Evolutionary biology. byte-sized evolution. Nature,
355(6363):772–773. (Cité en pages 11 et 22.)

Smola, A. and Vapnik, V. (1997). Support vector regression machines. Advances
in neural information processing systems, 9:155–161. (Cité en page 102.)

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression.
Statistics and computing, 14(3):199–222. (Cité en page 102.)

Snelson, E. and Ghahramani, Z. (2005). Sparse gaussian processes using pseudo-
inputs. In Advances in neural information processing systems, pages 1257–1264.
(Cité en page 152.)

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization
of machine learning algorithms. In Advances in Neural Information Processing
Systems 25 (NIPS), pages 2951–2959. (Cité en pages 35 et 37.)

Souza, J. R., Marchant, R., Ott, L., Wolf, D. F., and Ramos, F. (2014). Bayesian
optimisation for active perception and smooth navigation. In Robotics and Au-
tomation (ICRA), 2014 IEEE International Conference on, pages 4081–4087.
IEEE. (Cité en page 44.)

Sproewitz, A., Moeckel, R., Maye, J., and Ijspeert, A. (2008). Learning to move
in modular robots using central pattern generators and online optimization. The
International Journal of Robotics Research, 27(3-4):423–443. (Cité en pages 59,
129, 228 et 230.)

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process
optimization in the bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995. (Cité en page 44.)

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based
encoding for evolving large-scale neural networks. Artificial life, 15(2):185–212.
(Cité en page 21.)

Stanley, K. O. and Lehman, J. (2015). Why Greatness Cannot Be Planned. Springer.
(Cité en page 19.)

Stanley, K. O. and Miikkulainen, R. (1996). Efficient reinforcement learning through
evolving neural network topologies. Network (Phenotype), 1(2):3. (Cité en
page 45.)

222 Bibliography

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127. (Cité en pages 11
et 14.)

Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer.
(Cité en page 39.)

Steingrube, S., Timme, M., Wörgötter, F., and Manoonpong, P. (2010). Self-
organized adaptation of a simple neural circuit enables complex robot behaviour.
Nature Physics, 6(3):224–230. (Cité en pages 100 et 228.)

Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature,
437(7063):1272–1278. (Cité en page 194.)

Stickgold, R., Hobson, J. A., Fosse, R., and Fosse, M. (2001). Sleep, learning, and
dreams: off-line memory reprocessing. Science, 294(5544):1052–1057. (Cité en
page 194.)

Stickgold, R., Whidbee, D., Schirmer, B., Patel, V., and Hobson, J. A. (2000).
Visual discrimination task improvement: A multi-step process occurring during
sleep. Journal of cognitive neuroscience, 12(2):246–254. (Cité en page 194.)

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society. Series B (Methodological), pages 111–147.
(Cité en page 41.)

Stulp, F., Herlant, L., Hoarau, A., and Raiola, G. (2014). Simultaneous on-line
discovery and improvement of robotic skill options. In Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 1408–
1413. IEEE. (Cité en page 33.)

Stulp, F. and Sigaud, O. (2012). Path integral policy improvement with covariance
matrix adaptation. arXiv preprint arXiv:1206.4621. (Cité en pages 26 et 27.)

Stulp, F. and Sigaud, O. (2013). Robot skill learning: From reinforcement learning
to evolution strategies. Paladyn, Journal of Behavioral Robotics, 4(1):49–61.
(Cité en page 26.)

Sturm, J., Plagemann, C., and Burgard, W. (2008). Adaptive body scheme models
for robust robotic manipulation. In Robotics: Science and Systems. (Cité en
page 94.)

Sutton, R. S. and Barto, A. G. (1998a). Introduction to Reinforcement Learning.
MIT Press. (Cité en pages 8 et 9.)

Sutton, R. S. and Barto, A. G. (1998b). Reinforcement learning: An introduction,
volume 1. MIT press Cambridge. (Cité en page 9.)

Bibliography 223

Sutton, R. S., Barto, A. G., and Williams, R. J. (1992). Reinforcement learning is
direct adaptive optimal control. Control Systems, IEEE, 12(2):19–22. (Cité en
page 9.)

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. (1999). Policy
gradient methods for reinforcement learning with function approximation. In
NIPS, volume 99, pages 1057–1063. Citeseer. (Cité en pages 10 et 24.)

Syswerda, G. (1991). A study of reproduction in generational and steady state ge-
netic algorithms. Foundations of genetic algorithms, 2:94–101. (Cité en page 26.)

Tarapore, D. and Mouret, J.-B. (2014a). Comparing the evolvability of generative
encoding schemes. In Proceedings of ALife 14, pages 55–62. MIT Press. (Cité en
page 51.)

Tarapore, D. and Mouret, J.-B. (2014b). Evolvability signatures of genera-
tive encodings: beyond standard performance benchmarks. arXiv preprint
arXiv:1410.4985. (Cité en page 51.)

Taylor, M. E. and Stone, P. (2009). Transfer learning for reinforcement learning
domains: A survey. The Journal of Machine Learning Research, 10:1633–1685.
(Cité en pages 145 et 146.)

Taylor, M. E., Stone, P., and Liu, Y. (2007). Transfer learning via inter-task map-
pings for temporal difference learning. Journal of Machine Learning Research,
8(1):2125–2167. (Cité en page 145.)

Tedrake, R., Zhang, T., and Seung, H. (2005). Learning to walk in 20 minutes. In
Proc. of Yale workshop on Adaptive and Learning Systems. (Cité en pages 25, 34
et 51.)

Tesch, M., Schneider, J., and Choset, H. (2011). Using response surfaces and ex-
pected improvement to optimize snake robot gait parameters. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1069–
1074. IEEE. (Cité en pages 25, 45, 123, 128 et 129.)

Tesch, M., Schneider, J., and Choset, H. (2013). Expensive multiobjective optimiza-
tion for robotics. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 973–980. IEEE. (Cité en page 45.)

Theodorou, E., Buchli, J., and Schaal, S. (2010). A generalized path integral control
approach to reinforcement learning. The Journal of Machine Learning Research,
11:3137–3181. (Cité en pages 28 et 32.)

Thorndike, E. L. and Woodworth, R. S. (1901). The influence of improvement in
one mental function upon the efficiency of other functions. Psychological Review,
8(4):384. (Cité en page 145.)

224 Bibliography

Thrun, S. (1996). Is learning the n-th thing any easier than learning the first?
Advances in neural information processing systems, pages 640–646. (Cité en
pages 8 et 146.)

Thrun, S., Burgard, W., Fox, D., et al. (2005). Probabilistic robotics. MIT press
Cambridge. (Cité en page 252.)

Thrun, S. and Pratt, L. (1998). Learning to learn. Kluwer Academic Publishers.
(Cité en pages 145 et 146.)

Thrun, S. B. (1992). Efficient exploration in reinforcement learning. Technical
report. (Cité en page 9.)

Titsias, M. K. (2009). Variational learning of inducing variables in sparse gaussian
processes. In International Conference on Artificial Intelligence and Statistics,
pages 567–574. (Cité en page 152.)

Toffolo, A. and Benini, E. (2003). Genetic diversity as an objective in multi-objective
evolutionary algorithms. Evolutionary Computation, 11(2):151–167. (Cité en
pages 98 et 101.)

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236):433–
460. (Cité en page 1.)

Ueno, T., Nakamura, Y., Takuma, T., Shibata, T., Hosoda, K., and Ishii, S. (2006).
Fast and stable learning of quasi-passive dynamic walking by an unstable biped
robot based on off-policy natural actor-critic. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 5226–5231. IEEE. (Cité en
page 33.)

Valsalam, V. K. and Miikkulainen, R. (2008). Modular neuroevolution for multi-
legged locomotion. In Proceedings of the 10th annual conference on Genetic and
evolutionary computation, pages 265–272. ACM. (Cité en page 51.)

