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Abstract	

Genomic	copy	number	variants	(CNVs)	have	been	strongly	implicated	in	the	etiology	of	

schizophrenia	(SCZ).	However,	apart	from	a	small	number	of	risk	variants,	elucidation	of	the	

CNV	contribution	to	risk	has	been	difficult	due	to	the	rarity	of	risk	alleles,	all	occurring	in	less	

than	1%	of	cases.	We	sought	to	address	this	obstacle	through	a	collaborative	effort	in	which	we	

applied	a	centralized	analysis	pipeline	to	a	SCZ	cohort	of	21,094	cases	and	20,227	controls.	We	

observed	a	global	enrichment	of	CNV	burden	in	cases	(OR=1.11,	P=5.7e-15),	which	persisted	after	

excluding	loci	implicated	in	previous	studies	(OR=1.07,	P=1.7e-6).	CNV	burden	is	also	enriched	for	

genes	associated	with	synaptic	function	(OR	=	1.68,	P	=	2.8e-11)	and	neurobehavioral	phenotypes	

in	mouse	(OR	=	1.18,	P=	7.3e-5).	We	identified	genome-wide	significant	support	for	eight	loci,	

including	1q21.1,	2p16.3	(NRXN1),	3q29,	7q11.2,	15q13.3,	distal	16p11.2,	proximal	16p11.2	and	

22q11.2.	We	find	support	at	a	suggestive	level	for	nine	additional	candidate	susceptibility	and	

protective	loci,	which	consist	predominantly	of	CNVs	mediated	by	non-allelic	homologous	

recombination	(NAHR).		

	

Introduction	

Studies	of	genomic	copy	number	variation	(CNV)	have	established	a	role	for	rare	genetic	

variants	in	the	etiology	of	SCZ	1.	There	are	three	lines	of	evidence	that	CNVs	contribute	to	risk	

for	SCZ:	genome-wide	enrichment	of	rare	deletions	and	duplications	in	SCZ	cases	relative	to	

controls	2,3	,	a	higher	rate	of	de	novo	CNVs	in	cases	relative	to	controls4-6,	and	association	

evidence	implicating	a	small	number	of	specific	loci	(Extended	data	table	1).	All	CNVs	that	have	

been	implicated	in	SCZ	are	rare	in	the	population,	but	confer	significant	risk	(odds	ratios	2-60).		

To	date,	CNVs	associated	with	SCZ	have	largely	emerged	from	mergers	of	summary	data	

for	specific	candidate	loci	7-9;	yet	even	the	largest	genome-wide	scans	(sample	sizes	typically	

<10,000)	remain	under-powered	to	robustly	confirm	genetic	association	for	the	majority	of	

pathogenic	CNVs	reported	so	far,	particularly	for	those	with	low	frequencies	(<0.5%	in	cases)	or	

intermediate	effect	sizes	(odds	ratios	2-10).	It	is	important	to	address	the	low	power	of	

systematic	CNV	studies	with	larger	samples	given	that	this	type	of	mutation	has	already	proven	

useful	for	highlighting	some	aspects	of	SCZ	related	biology	6,10-13.		
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The	limited	statistical	power	provided	by	small	samples	is	a	significant	obstacle	in	

studies	of	rare	and	common	genetic	variation.	In	response,	global	collaborations	have	been	

formed	in	order	to	attain	large	sample	sizes,	as	exemplified	by	the	study	of	the	Schizophrenia	

Working	Group	of	the	Psychiatric	Genomics	Consortium	(PGC)	in	which	108	independent	

schizophrenia	associated	loci	were	identified	14.	Recognizing	the	need	for	similarly	large	

samples	in	studies	of	CNVs	for	psychiatric	disorders,	we	formed	the	PGC	CNV	Analysis	Group.	

Our	goal	was	to	enable	large-scale	analyses	of	CNVs	in	psychiatry	using	centralized	and	uniform	

methodologies	for	CNV	calling,	quality	control,	and	statistical	analysis.	Here,	we	report	the	

largest	genome-wide	analysis	of	CNVs	for	any	psychiatric	disorder	to	date,	using	datasets	

assembled	by	the	Schizophrenia	Working	Group	of	the	PGC.		

	

Data	processing	and	meta-analytic	methods	

Raw	intensity	data	were	obtained	from	57,577	subjects	from	43	separate	datasets	

(Extended	data	table	2).	After	CNV	calling	and	quality	control	(QC),	41,321	subjects	were	

retained	for	analysis.	In	large	datasets	derived	from	multiple	studies,	variability	in	CNV	

detection	between	studies	and	array	platforms	presents	a	significant	challenge.	To	minimize	

the	technical	variability	across	different	studies,	we	developed	a	centralized	pipeline	for	

systematic	calling	of	CNVs	for	Affymetrix	and	Illumina	platforms.	(Methods	and	Extended	data	

figure	1).	The	pipeline	included	multiple	CNV	callers	run	in	parallel.	Data	from	Illumina	

platforms	were	processed	using	PennCNV	15	and	iPattern	16.	Data	from	Affymetrix	platforms	

were	analyzed	using	PennCNV	and	Birdsuite	17.Two	additional	methods,	iPattern	and	C-score	18,	

were	applied	to	data	from	the	Affymetrix	6.0	platform.	The	CNV	calls	from	each	program	were	

converted	to	a	standardized	format	and	a	consensus	call	set	was	constructed	by	merging	CNV	

outputs	at	the	sample	level.	Only	CNV	segments	that	were	detected	by	all	algorithms	were	

retained.	We	performed	rigorous	QC	at	the	platform	level	to	exclude	samples	with	poor	probe	

intensity	and/or	an	excessive	CNV	load	(number	and	length).	Larger	CNVs	that	appeared	to	be	

fragmented	were	merged	and	retained.	CNVs	spanning	centromeres	or	those	with	>50%	

overlap	with	segmental	duplications	or	regions	prone	to	VDJ	recombination	(e.g.,	
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immunoglobulin	or	T	cell	receptor	loci)	were	excluded.	A	final	set	of	rare,	high	quality	CNVs	was	

defined	as	those	>20kb	in	length,	at	least	10	probes,	and	<1%	MAF.		

Genetic	associations	were	investigated	by	case-control	tests	of	CNV	burden	at	four	

levels:	(1)	genome-wide	(2)	pathways,	(3)	genes,	and	(4)	probes.	Analyses	controlled	for	SNP-

derived	principal	components,	sex,	genotyping	platform,	and	individual-level	probe	intensity.	

Multiple-testing	thresholds	for	genome-wide	significance	were	estimated	from	family-wise	

error	rates	drawn	from	permutation	

	

Genome	wide	analysis	of	CNV	burden	reveals	an	enrichment	of	ultra-rare	variants	

An	elevated	burden	of	rare	CNVs	has	been	well	established	among	SCZ	cases2.	We	

applied	our	meta-analytic	framework	to	measure	the	consistency	of	overall	CNV	burden	across	

the	genotyping	platforms,	and	whether	a	measurable	amount	of	CNV	burden	persists	outside	of	

previously	implicated	CNV	regions.	Consistent	with	previous	estimates,	the	overall	CNV	burden	

is	significantly	greater	among	SCZ	cases	when	measured	as	total	Kb	covered	(OR=1.12,	p	=	5.7e-

15),	genes	affected	(OR=1.21,	p	=	6.6e-21),	or	CNV	number	(OR=1.03,	p	=	1e-3).	Focusing	on	genes	

affected	by	CNV,	our	strongest	signal	of	enrichment,	the	effect	size	is	consistent	across	all	

genotyping	platforms	(Figure	1A).	When	we	split	by	CNV	type,	the	effect	size	for	copy	number	

losses	(OR=1.40,	p	=	4e-16)	is	greater	than	for	gains	(OR=1.12,	p	=	2e-7)	(Extended	data	figures	2-

3).	Partitioning	by	CNV	frequency	(based	on	50%	reciprocal	overlap	with	the	full	call	set,	

Methods),	CNV	burden	is	enriched	among	cases	across	a	range	of	frequencies,	up	to	counts	of	

80	(MAF	=	0.2%)	in	the	combined	sample	(Figure	1B).	

A	primary	question	in	this	study	is	the	contribution	of	novel	loci	to	the	excess	CNV	

burden	in	cases.	After	removing	nine	previously	implicated	CNV	loci	(where	reported	p-values	

exceed	our	designated	multiple	testing	threshold,	Extended	data	table	1),	excess	CNV	burden	

in	SCZ	remains	significantly	enriched	(genes	affected	OR=1.11,	p	=	1.3e-7,	Figure	1B).	CNV	

burden	also	remained	significantly	enriched	after	removal	of	all	reported	loci	from	Extended	

data	table	1,	but	the	effect-size	was	greatly	reduced	(OR	=	1.08)	compared	to	the	enrichment	

overall	(OR	=	1.21).	When	we	partition	CNV	burden	by	frequency,	we	find	that	much	of	the	
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previously	unexplained	signal	is	restricted	to	comparatively	rare	events	(i.e.,	MAF	<	0.1%,	Figure	

1B).		

	

Gene-set	(pathway)	burden	

We	assessed	whether	CNV	burden	was	concentrated	within	defined	sets	of	genes	involved	in	

neurodevelopment	or	neurological	function.	A	total	of	36	gene-sets	were	evaluated	(for	a	

description	see	Extended	data	table	3),	consisting	of	gene-sets	representing	neuronal	function,	

synaptic	components	and	neurological	and	neurodevelopmental	phenotypes	in	human	(19	

sets),	gene-sets	based	on	brain	expression	patterns	(7	sets),	and	human	orthologs	of	mouse	

genes	whose	disruption	causes	phenotypic	abnormalities,	including	neurobehavioral	and	

nervous	system	abnormality	(10	sets).	Some	gene-sets	can	be	considered	“negative	controls”,	

including	genes	not	expressed	in	brain	(1	set)	or	associated	with	abnormal	phenotypes	in	

mouse	organ	systems	unrelated	to	brain	(7	sets).	We	mapped	CNVs	to	genes	if	they	overlapped	

by	at	least	one	exonic	bp.		

Gene-set	burden	was	tested	using	logistic	regression	deviance	test	6.	In	addition	to	using	

the	same	covariates	included	in	genome-wide	burden	analysis,	we	controlled	for	the	total	

number	of	genes	per	subject	spanned	by	rare	CNVs	to	account	for	signal	that	merely	reflects	

the	global	enrichment	of	CNV	burden	in	cases	19.	Multiple-testing	correction	(Benjamini-

Hochberg	False	Discovery	Rate,	BH-FDR)	was	performed	separately	for	each	gene-set	group	and	

CNV	type	(gains,	losses).	After	multiple	test	correction	(Benjamini-Hochberg	FDR	≤	10%)	15	

gene-sets	were	enriched	for	rare	loss	burden	in	cases	and	4	for	rare	gains	in	cases,	all	of	which	

are	brain-related	gene	sets	(Figure	2).	

Of	the	15	sets	significant	for	losses,	the	majority	consist	of	synaptic	or	other	neuronal	

components	(9	sets)	from	gene-set	group	(a);	in	particular,	“GO	synaptic”	(GO:0045202)	and	

“ARC	complex”	rank	first	based	on	statistical	significance	and	effect-size	respectively	(“GO	

synaptic”	deviance	test	p-value	=	2.8e-11,	“ARC	complex”	regression	odds-ratio	>	1.8,	Figure	

2a).	Losses	in	cases	were	also	significantly	enriched	for	genes	involved	in	nervous	system	or	

behavioral	phenotypes	in	mouse	but	not	for	gene-sets	related	to	other	organ	system	

phenotypes	(Figure	2c).		To	account	for	dependency	between	synaptic	and	neuronal	gene-sets,	
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we	re-tested	loss	burden	following	a	step-down	logistic	regression	approach,	ranking	gene-sets	

based	on	significance	or	effect	size	(Extended	data	table	4).	Only	GO	synaptic	and	ARC	complex	

were	significant	in	at	least	one	of	the	two	step-down	analyses,	suggesting	that	burden	

enrichment	in	the	other	neuronal	categories	is	mostly	accounted	by	the	overlap	with	synaptic	

genes.	Following	the	same	approach,	the	mouse	neurological/neurobehavioral	phenotype	set	

remained	nominally	significant,	pointing	to	the	existence	of	additional	signal	not	captured	by	

the	synaptic	set.	Pathway	enrichment	was	less	pronounced	for	duplications,	consistent	with	the	

smaller	burden	effects	for	this	class	of	CNV.	Duplication	burden	was	significantly	enriched	for	

NMDA	receptor	complex,	highly	brain-expressed	genes,	medium/low	brain-expressed	genes	

and	prenatally	expressed	brain	genes	(Figure	2b).		

