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A new explicit dynamic path tracking controller using
Generalized Predictive Control

Mohamed Krid, Faiz Benamar, and Roland Lenain

Abstract: Outdoor mobile robots has to perform operations more and more far and more
and more quickly. Therefore we are interested in design controller of fast rovers which
make able autonomous mobile robot to move in natural environment at high velocity and
following a reference path. Taking into consideration the wheel slippage is of primary
importance in this kind of conditions. The paper presents a path tracking controller
for a fast rover which has independent front and rear steering. In the first step, the
dynamic model of the vehicle moves on a horizontal plane was developed. Next, the
projection of the position of the vehicle in the absolute reference frame is used to define the
kinematics non-linear model. We present a new approach to solve a tracking path problem
by applying Non-linear Continuous-time Generalized Predictive Control (NCGPC). The
controller is based on the dynamic model of a bicycle like vehicle which considers the
lateral slippage of wheels. The prediction model allows to anticipate future changes in
setpoints in accordance with the dynamic constraints of the system. Experimental results,
show a good control accuracy and appears to be robust with respect to environment and
robot state changes.

Keywords: Mobile robot, Path tracking, Nonlinear Continuous-time Generalized Pre-
dictive Control, Modeling.

1. INTRODUCTION

The motion control of an unmanned Ground Ve-
hicle (UGV) is often defined through a path or tra-
jectory tracking problem. The reference path is in
general given by the high level controller i.e. the plan-
ner and could be updated continuously as function of
actual environment conditions. Classically, this prob-
lem is addressed using kinematic models in a Frénet
frame (i.e attached to the path to be followed, see [1]).
Such kind of models are moreover popular because of
the simplicity of their structure [2] and their proper-
ties of exact linearizability. Such models are based
on the popular Rolling Without Sliding (RWS) as-
sumption, offering good performances in on-road ap-
plications, and/or moving with limited speed (such as
shown in [3], or in [4]). Nevertheless, as it can be ex-
pected and well pointed out in [5] or [6], the motion in
natural environment using the RWS assumption is no
more relevant. Accuracy in this kind of solution in-
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deed decreases in a remarkable way when the vehicle
dynamics and the sliding become important mostly
for high speed robots. This may penalize the robotic
task execution when considering off road applications
such as defense, exploration or agriculture.

To face the uncertainty of the model and the ground
perturbations, several approach may be investigated.
First, sliding effects may be viewed as a perturbation
of classical kinematic model [7], to be rejected by ro-
bust control strategy [8]. Such point of view never-
theless appears to be conservative, since an error has
first to occur before being compensated. A second
approach, allowing to preserve a kinematic descrip-
tion, lies in the consideration of an extended kine-
matic model [9], [10]. Side-slip angles, defined as the
difference between tire orientation and actual speed
vector direction permits to account for influence of
sliding into motion. These alternative models has to
rely on adaptive approach in order to indirectly es-
timate the side-slip angles in real time. Such a con-
trol strategy obtain satisfactory results whatever the
grip conditions, but the accuracy remains unsatisfac-
tory at high speed, since dynamic phenomena are ne-
glected. At important speed, dynamical effects are
indeed no more negligible as well as actuator settling
times or sensor delays. As a result, dynamical mod-
els have to be considered and predictive approaches to
be favored [10]. For instance, in [11], a predictive and
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adaptive control law is developed to achieve off-road,
path tracking at high speed working with several kind
of motion model (extended kinematic and dynamic).
Unfortunately, both kinematic and dynamic model re-
mains non-linear and the above mentioned approach
only consider classical Model Predictive Control algo-
rithm, requiring a partial inexact linearization.

In this paper, a Nonlinear Continuous-time Gener-
alized Predictive Control (NCGPC) approach is pro-
posed, and based only on a dynamic representation
of a car like mobile robot. Contrarily to other point
of views, a linearization is not necessary, and dynam-
ical effects are naturally considered by the model. In
order to anticipate for transitions phases and com-
pensate for consequent overshoots, the future path is
considered, as well as the estimated future state. This
control strategy appeared in 1962 with Zadeh and
Wahlen works [12]. It was recognized in the world
industry by [13] in the petrochemical field which is
known by the process dynamic length. Later the ap-
proach was adopted to rapid systems [14] and [15]
and mobile robotics [16] [17]. This control technique
is used to ensure the path following task. In this case,
the path prediction is achieved by taking into account
the future changes during a constant horizon of pre-
diction. Once the future position and path properties
are estimated, a new control law for front steering
angle is computed, the performance of which are con-
sidered to be independent from the robot longitudinal
velocity.