Veiga, F. and Bernardino, A. (2013). Active tactile exploration for grasping. In
ICRA Workshop on Autonomous Learning. (Cité en page 44.)

Verma, V., Gordon, G., Simmons, R., and Thrun, S. (2004). Real-time fault diag-
nosis. Robotics & Automation Magazine, 11(2):56–66. (Cité en page 90.)

Visinsky, M., Cavallaro, J., and Walker, I. (1994). Robotic fault detection and fault
tolerance: A survey. Reliability Engineering & System Safety, 46(2):139–158.
(Cité en pages 3 et 90.)

Vogeley, K., Kurthen, M., Falkai, P., and Maier, W. (1999). Essential functions of
the human self model are implemented in the prefrontal cortex. Consciousness
and cognition, 8(3):343–63. (Cité en page 92.)

Bibliography 225

Von Hofsten, C. (2004). An action perspective on motor development. Trends in
cognitive sciences, 8(6):266–272. (Cité en page 191.)

Wagner, U., Gais, S., Haider, H., Verleger, R., and Born, J. (2004). Sleep inspires
insight. Nature, 427(6972):352–355. (Cité en pages 140 et 194.)

Waibel, M., Floreano, D., and Keller, L. (2011). A quantitative test of hamilton’s
rule for the evolution of altruism. PLoS-Biology, 9(5):970. (Cité en pages 11
et 22.)

Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A., and Stickgold, R. (2002).
Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron,
35(1):205–211. (Cité en page 194.)

Warwick, K. and Shah, H. (2015). Can machines think? a report on turing test
experiments at the royal society. Journal of Experimental & Theoretical Artificial
Intelligence, (ahead-of-print):1–19. (Cité en page 1.)

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.
(Cité en page 9.)

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, University
of Cambridge England. (Cité en page 9.)

Watson, R. A., Ficici, S. G., and Pollack, J. B. (2002). Embodied evolution: Dis-
tributing an evolutionary algorithm in a population of robots. Robotics and
Autonomous Systems, 39(1):1–18. (Cité en page 22.)

Whitley, D., Dominic, S., Das, R., and Anderson, C. W. (1994). Genetic reinforce-
ment learning for neurocontrol problems. Springer. (Cité en page 21.)

Whitley, D., Starkweather, T., and Bogart, C. (1990). Genetic algorithms and
neural networks: Optimizing connections and connectivity. Parallel computing,
14(3):347–361. (Cité en page 11.)

Williams, C., Klanke, S., Vijayakumar, S., and Chai, K. M. (2009). Multi-task
gaussian process learning of robot inverse dynamics. In Advances in Neural In-
formation Processing Systems, pages 265–272. (Cité en pages 145 et 154.)

Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian processes for regression.
In Advances in Neural Information Processing Systems 8, pages 514–520. MIT
press. (Cité en page 151.)

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3-4):229–256. (Cité en
pages 27, 28, 30 et 31.)

Wilson, D. (1966). Insect walking. Annual Review of Entomology, 11(1):103–122.
(Cité en pages 100 et 228.)

226 Bibliography

Wilson, M. (2002). Six views of embodied cognition. Psychonomic bulletin & review,
9(4):625–636. (Cité en page 50.)

Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensem-
ble memories during sleep. Science, 265(5172):676–679. (Cité en page 189.)

Wischmann, S., Floreano, D., and Keller, L. (2012). Historical contingency affects
signaling strategies and competitive abilities in evolving populations of simulated
robots. Proceedings of the National Academy of Sciences, 109(3):864–868. (Cité
en page 11.)

Wolpert, D. M., Ghahramani, Z., and Flanagan, J. R. (2001). Perspective and
Problems in Motor Learning. Trends in Cognitive Sciences, 5(11):487–494. (Cité
en pages 111 et 139.)

Xu, R., Wunsch, D., et al. (2005). Survey of clustering algorithms. Neural Networks,
IEEE Transactions on, 16(3):645–678. (Cité en page 8.)

Yeung, D.-Y. and Zhang, Y. (2009). Learning inverse dynamics by gaussian process
regression under the multi-task learning framework. In The Path to Autonomous
Robots, pages 1–12. Springer. (Cité en page 154.)

Yoerger, D. R. (2008). Underwater robotics. In Springer handbook of robotics, pages
987–1008. Springer. (Cité en page 144.)

Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., and Lipson, H. (2011).
Evolving Robot Gaits in Hardware: the HyperNEAT Generative Encoding Vs.
Parameter Optimization. Proc. of ECAL. (Cité en pages 21, 25, 50, 51, 59, 106,
129, 228 et 230.)

Yu, K., Tresp, V., and Schwaighofer, A. (2005). Learning gaussian processes from
multiple tasks. In Proceedings of the 22nd international conference on Machine
learning, pages 1012–1019. ACM. (Cité en page 145.)

Zagal, J., Delpiano, J., and Ruiz-del Solar, J. (2009). Self-modeling in humanoid soc-
cer robots. Robotics and Autonomous Systems, 57(8):819–827. (Cité en pages 94
et 188.)

Zagal, J., Ruiz-del Solar, J., and Vallejos, P. (2004). Back to reality: Crossing
the reality gap in evolutionary robotics. In Proceedings of IFAC Symposium on
Intelligent Autonomous Vehicles (IAV). (Cité en page 95.)

Zykov, V. (2008). Morphological and behavioral resilience against physical damage
for robotic systems. PhD thesis, Cornell University. (Cité en page 92.)

Zykov, V., Bongard, J., and Lipson, H. (2004). Evolving dynamic gaits on a physical
robot. In Proceedings of Genetic and Evolutionary Computation Conference, Late
Breaking Paper (GECCO), volume 4. (Cité en pages 11, 21, 25 et 51.)

Appendix A

The Hexapod Experiments

A.1 The Hexapod Robot

Physical robot The robot is a 6-legged robot with 3 degrees of freedom (DOFs)
per leg (see Fig. A.1). Each DOF is actuated by position-controlled servos (MX-28
Dynamixel actuators manufactured by Robotis). The first servo controls the hor-
izontal (front-back) orientation of the leg and the two others control its elevation.
An RGB-D camera (Xtion, from ASUS) is fixed on top of the robot. Its data are
used to estimate the forward displacement of the robot via an RGB-D SLAM algo-
rithm1 (Dryanovski et al., 2013) from the robot operating system (ROS) framework2

(Quigley et al., 2009).

Simulator The simulator is a dynamic physics simulation of the undamaged 6-
legged robot on flat ground (Fig. 4.10). We weighted each segment of the leg and
the body of the real robot, and we used the same masses for the simulations. The
simulator is based on the Open Dynamics Engine (ODE, http://www.ode.org).

A.2 The Hexapod Genotypes and Controllers

A.2.1 The first version (24 parameters)

Genotype and parametrized controller The genotype is a set of 24 parameter
values defining the angular position of each leg joint with a periodic function γ of
time t, parametrized by an amplitude α and a phase shift φ (Fig. 3.2, right):

γ(t, α, φ) = α · tanh (4 · sin (2 · π · (t + φ))) (A.1)

Angular positions are updated and sent to the servos every 30ms. The main feature
of this particular function is that the control signal is constant during a large portion
of each cycle, thus allowing the robot to stabilize itself. In order to keep the “tibia”
of each leg vertical, the control signal of the third servo is the opposite of the second
one. Consequently, positions sent to the ith leg are:

• γ(t, αi
1, φi

1) for servo 1;

• γ(t, αi
2, φi

2) for servos 2;

1http://wiki.ros.org/ccny_openni_launch
2http://www.ros.org

http://www.ode.org
http://wiki.ros.org/ccny_openni_launch
http://www.ros.org

228 The Hexapod Experiments

On-board
computer

Servo-motors
(Mx-28)

RGB-D Camera

Battery

Figure A.1: The hexapod robot, which is used to evaluate the performance of the
algorithms proposed in this manuscript.