Given	that	synaptic	gene	sets	were	robustly	enriched	for	deletions	in	cases,	and	with	an	

appreciable	contribution	from	loci	that	have	not	been	strongly	associated	with	SCZ	previously,	

pathway-level	interactions	of	these	sets	were	further	investigated.	A	protein-interaction	

network	was	seeded	using	the	synaptic	and	ARC	complex	genes	that	were	intersected	by	rare	

deletions	in	this	study	(Figure	3).	A	graph	of	the	network	highlights	multiple	subnetworks	of	

synaptic	proteins	including	pre-synaptic	adhesion	molecules	(NRXN1,	NRXN3),	post-synaptic	

scaffolding	proteins	(DLG1,	DLG2,	DLGAP1,	SHANK1,	SHANK2),	glutamatergic	ionotropic	

receptors	(GRID1,	GRID2,	GRIN1,	GRIA4),	and	complexes	such	as	Dystrophin	and	its	synaptic	

interacting	proteins	(DMD,	DTNB,	SNTB1,	UTRN).		A	subsequent	test	of	the	Dystrophin	

glycoprotein	complex	(DGC)	revealed	that	deletion	burden	of	the	synaptic	DGC	proteins	

(intersection	of	“GO	DGC”	GO:0016010	and	“GO	synapse”	GO:0045202)	was	enriched	in	cases		

(Deviance	test	P	=	0.05),	but	deletion	burden	of	the	full	DGC	was	not	significant	(P	=	0.69).	

	

Gene	CNV	burden		

To	define	specific	loci	that	confer	risk	for	SCZ,	we	tested	CNV	burden	at	the	level	of	individual	

genes,	using	logistic	regression	deviance	test	and	the	same	covariates	included	in	genome-wide	

burden	analysis.	To	correctly	account	for	large	CNVs	that	affect	multiple	genes,	we	aggregated	

adjacent	genes	into	single	loci	if	their	copy	number	was	highly	correlated	across	subjects.	CNVs	

were	mapped	to	genes	if	they	overlapped	one	or	more	exons.	The	criterion	for	genome-wide	
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significance	used	the	Family-Wise	Error	Rate	(FWER)	<	0.05.	The	criterion	for	suggestive	

evidence	used	a	Benjamini-Hochberg	False	Discovery	Rate	(BH-FDR)	<	0.05.		

Of	nineteen	independent	CNV	loci	with	gene-based	BH-FDR	<	0.05,	two	were	excluded	

based	on	CNV	calling	accuracy	or	evidence	of	a	batch	effect	(Supplementary	Information).	The	

seventeen	loci	that	remained	after	these	additional	QC	steps	are	listed	in	Table	1.	P-values	for	

this	summary	table	were	obtained	by	re-running	our	statistical	model	across	the	entire	region	

(Supplementary	Results).	These	seventeen	loci	represent	a	set	of	novel	(n=6),	previously	

reported	(n=4),	and	previously	implicated	(n=7)	loci.	Manhattan	plots	of	the	gene	association	

for	losses	and	gains	are	provided	in	Figure	4.	A	permutation-based	false	discovery	rate	yielded	

similar	estimates	to	BH-FDR.		

Eight	loci	attain	genome-wide	significance,	including	copy	number	losses	at	1q21.1,	

2p16.3	(NRXN1),	3q29,	15q13.3,	16p11.2	(distal)	and	22q11.2	along	with	gains	at	7q11.23	and	

16p11.2	(proximal).	An	additional	nine	loci	meet	criterion	for	suggestive	association.	Based	on	

our	estimation	of	False	Discovery	Rates	(BH	and	permutations),	we	expect	to	observe	less	than	

two	associations	meeting	suggestive	criteria	by	chance.		

	

Probe	level	CNV	burden		

With	our	current	sample	size	and	uniform	CNV	calling,	many	individual	CNV	loci	can	be	

tested	with	adequate	power	at	the	probe	level,	potentially	facilitating	discovery	at	a	finer	grain	

than	locus-wide	tests.	Tests	for	association	were	performed	at	each	CNV	breakpoint	using	the	

residuals	of	case-control	status	after	controlling	for	analysis	covariates,	with	significance	

determined	through	permutation.	Results	for	losses	and	gains	are	shown	in	Extended	data	

figure	4.	Four	independent	CNV	loci	surpass	genome-wide	significance,	all	of	which	were	also	

identified	in	the	gene-based	test,	including	the	15q13.2-13.3	and	22q11.21	deletions,	16p11.2	

duplication,	and	1q21.1	deletion	and	duplication.	While	these	loci	represent	less	than	half	of	

the	previously	implicated	SCZ	loci,	we	do	find	support	for	all	loci	where	the	association	

originally	reported	meets	the	criteria	for	genome-wide	correction	in	this	study.	We	examined	

association	among	all	previously	reported	loci	showing	association	to	SCZ,	including	12	CNV	
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losses	and	20	CNV	gains	(Extended	data	table	5),	and	14	of	the	33	loci	were	associated	with	SCZ	

at	p	<	.05.		

When	a	probe-level	test	is	applied,	associations	at	some	loci	become	better	delineated.	

For	instance,	The	NRXN1	gene	at	2p16.3	is	a	CNV	hotspot,	and	exonic	deletions	of	this	gene	are	

significantly	enriched	in	SCZ9,20.	In	this	large	sample,	we	observe	a	high	density	of	“non-

recurrent”	deletion	breakpoints	in	cases	and	controls.	The	probe-level	Manhattan	plot	reveals	a	

saw	tooth	pattern	of	association,	where	peaks	correspond	to	transcriptional	start	sites	and	

exons	of	NRXN1	(Figure	5).	This	example	highlights	how,	with	high	diversity	of	alleles	at	a	single	

locus,	the	association	peak	may	become	more	refined,	and	in	some	cases	converge	toward	

individual	functional	elements.	Similarly,	a	high	density	of	duplication	breakpoints	at	previously	

reported	SCZ	risk	loci	on	16p13.2	(http://bit.ly/1NPgIuq)	and	8q11.23	(http://bit.ly/1PwdYTt)	

exhibit	patterns	of	association	that	better	delineate	genes	in	these	regions.	

	

[the	above	URLs	link	to	a	PGC	CNV	browser	display	of	the	respective	genomic	regions.	The	
browser	can	also	be	accessed	directly	at	the	following	URL	
http://pgc.tcag.ca/gb2/gbrowse/pgc_hg18/]	

	

Novel	risk	loci	are	predominantly	NAHR-mediated	CNVs	

Many	CNV	loci	that	have	been	strongly	implicated	in	human	disease	are	hotspots	for	

non-allelic	homologous	recombination	(NAHR),	a	process	which	in	most	cases	is	mediated	by	

flanking	segmental	duplications	21.	Consistent	with	the	importance	of	NAHR	in	generating	CNV	

risk	alleles	for	schizophrenia,	most	of	the	loci	in	Table	1	are	flanked	by	segmental	duplications.	

After	excluding	loci	that	have	been	implicated	in	previous	studies,	we	investigated	whether	

NAHR	mutational	mechanisms	were	also	enriched	among	novel	associated	CNVs.	We	defined	a	

CNV	as	“NAHR”	when	both	the	start	and	end	breakpoint	is	located	within	a	segmental	

duplication.	Across	all	loci	with	FDR	<	0.05	in	the	gene-base	burden	test,	NAHR-mediated	CNVs	

were	significantly	enriched,	6.03-fold	(P=0.008;	Extended	data	figure	5),	when	compared	to	a	

null	distribution	determined	by	randomizing	the	genomic	positions	of	associated	genes	
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(Supplemental	Material).	These	results	suggest	that	novel	SCZ	CNVs	tend	to	occur	in	regions	

prone	to	high	rates	of	recurrent	mutation.		

	

Discussion			

The	present	study	of	the	PGC	SCZ	CNV	dataset	includes	the	majority	of	all	microarray	

data	that	has	been	generated	in	genetic	studies	of	SCZ	to	date.	In	this,	the	best	body	of	

evidence	to	date	with	which	to	evaluate	CNV	associations,	we	find	definitive	evidence	for	eight	

loci	and	we	find	significant	evidence	for	a	contribution	from	novel	CNVs	conferring	both	risk	

and	protection.	The	complete	results,	including	CNV	calls	and	statistical	evidence	at	the	gene	or	

probe	level,	can	be	viewed	using	the	PGC	CNV	browser	(URLs).	Our	data	suggest	that	the	novel	

risk	loci	that	can	be	detected	with	current	genotyping	platforms	lie	at	the	ultra-rare	end	of	the	

frequency	spectrum	and	still	larger	samples	will	be	needed	to	identify	them	at	convincing	levels	

of	statistical	evidence.		

Collectively,	the	eight	SCZ	risk	loci	that	surpass	genome-wide	significance	are	carried	by	

a	small	fraction	(1.4%)	of	SCZ	cases	in	the	PGC	sample.	We	estimate	0.85%	of	the	variance	in	

SCZ	liability	is	explained	by	carrying	a	CNV	risk	allele	within	these	loci	(Supplementary	Results).	

As	a	comparison,	3.4%	of	the	variance	in	SCZ	liability	is	explained	by	the	108	genome-wide	

significant	loci	identified	in	the	companion	PGC	GWAS	analysis.	Combined,	the	CNV	and	SNP	

loci	that	have	been	identified	to	date	explain	a	small	proportion	(<5%)	of	heritability.		

The	large	dataset	here	provides	an	opportunity	to	evaluate	the	strength	of	evidence	for	

a	variety	of	loci	where	an	association	with	schizophrenia	has	been	reported	previously.	Of	33	

published	findings	from	the	recent	literature,	we	find	evidence	for	14	loci	(P	<	0.05,	Extended	

data	table	5);	thus,	nearly	half	of	the	existing	candidate	loci	are	supported	by	our	data.	

However	we	also	find	a	lack	of	evidence	for	many.	A	lack	of	strong	evidence	in	this	dataset	

(which	includes	samples	that	overlap	with	many	of	the	previous	studies)	may	in	some	cases	

simply	reflect	that	statistical	power	is	limited	for	very	rare	variants,	even	in	large	samples.	

However,	it	is	likely	that	some	of	these	original	findings	represent	spurious	associations.	

Indeed,	the	loci	that	are	not	supported	by	our	data	consist	largely	of	loci	for	which	the	original	

statistical	evidence	was	modest	(Extended	data	table	5).	Thus,	our	results	help	to	refine	the	list	
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of	promising	candidate	CNVs.	Continued	efforts	to	evaluate	the	growing	number	of	candidate	

variants	has	considerable	value	for	directing	future	research	efforts	focused	on	specific	loci.		

Novel	candidate	loci	meeting	suggestive	criteria	in	this	study	highlight	strong	candidate	

loci	that	have	not	been	previously	implicated	in	SCZ.	Two	such	associations	are	located	on	the	X	

chromosome	in	a	region	of	Xq28	that	is	highly	prone	to	recurrent	rearrangements	22-24	

(Extended	data	figure	6).	Gains	at	the	distal	Xq28	locus	are	enriched	in	cases	in	this	study;	

similar	duplications	have	been	reported	in	association	with	intellectual	disability,	while	

reciprocal	deletions	of	this	region	are	associated	with	embryonic	lethality	in	males	25.	

Duplications	at	the	proximal	Xq28	locus,	including	a	single	gene	MAGEA11,	are	enriched	in	

controls	in	this	study,	and	to	our	knowledge	have	not	been	documented	in	other	disorders.	

We	observed	multiple	“protective”	CNVs	that	showed	a	suggestive	enrichment	in	

controls,	including	duplications	of	22q11.2,	MAGEA11,	and	ZMYM5	along	with	deletions	and	

duplications	of	ZNF92.	No	protective	effects	were	significant	after	genome-wide	correction.	

Moreover,	a	rare	CNV	that	confers	reduced	risk	for	SCZ	may	not	confer	a	general	protection	

from	neurodevelopmental	disorders.	For	example,	microduplications	of	22q11.2	appear	to	

confer	protection	from	SCZ	26;	however,	such	duplications	have	been	shown	to	increase	risk	for	

developmental	delay	and	a	variety	of	congenital	anomalies	in	pediatric	clinical	populations	27.	It	

is	probable	that	some	of	the	undiscovered	rare	alleles	in	SCZ	are	variants	that	confer	protection	

but	larger	sample	sizes	are	needed	to	determine	this	unequivocally.	If	true,	our	estimates	of	the	

excess	CNV	burden	in	cases	may	not	fully	account	for	the	variation	SCZ	liability	that	is	explained	

by	rare	CNVs.	

Our	results	provide	strong	evidence	that	deletions	in	SCZ	are	enriched	within	a	highly	

connected	network	of	synaptic	proteins,	consistent	with	previous	studies	2,6,10,28.		The	large	CNV	

dataset	here	allows	a	more	detailed	view	of	the	synaptic	network	and	highlights	subsets	of	

genes	account	for	the	excess	deletion	burden	in	SCZ,	including	synaptic	cell	adhesion	and	

scaffolding	proteins,	glutamatergic	ionotropic	receptors	and	protein	complexes	such	as	the	ARC	

complex	and	DGC.	Modest	CNV	evidence	implicating	Dystrophin	(DMD)	and	its	binding	partners	

is	intriguing	given	that	the	involvement	of	certain	components	of	the	DGC	have	been	
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postulated	29,	30	and	disputed	31	previously.	Larger	studies	of	CNV	are	needed	to	define	a	role	

for	this	and	other	synaptic	sub-networks	in	SCZ.	