This paper is organized as follow. Section 2 first be-
gins with a description of the vehicle dynamic model
with 3 Degrees Of Freedom (DOF) and using a linear
slippage model. A second step proposes the reformu-
lation of the model with respect to the path tracking
tasks. Using this model a on linear predictive control
is computed, dedicated to achieve an accurate path
tracking despite the dynamical phenomena and the
bad grip conditions. After having brought the proof
of stability, the performances of the control law are
investigated through full scale experiments using an
electrical car like mobile robot.

2. WHEELED MOBILE ROBOT MODEL

2.1. Lateral dynamic model in robot frame

In this paper, the path tracking of a car like mobile
robot with four steering wheels is considered in a slip-
pery surface and at relatively high speed. As a result,
ideal grip conditions cannot be assumed and dynam-
ical effects have to be taken into account. A dynami-
cal model of vehicle should then have to be considered
(see [18] for a collection of several approaches). Since
the motion on the ground with respect to a known
trajectory is here considered, complete three dimen-
sional models are useless, and only a two dimensional

model is here considered. As depicted on the figure 1,
the robot is viewed from top and only the motion is
assumed to be achieved on flat horizontal plane. A
complete model requires the knowledge of numerous
parameters, and in this case, the vehicle horizontal
plane motion is here mainly investigated. Moreover,
the mobile robot is supposed to be symmetric with
respect to a vertical plane containing middle of rear
and front axle, also containing the center of mass G.
As a result, the robot is viewed as a bicycle, one wheel
describing the front axle, and a second one dedicated
for the rear axle. The robot motion can then be de-
scribed with respect to the moving point G, using the
following notations, used all along the following of the
paper:

• R(X ,Y,Z): The frame attached to the ground

• R1(x1,y1,z1): The frame attached to the vehicle

• ψ: The vehicle yaw angle

• β f ,βr: The front and rear steering angles

• α f ,αr: The front and rear side-slip angle

• Vx,Vy: The longitudinal and lateral velocities of
the chassis center of mass

• a,b: The front and rear vehicle half-wheelbases

• M: The vehicle mass

• Iz: The yaw-inertia moment

• Fx( f ,r)
,Fy( f ,r)

: The longitudinal and lateral tire forces

Using these notations, the dynamical model of the
robot motion in the horizontal plane may be derived.
Since only the lateral motion control with respect to
the path to be followed is addressed, the longitudinal
forces are neglected Fx( f ,r)

= 0 and the longitudinal

velocity Vx is supposed to be slow varying V̇x = 0, and
measured. This assumption is not really restrictive.
The forthcoming lateral control (using front and rear
steering angles β f ,βr), will indeed be computed to
have performances independent from the measured
velocity.

The key point when computing a dynamic model
for the vehicle motion lies in the expression of contact
forces. In this approach the point is then to derive an
expression for Fy( f ,r)

, allowing to compute the motion
equations. Various models were developed in order
to study the tire ground contact behavior and deter-
mine analytical equations. One can first cite the con-
tact models such as LuGre or Dahl model (defined for
instance in [19] or [20]), based on the dynamic fric-
tion model. They are mainly representative of solid
friction, neglecting the elasticity of tire, and are of-
ten not representative enough of the actual behavior,
especially in off-road conditions. Another important
approach is an empiric approach that conducted to
”magic” formula such as the celebrated Pacejka for-
mula [21] that express analytically the contact forces
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Reference trajectory 

Fig 1: Model of the four-wheeled mobile robot, with
dynamics parameters.

with respect to the apparent side-slip angles. Such a
relationship is deduced from experimental tests, and
is parametrized by 12 parameters for the lateral ef-
fort and 8 parameters for the longitudinal effort. The
figure 2 illustrate the contact behavior through an ex-
ample of a Pacejka model. The shape depends on the
wheel vertical load, while the parameters to be identi-
fied relies on the kind of tire, the pressure, the ground
properties. All this properties are difficult to obtain
and appears to be variable when moving off road at
important speed.

Nevertheless, contact models shows that the rela-
tionship between forces and side-slip angles may be
approximated as a linear function when side-slip an-
gles are considered to be small. This hypothesis is
for instance admitted in [22] in order to estimate for
the roll dynamics, or for the yaw dynamics in [23].
The expression of lateral forces whatever need the
knowledge of side-slip angles, which is hardly achiev-
able by a direct measure. In order to overcome such
a difficulty, the researchers were brought to develop
observers and indirect estimation for these variables,
based on GPS and/or inertial measures (see [24] [25]).
The estimation of side-slip angles together with the
considered linear form of the lateral contact forces as
expressed by (1), then permits to simplify the motion
equations for the mobile robot.