• −γ(t, αi
2, φi

2) for servos 3.

The 24 parameters can each have five different values (0, 0.25, 0.5, 0.75, 1) and with
their variations, numerous gaits are possible, from purely quadruped gaits to classic
tripod gaits.
This controller is designed to be as simple as possible so that we can show the
performance of proposed algorithm in a straightforward setup. Nevertheless, our
algorithms do not put any constraint on the type of controllers and many other
controllers are conceivable (e.g. bio-inspired central pattern generators like Sproe-
witz et al. (2008) or evolved neural networks like in (Yosinski et al., 2011; Clune
et al., 2011)).

Reference controller Our reference controller is a classic tripod gait (Siciliano
and Khatib, 2008; Wilson, 1966; Saranli et al., 2001; Schmitz et al., 2001; Ding
et al., 2010; Steingrube et al., 2010). It involves two tripods: legs 1-4-5 and legs 2-
3-5 (Fig. 4.10). This controller is designed to always keep the robot balanced on at
least one of these tripods. The walking gait is achieved by lifting one tripod, while
the other tripod pushes the robot forward (by shifting itself backward). The lifted
tripod is then placed forward in order to repeat the cycle with the other tripods.
This gait is static, fast, and similar to insect gaits (Wilson, 1966; Delcomyn, 1971).
Table SA.1 shows the 24 parameters of the reference controller. The amplitude
orientation parameters (αi1) are set to 1 to produce the fastest possible gait, while
the amplitude elevation parameters (αi2) are set to a small value (0.25) to keep
the gait stable. The phase elevation parameters (φi2) define two tripods: 0.25 for
legs 2-3-5; 0.75 for legs 1-4-5. To achieve a cyclic motion of the leg, the phase
orientation values (φi1) are chosen by subtracting 0.25 to the phase elevation values

A.2. The Hexapod Genotypes and Controllers 229

Table A.1: Parameters of the reference controller.

Leg number 1 2 3 4 5 6

First joint
αi1 1.00 1.00 1.00 1.00 1.00 1.00
φi1 0.00 0.00 0.50 0.50 0.00 0.00

Two last joints
αi2 0.25 0.25 0.25 0.25 0.25 0.25
φi2 0.75 0.25 0.25 0.75 0.75 0.25

(φi2), plus a 0.5 shift for legs 1-3-5, which are on the left side of the robot. The actual
speed of the reference controller is not important for the comparisons made in this
manuscript: it is simply intended as a reference and to show that the performance
of classic, hand-programmed gaits tend to fail when damage occurs.

Random variation of controller’s parameters For the genotype mutation,
each parameter value has a 10% chance of being changed to any value in the set of
possible values, with the new value chosen randomly from a uniform distribution
over the possible values. For all the experiments, the crossover is disabled.

A.2.2 The second version (36 parameters)

Genotype and parametrized controller The angular position of each degree
of freedom is governed by a periodic function γ parametrized by its amplitude α,
its phase φ, and its duty cycle τ (the duty cycle is the proportion of one period
in which the joint is in its higher position). The function is defined with a square
signal of frequency 1Hz, with amplitude α, and duty cycle τ . This signal is then
smoothed via a Gaussian filter in order to remove sharp transitions, and is then
shifted according to the phase φ.
Angular positions are sent to the servos every 30 ms. In order to keep the “tibia” of
each leg vertical, the control signal of the third servo is the opposite of the second
one. Consequently, angles sent to the ith leg are:

• γ(t, αi1 , φi1 , τi1) for DOF 1

• γ(t, αi2 , φi2 , τi2) for DOF 2

• −γ(t, αi2 , φi2 , τi2) for DOF 3

This controller makes the robot equivalent to a 12 DOF system, even though 18
motors are controlled.
There are 6 parameters for each leg (αi1 , αi2 , φi1 , φi2 , τi1 , τi2), therefore each
controller is fully described by 36 parameters. Each parameter can have one of these
possible values: 0, 0.05, 0.1, ... 0.95, 1. Different values for these 36 parameters
can produce numerous different gaits, from purely quadruped gaits to classic tripod
gaits.
This controller is designed to be simple enough to show the performance of the
algorithms in an intuitive setup. Nevertheless, our algorithm will work with any

230 The Hexapod Experiments

Table A.2: Parameters of the reference controller.

Leg number 1 2 3 4 5 6

First joint
αi1 1.00 1.00 1.00 1.00 1.00 1.00
φi1 0.00 0.00 0.50 0.50 0.00 0.00
τi1 0.5 0.5 0.5 0.5 0.5 0.5

Two last joints
αi2 0.25 0.25 0.25 0.25 0.25 0.25
φi2 0.75 0.25 0.25 0.75 0.75 0.25
τi2 0.5 0.5 0.5 0.5 0.5 0.5

type of controller, including bio-inspired central pattern generators (Sproewitz et al.,
2008) and evolved neural networks (Yosinski et al., 2011; Clune et al., 2011, 2009;
Lee et al., 2013).

Reference controller With this version of the controller, our reference controller
is the same as before but with all the duty cycle parameters (τi) set to 0.5 so
that the motors spend the same proportion of time in their two limit angles. The
corresponding parameters are given in Table A.1.

Random variation of controller’s parameters Each parameter of the con-
troller has a 5% chance of being changed to any value in the set of possible values,
with the new value chosen randomly from a uniform distribution over the possible
values.

Appendix B

The Robotic Arm experiments

B.1 The Robotic Arm:
First setup

VideoCamera

Robot

Bin

8Joints

Figure B.1: The second robotic arm experimental setup.

Physical Robot The physical robot is a planar robotic arm with 8 degrees of
freedom (Fig. B.1) and a 1-degree-of-freedom gripper. The robot has to release a
ball into a bin (a variant of the classic “pick and place” task in industrial robotics).
To assess the position of the gripper, a red cap, placed on top of the gripper, is
tracked with a video camera. The visual tracking is achieved with the “cmvision”
ROS package, which tracks colored blobs (http://wiki.ros.org/cmvision). The
transformation between the robot’s frame and the camera frame is known and
provided to the algorithm to compute the position of the cap in the robot’s frame.
The eight joints of the robot are actuated by position-controlled servos manufac-
tured by Dynamixel. To maximize the reliability of the the arm, the type of servo
is not the same for all the joints: heavy-duty servos are used near the base of the
robot and lighter ones are used for the end of the arm. The first joint, fixed to
the base, is moved by two MX-28 servos mounted in parallel. The second joint is
moved by an MX-64 servo. The 3 subsequent servos are single MX-28s, and the 3
remaining servos are AX-18s. All the robot’s joints are limited to a motion range

http://wiki.ros.org/cmvision

232 The Robotic Arm experiments

of ±π/2.

Simulator The generation of the behavior-performance map is made with a sim-
ulated robot in the same way as for the hexapod experiment. For consistency with
the simulated hexapod experiments, we used the dynamic (as opposed to kinematic)
version of the simulator, based on the ODE library. Any joint configuration that
resulted in the arm colliding with itself was not added to the map.

B.2 The Robotic Arm:
Second setup

Physical Robot In the second setup of the robotic arm experiments, the robot
is identical to the one used in the fist setup (see appendix B.1), only the position
of the camera differs. In this setup, the camera is placed in an arbitrary position
which is unknown by the robot and the algorithm. Moreover, instead of tracking
a red cap, like in the initial setup, the camera tracks the red dot of a laser pointer
placed on the tip of the gripper (Fig. B.2).
This setup has been imagined to release several assumption usually made in visual-
servoing works (Espiau et al., 1992) and to show that learning strategies can be used
for this kind of task. First, the transformation between the robot’s frame and the
camera frame is not provided. Second, the camera does not track the robot itself,
but only the red dot projected on the ground by the laser pointer. This projection
adds another unknown transformation that the algorithm as to deal with and which
can be sometimes not strictly linear (uneven ground, dot not visible). Moreover, no
assumption about the camera’s quality is made, meaning that only the position of
the dot at the end of the movement is assess and not its trajectory. This constraint
prevent the algorithms from using most of gradient based approaches.