This	study	represents	a	milestone.	Large-scale	collaborations	in	psychiatric	genetics	

have	greatly	advanced	discovery	through	genome-wide	association	studies.	Here	we	have	

extended	this	framework	to	rare	CNVs.	Our	knowledge	of	the	contribution	from	lower	

frequency	variants	gives	us	confidence	that	the	application	of	this	framework	to	large	newly	

acquired	datasets	has	the	potential	to	further	the	discovery	of	loci	and	identification	of	the	

relevant	genes	and	functional	elements.	The	PGC	CNV	resource	is	now	publicly	available	

through	a	custom	browser	at	http://pgc.tcag.ca/gb2/gbrowse/pgc_hg18/.		
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CHR	 BP1	 BP2	 Locus	(GENE)	
Putative	CNV	
Mechanism	 CNV	test	 Direction	 FWER	 BH-FDR	 Cases	 Controls	

Regional	
p-value	 	Odds	Ratio	[95%	CI]	

22	 17,400,000	 19,750,000	 22q11.21	 NAHR	 loss	 risk	 yes	 3.54E-15	 64	 1	 5.70E-18	 67.7	[9.3-492.8]	

16	 29,560,000	 30,110,000	 16p11.2	(proximal)	 NAHR	 gain	 risk	 yes	 5.82E-10	 70	 7	 2.52E-12	 9.4	[4.2-20.9]	

2	 50,000,992	 51,113,178	 2p16.3	(NRXN1)	 NHEJ	 loss	 risk	 yes	 3.52E-07	 35	 3	 4.92E-09	 14.4	[4.2-46.9]	

15	 28,920,000	 30,270,000	 15q13.3	 NAHR	 loss	 risk	 yes	 2.22E-05	 28	 2	 2.13E-07	 15.6	[3.7-66.5]	

1	 144,646,000	 146,176,000	 1q21.1	 NAHR	 loss+gain	 risk	 yes	 0.00011	 60	 14	 1.50E-06	 3.8	[2.1-6.9]	

3	 197,230,000	 198,840,000	 3q29	 NAHR	 loss	 risk	 yes	 0.00024	 16	 0	 1.86E-06	 NA	[0-Inf]	

16	 28,730,000	 28,960,000	 16p11.2	(distal)	 NAHR	 loss	 risk	 yes	 0.0029	 11	 1	 5.52E-05	 20.6	[2.6-162.2]	

7	 72,380,000	 73,780,000	 7q11.23	 NAHR	 gain	 risk	 yes	 0.0048	 16	 1	 1.68E-04	 16.1	[3.1-125.7]	

X	 153,800,000	 154,225,000	 Xq28	(distal)	 NAHR	 gain	 risk	 no	 0.049	 18	 2	 3.61E-04	 8.9	[2.0-39.9]	

22	 17,400,000	 19,750,000	 22q11.21	 NAHR	 gain	 protective	 no	 0.024	 3	 16	 4.54E-04	 0.15	[0.04-0.52]	

7	 64,476,203	 64,503,433	 7q11.21	(ZNF92)	 NAHR	 loss+gain	 protective	 no	 0.033	 131	 180	 6.71E-04	 0.66	[0.52-0.84]	

13	 19,309,593	 19,335,773	 13q12.11	(ZMYM5)	 NHAR	 gain	 protective	 no	 0.024	 15	 38	 7.91E-04	 0.36	[0.19-0.67]	

X	 148,575,477	 148,580,720	 Xq28	(MAGEA11)	 NAHR	 gain	 protective	 no	 0.044	 12	 36	 1.06E-03	 0.35	[0.18-0.68]	

15	 20,350,000	 20,640,000	 15q11.2	 NAHR	 loss	 risk	 no	 0.044	 98	 50	 1.34E-03	 1.8	[1.2-2.6]	

9	 831,690	 959,090	 9p24.3	(DMRT1)	 NHEJ	 loss+gain	 risk	 no	 0.049	 13	 1	 1.35E-03	 12.4	[1.6-98.1]	

8	 100,094,670	 100,958,984	 8q22.2	(VPS13B)	 NHEJ	 loss	 risk	 no	 0.048	 7	 1	 1.74E-03	 14.5	[1.7-122.2]	

7	 158,145,959	 158,664,998	

7p36.3	

(VIPR2/WDR60)	 NAHR	 loss+gain	 risk	 no	 0.046	 20	 6	 5.79E-03	 3.5	[1.3-9.0]	

	

Table	1:	Significant	CNV	loci	from	gene-based	association	test		

All	seventeen	loci	listed	contain	at	least	one	gene	with	Benjamini-Hochberg	false	discovery	rate	(BH-FDR)	<	0.05	in	the	gene-based	

test,	with	eight	loci	containing	at	least	one	gene	surpassing	the	family-wise	error	rate	(FWER)	<	0.05.	Genomic	positions	listed	are	

using	hg18	coordinates.	For	putative	CNV	mechanisms,	non-allelic	homologous	recombination	(NAHR)	and	non-homologous	end	

joining	(NHEJ)	are	listed	as	the	likely	genomic	feature	driving	CNV	formation	at	each	locus.	Regional	p-values	and	odds	ratios	listed	

are	from	a	regional	test	at	each	locus,	where	we	combine	CNV	overlapping	the	implicated	region	and	run	the	same	test	as	used	for	

each	gene	(logistic	regression	with	covariates	and	deviance	test	p-value).
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Figure	1.	CNV	Burden		

(A)	Forest	plot	of	CNV	burden	(measured	here	as	genes	affected	by	CNV),	partitioned	by	

genotyping	platform,	with	the	full	PGC	sample	at	the	bottom.	CNV	burden	is	calculated	by	

combining	CNV	gains	and	losses.	Case	and	control	counts	are	listed,	and	“genes”	is	the	rate	of	

genes	affected	by	CNV	in	controls.	Burden	tests	use	a	logistic	regression	model	predicting	SCZ	

case/control	status	by	CNV	burden	along	with	covariates	(see	methods).	The	odds	ratio	is	the	

exponential	of	the	logistic	regression	coefficient,	and	odds	ratios	above	one	predict	increased	

SCZ	risk.	(B)	CNV	burden	partitioned	by	CNV	frequency.	For	reference,	a	CNV	with	MAF	0.1%	in	

the	PGC	sample	would	have	~41	CNVs.	Using	the	same	model	as	above,	each	CNV	was	placed	

into	a	single	CNV	frequency	category	based	on	a	50%	reciprocal	overlap	with	other	CNVs.	CNV	

burden	with	inclusion	of	all	CNVs	are	shown	in	green,	whereas	CNV	burden	excluding	previously	

implicated	CNV	loci	are	shown	in	blue.	
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Figure	2:	Gene-set	Burden	

Gene-set	burden	test	results	for	rare	losses	(a,	c)	and	gains	(b,	d);	frames	a-b	display	gene-sets	

for	neuronal	function,	synaptic	components,	neurological	and	neurodevelopmental	phenotypes	

in	human;	frames	c-d	display	gene-sets	for	human	homologs	of	mouse	genes	implicated	in	

abnormal	phenotypes	(organized	by	organ	systems);	both	are	sorted	by	–log	10	of	the	logistic	

regression	deviance	test	p-value	multiplied	by	the	beta	coefficient	sign,	obtained	for	rare	losses	

when	including	known	loci.	Gene-sets	passing	the	10%	BH-FDR	threshold	are	marked	with	“*”.	
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Gene-sets	representing	brain	expression	patterns	were	omitted	from	the	figure	because	only	a	

few	were	significant	(losses:	1,	gains:	3).	
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Figure	3:	Protein	Interaction	Network	for	Synaptic	Genes	

Synaptic	and	ARC-complex	genes	intersected	by	a	rare	loss	in	at	least	4	case	or	control	subjects	

and	with	genic	burden	Benjamini-Hochberg	FDR	<=	25%	(red	discs)	were	used	to	query	

GeneMANIA32	and	retrieve	additional	protein	interaction	neighbors,	resulting	in	a	network	of	

136	synaptic	genes.	Genes	are	depicted	as	disks;	disk	centers	are	colored	based	on	rare	loss	

frequency	(Freq.SZ	and	Freq.CT)	being	prevalent	in	cases	or	controls;	disk	borders	are	colored	

to	mark	(i)	gene	implication	in	human	dominant	or	X-linked	neurological	or	

neurodevelopmental	phenotype,	(ii)	de	novo	mutation	(DeN)	reported	by	Fromer	et	al.	28,	split	

between	LOF	(frameshift,	stop-gain,	core	splice	site)	and	missense	or	amino	acid	insertion	/	

deletion,	(iii)	implication	in	mouse	neurobehavioral	abnormality.	Pre-synaptic	adhesion	

molecules	(NRXN1,	NRXN3),	post-synaptic	scaffolds	(DLG1,	DLG2,	DLGAP1,	SHANK1,	SHANK2)	
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and	glutamatergic	ionotropic	receptors	(GRID1,	GRID2,	GRIN1,	GRIA4)	constitute	a	highly	

connected	subnetwork	with	more	losses	in	cases	than	controls.	
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Figure	4:	Gene	Based	Manhattan	Plot.		

Manhattan	plot	displaying	the	–log10	deviance	p-value	for	(A)	CNV	losses	and	(B)	CNV	gains	the	

gene-based	test.	P-value	cutoffs	corresponding	to	FWER	<	0.05	and	BH-FDR	<	0.05	are	

highlighted	in	red	and	blue,	respectively.	Loci	significant	after	multiple	test	correction	are	

labeled.	

	

0
5

10
15

Chromosome

−
lo

g 1
0(
p)

● ●

●

●●●●●●●●●●●
●
●●●
●

●

●●
●
●●●●
●●

●
●●●●●
●●●●●●●●●●
●

●

●

●

●●
●
●

●

●

●

●●

●●●●

●●●●
●● ●

●●●●●

●●
●

●
●

●

● ●●
●

●
●

●●●●●●
●●●●●●
●●●
●●●

●●●

●
●

●●

●
●●●●

●●

●
●●●
●●
●
●●● ●●●

●●

●
●●

●●

●●●

●
●

●●●●●
●
●●●●

●

● ●

●

●●

●●
●●

●

●

●●

●

●

●

●●
●
●●

●

●
●●
●●
●●●●●
●●●

●

●●
●

●
●

●

●●
●
●●●●

●

●

●
●●

●
●●●● ●●●●

●

●
●
●●

●

●

●●●●●●
●●
●●●●●●●●
●

●

●●

●
●●●
●●

●

●●●●
●●

●●

●●
●●●●
●
●●●●●
●

●

●●●●●●●
●
●

●●

●
●
●

●
●●●
●
●
●
●

●
●●●●●●
●
●●●●●●

●
●
●●● ●●●

●

●●●●

●

●

●
●●●●

●

●
●
●●●●●●●●

●
●●●●●

●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●

●●●
●●●

●●
●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●
●
●●

●
●
●●
●

●●
●
●
●

●●

●

●
●
●●

●

●

●
●
●●●●●●●●●●
●●●

●●●

●●

●
●●

●●●

●●
●●
●●
●
●

●

●
●●
●●●●●●●●●●●●

●
●●● ●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●
●

●

●●●
●

●●●●●●●●●

●

●

●

●●●●

●●●●
●

●

● ●

●
●

●●●

●

●●

1 3 5 7 9 11 13 15 17 19 21 X2 4 6 8 10 12 14 16 18 20 22

CNV losses FWER cutoff = 1.33e−4
CNV losses FDR cutoff = 0.0025

1q21.1

2p16.3

3q29

8q22.2
10q11.12

15q13.3

15q11.2

16p11.2 (distal)

22q11.2

A
0

5
10

15

Chromosome

−
lo

g 1
0(
p)

●

●●
●
●
●●
●

●●●●●●
●●●●●●
●

●●●●●
●●●

●

●

●

●

●●●●
●

●●

●●●●●●●●●●●●●●
●●●●●●●●

●

●●
●

●●
●●●●

●

●
●

●
●●●●●
●
●●
●
●

●
●
●●●●
●
●●●
●
●●●●●●●●●●
●
●

●●●
●●●
●●
●
●●
●

●

●

●●●●●●●●

●

●●●● ●●
●●●●●●●●●●●●

●

●
●●
●●●●

●

●

●●

●

●
●●●●●

●

●

●

●
●

●

●●
●

●●

●

●●●
●

●

●

●●●●●
●
●●●

●●●●
●

●●

●●●●

●
●●
●

●●●

●●
●●●●●●●●

●
●
●
●
●●

●●
●●●
●

●

●●●●●●●

●

●●●●●●●●
●
●●

●
●● ●

●

●●●●●
●●●
●
●
●
●
●
●

●

●

●

●

●●●●●●

●●
●
●●●
●●
●

●

●
●

●●●●●●●●●●

●

●
●
●

●
●

●●

●●

●
●

●

●●●●●
●
●

●

●

●●
●●

●
●

●

●●●●●●●
●
●
●●
●
●●
●

●

●
●
●
●

●

●
●●●●

●●●●
●
●●●●●●●●
●●●
●
●●●

●●●

●
●
●
●
●
●●●●●
●
●●●●

●●●
●

●●●

●
●
●●
●●●●●●●
●●●

●
●●●●

●
●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●

●●●●●●●

●●●●

●●●●●

●
●●●●●●
●

●●

●●●●
●●
●
●●●●
● ●●

●
●
●

●●
●●●

●●●●●

●●

●

●

●●●
●●●●

●
●●
●

●

●

●●
●●●

●●●●● ●●●●
●
●●●●

●●●

●
●
●●
●

●

●

●●

●●

●
●●

●
●●●

●

●

●
●

●●
●●●
●●
●
●●●●●●●●

●

●

●
●
●●●
●●●●●●●●●●●●●
●●●●
●●

●●●●●●●●●

●

●

●

●

●●●
●●●●
●

●●●●●●●
●●●
●

●

●

●

●

●
●●●●●●
●

●

●

●

●●

●

●●
●●

●●●
●

●●●
●

●
●●

●
●

●

●
●

●
●
●●●
●●●

●
●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●
●●
●

●●

●
●●●
●●●●

●
●

●
●●●●
●●●●●●●
●●●

●

●●●●
●●
●●●●●●●
●
●●
●●●●
●●
●●●●● ●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●
●