Fy( f ,r)
= C( f ,r)α( f ,r) (1)

C f and Cr are, respectively, the tire cornering stiff-
ness of the front and rear tires. These two parameters
are estimated off-line and are assumed to be constant.
Nevertheless, it considerably varies depending on the
type of the ground, and vertical load, and the as-
sumption of constant and known grip conditions is
here supposed to be counterbalanced by the robust-
ness of the approach. This permits to obtain a con-
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Fig 2: Nonlinear tire behavior, reduced to a pseudo
sliping area.

stant dynamic matrix and to test a new controller
and its robustness with respect to parameters uncer-
tainty. The side-slip angle α f ,r is defined as the angle
between the wheel velocity and the longitudinal axis
of the wheel itself. Assuming that side-slip angles are
quite small (less than 10◦ in practice), we can use a
linear model approximation of side-slip angle on the
pseudo sliping area presented in figure 2, that is:

α f =
Vy + aψ̇

Vx
−β f ,αr =

Vy−bψ̇

Vx
−βr (2)

As it has been pointed out, the paper is focused
on the lateral motion control (path tracking), on an
horizontal plane. As a result, In this paper, we fo-
cus on the lateral dynamic and path tracking. As a
result, the longitudinal velocity Vx will be considered
constant (V̇x = 0), while longitudinal forces, together
with the gravity are considered to have no influence
on the robot motion. One can consequently derive
the dynamical model from fundamentals of dynam-
ics, leading to model (3), using linear contact forces
(see [18] for more details)(

V̇y
ψ̈

)
= A

(
Vy
ψ̇

)
+ B

(
β f
βr

)
(3)

where A and B are 2×2 matrix of:

A =

[
a11 a2
a21 a22

]
=

 2C f +Cr
M Vx

2 a C f−b Cr
MVx

−Vx

2 a C f−b Cr
VxIz

2 a2C f +b2Cr
VxIz


and

B =

[
b11 b2
b21 b22

]
=


−2 C f

M
−2 Cr

M

−2 a C f
Iz

2 b Cr
Iz


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This model is here defined in a frame attached to
the robot, giving the evolution of lateral velocity V̇y
and yaw rate (angular velocity ψ̇). Such equations
may permit to act on a vehicle dynamics (such as
ESP) in parallel of a manual driving, but does not
permit to achieve autonomous control. In order to go
further and achieve autonomous path tracking, the
motion equations with respect to a desired trajectory
(expressing successive positions in an absolute frame)
has now to be computed from (3).

2.2. Modeling for path tracking control

The previous model (3) expresses the accelerations
in a frame attached to the robot. In this paper, trajec-
tory tracking is considered, and the derivative of the
position as to be derived. As a result, the state space
is enhanced with the orientation ψ and the robot ab-
solute position (X ,Y ) of the robot in an absolute frame
R. The trajectory to be followed is defined as a collec-
tion of successive coordinates expressed in the same
absolute frame. Considering the kinematic descrip-
tion of the motion and the dynamic equations, one
can derive the following motion model, defining the
derivative of the robot position and orientation.

V̇x = 0
V̇y = a11Vy + a12Vψ + b11β f + b12βr
V̇ψ = a21Vy + a22Vψ + b21β f + b22βr
ψ̇ = Vψ

Ẋ = Vx cosψ−Vy sinψ

Ẏ = Vx sinψ +Vy cosψ

(4)

The output y to be controlled is defined by:

y =

 ψ

X
Y


while the control vector is composed of front and

rear steering axles, since Vx is supposed to be uncon-
trolled in this paper:

u =

(
β f
βr

)
The bad grip conditions together with the actua-

tor settling times generates delays and perturbations
depreciating the accuracy of tracking task, see [9] for
some highlighting experiments, and the result section.
This is especially the case at the high speed context
investigated in this paper. If bad grip conditions in
steady state may be considered thanks to dynamic
modeling, the delay during transient phases in mo-
bile robot behavior have to be anticipated. Since the
desired trajectory is entirely known by definition, a
predictive control scheme may be applied. Neverthe-
less, the model (4) is non linear. A linear kinematic
model is often used [26] to simplify the controller

form. In our case, a non linear kinematic model is
preserved in order to improve the model relevancy.
As a result, a Non-linear Continuous-time General-
ized Predictive Control (NCGPC) is used in this pa-
per and is developed in the next sections. Optimal
control problems are generally non-linear and there-
fore, it generally does not have analytic solutions like
the linear-quadratic optimal control problem. The
NCGPC controller present a solution for a both prob-
lems and simple to integrate in the robot calculator.