Simulator The simulator used for this second setup is identical to the one used in
the fist setup (see appendix B.1). In order to simulate the projection of the camera
placed in an arbitrary position, 3 random angles (θr, θp, θy) are used to compute a
roll/pitch/yaw rotation matrix:

rot =

⎡

⎢

⎣

cθy ∗ cθp −sθy ∗ cθr + cθy ∗ sθp ∗ sθr sθy ∗ sθr + cθy ∗ sθp ∗ cθr

sθy ∗ cθp cθy ∗ cθr + sθy ∗ sθp ∗ sθr −cθy ∗ sθr + cθy ∗ sθp ∗ cθr

−sθp cθp ∗ sθr cθp ∗ cθr

⎤

⎥

⎦

(B.1)
Where c and s stands for cos() and sin() respectively. Because the laser dot is
projected on the ground, the z coordinate of its position is always equal to zero and
because a camera is also a projection of the depth component, the previous matrix
can be reduced to its first 2x2 block:

rot =

[

cos(θy) ∗ cos(θp) − sin(θy) ∗ cos(θr) + cos(θy) ∗ sin(θp) ∗ sin(θr)
sin(θy) ∗ cos(θp) cos(θy) ∗ cos(θr) + sin(θy) ∗ sin(θp) ∗ sin(θr)

]

(B.2)

B.3. The Arm Controller 233

The meter/pixel conversion is achieved by adding a scale factor before the matrix
that convert 1 meter into 1500 pixels.

Camera’s View

Camera

Laser

Laser Point

Figure B.2: The second robotic arm experimental setup.

B.3 The Arm Controller

Parametrized controller The controller defines the target position for each
joint. The controller is thus parametrized by eight continuous values from 0 to
1 describing the angle of each joint, which is mapped to the the total motion range
of each joint of ±π/2. The 8 joints are activated simultaneously and are driven to
their target position by internal PID controllers.
We chose this simple control strategy to make the experiments easy to reproduce
and highlight the contribution of Intelligent Trial and Error for damage recovery.
More advanced control strategies, for instance visual servoing (Siciliano and Khatib,
2008), would be more realistic in a industrial environment, but they would have
made it hard to analyze the experimental results because both Intelligent Trial and
Error and the controller would compensate for damage at the same time.

Randomly varying the controller’s parameters Each parameter of the con-
troller (section “Parametrized controller”) has a 12.5% chance of being changed to
any value from 0 to 1, with the new value chosen from a polynomial distribution as
described on p. 124 of (Deb, 2000), with ηm = 10.0.

Appendix C

Parameters values used in the
experiments

C.1 TBR-Evolution experiments

• Parameters used for the experiments on the virtual robot:

– TBR-Evolution, Novelty Search and NS with Local Competition exper-
iments:

∗ Population size: 100 individuals

∗ Number of generations: 10 000

∗ Mutation rate: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ k:15

– “Nearest” and “Orientation” control experiments:

∗ Population size : 100 individuals

∗ Number of generations : 50 0000 (100 * 500)

∗ Mutation rate : 10% on each parameters

∗ Crossover : disabled

• Parameters used for the experiments on the physical robot:

– TBR-Evolution and the control experiment:

∗ Population size: 100 individuals

∗ Number of generations: 3 000 generations

∗ Mutation: 10% on each parameters

∗ Crossover: disabled

∗ ρ: 0.10 m

∗ ρ variation: none

∗ Transfer period: 50 iterations

∗ τ : -0.05 m

236 Parameters values used in the experiments

C.2 T-Resilience experiments

• Population size: 100 individuals

• Number of generations: 1000

• Transfer frequency: every 40 generations

• Evaluation duration: 3 seconds

• Transferability threshold: 0.1 meter

C.3 Intelligent Trial and Error experiments

C.3.1 Experiments with the hexapod robot

Main parameters of MAP-Elites

• parameters in controller: 36

• parameter values (controller): 0 to 1, with 0.05 increments

• size of behavioral space: 6

• possible behavioral descriptors: {0, 0.25, 0.5, 0.75, 1}

• iterations: 40 million

Main parameters of M-BOA

• σ2
noise: 0.001

• α: 0.9

• ρ: 0.4

• κ: 0.05

C.3.2 Experiments with the robotic arm

Main parameters of MAP-Elites

• parameters in controller: 8

• controller parameter values: 0 to 1 (continuous)

• dimensions in the behavioral space: 2

• simulated evaluations to create the behavior-performance map: 20 million

C.4. State-Based BO with Transfer, Priors and blacklists 237

Main parameters of M-BOA

• σ2
noise: 0.03

• ρ: 0.1

• κ: 0.3

C.4 State-Based BO with Transfer, Priors and black-
lists

For all the experiments presented in chapter 5, we used the RPROP algorithm
(Riedmiller and Braun, 1993) to optimize the log-likelihood of the model and the
CMAES algorithm (Hansen, 2006) to find the maximum in the acquisition function.
The values of the algorithm’s parameters are the same for all the experiments and
are defined as:

• Kernel noise parameter: σ2
noise = 0.01

• Max number of iteration per target: 150

• Performance threshold to reach a target: 50px
(changed to 75 for experiments in reality)

• Number of initial random samples: 10

• UCB exploration parameter: κ = 20

• Number of RPROP iterations : 300

• Number of RPROP restarts: 10

Appendix D

Other

D.1 Appendix for the T-resilience experiments

D.1.1 Implementation details for reference experiments

D.1.1.1 Local search

Our implementation of the local search (algorithm 6) starts from a randomly gen-
erated initial controller. A random perturbation c′ is derived from the current best
controller c. The controller c′ is next tested on the robot for 3 seconds and the cor-
responding performance value Freal(c′) is estimated with a SLAM algorithm using
the RGB-D camera. If c′ performs better than c, c is replaced by c′, else c is kept.
For both the stochastic local search and the policy gradient method (section
D.1.1.2), a random perturbation c′ from a controller c is obtained as follows:

• each parameter c′
j is obtained by adding to cj a random deviation δj , uni-

formely picked up in {−0.25, 0, 0.25};

• if c′
j is greater (resp. lower) than 1 (resp. 0), it takes the value 1 (resp. 0).

The process is iterated during 20 minutes to match the median duration of the
T-Resilience (Table D.1; variant time). For comparison, the best controller found
after 25 real tests is also kept (variant tests).

Algorithm 6 Stochastic local search (T real tests)

c← random controller

for i = 1→ T do
c′ ← random perturbation of c
if Freal(c′) > Freal(c) then

c← c′

new controller: c

D.1.1.2 Policy gradient method

Our implementation of the policy gradient method is based on Kohl and Stone
(2004) (algorithm 7). It starts from a randomly generated controller c. At each
iteration, 15 random perturbations c′i from this controller are tested for 3 seconds
on the robot and their performance values are estimated with the SLAM algorithm,

240 Other

using the RGB-D camera. The number of random perturbations (15) is the same
as in (Kohl and Stone, 2004), in which only 12 parameters have to be found. For
each control parameter j, the average performance A+,j (resp. A or A−,j) of the
controllers whose parameter value c′i

j is greater than (resp. equal to or less than)
the value of cj is computed. If A is not greater than both A+,j and A−,j , the control
parameter cj is modified as follows:

• cj is increased by 0.25, if A+,j > A−,j and cj < 1;

• cj is decreased by 0.25, if A−,j > A+,j and cj > 0.