●●●●
●

●●●●
●
●●●●

●●●●

●●
●●●●●●●●●●●●●●●●●

●●●●
●●
●●
●●●
●●●●
●●●●
●●●●●●●●

●

●●

●
●

●

●
●●●
●●
●
●
●●
●●●
●●

●●

●

●●●●
●

●●
●

●●
●●
●●●
●●●●
●
●●
●

●●

●

●

●

●

●●

●●
●●
●●
●

●
●

1 3 5 7 9 11 13 15 17 19 21 X2 4 6 8 10 12 14 16 18 20 22

CNV gains FWER cutoff = 4.33e−5
CNV gains FDR cutoff = 0.001

1q21.1
7q11.23

13q12.11

16p11.2

22q11.2
Xq28 (2 sites)

B



	 28	

	
	

Figure	5:	Manhattan	plot	of	probe-level	associations	across	the	Neurexin-1	locus		

Empirical	p-values	at	each	deletion	breakpoint	reveal	a	saw-tooth	pattern	of	association.	Predominant	peaks	correspond	to	exons	

and	transcriptional	start	sites	of	NRXN1	isoforms.	
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Locus	 CNV	type	 Gene	or	region	
name	

Initial	SCZ	association	
reference	(see	legend)	

Tested	in	
Rees	et	al.	
2014	

Reported	
p-value	

SCZ	CNV	
carrier	%	

Control	CNV	
carrier	%	

Reported	Odds	
Ratio	

22q11.2	 deletion	 multigenic	 1	 yes	 4.40E-40	 0.29	 0	 Inf	

16p11.2	 duplication	 proximal	duplication	 2	 yes	 2.90E-24	 0.35	 0.03	 11.52	

1q21.1	 deletion	 multigenic	 3,4	 yes	 4.10E-13	 0.17	 0.021	 8.35	

2p16.3	 deletion	 NRXN1	exons	 5,6	 yes	 1.30E-11	 0.18	 0.02	 9.01	

15q11.2	 deletion	 multigenic	 3	 yes	 2.50E-10	 0.59	 0.28	 2.15	

3q29	 deletion	 multigenic	 7,11	 yes	 1.50E-09	 0.082	 0.0014	 57.65	

15q13.2-13.3	 deletion	 multigenic	 3,4	 yes	 5.60E-06	 0.14	 0.019	 7.52	

15q11.2-13.1	 duplication	 AS/PWS	 8	 yes	 5.60E-06	 0.083	 0.0063	 13.2	

8q11.23	 duplication	 RB1CC1	 9	 no	 1.29E-05	 0.106	 0.014	 8.58	

16p13.11	 duplication	 multigenic	 8	 yes	 5.70E-05	 0.31	 0.13	 2.3	

7q11.23	 duplication	 Williams-Beuren		 10	 yes	 6.90E-05	 0.066	 0.0058	 11.35	

1q21.1	 duplication	 multigenic	 11	 yes	 9.90E-05	 0.13	 0.037	 3.45	

16p13.2	 duplication	 C16orf72/USP7	 11	 no	 1.00E-04	 0.254	 0.0197	 12.9	

1p36.33	 duplication	 multigenic	 12	 no	 5.00E-04	 0.065	 0.0075	 8.66	

22q11.2	 duplication	 multigenic	 13	 no	 8.60E-04	 0.014	 0.085	 0.17	

17p12	 deletion	 HNPP	 14	 yes	 1.20E-03	 0.094	 0.026	 3.62	

9q34.3	 duplication	 intergenic	 15	 no	 1.40E-03	 1.47	 0.43	 3.38	

16p12.1	 deletion	 multigenic	 12	 no	 1.60E-03	 0.15	 0.057	 2.72	

15q21.3	 duplication	 CGNL1	 12	 no	 1.90E-03	 0.32	 0.19	 1.71	

11q25	 deletion	 GLB1L3/GLB1L2	 11	 no	 3.00E-03	 0.38	 0.123	 3	

2q37.3	 duplication	 AQP12A/KIF1A	 12	 no	 3.00E-03	 0.34	 0.24	 1.43	

17q12	 deletion	 RCAD	 16	 yes	 0.0072	 0.036	 0.0054	 6.64	

9p24.2	 deletion	 GLIS3	 12	 no	 8.40E-03	 0.033	 0	 Inf	
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9p24.2	 deletion	 SLC1A1	 12	 no	 9.80E-03	 0.047	 0.0075	 6.19	

16p11.2	 deletion	 distal	deletion	 17	 yes	 0.017	 0.063	 0.018	 3.39	

7q36.3	 duplication	 WDR60/VIPR2	 11,18	 yes	 0.27	 0.11	 0.069	 1.54	

 

Extended	Data	Table	1:	Previously	reported	CNV	association  

We	assembled	a	list	of	26	reported	CNV	associations	to	SCZ,	where	an	odds	ratio	and	p-value	were	available.	At	each	CNV	locus,	we	
list	the	odds	ratios	and	p-values	from	the	largest	sample	collection	available	in	the	literature.	Results	from	all	CNV	loci	meta-

analyzed	in	Rees	et	al.	(2014),	when	available,	were	used.	Throughout	this	article	we	refer	to	this	entire	list	as	“previously	reported”	

loci.	Reported	p-values	for	nine	loci	shown	in	bold	surpass	the	multiple	testing	threshold	drawn	from	the	current	dataset	using	a	

Cochran-Mantel	Haenszel	test	stratified	by	genotyping	platform.	Throughout	this	article	we	refer	to	these	nine	loci	as	“previously	

implicated”.	
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Extended	Data	Tables	2-4	are	separate	.xlsx	sheets	available	upon	request.	

ED	Table	2	datasets.xlsx	–	datasets	and	sample	sizes	used	in	the	current	study	

ED	Table	3	NeuroGeneSsets.xlsx	–	Gene	sets	investigated	in	the	current	study	

ED	Table	4	stepdown_withLegend.xlsx	–	Unique	contribution	of	significant	gene	sets	in	step-down	regression	models	
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Locus	 CNV	type	 Gene	or	region		 Reference							
(see	ED	table	1)	

Z-score	
p-value	

CMH	
p-value	 CNV	carriers	 SCZ	Case	

count	
Control	
count	

CMH	test	
Odds	Ratio	

	 	 	 	 	 	 N	=	41321	 N	=	21094	 N=	20227	 	

22q11.21 Deletion Multigenic 1 6.20E-13 4.40E-13 58 58 0 NA 
16p11.2 Duplication Proximal	duplication 2 2.60E-10 9.40E-12 67 63 4 13.8 
15q13.2-13.3 Deletion Multigenic 3,4 6.10E-06 2.50E-06 33 30 3 10.55 
3q29 Deletion Multigenic 7 6.20E-05 1.60E-04 16 16 0 NA 
2p16.3 Deletion NRXN1 5,6 9.40E-05 3.00E-04 27 23 4 5.87 
16p11.2 Deletion Distal	deletion 17 1.00E-04 5.20E-03 12 11 1 12.68 
22q11.21 Duplication Multigenic 12 1.60E-04 6.30E-04 27 4 23 0.18 
1q21.1 Deletion Multigenic 3,4 2.90E-04 2.70E-05 39 33 6 5.42 
16p13.2 Duplication C16orf72/USP7 11 3.80E-04 1.10E-04 27 24 3 9.02 
7q11.23 Duplication Williams-Beuren	 10 4.90E-04 1.70E-03 13 13 0 NA 
15q11.2-13.1 Duplication AS/PWS 8 6.60E-04 4.40E-04 15 15 0 NA 
8q11.23 Duplication FAM150/RB1CC1 9 9.20E-04 5.10E-04 14 14 0 NA 
15q11.2 Deletion Multigenic 3 1.70E-03 1.30E-03 142 95 47 1.8 
1q21.1 Duplication Multigenic 11 2.00E-03 0.02 21 19 2 6.28 
16q22.1 Duplication WWP2 19 0.003 0.08 5 5 0 NA 
7q36.3 Duplication WDR60/VIPR2 11,18 4.10E-03 2.40E-03 14 13 1 12.12 
17q12 Duplication RCAD	duplication 19 0.009 0.02 20 16 4 3.81 
9q33.1 Deletion NA 19 0.02 0.09 11 9 2 4.02 
22q11.23 Duplication Multigenic 19 0.02 0.03 20 15 5 3.28 
5q21.2 Deletion NA 19 0.03 0.07 32 22 10 2.16 
8p22 Duplication SGCZ 19 0.03 0.08 5 5 0 NA 
9p24.2 Deletion SLC1A1 12 0.03 0.02 8 8 0 NA 
16p12.1 Deletion Multigenic 12 0.03 0.006 33 26 7 3.22 
15q21.3 Duplication CGNL1 12 0.04 1.30E-03 103 69 34 1.99 
17q12 Deletion RCAD 16 0.04 0.13 4 4 0 NA 
16p13.11 Del/Dup Multigenic 8 0.08 0.03 139 84 55 1.49 
7q11.21 Duplication NA 19 0.09 0.35 64 26 38 0.76 
12q23.1 Duplication ANKS1B/UHRF1BP1L 19 0.1 0.73 28 16 12 1.23 
1p36.33 Duplication Multigenic 12 0.11 0.06 15 12 3 3.98 
5q33.1 Deletion NA 12 0.11 0.1 11 9 2 4.19 
9q21.33 Duplication AGTPBP1 11 0.2 0.21 22 15 7 1.94 
9q34.3 Duplication C9orf62 15 0.23 0.03 409 190 219 0.8 
6q24.2 Duplication PHACTR2 12 0.26 0.15 10 8 2 4.03 
3q26.1 Deletion NA 11 0.27 0.43 5 4 1 3.5 
4q35.2 Deletion TRIML1/TRIML2 12 0.35 0.21 26 17 9 1.82 
18q21.31 Duplication NEDD4L 11 0.39 0.7 2 2 0 NA 
11q25 Deletion GLB1L3/GLB1L2 11 0.42 0.22 58 34 24 1.44 
9p24.2 Deletion GLIS3 12 0.43 0.99 10 5 5 0.99 
18q23 Duplication GALR1 12 0.57 0.81 7 4 3 1.22 
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4q35.2 Duplication FAM149A/CYP4V2 12 0.69 0.77 12 5 7 0.71 
2q37.2 Duplication AQP12A/KIF1A 12 0.72 0.14 125 72 53 1.34 
17p12 Deletion HNPP 14 0.82 0.89 22 12 10 1.06 
4q25 Duplication ELOVL6 12 0.9 0.99 13 7 6 1 
10q11.21 Duplication Likely	common	CNV 19 NA NA NA NA NA NA 

	

Extended	data	Table	5:	CNV	probe-level	results	–	Previously	reported	CNVs	

Probe-level	association	results	for	all	previously	reported	CNVs	from	genome-wide	scans	of	SCZ.	We	report	association	results	from	

the	SCZ	residual	phenotype	and	from	a	CMH	test	stratified	by	genotyping	platform.	CNV	loci	in	bold	make	up	previously	implicated	

loci,	in	which	the	most	recent	published	p-value	surpassed	genome-wide	correction.	
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Extended	Data	Figure	1:	CNV	pipeline	workflow
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Extended	Data	Figure	2:	CNV	burden	for	losses:	Fig	3A:	Forest	plot	of	CNV	burden	
(genes	affected)	partitioned	by	genotyping	platform.	Fig	3B:	CNV	burden	partitioned	by	
CNV	frequency.	
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Extended	Data	Figure	3:	CNV	burden	for	gains:	Fig	4A:	Forest	plot	of	CNV	burden	(genes	
affected)	partitioned	by	genotyping	platform.	Fig	4B:	CNV	burden	partitioned	by	CNV	
frequency.		
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Extended	Data	Figure	4:	CNV	probe	level	Manhattan	plot:	Manhattan	plot	of	probe-

level	association	results	from	the	SCZ	residual	phenotype.	Fig	5A:	CNV	losses	Fig	5B:	CNV	

gains.	Genome-wide	correction	was	determined	using	the	family-wise	error	rate	(FWER)	

drawn	from	permutation.		
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Extended	Data	Figure	5:	Permutation	of	NAHR-mediated	CNVs:	Permutation	results	

from	drawing	frequency-match	CNV	loci	and	testing	for	fraction	of	NAHR-mediated	

CNVs.	To	test	for	the	enrichment	of	NAHR-mediated	loci	in	our	suggestive	results	from	

the	gene-based	test,	each	permutation	selected	an	equivalent	number	of	independent	

CNV	loci	and	tested	the	faction	of	NAHR-mediated	CNVs.	
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Extended	Data	Figure	6:	Xq28	CNV	hotspot:	Fig	6A:	Protective	CNV	gain	association	

peak	around	the	MAGEA11	and	TMEM185A	gene,	both	within	an	intron	of	the	HSFX1	

gene.	Fig	6B:	Risk	CNV	gain	association	peak	at	the	distal	end	of	Xq28	overlapping	ten	

genes.	
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Extended	Data	Figure	7:	SCZ	phenotype	residual	distribution:	X-axis:	Distribution	of	

phenotype	residual	values	after	regressing	case/control	status	on	selected	covariates.	