3. DESIGN NCGPC CONTROLLER

3.1. Multi-input multi-output non linear system

Predictive control is based on the minimization of
a quadratic cost function that is compounded by the
error between the predicted output and the reference.
The advantage of this method is that it can be applied
to the non-linear systems in the state, whence the
name ”Non-linear Continuous-time Generalized Pre-
dictive Control” (NCGPC). The prediction is based
on a Taylor series expansion and knowledge derived
from the dynamic function of the system until the
said order relative degree. In this section we present
this technique applied to multi-multi-output systems
(MIMO). Obviously, the method can be applied to
systems of single-input single-output (SISO), it is suf-
ficient for it to reduce the size of the input and output
one. This technique was developed in [27] for a sys-
tem whose output number is equal to the number of
entries. We generalize here for any system.

To introduce the design of NCGPC controller, we
can write the dynamic model (4) in the following
form:

ẋ = f (x)+ ∑
p
i=1 gi(x)ui

y =
(

h1(x), ..., hm(x)
) (5)

where, the state vector x ∈ X ⊂ ℜn, the output
y ∈ Y ⊂ ℜm and input ui ∈ U ⊂ ℜp. The NCGPC
controller minimizes a quadratic cost criterion which
is based on the difference between the predicted state
y and a reference signal w. We denote ei(t) the error
between the output hi and the reference signal wi(t)
at the time t and w =

(
w1(t) ... wm(t)

)
.

ei(t) = hi(x(t))−wi(t) (6)

We can define the cost function as following

Ji =
1
2

∫ Ti

0
[êi(t + τ)]2dτ (7)

where Ti is the prediction horizon time of the ith

output hi and τ a given instant belonging to interval
[t, t + Ti]. We deduce the global cost function J:
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J =
m

∑
i=1

Ji =
1
2

m

∑
i=1

(∫ Ti

0
[êi(t + τ)]2dτ

)
(8)

To derive the control law, we need to minimize the
expression (8) of the criterion with respect to control
u:

∂J
∂u

= 0p×1 (9)

Before defining the predicted error, we need to in-
troduce the Lie derivatives of non-linear function. Then,
we predict the output of our system and with the ref-
erence trajectory we define the error prediction. Fi-
nally we deduce the expression criterion and the con-
trol law.

3.2. Lie derivatives

In this paper the standard geometric notation for
Lie derivatives is used. The Lie derivative of a output
function hi along f in x ∈ℜn, is giving by:

L f hi(x) =
n

∑
j=1

∂hi

∂x j
(x) fi(x) (10)

with 1≤ j ≤ p and 1≤ i≤m Inductively, we define

Lk
f hi(x) = L f Lk−1

f hi(x) =
∂Lk−1

f h

∂x
(x) f (x) (11)

with L0
f hi(x) = hi(x).

We define ρ a vector of relative degrees of a non-
linear MIMO system. It is composed by the different
values of relative degree ρi of each output hi. The
relative degree of output is the minimum number of
derivative required to make explicit in it’s expression
one component of the input vector.

A non-linear MIMO system, of the form (5), has a
relative degree vector ρ =

(
ρ1(t) ... ρm(t)

)
around

x0 if:

1. Lg j L
k
f hi(x)) = 0 for all 1≤ j ≤ p, for all k≺ ρi−1,

for all 1 ≤ i ≤ m and for all x in a neighborhood
of x0

2. the matrix D(x) of dimensionm×m dimensionm×
p, called decoupling matrix, given by:

D(x) =


Lg1Lρ1−1

f h1(x) . . . LgpLρ1−1
f h1(x)

...
. . .

...

Lg1Lρm−1
f hm(x) . . . LgpLρm−1

f hm(x)


(12)

is non-singular matrix in x = x0.

3.3. Error prediction

The way to predict the output y at (t + τ) is based
on the expansion in Taylor series. An approximation
of the reference signal is done in the same way.

ŷ(t + τ) =
ρ

∑
k=0

y(k)(t)
τk

k!
+ R(τ

ρ) (13)

The predicted output is rewritten in matrix form:

ŷ(t +τ)∼=
[

1 τ
τ2

2! · · · τρ

ρ!