Once all the control parameters have been updated, the newly generated controller
c is used to start a new iteration of the algorithm.
The whole process is iterated 4 times (i.e. 60 real tests; variant tests) with a
median duration of 24 minutes to match the median duration of the T-Resilience
(Table D.1). For comparison, the best controller found after 2 iterations (i.e. 30
real tests; variant time) is also kept.

Algorithm 7 Policy gradient method (T × S real tests)

c← random controller

for i = 1→ T do
{c′1, c′2, . . . , c′S}← S random perturbations of c
for j = 1→ S do

A0 ,j = average of Freal(c′i) for c′i such as c′i
j = cj

A+,j = average of Freal(c′i) for c′i such as c′i
j > cj

A−,j = average of Freal(c′i) for c′i such as c′i
j < cj

if A0,j > max(A+,j , A−,j) then
cj remains unchanged

else
if A+,j > A−,j then

cj = min(cj + 0.25, 1)
else

cj = max(cj − 0.25, 0)

new controller: c

D.1.1.3 Self-modeling process (Bongard’s algorithm)

Our implementation of the self-modeling process is based on Bongard et al. (2006)
(algorithm 8). Unlike the implementation of Bongard et al. (2006), we use internal
measurements to assess the consequences of actions. This measure is performed
with a 3-axis accelerometer (ADXL345) placed at the center of the robot, thus
allowing the robot to measure its orientation.

D.1. Appendix for the T-resilience experiments 241

Algorithm 8 Self-modeling approach (T real tests)

popmodel ← {m1, m2, . . . , mSmodel} (randomly generated or not)
empty training set of actions Ω

for i = 1→ T do
selection of the action which maximises variance of predictions in popmodel

execution of the action on the robot
recording of robot’s orientation based on internal measurements
addition of the action to the training set Ω
Nmodel iterations of MOEA on popmodel evaluated on Ω

selection of the new self-model
popctrl ← {c1, c2, . . . , cSctrl} (randomly generated)

Nctrl iterations of MOEA on popctrl in the self-model

selection of the new controller in the Pareto front

Robot’s model. The self-model of the robot is a dynamic simulation of the
hexapod built with the Open Dynamics Engine (ODE); it is the same model as the
one used for T-Resilience experiments. However this self-model is parametrized in
order to discover some damages or morphological modifications. For each leg of the
robot, the algorithm has to find optimal values for 5 parameters:

• length of middle part of the leg (float)

• length of the terminal part of the leg (float)

• activation of the first actuator (boolean)

• activation of the second actuator (boolean)

• activation of the last actuator (boolean)

The length parameters have 6 different values: {0, 0.5, 0.75, 1, 1.25, 1.5}, which
represents a scale factor with respect to the original size. If the length parameter
of one part is zero, the part is deleted in the simulation and all other parts only
attached to it are deleted too. We therefore have a model with 30 parameters.

Action set. As advised by Bongard (2007) (variant II), we use a set of actions
where each action uses only one leg. The first servo has 2 possible positions (1,2):
−π/6 and π/6. For each of these two positions, we have 3 possible actions (a,b,c)
as shown on Figure D.1. There are consequently 6 possible actions for each leg,
that is, 36 actions in total.

Parameters. A population of 36 models is evolved during 2000 generations. The
initial population is randomly generated for the initial learning scenario. For other

242 Other

Top view Front view

(1)

(2)

(a)

(b)

(c)

π/6

-π/6

-2π/3
π/6

π/6

Figure D.1: The six possible actions of a leg that can be tested on the robot: (1,a),
(2, a), (1,b), (2, b), (1,c), (2, c).

scenarios, the population is initialized with the self-model of the undamaged robot.
A new action is tested every 80 generations, which leads to a total of 25 actions
tested on the real robot. Applying a new action on the robot implies making
an additional simulation for each model at each generation, leading to arithmetic
progression of the number of simulation needed per generation. Moreover, 36× 36
additional simulations are needed each time a new action has to be selected and
transferred (the whole action set applied to the whole population). In total, about
one million simulations have been done per run ((25×26/2)×36×80+36×36×25 =
968400).
The self-modeling process is iterated 25 times (i.e. 25 real tests; variant tests)
before the optimization of controllers occurs, which leads to a median duration of
250 minutes on overall. (Table D.1). For comparison, the best controller optimized
with the self-model obtained after 25 minutes of self-modeling is also kept (i.e. after
11 real tests; variant time).

D.1.2 Validation of the implementations

To ensure that the observed poor performances are not caused by an implementation
error, the local search and the policy search have been tested in simulation with
higher numbers of evaluations. Each algorithm has been executed 40 times with
105 evaluations on the simulated hexapod robot, which is used as a self-model with
the T-Resilience algorithm. Results are depicted on Figure D.2.
These experiments in simulation demonstrate that the small number of evaluations
is the cause of the poor performances of these two algorithms in our experiments
(cases A to E). Walking controllers are achieved after about 1, 000 evaluations (me-

D.1. Appendix for the T-resilience experiments 243

Evaluations (x 10 000)

Fo
rw

a
rd

 d
is

p
la

ce
m

e
n
t

(m
.)

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

Evaluations (x 10 000)

Fo
rw

a
rd

 d
is

p
la

ce
m

e
n
t

(m
.)

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

Evaluations
0 50 100

-0.2

0

0.2

0.4

0.6

0.8

Evaluations
0 50 100

-0.2

0

0.2

0.4

0.6

0.8

(a) Local search.

Evaluations (x 10 000)

Fo
rw

a
rd

 d
is

p
la

ce
m

e
n
t

(m
.)

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

Evaluations (x 10 000)

Fo
rw

a
rd

 d
is

p
la

ce
m

e
n
t

(m
.)

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

Evaluations
0 50 100

-0.2

0

0.2

0.4

0.6

0.8

Evaluations
0 50 100

-0.2

0

0.2

0.4

0.6

0.8

(b) Policy search.

Figure D.2: Performances obtained with the local search (a) and the policy search
(b) in simulation (40 runs; 105 evaluations). Thick black curves depict median
performance values, dark areas are delimited by first and third quartiles and light
areas by lower and upper bounds. Horizontal dashed lines depict the performance
of the reference controller in simulation. Figures on the right show the progression
of performance values during the first 100 evaluations. Median number of evalua-
tions used in our experiments on the robot for the tests and the time variants are
respectively depicted by vertical dashed lines and vertical solid lines. Local search
and policy gradient search are both able to find good controllers, provided that they
are executed during enough iterations.

244 Other

dian performance greater than 0.4 m). After 2 × 104 evaluations, both algorithms
converge to behaviors with good performances (figure D.2; median performances
0.66 m for local search and 0.50 m for policy search). These performances have
to be balanced with the high number of required evaluations that is most of the
time not feasible with a real robot and not compatible with our damage recovery
problem. In our experiments with the real robot (section 4.2.3), we only performed
between 25 and 60 evaluations, which is not enough for the algorithms to find effi-
cient controllers, even in simulation (figure D.2; median performances 0.23 m after
25 evaluations and 0.30 m after 50 evaluations for local search; 0.06 m after 30
evaluations and 0.13 m after 60 evaluations for policy search).
These results indicate that the poor performances observed with both algorithms
in our experiments (cases A to E) are mainly caused by low numbers of evaluations
performed on the robot.

D.1.3 Median durations and number of tests

Algorithms
Median duration Median number

(min.) of real tests

Local search 20 (10) 50 (25)
Policy search 25 (13) 60 (30)
T-Resilience 19 (19) 25 (25)
Self-modeling 25 (250) 11 (25)

Table D.1: Median duration and median number of real tests on the robot dur-
ing a full run for each algorithm, for the “time” variant. Number in parenthesis
correspond to the “tests” variant.