Plotted	against	overall	CNV	Kb	burden	(Y-axis)	to	visually	inspect	if	individuals	with	large	

residuals	have	an	excess	of	CNV	burden,	which	can	lead	to	higher	false	positive	

associations.	SCZ	cases	have	positive	residual	values	and	controls	negative	residual	

values.		
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Extended	Data	Figure	8:	Detection	power	for	CNV	losses:	Power	is	the	proportion	of	

simulated	causal	CNV	loci	detected	(e.g.	surpassing	genome-wide	FWER	correction)	

using	probe-level	association.	Each	graph	plots	power	across	various	MAF	(x-axis)	and	
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genotype	relative	risk	(GRR:	colored	lines).	Simulations	use	the	sample	size	and	FWER	

cutoff	from	the	current	study.		

	



	 45	

Methods	

	

Overview	

We	assembled	a	CNV	analysis	group	with	members	from	Broad	Institute,	Children’s	

Hospital	of	Philadelphia,	University	of	Chicago,	University	of	California	San	Diego,	

University	of	Michigan,	University	of	North	Carolina,	Colorado	University	Boulder,	and	

University	of	Toronto/SickKids	Hospital.	Our	aim	was	to	leverage	the	extensive	expertise	

of	the	group	to	develop	a	fully	automated	centralized	pipeline	for	consistent	and	

systematic	calling	of	CNVs	for	both	Affymetrix	and	Illumina	platforms.	An	overview	of	

the	analysis	pipeline	is	shown	in	Extended	Data	Figure	1.	After	an	initial	data	formatting	

step	we	constructed	batches	of	samples	for	processing	using	four	different	methods,	

PennCNV,	iPattern,	C-score	(GADA	and	HMMSeg)	and	Birdsuite	for	Affymetrix	6.0.	For	

Affymetrix	5.0	data	we	used	Birdsuite	and	PennCNV,	for	Affymetrix	500	we	used	

PennCNV	and	C-score,	and	for	all	Illumina	arrays	we	used	PennCNV	and	iPattern.	We	

then	constructed	a	consensus	CNV	call	dataset	by	merging	data	at	the	sample	level	and	

further	filtered	calls	to	make	a	final	dataset	Extended	data	table	2.	Prior	to	any	filtering,	

we	processed	raw	genotype	calls	for	a	total	of	57,577	individuals,	including	28,684	SCZ	

cases	and	28,893	controls.	

	

Study	Sample	

A	complete	list	of	datasets	that	were	included	in	the	current	study	can	be	found	in		

Extended	Data	Table	2.	A	more	detailed	description	of	the	original	studies	can	be	found	

in	a	previous	publication1	

	

Copy	Number	Variant	Analysis	Pipeline	Architecture	and	Sample	Processing	

All	aspects	of	the	CNV	analysis	pipeline	were	built	on	the	Genetic	Cluster	Computer	

(GCC)	in	the	Netherlands.	PGC	members	sent	external	drives	of	raw	data	to	the	

Netherlands	for	upload	to	the	server	as	well	as	the	corresponding	sample	metadata	

files.	
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Input	Acceptance	and	Preprocessing:	For	Affymetrix	we	used	the	*.CEL	files	(all	

converted	to	the	same	format)	as	input,	whereas	for	Illumina	we	required	Genome	or	

Beadstudio	exported	*.txt	files	with	the	following	values:	Sample	ID,	SNP	Name,	Chr,	

Position,	Allele1	–	Forward,	Allele2	–	Forward,	X,	Y,	B	Allele	Freq	and	Log	R	Ratio.		

Samples	were	then	partitioned	into	‘batches’	to	be	run	through	each	pipeline.	For	

Affymetrix	samples	we	created	analysis	batches	based	on	the	plate	ID	(if	available)	or	

genotyping	date.	Each	batch	had	approximately	200	samples	with	an	equal	mix	of	male	

and	female	samples.	Affymetrix	Power	Tools	(APT	-	apt-copynumber-workflow)	was	

then	used	to	calculate	summary	statistics	about	chips	analyzed.	Gender	mismatches	

identified	and	excluded	as	were	experiments	with	MAPD	>	0.4.	For	Illumina	data,	we	

first	determined	the	genome	build	and	converted	to	hg18	if	necessary	and	created	

analysis	batches	based	on	the	plate	ID	or	genotyping	date.	Each	batch	had	

approximately	200	samples,	and	equal	mix	of	male	and	female	samples.	

		

Composite	Pipeline:	The	composite	pipeline	comprises	CNV	callers	PennCNV	2,	iPattern	3,	

Birdsuite	4	and	C-Score	5	organized	into	component	pipelines.	We	used	all	four	callers	

for	Affymetrix	6.0	data,	PennCNV	and	C-Score	for	Affymetrix	500,	Probe	annotation	files	

were	preprocessed	for	each	platform.	Once	the	array	design	files	and	probe	annotation	

files	were	pre-processed,	each	individual	pipeline	component	pipeline	was	run	in	two	

steps:	1)	processing	the	intensity	data	by	the	core	pipeline	process	to	produce	CNV	calls,	

2)	parsing	the	specific	output	format	of	the	core	pipeline	and	converting	the	calls	to	a	

standard	form	designed	to	capture	confidence	scores,	copy	number	states	and	other	

information	computed	by	each	pipeline	

	

Merging	of	CNV	data	and	Quality	control	filtering	

Merging	of	CNV	data:	After	standardization	of	outputs	from	each	algorithm,	CNV	calls	

from	each	algorithm	were	merged	at	the	sample	level	to	increase	specificity	3.	For	CNVs	

generated	from	Affymetrix	6.0	array,	we	took	the	intersection	of	the	four	outputs	
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(Birdsuite,	iPattern,	C-Score,	PennCNV)	at	the	sample	level	to	create	a	consensus	CNV.	

For	the	Affymetrix	500,	Affymetrix	5.0,	and	Illumina	platforms,	CNV	merging	was	

performed	by	taking	the	intersection	of	the	calls	made	by	the	two	algorithms	(PennCNV	

and	C-Score	for	Affymetrix	500,	Birdsuite	and	PennCNV	for	Affymetrix	5.0,	and	iPattern	

and	PennCNV	for	Illumina)	at	the	sample	level.	CNV	calls	that	were	made	by	only	one	of	

the	algorithm	were	excluded.	Calls	discordant	for	type	of	CNV	(gain	or	loss)	were	also	

excluded.	

	

Quality	control	filtering:	Following	merging	we	applied	filtering	criteria	for	removal	of	

arrays	with	excessive	probe	variance	or	GC	bias	and	removal	of	samples	with	

mismatches	in	gender	or	ethnicity	or	chromosomal	aneuploidies.	For	Affymetrix	data,	

we	extracted	the	MAPD	and	waviness-sd	from	the	APT	summary	file.	We	also	calculated	

the	proportion	of	each	chromosome	(excluding	chrY)	tagged	as	copy	number	variable	

and	computed	the	number	of	CNV	calls	made	for	each	sample.	We	then	retained	

experiments	if	each	of	these	measures	was	within	3	SD	of	the	median.	For	Illumina	data,	

we	extracted	LRRSD,	BAFSD,	GCWF	(waviness)	from	PennCNV	log	files.	As	with	the	

Affymetrix	data,	we	calculated	the	proportion	of	each	chromosome	(excluding	chrY)	

tagged	as	copy	number	variable	and	computed	the	number	of	CNV	calls	made	for	each	

sample.	We	retained	samples	if	each	of	the	above	measures	was	within	3	SD	of	the	

median.		For	both	Illumina	and	Affymetrix	datasets,	large	CNVs	that	appeared	artificially	

split	were	combined	together	if	one	of	the	methods	detected	a	CNV	spanning	the	gap.	

However,	samples	where	>	10%	of	the	chromosome	was	copy	number	variable	were	

excluded	as	possible	aneuploidies.	Further,	we	excluded	CNVs	that:	1)	spanned	the	

centromere	or	overlapped	the	telomere	(100	kb	from	the	ends	of	the	chromosome);	2)	

had	>	50%	of	its	length	overlapping	a	segmental	duplication;	3)	had	>50%	overlap	with	

immunoglobulin	or	T	cell	receptor.	The	final	filtered	CNV	dataset	was	annotated	with	

Refseq	genes	(transcriptions	and	exons).	After	this	stage	of	quality	control	(QC),	we	had	

a	total	of	52,511	individuals,	with	27,034	SCZ	cases	and	25,448	controls.	
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Filtering	for	rare	CNVs:	To	make	our	final	dataset	of	rare	CNVs	for	all	subsequent	

analysis	we	universally	filtered	out	variants	that	present	at		>=	1%	(50%	reciprocal	

overlap)	frequency	in	cases	and	controls	combined.	CNVs	that	overlapped	>	50%	with	

regions	tagged	as	copy	number	polymorphic	on	any	other	platform	were	also	excluded.	

CNVs	<	20kb	or	having	fewer	than	10	probes	were	also	excluded.	

	

Post-CNV	Calling	QC	

Overview:	A	number	of	steps	were	undertaken	after	CNV	calling	and	initial	filtering	QC	

to	minimize	the	impact	of	technical	artifacts	and	potential	confounds.	In	summary,	we	

removed	individuals	not	present	in	the	PGC2	GWAS	analysis	1,	removed	datasets	with	

non-matching	case	or	control	samples	that	could	not	be	reconciled	using	consensus	

platform	probes,	and	removed	any	additional	outliers	with	respect	to	overall	CNV	

burden,	CNV	calling	metrics,	or	SCZ	phenotype	residuals.	All	steps	are	described	in	more	

detail	below.	

	

Merging	with	GWAS	cohort:	By	matching	the	unique	sample	identifiers,	we	retained	

only	individuals	that	also	passed	QC	filtering	from	the	companion	PGC	GWAS	study	in	

Schizophrenia	1.	This	step	filtered	out	samples	with	low-quality	SNP	genotyping,	related	

individuals,	and	repeated	samples	across	cohorts.	An	additional	benefit	of	the	PGC	

analytical	framework	is	the	ability	to	account	for	population	stratification	across	cohorts	

using	principal	components	derived	from	probe	level	analysis.	After	the	post-CNV	calling	

quality	control	steps	described	below,	we	re-calculated	principal	components	using	the	

Eigenstrat	software	package	6.	Sample	information	and	subsequent	CNV	and	GWAS	

filtered	sample	sets	are	presented	in	Extended	data	table	2.	In	the	process	of	matching	

to	the	GWAS-specific	cohort,	all	individuals	of	non-European	ancestry	were	removed	

from	analysis	(~5.8%	of	the	post-QC	sample	comprising	three	separate	datasets).	We	

also	removed	42	samples	that	had	discordant	phenotype	designations	between	the	

GWAS	analysis	and	CNV	genotype	submission.	
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Individual	dataset	removal:	Some	datasets	submitted	to	the	PGC	consisted	of	only	case	

or	control	samples,	affected	trios,	or	recruited	external	samples	as	controls.	This	

asymmetry	in	case-control	ascertainment	and	genotyping	can	present	serious	biases	for	

CNV	analysis,	as	the	sensitivity	to	detect	CNV	will	vary	considerably	across	genotyping	

platforms,	as	well	as	within	dataset	and	genotyping	batch.	Unlike	imputation	protocols	

commonly	used	for	SNP	genotyping,	there	is	no	equivalent	process	to	infer	unmeasured	

probe	intensity	from	nearby	markers.	We	took	a	number	of	steps	to	identify	and	

remove	datasets	that	showed	strong	signs	of	case-control	ascertainment	or	genotyping	

asymmetry:	

	

1)	Identify	genotyping	platforms	where	case-control	ratio	was	not	between	40-60%	

2)	Where	possible,	merge	similar	genotyping	platforms	using	consensus	probes	prior	to			

CNV-calling	pipeline	in	order	to	improve	case-control	ratio.	

3)	Examine	overall	CNV	burden	and	association	peaks	for	spurious	results	

4)	Remove	datasets	that	remain	problematic	due	to	unusual	CNV	burden	or	multiple	

spurious	CNV	associations.	

	

The	genotyping	platforms	identified	and	processed	are	listed	in	Extended	data	table	2.	

We	were	able	to	combine	the	Illumina	OmniExpress	and	Illumina	OmniExpress	plus	

Exome	Chip	platforms	with	success	by	removing	probe	content	specific	to	the	Exome	

chip	platform.	We	removed	the	caws	Affymetrix	500	datasets	due	to	a	number	of	strong	

CNV	association	peaks	not	seen	in	any	other	dataset.	We	also	remove	the	fii6	dataset	

due	to	a	2-fold	CNV	burden	in	cases	relative	to	controls.	In	order	to	improve	case-

control	balance,	we	had	to	remove	the	affected	proband	trio	datasets	(boco,	lacw,	and	

lemu)	in	the	Illumina	610	platform,	and	the	control-only	uclo	dataset	in	the	Affymetrix	

500	platform.	