]


y(t)
ẏ(t)

...

y(ρ−1)(t)
y(ρ)(t)

 (14)

When the output y(t) and these derivatives up to
order τ. Then we can deduce the predicted output at
t + τ:

ŷ(t + τ)∼=
[

1 τ
τ2

2! · · · τρ

ρ!

]
Ly (15)

with

Ly =


h(x(t))

L f h(x(t))
...

Lρ−1
f h(x(t))

Lρ

f h(x(t))+ LgLρ−1
f h(x(t))u(t)

 (16)

Similarly, we can deduce the expression of ŵ at t +τ

if we assume that the reference trajectory is known.
The reference vector can be written as following:

ŵ(t + τ)∼=
[

1 τ
τ2

2! · · · τρ

ρ!

]


w(t)
ẇ(t)

...

w(ρ−1)(t)
w(ρ)(t)


(17)

So, we can define the predicted error at (t + τ) as:

êi(t + τ) = ŷi(t + τ)− ŵi(t + τ) (18)

With 1 ≤ i ≤ m and êi the predicted error of ith

output of the our system.
In the next paragraph, we take the quadratic cri-

terion in its matrix form for the development of the
control law.

3.4. Synthesis control law

The criterion that we consider here is the sum of all
quadratic criteria built on each outputs of the system.
We can rewriting the criterion function Ji by defining
(7) in the matrix form:
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∂Ji

∂u
= 0p×1 (19)

We denote:

Ei(t) =


ei(t)
ėi(t)

...

e(ρi−1)(t)
e(ρi)(t)

 and Λi(τ) =



1
τ

...
τρi−1

ρi−1!
τρi
ρi!



t

(20)

and the prediction error can be written

êi(t + τ) = Λi(τ)Ei(t) (21)

To minimize the function cost (8) we can write:

Ji(t) =
1
2

∫ Ti

0
Et

i (t)Λ
t
i(τ)Λi(τ)Ei(t)dτ (22)

Since the vector Ei does not depend on τ but on t,

Ji(t) =
1
2

Et
i (t)

∫ Ti

0
Λ

t
i(τ,ρi)Λi(τ,ρi)dτEi(t) (23)

For practical reasons, we denote the matrix Πi(Ti,ρi)
of dimension (ρi +1)×(ρi +1), therefore we define the
prediction matrix as follow:

Πi(Ti,ρi) =
∫ Ti

0
Λ

t
i(τ,ρi)Λi(τ,ρi)dτ (24)

Then the criterion function Ji can written as:

Ji(t) =
1
2

Et
i (t)Πi(Ti,ρi)Ei(t) (25)

Finally the global criterion function J are deduced
in its matrix form:

∂J
∂u

=
1
2

m

∑
i=1

∂ [Et
i (t)Πi(Ti,ρi)Ei(t)]

∂u
= 0p×1 (26)

and deduce that,

∂J
∂u

=
1
2

m

∑
i=1

(
∂Ei(t)

∂u

)t

Πi(Ti,ρi)Ei(t) = 0p×1 (27)

from (15),(17),(18),(20), Ei can be written as follow

Ei(t) =



hi(x(t))−wi(t)
L f hi(x(t))− ẇi(t)

...

L(ρi−1)
f hi(x(t))−w(ρi−1)

i (t)

L(ρi)
f hi(x(t))−w(ρi)

i (t)+ LgL(ρi−1)
f hi u


(28)

to show up the control law expression,

Ei(t) = Epi +



0
.
.
.
0

[
Lg1 L(ρi−1)

f hi · · · Lgp L(ρi−1)
f hi

]
u1

.

.

.
up




(29)

with

Epi =



hi(x(t))−wi(t)
L f hi(x(t))− ẇi(t)

...

L(ρi−1)
f hi(x(t))−w(ρi−1)

i (t)

L(ρi)
f hi(x(t))−w(ρi)

i (t)

 (30)

Therefore,

(
∂Ei(t)

∂u

)t

=


Lg1L(ρi−1)

f hi
...

LgpL(ρi−1)
f hi


(p×1)

(31)

and hence

m

∑
i=1


Lg1L(ρi−1)

f hi
...

LgpL(ρi−1)
f hi


(p×1)

Π
s
i
(Ti,ρi)Ei(t) = 0p×1 (32)

with Πs
i is the last line of Πi matrix. After devel-

opment (more details in APPENDIX A), the matrix
form of (32) can be deduced,

Lg1L(ρ1−1)
f h1 · · · Lg1L(ρm−1)

f hm
...