D.1.4 Statistical tests

Local search Policy search Self-modeling
Ref.

tests time tests time time tests

A 0.008 0.008 0.008 0.008 0.008 0.008 1.000
B 0.008 0.016 0.016 0.016 0.008 0.008 0.063
C 0.016 0.151 0.008 0.008 0.008 0.008 0.063
D 0.151 0.548 0.016 0.087 0.063 0.008 0.063
E 0.008 0.008 0.063
F 0.008 0.063 0.063

Table D.2: Statistical significance when comparing performances between the T-
Resilience and the other algorithms (Ref. corresponds to the reference gait). P-
values are computed with Wilcoxon rank-sum tests.

D.2. Methods for the Intelligent Trial and Error algorithm and
experiments 245

D.2 Methods for the Intelligent Trial and Error algo-
rithm and experiments

D.2.1 Notations

• c: Parameters of a controller (vector)

• x: A location in a discrete behavioral space (i.e. a type of behavior) (vector)

• χ: A location in a discrete behavioral space that has been tested on the
physical robot (vector)

• P: Behavior-performance map (stores performance) (associative table)

• C : Behavior-performance map (stores controllers) (associative table)

• P(x): Max performance yet encountered at x (scalar)

• C (x): Controller currently stored in x (vector)

• χ1:t: All previously tested behavioral descriptors at time t (vector of vectors)

• P1:t: Performance in reality of all the candidate solutions tested on the robot
up to time t (vector)

• P(χ1:t): Performance in the behavior-performance map for all the candidate
solutions tested on the robot up to time t (vector)

• f(): Performance function (unknown by the algorithm) (function)

• σ2
noise: Observation noise (a user-specified parameter) (scalar)

• k(x, x): Kernel function (see section “kernel function”) (function)

• K: Kernel matrix (matrix)

• k: Kernel vector [k(x, χ1), k(x, χ2), ..., k(x, χt)] (vector)

• µt(x): Predicted performance for x (i.e. the mean of the Gaussian process)
(function)

• σ2
t (x): Standard deviation for x in the Gaussian process (function)

D.2.2 Hexapod Experiment

Main Behavioral descriptor (duty factor) The default behavioral descriptor
is a 6-dimensional vector that corresponds to the proportion of time that each leg is
in contact with the ground(also called duty factor). When a controller is simulated,
the algorithm records at each time step (every 30 ms) whether each leg is in contact
with the ground (1: contact, 0: no contact). The result is 6 Boolean time series

246 Other

(Ci for the ith leg). The behavioral descriptor is then computed with the average
of each time series:

x =

⎡

⎢

⎢

⎢

⎣

∑

t
C1(t)

numTimesteps(C1)
...

∑

t
C6(t)

numTimesteps(C6)

⎤

⎥

⎥

⎥

⎦

(D.1)

During the generation of the behavior-performance map, the behaviors are stored
in the maps’s cells by discretizing each dimension of the behavioral descriptor space
with these five values: {0, 0.25, 0.5, 0.75, 1}. During the adaptation phase, the
behavioral descriptors are used with their actual values and are thus not discretized.

Alternate Behavioral descriptor (orientation) The alternate behavioral de-
scriptor tested on the physical robot (we investigated many other descriptors in
simulation: Supplementary Experiment S5) characterizes changes in the angular
position of the robot during walking, measured as the proportion of 15ms intervals
that each of the pitch, roll and yaw angles of the robot frame are positive (three
dimensions) and negative (three additional dimensions):

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
K

∑

k U(ΘT (k)− 0.005π)
1
K

∑

k U(−ΘT (k)− 0.005π)
1
K

∑

k U(ΨT (k)− 0.005π)
1
K

∑

k U(−ΨT (k)− 0.005π)
1
K

∑

k U(ΦT (k)− 0.005π)
1
K

∑

k U(−ΦT (k)− 0.005π)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(D.2)

where ΘT (k), ΨT (k) and ΦT (k) denote the pitch, roll and yaw angles, respectively, of
the robot torso (hence T) at the end of interval k, and K denotes the number of 15ms
intervals during the 5 seconds of simulated movement (here, K = 5s/0.015s ≈ 334).
The unit step function U(·) returns 1 if its argument exceeds 0, and returns 0
otherwise. To discount for insignificant motion around 0 rad, orientation angles are
only defined as positive if they exceed 0.5% of π rad. Similarly, orientation angles
are only defined as negative if they are less than −0.5% of π rad.

Performance function In these experiments, the “mission” of the robot is to
go forward as fast as possible. The performance of a controller, which is a set of
parameters (see appendix A.2.2: Parametrized controller), is defined as how far the
robot moves in a pre-specified direction in 5 seconds.
During the behavior-performance map creation step, the performance is obtained
thanks to the simulation of the robot. All odometry results reported on the physical
robot, during the adaptation step, are measured with the embedded simultaneous
location and mapping (SLAM) algorithmDryanovski et al. (2013). The accuracy
of this algorithm was evaluated by comparing its measurements to ones made by
hand on 40 different walking gaits. These experiments revealed that the median

D.2. Methods for the Intelligent Trial and Error algorithm and
experiments 247

measurement produced by the odometry algorithm is reasonably accurate, being
just 2.2% lower than the handmade measurement (Supplementary Fig. D.3d).
Some damage to the robot may make it flip over. In such cases, the visual odom-
etry algorithm returns pathological distance-traveled measurements either several
meters backward or forward. To remove these errors, we set all distance-traveled
measurements less than zero or greater than two meters to zero. The result of
this adjustment is that the algorithm appropriately considers such behaviors low-
performing. Additionally, the SLAM algorithm sometimes reports substantially
inaccurate low values (outliers on Supplementary Fig. D.3d). In these cases the
adaptation step algorithm will assume that the behavior is low-performing and will
select another working behavior. Thus, the overall algorithm is not substantially
impacted by such infrequent under-measurements of performance.

Stopping criterion In addition to guiding the learning process to the most
promising area of the search space, the estimated performance of each solution
in the map also informs the algorithm of the maximum performance that can be
expected on the physical robot. For example, if there is no controller in the map
that is expected to perform faster on the real robot than 0.3m/s, it is unlikely that
a faster solution exists. This information is used in our algorithm to decide if it
is worth continuing to search for a better controller; if the algorithm has already
discovered a controller that performs nearly as well as the highest value predicted
by the model, we can stop the search.
Formally, our stopping criterion is

max(P1:t) ≥ α max
x∈P

(µt(x)), with α = 0.9 (D.3)

where x is a location in the discrete behavioral space (i.e. a type of behavior)
and µt is the predicted performance of this type of behavior. Thus, when one of
the tested solutions has a performance of 90% or higher of the maximum expected
performance of any behavior in the map, the algorithm terminates. At that point,
the highest-performing solution found so far will be the compensatory behavior that
the algorithm selects. An alternate way the algorithm can halt is if 20 tests on the
physical robot occur without triggering the stopping criterion described in equation
D.3: this event only occurred in 2 of 240 experiments performed on the physical
robot described in the main text. In this case, we selected the highest-performing
solution encountered during the search. This user-defined stopping criterion is not
strictly necessary, as the algorithm is guaranteed to stop in the worst case after
every behavior in the map is tested, but it allows a practical limit on the number
of trials performed on the physical robot.

Initiating the Adaptation Step The adaptation step is triggered when the
performance drops by a certain amount. The simplest way to choose that threshold
is to let the user specify it. Automating the selection of this value, and the impact of
triggering the algorithm prematurely, is an interesting question for future research
in this area.