	

Individual	sample	removal:	We	re-analyzed	CNV	burden	estimates	in	the	reduced	

sample	to	flag	any	lingering	outliers	missed	in	the	initial	QC.	We	identified	outliers	for	
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CNV	count	and	Kb	burden	in	the	autosome	(>	30	CNVs	or	8	Mb,	respectively)	and	in	the	

X	chromosome	(>	10	CNVs	or	5	Mb,	respectively),	removing	an	additional	15	individuals.	

	

Genome-wide	CNV	intensity	and	quality	measurements	produced	by	CNV	calling	

algorithms	(i.e.	“CNV	metrics”)	were	examined	for	additional	outliers	and	potential	

relationships	with	case-control	status.	Each	CNV	metric	was	re-examined	across	studies	

to	assess	if	any	additional	outliers	were	present.	Only	three	outliers	were	removed	as	

their	mean	B	allele	(or	minor	allele)	frequency	deviated	significantly	from	0.5.	Many	CNV	

metrics	are	auto-correlated,	as	they	measure	similar	patterns	of	variation	in	the	probe	

intensity.	Thus,	we	focused	on	the	main	intensity	metrics	-	median	absolute	pairwise	

difference	(MAPD)	for	projects	genotyped	on	the	Affymetrix	6.0	platform,	and	Log	R	

Ratio	standard	deviation	(LRRSD)	in	all	other	genotyping	platforms.	Among	Affymetrix	

6.0	datasets,	MAPD	did	not	differ	between	in	cases	and	controls	(t=1.14,	p	=	0.25).	

However,	among	non-Affymetrix	6.0	datasets,	LRRSD	showed	significant	differences	

between	cases	and	controls	(t=-35.3,	p	<	2e-16),	with	controls	having	a	higher	

standardized	mean	LRRSD	(0.227)	than	cases	(-0.199).	To	control	for	any	spurious	

associations	driven	by	CNV	calling	quality,	we	included	LRRSD	(MAPD	for	Affymetrix	6.0	

platforms)	as	a	covariate	in	downstream	analysis.	CNV	metrics	were	normalized	with	

their	genotyping	platform	prior	to	inclusion	in	the	combined	dataset.	

	

Regression	of	potential	confounds	on	case-control	ascertainment	

The	PGC	cohorts	are	a	combination	of	many	datasets	drawn	from	the	US	and	Europe,	

and	it	is	important	to	ensure	that	any	bias	in	sample	ascertainment	does	not	drive	

spurious	association	to	SCZ.	In	order	to	ensure	the	robustness	of	the	analysis,	we	

controlled	for	a	number	of	covariates	that	could	potential	confound	results.	Burden	and	

gene-set	analyses	included	covariates	in	a	logistic	regression	framework.	Due	to	the	

number	of	tests	run	at	probe	level	association,	we	employed	a	step-wise	logistic	

regression	approach	to	allow	for	the	inclusion	of	covariates	in	our	case-control	

association,	which	we	term	the	SCZ	residual	phenotype.	
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Covariates	include	sex,	genotyping	platform,	CNV	metrics,	and	ancestry	principal	

components	derived	from	SNP	genotypes	on	the	same	samples	in	a	previous	study1.	We	

were	unable	to	control	for	dataset	or	genotyping	batch,	as	a	subset	of	the	contributing	

datasets	are	fully	confounded	with	case/control	status.	CNV	metric	is	normalized	within	

genotyping	platform	prior	to	inclusion	in	the	logistic	model.	Only	principal	components	

that	showed	a	significant	association	to	small	CNV	burden	were	used	(small	CNV	being	

defined	as	autosomal	CNV	burden	with	CNV	<	100	kb	in	size).	Among	the	top	20	

principal	components,	only	the	1st,	2nd,	3rd,	4th,	and	8th	principal	component	showed	

association	with	small	CNV	burden	(with	p	<	0.01	used	as	the	significance	cutoff).	To	

calculate	the	SCZ	residual	phenotype,	we	first	fit	a	logistic	regression	model	of	

covariates	to	affection	status,	and	then	extracted	the	Pearson	residual	values	for	use	in	

a	quantitative	association	design	for	downstream	analyses.	Residual	phenotype	values	

in	cases	are	all	above	zero,	and	controls	below	zero,	and	are	graphed	against	overall	kb	

burden	in	Extended	data	figure	7.	We	removed	three	individuals	with	an	SCZ	residual	

phenotype	greater	than	three	(or	negative	three	in	controls).	After	the	post-processing	

round	of	QC,	we	retained	a	dataset	with	a	total	of	41,321	individuals	comprising	21,094	

SCZ	cases	and	20,227	controls.	

	

Identifying	previously	implicated	CNV	loci	in	the	literature	

To	delineate	CNV	burden	effects	coming	from	CNV	loci	that	have	previously	been	

reported	as	putative	SCZ	risk	factors	from	CNV	in	remainder	of	the	genome,	we	flagged	

CNV	loci	with	p	<	0.01	that	have	either	been	reviewed	7,8	or	otherwise	reported	8-10	as	

potential	SCZ	risk	factors	in	the	literature.	Previously	reported	loci	meeting	inclusion	are	

listed	in	Extended	data	table	1.	While	a	number	of	CNV	loci	have	been	reported	in	

multiple	studies,	we	sought	the	most	recent	reports	that	incorporated	the	largest	

sample	sizes.	To	identify	putatively	associated	CNV	loci	with	SCZ	from	the	full	list,	we	

applied	the	genome-wide	p-value	cutoff	of	8e-5,	derived	from	the	Cochran-Mantel-

Haenzel	(CMH)	test	in	the	current	probe-level	analysis	as	the	p-value	cutoff	for	inclusion	
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as	SCZ	implicated	CNV	loci.	While	the	CMH	test	is	not	the	primary	probe-level	test	in	the	

current	PGC	analysis,	it	corresponds	more	closely	to	the	tests	used	in	published	reports.	

In	all,	nine	independent	CNV	loci	from	published	reports	surpass	genome-wide	

correction.	All	published	CNV	loci,	even	those	excluded	as	an	SCZ	implicated	regions,	are	

examined	in	the	probe-level	association	analysis.	

	

CNV	burden	analysis	

We	analyzed	the	overall	CNV	burden	in	a	variety	of	ways	to	discern	which	general	

properties	of	CNV	are	contributing	to	SCZ	risk.	Overall	individual	CNV	burden	was	

measured	in	3	distinct	ways	–	1)	Kb	burden	of	CNVs,	2)	Number	of	genes	affected	by	

CNVs,	and	3)	Number	of	CNVs.	In	particular,	we	only	counted	gene	as	affected	when	the	

CNV	overlapped	a	coding	exon.	We	also	partitioned	our	analyses	by	CNV	type,	size,	and	

frequency.	CNV	type	is	defined	as	copy	number	losses	(or	deletions),	copy	number	gains	

(or	duplications),	and	both	copy	number	losses	and	gains.	To	assign	a	specific	allele	

frequency	to	a	CNV,	we	used	the	--cnv-freq-method2	command	in	PLINK,	whereby	the	

frequency	is	determined	as	the	total	number	of	CNV	overlapping	the	target	CNV	

segment	by	at	least	50%.	This	method	differs	from	other	methods	that	assign	CNV	

frequencies	by	genomic	region,	whereby	a	single	CNV	spanning	multiple	regions	may	be	

included	in	multiple	frequency	categories.	

	

For	Figure	1,	and	Extended	data	figures	2	and	3,	we	partitioned	CNV	burden	by	

genotyping	platform,	and	the	abbreviations	for	each	platform	are	expanded	below:	

	

A500:	Affymetrix	500	

I300:	Illumina	300K	

I600:	Illumina	610K	and	Illumina	660W	

A5.0:	Affymetrix	5.0	

A6.0:	Affymetrix	6.0	

omni:	OmniExpress	and	OmniExpress	plus	Exome	
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Due	to	the	small	size	of	the	Omni	2.5	array	(28	cases	and	10	controls),	they	were	

excluded	from	presentation	in	the	figure,	but	are	included	in	all	burden	analyses	with	

the	total	PGC	sample.	Burden	tests	use	a	logistic	regression	framework	with	the	

inclusion	of	covariates	detailed	above.	Using	a	logistic	regression	framework,	we	

predicted	SCZ	status	using	CNV	burden	as	an	independent	predictor	variable,	thus	

allowing	us	to	get	an	accurate	estimate	of	the	unique	contribution	of	CNV	burden	in	a	

multiple	regression	framework.	To	gain	insight	into	the	proportion	of	CNV	burden	risk	

coming	from	loci	outside	of	the	previously	implicated	SCZ	regions,	we	ran	all	burden	

analyses	after	removing	CNV	that	overlapped	previously	implicated	CNV	boundaries	by	

more	than	10%.			

	

CNV	probe	level	association	

Genome-wide	interrogation	of	CNV	signals	was	tested	at	each	respective	CNV.	Probe	

level	tests	were	examined	at	the	start,	end,	and	single	base	position	after	the	end	of	the	

called	CNV.	Three	categories	of	CNV	were	tested:	CNV	deletions,	CNV	duplications,	and	

deletions	and	duplications	together.	All	analyses	were	run	using	PLINK	software	11.	

		

We	ran	probe	level	association	using	the	SCZ	residual	phenotype	as	a	quantitative	

variable,	with	significance	determined	through	permutation	of	phenotype	residual	

labels.	An	additional	z-scoring	correction,	explained	below,	is	used	to	control	for	any	

extreme	values	in	the	SCZ	residual	phenotype	and	efficiently	estimate	two-sided	

empirical	p-values	for	highly	significant	loci.	To	ensure	against	the	potential	loss	of	

power	from	the	inclusion	of	covariates,	we	also	ran	a	single	degree	of	freedom	Cochran-

Mantel-Haenzel	(CMH)	test	stratified	by	genotyping	platform,	with	a	2	(CNV	carrier	

status)	x	2	(phenotype	status)	x	N	(genotyping	platform)	contingency	matrix.	While	the	

CMH	test	does	not	account	for	more	subtle	biases	that	could	drive	false	positive	signals,	

it	is	robust	to	signals	driven	by	a	single	platform	and	allows	for	each	CNV	carrier	to	be	
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treated	equally.	Loci	the	surpassed	genome-wide	correction	in	either	test	was	followed	

up	for	further	evaluation.	

	

Z-score	recalibration	of	empirical	testing:	Probe	level	association	p-values	from	the	SCZ	

residual	phenotype	were	initially	obtained	by	performing	one	million	permutations	at	

each	CNV	position,	whereby	each	permutation	shuffles	the	SCZ	residual	phenotype	

among	all	samples,	and	retains	the	SCZ	residual	mean	for	CNV	carriers	and	non-carriers.	

For	extremely	rare	CNV,	however,	CNV	carriers	at	the	extreme	ends	of	the	SCZ	residual	

phenotype	can	produce	highly	significant	p-values.	While	we	understand	that	such	rare	

events	are	unable	to	surpass	strict	genome-wide	correction,	we	wanted	to	retain	all	

tests	to	help	delineate	the	potential	fine-scale	architecture	within	a	single	region	of	

association.	To	properly	account	for	the	increased	variance	when	only	a	few	individuals	

are	tested,	we	applied	an	empirical	Z-score	correction	to	the	CNV	carrier	mean.	In	order	

to	get	an	empirical	estimate	of	the	variance	for	each	test,	we	calculated	the	standard	

deviation	of	residual	phenotype	mean	differences	in	CNV	carriers	and	non-carriers	from	

5,000	permutations.	Z-scores	are	calculated	as	the	observed	case-control	mean	

difference	divided	by	the	empirical	standard	deviation,	with	corresponding	p-values	

calculated	from	the	standard	normal	distribution.	Concordance	of	the	initial	empirical	

and	z-score	p-values	are	close	to	unity	for	association	tests	with	six	or	more	CNV,	

whereas	Z-score	p-values	are	more	conservative	among	tests	with	less	than	six	CNV.	

Furthermore,	the	Z-score	method	naturally	provides	an	efficient	manner	to	estimate	

highly	significant	empirical	p-values	that	would	involve	hundreds	of	millions	of	

permutations	to	achieve.	

	

Genome-wide	correction	for	multiple	tests	

Beyond	identifying	significant	CNV	at	the	probe	level,	we	also	estimated	the	genome-

wide	testing	space	for	rare	CNV	analysis.	With	the	large	PGC	cohort	being	called	through	

a	consistent	pipeline,	we	saw	an	opportunity	to	characterize	the	null	expectation	of	

segregating	and	recurrent	de	novo	rare	CNV	in	populations	of	European	ancestry.	
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Accepted	thresholds	for	significance	among	published	risk	CNV	have	been	limited	in	

scope,	as	accurate	population	estimates	of	rare	CNV	frequency	and	distribution	across	

the	genome	require	large	representative	samples.	