. . .
...

LgpL(ρ1−1)
f h1 · · · LgpL(ρm−1)

f hm


 Πs

1E1
...

Πs
mEm

= 0p×1

(33)

D(x) is non-singular matrix in x = x0 (12), we can
deduce that:

 Πs
1E1
...

Πs
mEm


(m×1)

= 0m×1 (34)

To deduce the control law analytic expression, the
equation (34) can be separating into two part (more
details in APPENDIX A) as following



International Journal of Control, Automation and Systems 7

Π
ss D(x)

 u1
...

up

=− Π
s



h1−w1
...

Lρ1
f h1−w(ρ1)

1
...

hm−wm
...

Lρm
f hm−w(ρm)

m


(35)

we denote,

Π
ss =

 Πss
1 0

. . .

0 Πss
m

 (36)

where Πss
i corresponds to the last element of vector

Πs
i , and

Π
s =

 Πs
1 0

. . .

0 Πs
m

 (37)

To determine the control law u, we must calculate
the inverse of the matrix Dt(x)D(x). For this we as-
sume that det(Dt(x)D(x)) is non-singular matrix.

Finally, the analytical expression of the control law
u can be written as follows:

u =−
(
Dt(x)D(x)

)−1 Dt(x) K Ep (38)

with D(x) decoupling matrix. The gain matrix K
and prediction error matrix Ep have the following
form:

K =

 Πss
1 0

. . .

0 Πss
m


−1 Πs

1 0
. . .

0 Πs
m

 (39)

Ep =



h1−w1
...

Lρ1
f h1−w(ρ1)

1
...

hm−wm
...

Lρm
f hm−w(ρm)

m


(40)

Remarque 1. The analytical expression of the control
law u given by 38 is available not only to the nonlinear
SISO system as presented in [27] but also to MIMO
system.

After the development of the control law, one must
be asked the question of the closed loop system’s sta-
bility. In this paper, the analysis of the closed loop
system’s stability is not detailed. To understand this
issue, more information can be found in the work
of [28] [29] and [30]. From these studies can be con-
cluded that in the case of NCGPC, the stability of the
closed loop system is guaranteed with the relative de-
gree of each output is less than or equal to four, which
is the case in the studied system.

4. SYNTHESIS CONTROL APPLIED TO
A PATH FOLLOWING PROBLEM

In the section 2, a non-linear model in the horizon-
tal plane is developed. The output and the input of
the system are y and u respectively and the reference
signal w of the reference path are known in advance.

Fig 3: Scheme of predictive reference trajectory.

The output of our system is defined as follow::

y(t) =

 h1
h2
h3

 ψ

X
Y


and the input of the system u by:

u =

(
u1
u2

)
=

(
β f
βr

)
and the reference signal or trajectory w by:

w =

 w1
w2
w3

=

 ψre f
Xre f
Yre f


We keep the same notation that is already used. It

begins with the functions hi.
h1 = ψ

h2 = X
h3 = Y

(41)



8 International Journal of Control, Automation and Systems

To synthesize the control law, we must calculate
the vector relative degree ρ.

L f h1 = Vψ

L f h2 = Vx cosψ−Vy sinψ

L f h3 = Vx sinψ +Vy cosψ

(42)

We can deduce that ρi > 1 because for all i = 1,2,3,
Lghi = 0. Then we apply a second time Lie derivative.

L2
f h1 =

∂L f h1
∂Vψ

f2

L2
f h2 =

∂L f h2
∂Vy

f1 +
∂L f h2

∂ψ
f3

L2
f h3 =

∂L f h3
∂Vy

f1 +
∂L f h3

∂ψ
f3

(43)


L2

f h1 = a21Vy + a22Vψ

L2
f h2 =−sinψζh−VyVψ cosψ

L2
f h3 = cosψζh−VyVψ sinψ

(44)

with
ζh =

(
VxVψ + a11Vy + a12Vψ

)
The different expressions of Lg j L f hi are non null for

all i = 1,2,3 and j = 1,2. Hence we can deduce that
all terms of the relative degree vector ρ are equal to
2 : ρ =

(
ρ1 ρ2

)
=
(

2 2
)
.

Lg1L f h1 = b21
Lg1L f h2 =−b11 sinψ

Lg1L f h3 = b11 cosψ

(45)

and 
Lg2L f h1 = b22

Lg2L f h2 =−b12 sinψ

Lg2L f h3 = b12 cosψ

(46)

and we deduce the decoupling matrix D(x):

D(x) =

 b21 b22
−b11 sinψ −b12 sinψ

b11 cosψ b12 cosψ

 (47)

It’s verified that the matrix (Dt(x)D(x)) is invert-
ible.