248 Other

D.2.3 Robotic Arm Experiment

Behavioral descriptor Because the most important aspect of the robot’s be-
havior in this task is the final position of the gripper, we use it as the behavioral
descriptor:

behavioral_descriptor(simu(c)) =

[

xg

yg

]

(D.4)

where (xg, yg) denotes the position of the gripper once all the joint have reached
their target position.
The size of the working area of the robot is a rectangle measuring 1.4m×0.7m. For
the behavior-performance map, this rectangle is discretized into a grid composed of
20000 square cells (200× 100). The robot is 62cm long.

Performance function Contrary to the hexapod experiment, for the robotic
arm experiment the performance function for the behavior-map creation step and
for the adaptation step are different. We did so to demonstrate that the two can be
different, and to create a behavior-performance map that would work with arbitrary
locations of the target bin.
For the behavior-performance map generation step (accomplished via the MAP-
Elites algorithm), the performance function captures the idea that all joints should
contribute equally to the movement. Specifically, high-performance is defined as
minimizing the variance of the joint angles, that is:

performance(simu(c))) = −1

8

i=7
∑

i=0

(pi −m)2 (D.5)

where pi is the angular position of joint i (in radians) and m = 1
8

∑i=7
i=0 pi is the

mean of the joint angles. This performance function does not depend on the target.
The map is therefore generic: it contains a high-performing controller for each point
of the robot’s working space.
For the adaptation step (accomplished via the M-BOA algorithm), the behavior-
performance map, which is generic to many tasks, is used for a particular task. To
do so, the adaption step has a different performance measure than the step that
creates the behavior-performance map. For this problem, the predicted performance
measure is the Euclidean distance to the target (closer is better). Specifically, for
each behavior descriptor x in the map, performance is

P(x) = −||x− b|| (D.6)

where b is the (x, y) position of the target bin. Note that the variance of the joint
angles, which is used to create the behavior-performance map, is ignored during the
adaptation step.
The performance of a controller on the physical robot is minimizing the Euclidean
distance between the gripper (as measured with the external camera) and the target
bin:

D.2. Methods for the Intelligent Trial and Error algorithm and
experiments 249

performance(physical_robot(C (χ))) = −||xg − b|| (D.7)

where xg is the position of the physical gripper after all joints have reached their
final position, b is the position of the bin, and C (χ) is the controller being evaluated
(χ is the position in simulation that controller reached).
If the gripper reaches a position outside of the working area, then the camera cannot
see the marker. In these rare cases, we set the performance of the corresponding
controller to a low value (−1 m).
For the control experiments with traditional Bayesian optimization on the phys-
ical robot, self-collisions are frequent during adaptation, especially given that we
initialize the process with purely random controllers (i.e. random joint angles).
While a single self-collision is unlikely to break the robot, hundreds of them can
wear out the gearboxes because each servo continues to apply a force for a period
of time until it determines that it cannot move. To minimize costs, and because we
ran 210 independent runs of the algorithm (14 scenarios × 15 replicates), we first
tested each behavior in simulation (taking the damage into account) to check that
there were no self-collisions. If we detected a self-collision, the performance for that
behavior was set to a low value (−1m).
Auto-collisions are much less likely with Intelligent Trial & Error because the
behavior-performance map contains only controllers that do not self-collide on the
undamaged, simulated robot. As a consequence, in the Intelligent Trial & Error
experiments we did not simulate controllers before testing them on the physical
robot.

Stopping criterion Because the robot’s task is to release a ball into a bin, the
adaptation step can be stopped when the gripper is above the bin. The bin is
circular with a diameter of 10 cm, so we stopped the adaptation step when the red
cap is within 5 cm of the center of the bin.

D.2.4 Selection of parameters

All of the data reported in this section comes from experiments with the simulated
hexapod robot, unless otherwise stated.

Selecting the ρ value For ρ between 0.1 and 0.8, we counted the number of
behaviors from the map that would be influenced by a single test on the real hexapod
robot (we considered a behavior to be influenced when its predicted performance
was affected by more than 25% of the magnitude of the update for the tested
behavior): with ρ = 0.2, the update process does not affect any neighbor in the
map, with ρ = 0.4, it affects 10% of the behaviors, and with ρ = 0.8, it affects 80%
of them. Additional values are shown in Supplementary Fig. D.3c.
The previous paragraph describes tests we conducted to determine the number of
behaviors in the map affected by different ρ values, but those experiments do not
tell us how different ρ values affect the performance of the algorithm overall. To

250 Other

a b

c

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ρ
pa

ra
m

et
er

C
ov

ar
ia

nc
e

ke
rn

el
 o

ut
pu

t

Distance

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

22.5

20

17.5

15

12.5

10

7.5

5

2.5

0
ρ parameter

Pe
rfo

rm
an

ce
 (m

 /
s)

Ad
ap

ta
tio

n
Ti

m
e

(it
er

at
io

ns
)

Real performance (m)

M
ea

su
re

d
pe

rfo
rm

an
ce

 (m
)

101.4%
97.8%
91.7%

100%

ρ parameter

Pr
op

or
tio

n
of

 a
ffe

ct
ed

 s
ol

ut
io

ns
 (p

er
ce

nt
)

100

90

80

70

60

50

40

30

20

10

0 4.0 6.00 2.0 0.8

d

21 5.10 5.0 2.5 6.0 7.04.0 5.02.0 3.00.1 0.8

2.2

2

1.8

1.6

1.4

1.2

1

0.8

1.510.5 2

Figure D.3: The effect of changing the algorithm’s parameters. (a) The
shape of the Matérn kernel function for different values of the ρ pa-
rameter. (b) Performance and required adaptation time obtained for
different values of ρ. For each ρ value, the R-BOA algorithm was executed in
simulation with 8 independently generated behavior-performance maps and for 6
different damage conditions (each case where one leg is missing). (c) The num-
ber of controllers in the map affected by a new observation according to
different values of the ρ parameter. (d) The precision of the odometry
value. The distances traveled by the physical robot, as measured manually (“real
performance”) is compared to the measurements automatically provided by the
simultaneous location and mapping (SLAM) algorithm(“measured performance”).
The dashed black line indicates the hypothetical case where SLAM measurements
are error-free and thus are the same as manual measurements. In (b), (c) and (d),
the middle, black lines represent medians and the borders of the shaded areas show
the 25th and 75th percentiles. The dotted lines are the minimum and maximum
values. The gray bars show the ρ value chosen for the hexapod experiments in the
main text. See Supplementary Methods for additional details and analysis.

D.2. Methods for the Intelligent Trial and Error algorithm and
experiments 251

assess that, we then repeated the experiments from the main paper with a set
of possible values (ρ ∈ [0.1 : 0.025 : 0.8]) in simulation (i.e., with a simulated,
damaged robot), including testing on 6 separate damage scenarios (each where
the robot loses a different leg) with all 8 independently generated replicates of
the default 6-dimensional behavior-performance map. The algorithm stopped if
20 adaptation iterations passed without success according to the stopping criteria
described in the main text and section D.2.2: Stopping criterion. The results reveal
that median performance decreases only modestly, but significantly, when the value
of ρ increases: changing ρ from 0.1 to 0.8 only decreases the median value 12%, from
0.25 m/s to 0.22 m/s (p-value = 9.3 × 10−5 via Matlab’s Wilcoxon ranksum test,
Supplementary Fig. D.3b). The variance in performance, especially at the extreme
low end of the distribution of performance values, is not constant over the range of
explored values. Around ρ = 0.3 the minimum performance (Supplementary Fig.
D.3b, dotted red line) is higher than the minimum performance for more extreme
values of ρ.
A larger effect of changing ρ is the amount of time required to find a compensatory
behavior, which decreases when the value of ρ increases (Supplementary Fig. D.3b).
With a ρ value lower than 0.25, the algorithm rarely converges in less than the
allotted 20 iterations, which occurs because many more tests are required to cover
all the promising areas of the search space to know if a higher-performing behavior
exists than the best-already-tested. On the other hand, with a high ρ value, the
algorithm updates its predictions for the entire search space in a few observations:
while fast, this strategy risks missing promising areas of the search space.
In light of these data, we chose ρ = 0.4 as the default value for our hexapod experi-
ments because it represents a good trade-off between a high minimum performance
and a low number of physical tests on the robot. The value of ρ for the robotic arm
experiment has been chosen with the same method.