	

Genome-wide	significance	thresholds	were	calculated	using	the	5%	family-wise	error	

rate	from	5,000	permutations	in	both	the	SCZ	residual	phenotype	and	CMH	test.	

Specifically,	we	selected	the	95th	percentile	of	the	minimum	p-values	obtained	across	

permutations.	Below	are	the	genome-wide	correction	p-value	thresholds	determined	in	

this	manner:	

	

SCZ	residual	phenotype	FWER	correction:	

CNV	losses	and	gains:	6.73e-6	

CNV	losses:	1.5e-5	

CNV	gains:	1.35e-5	

	

CMH	test	FWER	correction:	

CNV	losses	and	gains:	3.65e-5	

CNV	losses:	8.25e-5	

CNV	gains:	7.8e-5	

	

This	method	differs	slightly	from	those	used	in	Levinson	et	al.	9	to	estimate	the	multiple	

test	correction	for	rare	CNV,	however	their	genome-wide	correction	of	p	=	1e-5	

corresponds	quite	closely	to	the	estimates	observed	using	the	SCZ	residual	phenotype.	

The	observed	family-wise	correction	serves	as	good	approximation	of	the	independent	

rare	CNV	signals	found	among	European	ancestry	populations	for	array-based	CNV	

capture,	but	as	sample	sizes	increase,	so	too	will	the	effective	number	of	tests,	

necessitating	further	evaluation	of	the	multiple	testing	burden.	

	

Gene-set	burden	enrichment	analysis:	gene-sets	
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Gene-sets	with	an	a	priori	expectation	of	association	to	neuropsychiatric	disorders	were	

compiled	based	on	gene	annotations	(Gene	Ontology	and	curated	pathway	databases,	

downloaded	June	2013)	and	published	article	materials	(for	details,	see	Extended	Data	

Table	3).	Gene-sets	based	on	brain	expression	were	compiled	by	processing	the	

BrainSpan	RNA-seq	gene	expression	data-set	

(http://www.brainspan.org/static/download.html,	downloaded	Sept	2012).	Four	

roughly	equally	sized	gene-sets	(about	4600	genes	each)	were	derived	to	represent	four	

expression	tiers	(very	high,	medium-to-high,	medium-to-low,	very	low	or	absent);	genes	

were	selected	if	they	passed	a	fixed	expression	threshold	in	at	least	5/508	experimental	

data	points	(corresponding	to	different	regions	of	donor	brains,	different	donor	ages	

corresponding	to	different	developmental	brain	stages,	and	different	donor	sexes).	

Gene-sets	based	on	mouse	phenotypes	were	assembled	by	downloading	MPO	

(Mammalian	Phenotype	Ontology)	annotations	from	MGI	(www.informatics.jax.org,	

downloaded	August	2013),	up-propagating	annotations	following	ontology	relations,	

and	mapping	to	human	orthologs	using	NCBI	Homologene	

(www.ncbi.nlm.nih.gov/homologene);	finally,	top-level	organ	systems	with	fewer	genes	

were	aggregated	while	striving	to	preserve	biological	homogeneity,	so	to	have	roughly	

equal-sized	sets	(2,600-1,300	genes).	For	all	gene-sets,	gene	identifiers	in	the	primary	

source	were	mapped	to	Entrez-gene	identifiers	using	the	R/Bioconductor	package	

org.Hs.eg.db.	

	

Gene-set	burden	enrichment	analysis:	pre-processing	

Subjects	were	restricted	to	the	ones	with	at	least	one	rare	CNV.	For	copy	number	gains	

and	losses,	we	separately	calculated	the	following	subject-level	totals:	variant	number,	

variant	length	and	number	of	genes	impacted;	these	covariates	are	then	used	to	model	

global	burden	and	correct	gene-set	burden	to	ensure	it	is	specific	(i.e.	not	a	mere	

reflection	of	genome-wide	burden	with	some	stochastic	deviation	due	to	sampling).	The	

subject-level	total	number	of	genes	impacted	was	also	calculated	for	each	gene-set,	

again	separately	for	gains	and	losses.	Subjects	were	flagged	if	they	carried	at	least	one	
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CNV	matching	a	locus	previously	implicated	in	schizophrenia	(see	section	“Identifying	

previously	implicated	CNV	loci	in	the	literature”);	this	was	then	used	to	analyzed	gene-

set	burden	for	all	subjects,	or	excluding	subjects	with	an	already	implicated	CNV.	

	

Gene-set	burden	enrichment	analysis:	statistical	test	

For	each	gene-set,	we	fit	the	following	logistic	regression	model	(as	implemented	by	the	

R	function	glm	of	the	stats	package),	where	subjects	are	statistical	sampling	units:	

y	~	covariates	+	global	+	gene-set	

Where:	

• y	is	the	dicotomic	outcome	variable	(schizophrenia	=	1,	control	=	0)	

• covariates	is	the	set	of	variables	used	as	covariates	also	in	the	genome-wide	

burden	and	probe	association	analysis	(sex,	genotyping	platform,	CNV	metric,	

and	CNV	associated	principal	components)	

• global	is	the	measure	of	global	burden;	for	the	results	in	the	main	text,	we	used	

the	total	gene	number	(abbreviated	as	U	from	universe	gene-set	count);	we	also	

calculated	results	for	total	length	(abbreviated	as	TL)	and	variant	number	plus	

variant	mean	length	(abbreviated	as	CNML)	

• gene-set	is	the	gene-set	gene	count	

The	gene-set	burden	enrichment	was	assessed	by	performing	a	chi-square	deviance	test	

(as	implemented	by	the	R	function	anova.glm	of	the	stats	package)	comparing	these	

two	regression	models:	

y	~	covariates	+	global	

y	~	covariates	+	global	+	gene-set	

We	reported	the	following	statistics:	

• coefficient	beta	estimate	(abbreviated	as	Coeff)	

• t-student	distribution-based	coefficient	significance	p-value	(as	implemented	by	

the	R	function	summary.glm	of	the	stats	package,	abbreviated	as	Pvalue_glm)	

• deviance	test	p-value	(abbreviated	as	Pvalue_dev)	

• gene-set	size	(i.e.	number	of	genes	is	the	gene-set,	regardless	of	CNV	data)	
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• BH-FDR	(Benjamini-Hochberg	False	Discovery	rate)	

• percentage	of	schizophrenia	and	control	subjects	with	at	least	1	gene,	2	genes,	

etc…	impacted	by	a	CNV	of	the	desired	type	(loss	or	gain)	in	the	gene-set	

(abbreviated	as	SZ_g1n,	SZ_g2n,	…	CT_g1n,	…)	

Please	note	that,	by	performing	simple	simulation	analyses,	we	realized	that	Pvalue_glm	

can	be	extremely	over-conservative	in	presence	of	very	few	gene-set	counts	different	

than	0,	while	Pvalue_dev	tends	to	be	slightly	under-conservative.	While	the	two	p-

values	tend	to	agree	well	for	gene-set	analysis,	Pvalue_glm	is	systematically	over-

conservative	for	gene	analysis	since	smaller	counts	are	typically	available	for	single	

genes.	

	

Gene	burden	analysis:	pre-processing	

Subjects	were	restricted	to	the	ones	with	at	least	one	rare	CNV.	Only	genes	with	at	least	

a	minimum	number	of	subjects	impacted	by	CNV	were	tested;	this	threshold	was	picked	

by	comparing	the	BH-FDR	to	the	permutation-based	FDR	and	ensuring	limited	FDR	

inflation	(permuted	FDR	<	1.65	*	BH-FDR	at	BH-FDR	threshold	=	5%)	while	maximizing	

power.	For	gains	the	threshold	was	set	to	12	counts,	while	for	losses	it	was	set	to	8	

counts.	

	

Gene	burden	analysis:	statistical	test	

For	each	gene,	we	fit	the	following	logistic	regression	model	(as	implemented	by	the	R	

function	glm	of	the	stats	package),	where	subjects	are	statistical	sampling	units:	

y	~	covariates	+	gene	

Where:	

• y	is	the	dichotomous	outcome	variable	(schizophrenia	=	1,	control	=	0)	

• covariates	is	the	set	of	variables	used	as	covariates	also	in	the	genome-wide	

burden	and	probe	association	analysis	(sex,	genotyping	platform,	CNV	metric,	

and	CNV	associated	principal	components)	
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• gene	is	the	binary	indicator	for	the	subject	having	or	not	having	a	CNV	of	the	

desired	type	(loss	or	gain)	mapped	to	the	gene	

The	gene	burden	was	assessed	by	performing	a	chi-square	deviance	test	(as	

implemented	by	the	R	function	anova.glm	of	the	stats	package)	comparing	these	two	

regression	models:	

• y	~	covariates	

• y	~	covariates	+	gene	

	

Gene	burden	analysis:	multiple	test	correction	

Multiple	test	correction	was	performed	for	loci	rather	than	for	genes,	to	avoid	the	

strong	correlation	between	test	introduced	by	multi-genic	CNVs;	for	the	same	reason,	it	

is	more	useful	to	count	false	positives	as	loci	rather	than	genes.	We	followed	a	greedy	

step-down	procedure:	

• start	from	gene	with	most	significant	deviance	p-value	G1,	create	locus	L1	

• remove	from	the	gene	list	all	genes	that	share	at	least	50%	of	their	carrier	

subjects	with	G1,	and	add	them	to	locus	L1	

• do	the	same	for	the	next	gene	most	significant	gene	in	the	list	(thus	creating	a	

new	locus	L2),	and	proceed	recursively	until	there	is	no	gene	left	

• define	locus	p-value	as	the	smallest	deviance	p-value	of	its	genes	

We	computed	permutation-based	FDR	by	permuting	subjects’	condition	labels	

(schizophrenia,	control),	but	not	covariates	(as	those	are	expected	to	correlate	to	CNV	

distribution),	1,000	times.	The	FDR	was	then	defined	as	the	ratio	between	the	average	

number	of	tests	passing	a	given	p-value	threshold	across	the	1,000	permutations	and	

the	number	of	tests	passing	the	same	p-value	threshold	for	real	data.	FDRs	were	also	

generated	counting	only	the	subset	of	genes	with	positive	and	negative	regression	

coefficients	(i.e.	risk	and	presumed	protective).	The	p-value	threshold	for	permutation-

based	FDR	calculation	was	picked	by	choosing	the	maximum	nominal	p-value	

corresponding	to	a	given	BH-FDR	threshold	(e.g.	5%).	BH-FDR	is	supposed	to	be	slightly	

inflated	because	(i)	the	deviance	test	p-value	is	slightly	under-conservative	in	presence	
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of	very	few	gene	indicators	different	than	0,	(ii)	we	use	the	smallest	gene	p-value	to	

define	the	locus	p-value.	
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Supplementary	Results	

	

	

CNV	burden	between	sexes	

Following	recent	evidence	that	ostensibly	healthy	females	carry	an	increased	burden	of	

rare	CNVs	1,	we	examined	whether	this	increased	female	burden	existed	in	the	current	

PGC	dataset.	We	used	a	logistic	regression	model	predicting	sex	using	CNV	burden	and	

controlling	for	study	covariates,	as	well	as	the	Wilcoxon	rank-sum	test	comparing	male	

to	female	CNV	burden	1.	Focusing	on	the	significant	findings	in	the	previous	paper,	we	

examined	the	burden	in	autosomal	CNV	count	and	genes	affected	among	PGC	controls	

(9856	males	and	10371	females).	We	do	see	an	elevated	CNV	count	in	control	females	

(1.90	autosomal	CNV	rate)	to	males	(1.87	autosomal	CNV	rate),	however	this	difference	

is	not	significant	in	either	the	regression	model	(OR	=	1.004,	p	=	0.66)	or	the	Wilcoxon	

rank-sum	test	(p	=	0.1).	We	do,	however,	observe	a	marginally	significant	enrichment	

when	focusing	on	CNV	loss	count,	where	control	females	(0.99	autosomal	CNV	loss	rate)	

show	a	higher	burden	than	control	males	(0.94	autosomal	CNV	loss	rate;	logistic	

regression	OR	=	1.03,	p	=	0.05;	Wilcoxon	rank-sum	test	p	=	3e-3).	No	single	genotyping	

platform	seemed	to	drive	the	enrichment	in	females	(data	not	shown),	and	we	don’t	

observe	any	difference	in	CNV	count	when	looking	at	CNV	gains	(logistic	regression	OR	=	

0.98,	p	=	0.18;	Wilcoxon	rank-sum	test	p	=	0.56).	Finally,	no	significant	differences	

between	sexes	were	found	using	either	test	when	examining	the	number	of	genes	

affected,	or	when	we	include	SCZ	cases	and	controls	(all	p	>	.05).	