Calculating the prediction error matrix:

Ep =



h1−w1
L f h1− ẇ1
L2

f h1− ẅ1

h2−w2
L f h2− ẇ2
L2

f h2− ẅ2

h3−w3
L f h3− ẇ3
L2

f h3− ẅ3


=



ψ−w1
Vψ − ẇ1

a21Vy + a22Vψ − ẅ1
X−w2

Vx cosψ−Vy sinψ− ẇ2
−ζh sinψ−VyVψ cosψ− ẅ2

Y −w3
Vx sinψ +Vy cosψ− ẇ3

ζh cosψ−VyVψ sinψ− ẅ3


(48)

Calculating the gain matrix Ki for ei prediction er-
ror, then we deduce the gain matrix K defined in (50).

Ki =
[

10
3T 2

s

10
4Ts

1
]

(49)

K =

 K1 0 0
0 K2 0
0 0 K3

 (50)

Finally the control input can be computed by (38).

5. RESULTS AND DISCUSSION

The validation of the controller detailed in this pa-
per has been achieved on a the mobile robot depicted
on the figure 4. Manufactured by the Robosoft com-
pany, this platform, called SPIDO figure shown on
figure (4), is electrically actuated, with two steering
axles βF and βR, and four independent driving wheels.
It is designed to move off-road with a speed up to
10m/s. It weights m is equal to 530kg and the two
half wheel base used in the control law expression are
a = 0.67m and b = 1.1m. The last parameter attached
to the robot design and required for the control is the
vertical inertia Iz, which is approximated to 300kg.m2.
In this application, the rear axle is not considered and
set to zero, while the velocity control is not activated.
As a result, the speed is regulated to a constant dur-
ing each of the path tracking tests.

Fig 4: Experimental platform.

In order to proceed the motion control, the refer-
ence trajectory as well as the robot position and ori-
entation has to be known. The experimental platform
is the all-terrain four-wheel steering vehicle depicted
on is shown in Figure(4). The vehicle weight is 420kg
and the front and rear half wheel base are respec-
tively 0.62m and 0.58m. It is equipped with a Real
Time Kinematic GPS (RTK-GPS). This sensor sup-
plies a localization with respect to a reference station
with the accuracy to within ±2cm.
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Fig 6: Trajectories at different prediction horizon
time T = 0.5s, T = 0.3s and T = 0.6s
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Fig 7: Comparison of trajectories at different veloci-
ties
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Fig 8: Angular deviation prediction horizon time T =
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Fig 9: Lateral deviation prediction horizon time T =
0.5s [m]

If control law (38) has implemented on the exper-
imental platform, the matrix (Dt(x)D(x))−1 and K
can be calculated off-line to lighten the real time cal-
culation. We must find the closest three points in
the reference trajectory to the vehicle predicted posi-
tion (Fig.3). Then we can deduce the reference sig-
nal w = (w1,w2,w3) to calculated the prediction error
matrix E. In our case, the ground was wet grass ir-
regular pattern, where the slip phenomena cannot be
neglected. The path to be followed is recorded by
a preliminary run achieved in manual driving. The
classical O paths (Fig.5) was used for testing the con-
troller at different velocities, it is plotted on (Fig.7).
The lateral and angular error during the automatic
following of the reference trajectory has been recorded
at different velocity (Fig.9) and (Fig.8).

At the same conditions (reference path, velocity
and the type of the ground), we observe in Fig.6 a
difference when we compare the path trajectory at dif-
ferent prediction horizon times T = 0.5s and T = 0.6s.
The following path tracking is better at prediction
horizon time T = 0.5s than T = 0.3s and T = 0.6s. The
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gain matrix K defined by eq.(39)is inversely propor-
tional to the prediction horizon T . So, the using for
T = 0.6s decrease the gain K. In the other way, when
the prediction horizon decreases by using T = 0.3s, the
prediction distance ( in our case T ∗V x∗3 Fig.3) de-
creases too. So, We can not increase or decrease the
prediction horizon time infinitely. In our case, the
prediction horizon T is chosen experimentally. We
will try in future work, to find an optimal prediction
horizon. Therefore, we can deduce that the prediction
horizon depend on the dynamic of the system and not
only of the velocity Vx of the robot.