Selection of the κ value For the hexapod robot experiments, we chose κ = 0.05.
This relatively low value emphasizes exploitation over exploration. We chose this
value because the exploration of the search space has already been largely performed
during the behavior-performance map creation step: the map suggests which areas
of the space will be high-performing, and should thus be tested, and which areas of
the space are likely unprofitable, and thus should be avoided.
For the robotic arm experiments, we chose κ = 0.3, which emphasizes exploration
more, because it experimentally leads to better results.

D.2.5 Running time

Computing hardware All computation (on the physical robots and in simu-
lation) was conducted on a hyperthreaded 16-core computer (Intel Xeon E5-2650
2.00GHz with 64Gb of RAM). This computational power is mainly required for
the behavior-performance map creation step. Creating one map for the hexapod
experiment took 2 weeks, taking advantage of the fact that map creation can easily

252 Other

be parallelized across multiple cores. Map creation only needs to be performed once
per robot (or robot design), and can happen before the robot is deployed. As such,
the robot’s onboard computer does not need to be powerful enough to create the
map.
For the hexapod robot experiment, the most expensive part of adaptation is the Si-
multaneous Localization And Mapping (SLAM) algorithmDryanovski et al. (2013);
Thrun et al. (2005); Dissanayake et al. (2001), which measures the distance trav-
eled on the physical hexapod robot. It is slow because it processes millions of 3D
points per second. It can be run on less powerful computers, but doing so lowers its
accuracy because fewer frames per second can be processed. As computers become
faster, it should be possible to run high-accuracy SLAM algorithms in low-cost,
onboard computers for robots.
The rest of the adaptation step needs much less computational power and can
easily be run on an onboard computer, such as a smartphone. That is because it
takes approximately 15,000 arithmetic operations between two evaluations on the
physical robot, which requires less than a second or two on current smartphones.

Measuring how long adaptation takes (hexapod robot) The reported time
to adapt includes the time required for the computer to select each test and the
time to conduct each test on the physical robot. Overall, evaluating a controller
on the physical hexapod robot takes about 8 seconds (median 8.03 seconds, 5th

and 95th percentiles [7.95; 8.21] seconds): 0.5-1 second to initialize the robot, 5
seconds during which the robot can walk, 0.5-1 second to allow the robot to stabilize
before taking the final measurement, and 1-2 seconds to run the SLAM algorithm.
Identifying the first controller to test takes 0.03 [0.0216; 0.1277] seconds. The time
to select the next controller to test increases depending on the number of previous
experiments because the size of the Kernel Matrix (K matrix, see Methods and
Supplementary Fig. 4), which is involved in many of the arithmetic operations,
grows by one row and one column per test that has been conducted. For example,
selecting the second test takes 0.15 [0.13; 0.22] seconds, while the 10th selection
takes 0.31 [0.17; 0.34] seconds.

D.3. Notation for the State-Based BO with Transfer, Priors and
blacklists algorithms 253

D.3 Notation for the State-Based BO with Transfer,
Priors and blacklists algorithms

µt+1(x) = Tr

[

µ0(x)
1

]

+

(

Pcᵀ1:t −Tr

[

µ0(χ1:t)
1

])

K−1k

σ2
t+1(x) = k(x, x)− kbl

ᵀKbl
−1kbl

K =

⎡

⎢

⎢

⎣

k(χ1, χ1) · · · k(χ1, χt+1)
...

. . .
...

k(χt+1, χ1) · · · k(χt+1, χt+1)

⎤

⎥

⎥

⎦

Kbl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

k(χ1, bl1) · · · k(χ1, bln)

K
...

. . .
...

k(χt, bl1) · · · k(χt, bln)
k(bl1, χ1) · · · k(bl1, χt) k(bl1, bl1) + σ2

noise · · · k(bl1, bln)
...

. . .
...

...
. . .

...
k(bln, χ1) · · · k(bln, χt) k(bln, bl1) · · · k(bln, bln) + σ2

noise

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

kbl =
[

k(x, χ1) · · · k(x, χt) k(x, bl1) · · · k(x, bln)
]

µ0(x) =

⎡

⎢

⎢

⎣

µ1
0(x)
...

µn
0 (x)

⎤

⎥

⎥

⎦

µ0(χ1:t) =
[

µ0(χ1) . . . µ0(χt)
]

Tr =

⎡

⎢

⎢

⎣

θ1,1
T r θ1,2

T r . . . θ1,n+1
T r

...
. . .

...

θp,1
T r θp,2

T r . . . θp,n+1
T r

⎤

⎥

⎥

⎦

(D.8)

	Introduction
	Background
	Introduction
	Evolutionary algorithms
	Principle
	Multi-objective optimization
	Novelty Search
	Evolutionary robotics
	The Reality Gap problem and the Transferability approach
	Partial conclusion

	Policy search algorithms
	Common principles
	Application in behavior learning in robotics
	Partial conclusion

	Bayesian Optimization
	Principle
	Gaussian Processes
	Acquisition function
	Application in behavior learning in robotics
	Partial conclusion

	Conclusion

	Behavioral Repertoire
	Introduction
	Evolving Walking Controllers
	Evolving behavioral repertoires

	The TBR-Evolution algorithm
	Principle
	Experimental validation

	The MAP-Elites algorithm
	Principle
	Experimental validation

	Conclusion

	Damage Recovery
	Introduction
	Learning for resilience
	Resilience with a self-model
	Dealing with imperfect simulators to make robots more robust

	The T-Resilience algorithm
	Motivations and principle
	Method description
	Experimental validation
	Results
	Partial conclusion

	The Intelligent Trial and Error algorithm
	Motivations and principle
	Method description
	Experimental validation
	Partial conclusion

	Conclusion

	Knowledge Transfer, Missing Data, and Misleading Priors
	Introduction
	Knowledge Transfer
	Motivations
	Principle
	Method Description
	Multi-Channels Regression with Bayesian Optimization
	Experimental Validation

	Missing Data
	Motivations
	Principle
	Method Description
	Experimental Validation

	Misleading Priors
	Motivations
	Principle
	Method Description
	Experimental Validation

	Evaluation on the physical robot
	The whole framework
	Experimental setup
	Experimental Results

	Conclusion

	Discussion
	Using simulations to learn faster
	Gathering collections of solution into Behavioral Repertoires
	Exploring the information provided by Behavioral Repertoires

	Conclusion
	Bibliography
	The Hexapod Experiments
	The Hexapod Robot
	The Hexapod Genotypes and Controllers
	The first version (24 parameters)
	The second version (36 parameters)

	The Robotic Arm experiments
	The Robotic Arm: First setup
	The Robotic Arm: Second setup
	The Arm Controller

	Parameters values used in the experiments
	TBR-Evolution experiments
	T-Resilience experiments
	Intelligent Trial and Error experiments
	Experiments with the hexapod robot
	Experiments with the robotic arm

	State-Based BO with Transfer, Priors and blacklists

	Other
	Appendix for the T-resilience experiments
	Implementation details for reference experiments
	Validation of the implementations
	Median durations and number of tests
	Statistical tests

	Methods for the Intelligent Trial and Error algorithm and experiments
	Notations
	Hexapod Experiment
	Robotic Arm Experiment
	Selection of parameters
	Running time

	Notation for the State-Based BO with Transfer, Priors and blacklists algorithms