We must notice that our controller model is based
on constant front and rear cornering stiffnesses. This
is not completely true when there is front/rear load
transfer or changes of ground materials. But thanks
to controller robustness, the control law ensure a tra-
jectory tracking with low tracking error. The results
obtained are comparable to those present in [31] in
which the cornering stiffnesses is estimated on line.
The presence and the variation of sliding phenomena
at high speed influence certainly the path following
but the choice of robust controller can be able to sta-
bilize the system and resolve this problems.

The tracking error during following the path was
recorded and reported on (Fig.8) and (Fig.9). We
compare the lateral and angular error at different ve-
locities (2m/s, 3m/s and 4m/s) in (Fig.8) and (Fig.9)
respectively. This results shows clearly the depen-
dency of the non-linear control law to the velocity of
the vehicle and we can deduce the maximum speed
for this path. In the validation task, the maximum
velocity of the experimental vehicle is 4m.s−1. Nev-
ertheless, even at this speed, when the robot has to
track paths with small radii of curvature on slippery
ground surface, then the relevance of the proposed
approach is demonstrated. Significant improvements
in robot behavior and in path tracking accuracy can
be recorded (Vx = 4m/s deduced from the relation
MkV 2

x < µMg, where g: gravity, M: vehicle mass and
µ is a constant).

It can be observed that the lateral error is more
important then the angular error when we compare
(Fig.8) and (Fig.9). If we look closely the function
cost (8) and the error expression (6) we can deduce
that there is no weighting between the different out-
put of the system. In our case the lateral deviation is
more important then the angular deviation. So, the
introduction of weighting in the function cost to give
preferential treatment to the lateral error can reduce
it .

6. CONCLUSIONS

In this paper, a non-linear predictive controller that
ensures path tracking task for fast off-road robot is

proposed, validated and discussed. The control strat-
egy based kinematics models and neglected the ve-
hicle dynamic is enable to stabilize the robot on the
reference trajectory because the sliding phenomena
is very important and can not be neglected in our
case. This phenomena has been explicitly taken into
account by combining the kinematics and dynamics
model of the vehicle. The controller is based on a
dynamic model of the vehicle which considers lateral
wheel slippage. The latter could be significant and
are unavoidable particularly when moving fast and
cornering and when the ground surface is slippery.

This controller supply an analytical expression of
the control input u that reduces the real time cal-
culation which simplifies the implementation of the
controller algorithm. The study proposed in this pa-
per opens the way to integrated a variable predic-
tion horizon and estimate the front and rear cornering
stiffnesses C f and Cr that will be calculated on-line.
In the other way, the prediction controller can be im-
proved by introducing weighting on the error in the
function cost.
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APPENDIX A


Lg1L(ρ1−1)

f h1
...

LgpL(ρ1−1)
f h1

Π
s
1(T1,ρ1)E1(t)+ · · ·+


Lg1L(ρm−1)

f hm
...

LgpL(ρm−1)
f hm

Π
s
m(Tm,ρm)Em(t) = 0p×1 (A,1)

 Πs
1E1
...

Πs
mEm


(m×1)

=

 Πs
1 0

. . .

0 Πs
m





h1−w1
L f h1− ẇ1

...

Lρ1−1
f h1−w(ρ1−1)

1

Lρ1
f h1−w(ρ1)

1

+

0
...[

Lg1L(ρi−1)
f h1 · · · LgpL(ρi−1)

f h1

] u1
...

up


...

...
...

hm−wm
L f hm− ẇm

...

Lρ1−1
f hm−w(ρm−1)

m

Lρm
f hm−w(ρm)

m

+

0
...[

Lg1L(ρi−1)
f hm · · · LgpL(ρi−1)

f hm

] u1
...

up




(A,2)

 Πss
1 0

. . .

0 Πss
m




Lg1L(ρ1−1)
f h1 · · · LgpL(ρ1−1)

f h1
...

. . .
...

Lg1L(ρm−1)
f hm · · · LgpL(ρm−1)

f hm


 u1

...
up

=−

 Πs
1 0

. . .

0 Πs
m





h1−w1
...

Lρ1
f h1−w(ρ1)

1
...

hm−wm
...

Lρm
f hm−w(ρm)

m


(A,3)

 u1
...

up

=−
(
Dt(x)D(x)

)−1 Dt(x)

 K1 0
. . .

0 Km

[
p×

m
∑

i=1
(ρi+1)

]



h1−w1
...

Lρ1
f h1−w(ρ1)

1
...

hm−wm
...

Lρm
f hm−w(ρm)

m


[

m
∑

i=1
(ρi+1)×1

]

(A,4)