	

Probe	level	power	analysis	

By	restricting	analysis	to	rare	CNV	in	the	population	(MAF	<	0.01),	many	loci	do	not	have	

enough	CNV	to	surpass	genome-wide	correction	for	multiple	testing,	prompting	

pathway	and	gene	level	analyses	to	achieve	sufficient	statistical	power.	To	use	a	specific	

example,	the	3q29	deletion	is	fully	penetrant	in	the	current	sample,	with	16	SCZ	carriers	

and	0	controls	(MAF	=	3.8e-4)	at	the	peak	of	association.	Assuming	no	platform	bias,	this	
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leads	to	an	uncorrected	chi-square	p-value	of	8.9e-5,	and	a	permuted	p-value	of	6.2e-5	

testing	association	using	SCZ	phenotype	residuals.	Neither	p-value,	however,	surpasses	

their	respective	genome-wide	significance	cutoff	for	CNV	deletion.	While	permutation	

methods	used	to	generate	genome-wide	cutoffs	accurately	reflect	the	testing	space	

among	observed	CNVs	(very	rare	CNVs	have	little	to	no	contribution	to	the	family-wise	

error	rate),	we	wanted	to	estimate	the	proportion	of	CNV	detectable	at	the	probe	level.	

Under	our	current	analytical	design	and	sample	size,	we	calculated	the	power	to	detect	

associated	CNV	across	various	MAFs	and	effect	sizes	and	determine	the	proportion	of	

association	tests	capable	of	surpassing	genome-wide	correction.	

		

We	simulated	CNVs	within	our	dataset	(21094	cases	and	20227	controls)	and	regressed	

them	using	the	same	association	design	with	SCZ	residual	phenotypes.	We	simulated	

various	effect	sizes	by	randomly	sampling	cases	and	controls	at	different	probabilities	as	

CNV	carriers,	and	rounded	to	the	nearest	CNV	count	to	reflect	the	MAF	of	each	CNV	in	

the	sample.	For	each	combination	of	effect	size	and	MAF,	we	ran	1000	simulations,	

retrieving	the	t-test	p-value	of	CNV	carriers	from	the	SCZ	residual	phenotype.	Simulated	

p-values	behaved	in	much	the	same	way	as	the	Z-score	correction	on	permutated	p-

values	used	in	the	primary	test	(data	not	shown).	In	Extended	data	figure	8,	we	show	

the	proportion	of	simulations	for	CNV	losses	surpassing	genome-wide	correction	at	each	

MAF	and	effect	size	parameter	(gains	perform	similarly).	

	

We	define	statistical	power	as	the	proportion	of	simulations	surpassing	genome-wide	

significance.	For	a	fully	penetrant	risk	CNV,	we	require	a	MAF	of	~6e-4	(or	about	25	CNV)	

to	achieve	80%	detection	power.	For	CNV	with	a	genotype	relative	risk	(GRR)	of	10,	we	

require	a	MAF	of	1e-3	(or	at	least	41	CNV)	to	achieve	80%	detection	power.	Looking	

across	the	landscape	of	CNVs	tested,	on	the	whole	about	10%	of	deletion	or	duplication	

CNV	breakpoints	reach	a	frequency	greater	than	1e-3	in	the	sample.	On	the	other	

extreme,	a	CNV	with	MAF	of	.005	(or	at	least	206	CNV)	and	a	GRR	of	2	will	only	be	

detected	58%	of	the	time.	
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Gene-based	network	analysis	

To	identify	a	gene	network	enriched	in	schizophrenia	risk	genes,	we	queried	

GeneMANIA	2	using	the	17	genes	with	deletion	gene-test	Benjamini-Hochberg	FDR	<=	

25%	and	member	of	the	“GO	synaptic”	or	“ARC	complex”	sets.	We	thus	created	a	

synaptic	protein	interaction	network	of	136	genes,	with	the	most	densely	connected	

network	core	corresponding	to	post-synaptic	density	organizers	(DLGs,	DLGAPs,	

SHANKs)	and	ionotropic	glutamate	receptors	(GRIAs,	GRIDs,	GRINs).	NRXN1	is	connected	

to	the	network	core	via	adhesion	partners	(NLGN1-3)	and	CASK.	We	tested	this	

schizophrenia	gene	network,	and	found	significant	enrichment	in	genes	with	evidence	of	

de	novo	coding	variants	in	sequencing	studies	of	schizophrenia	trios	3	(for	frameshift,	

stop-gain	and	splice-site:	Fisher’s	Exact	Test	p-value	0.0023;	missense	and	amino	acid	

insertion/deletion:	Fisher’s	Exact	Test	p-value	0.0004);	in	addition,	we	found	a	greater	

enrichment	for	this	network,	compared	to	the	larger	set	composed	of	all	“GO	synaptic”	

and	“ARC	complex”	genes.	No	significant	enrichment	was	found	for	de	novo	variants	

identified	in	controls.	

	

	

	

Follow	up	of	significant	CNV	loci	

Both	gene	and	probe	level	association	follow	a	uniform	testing	framework	across	the	

genome,	however	risk	loci	may	exhibit	a	more	nuanced	CNV	architecture	across	the	

entirety	of	the	association	peak.	All	associated	loci	with	FDR	<	.05	in	the	gene	based	test	

were	followed	up	for	further	testing,	along	with	a	small	number	of	candidate	loci	

showing	suggestive	association	in	the	probe-level	association.	We	visually	inspected	

each	association	peak	and	determined	the	bp	coordinates	that	encapsulate	the	

associated	region	and	determine	which	CNV	segment	inclusion,	be	it	covering	exons	or	

overlapping	a	minimum	percentage	of	the	total	region,	most	appropriately	reflect	the	

association	signal.	To	comprehensively	examine	the	robustness	and	source	of	
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association,	we	also	ran	additional	tests	controlling	for	individual	dataset,	splitting	by	

sex,	and	examining	a	dosage	model,	whereby	copy	number	is	measured	with	one	copy	

for	deletion,	two	copies	for	no	CNV,	and	three	copies	for	duplication.	We	also	examined	

significant	CNV	loci	in	an	unfiltered	CNV	call	set,	using	CNVs	called	prior	to	the	removal	

of	common	CNVs	(MAF	>	1%)	and	CNV	overlapping	segmental	duplications.		

	

We	further	evaluated	the	associated	regions	by	determining	the	concordance	of	calls	

within	the	call	set	with	those	determined	by	unsupervised	clustering.	Call	set	CNVs	were	

defined	as	CNVs	with	at	least	a	50%	overlap	with	regions	in	Table	1.	We	restricted	this	

analysis	to	26,959	samples	across	six	cohorts	(14,419	Affymetrix	6.0,	12,540	Illumina	

platforms;	1.1:1	case:control	ratio).	Features	for	clustering	included	the	median	logR	

ratio	(mLRR)	and	the	median	logR	ratio	of	the	chromosome	for	which	a	locus	resides	in,	

controlling	for	large	chromosomal	abnormalities.	We	implemented	Density-Based	

Spatial	Clustering	of	Applications	(DBSCAN)	found	in	the	python	scikit-learn	library	

(http://scikit-learn.org)	because	of	high	sensitivity	to	detect	outliers	in	clusters.	For	each	

novel	region	and	within	each	cohort,	genotypes	were	assigned	to	every	sample	based	

on	the	DBSCAN	defined	cluster.	The	cluster	with	the	highest	number	of	samples	was	

designated	as	reference	and	assumed	to	have	a	copy	number	of	two.	Other	clusters	

were	flagged	as	gain	or	loss	based	on	the	average	regional	mLRR	and	its	relation	to	the	

reference	regional	mLRR.	We	removed	clusters	with	average	chromosomal	mLRR	

outside	3	SD	from	the	reference.	CNVs	were	considered	concordant	if	they	were	flagged	

non-reference	by	DBSCAN	and	present	in	the	41k	call	set,	matching	on	CNV	type.	We	

applied	a	locus	based	call	set	concordance	filter	of	>=70%;	one	region,	NPY4R,	failed	to	

meet	this	requirement	with	a	concordance	of	0.1%.	In	addition,	both	proximal	and	distal	

loci	of	ZNF600	were	removed	due	to	batch	effects,	which	we	defined	as	a	significant	

deviation	from	a	Poisson	distribution	of	call	set	calls	per	plate.	Regions	that	passed	both	

concordance	and	batch	effect	filters	are	reported	in	Table	1.		
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Proportion	of	variance	in	SCZ	explained	by	top	CNV	loci	

To	measure	the	proportion	of	variance	explained	on	the	liability	scale	of	SCZ,	we	

estimated	the	overall	heritability	of	liability	(or	logRR	genetic	variance)	explained	by	the	

eight	CNV	loci	surpassing	genome-wide	significance.	All	eight	loci	were	collapsed	into	a	

single	signal.	Two	SCZ	affected	individuals	were	found	to	carry	two	CNVs	in	these	loci,	

and	their	contribution	was	only	counted	once.	In	sum,	we	observed	298	SCZ	patients	

with	a	CNV	in	these	regions	(1.4%	of	the	total	SCZ	affected	sample),	and	29	controls	

(0.1%;	CMH	stratified	OR	=	10.1).	To	estimate	the	variance	in	SCZ	liability	explained	by	

loci	surpassing	genome-wide	correction,	we	calculated	the	heritability	of	liability	using	

the	INDI-V	online	tool	(cnsgenomics.com/software)	described	in	4	using	an	overall	

disease	risk	of	1%	and	a	sibling	recurrence	risk	of	8.8	5.			

	

NAHR	enrichment	in	significant	novel	gene	loci		

To	test	if	novel	significant	loci	(FDR<0.05;	Table	1)	were	enriched	for	NAHR	events,	we	

performed	a	permutation	test	(n=10,000)	simulating	the	null	distribution	of	NAHR-

mediated	CNVs	for	a	set	of	random	loci.	Each	simulation	randomly	selected	nine	loci	

taken	from	CNVs	overlapping	at	least	50%	to	genes	in	the	gene-set	burden	analysis.	

These	nine	random	loci	were	matched	according	to	CNV	call	frequency	to	the	nine	novel	

significant	loci	in	Table	1.	We	then	created	windows	for	each	start	and	end	position	for	

every	overlapping	CNV	to	a	random	locus.	Start	positions	were	expanded	-50kb	and	

+5kb,	and	end	positions	were	expanded	-5kb	and	+50kb.	We	flagged	CNVs	as	NAHR-

mediated	when	both	start	and	end	expanded	windows	overlapped	to	1kb	segmental	

duplications	obtained	from	the	hg18	build	of	the	UCSC	table	browser	

(https://genome.ucsc.edu/cgi-bin/hgTables).	Every	iteration	reported	the	fraction	of	

NAHR-mediated	CNVs;	that	is	the	ratio	of	CNVs	flagged	as	NAHR	to	the	total	number	of	

overlapping	CNVs.	We	found	and	enrichment	of	NAHR	mediated	CNVs	in	significant	

novel	loci	when	compared	to	the	null	distribution	(86%	NAHR-mediated,	6	fold	

enrichment,	p=0.008).		

	



	 67	

Consortium	Membership	

Wellcome	Trust	Case-Control	Consortium	2	

Management	Committee:	Peter	Donnelly	180,217,	Ines	Barroso	218,	Jenefer	M	

Blackwell	219,220,	Elvira	Bramon	196,	Matthew	A	Brown	221,	Juan	P	Casas	222,223,	

Aiden	Corvin	5,	Panos	Deloukas	218,	Audrey	Duncanson	224,	Janusz	Jankowski	225,	

Hugh	S	Markus	226,	Christopher	G	Mathew	227,	Colin	N	A	Palmer	228,	Robert	Plomin	9,	

Anna	Rautanen	180,	Stephen	J	Sawcer	229,	Richard	C	Trembath	227,	Ananth	C	

Viswanathan	230,231,	Nicholas	W	Wood	232.	

Data	and	Analysis	Group:	Chris	C	A	Spencer	180,	Gavin	Band	180,	Céline	Bellenguez	180,	

Peter	Donnelly	180,217,	Colin	Freeman	180,	Eleni	Giannoulatou	180,	Garrett	Hellenthal	

180,	RichardPearson	180,	Matti	Pirinen	180,	Amy	Strange	180,	Zhan	Su	180,	Damjan	

Vukcevic	180.	

DNA,	Genotyping,	Data	QC,	and	Informatics:	Cordelia	Langford	218,	Ines	Barroso	218,	

Hannah	Blackburn	218,	Suzannah	J	Bumpstead	218,	Panos	Deloukas	218,	Serge	Dronov	

218,	Sarah	Edkins	218,	Matthew	Gillman	218,	Emma	Gray	218,	Rhian	Gwilliam	218,	

Naomi	Hammond	218,	Sarah	E	Hunt218,	Alagurevathi	Jayakumar	218,	Jennifer	Liddle	

218,	Owen	T	McCann	218,	Simon	C	Potter	218,	Radhi	Ravindrarajah	218,	Michelle	

Ricketts	218,	Avazeh	Tashakkori-Ghanbaria	218,	Matthew	Waller	218,	Paul	Weston	218,	

Pamela	Whittaker	218,	Sara	Widaa	218.Publications	Committee:	Christopher	G	Mathew	

227,	Jenefer	M	Blackwell	219,220,	Matthew	A	Brown	221,	Aiden	Corvin	5,	Mark	I	

McCarthy	233,	Chris	C	A	Spencer	180.	

	

Psychosis	Endophenotype	International	Consortium	

Maria	J	Arranz	156,234,	Steven	Bakker	101,	Stephan	Bender	235,236,	Elvira	Bramon	

156,237,238,	David	A	Collier	8,9,	Benedicto	Crespo-Facorro	239,240,	Jeremy	Hall	134,	

Conrad	Iyegbe	156,	Assen	V	Jablensky	241,	René	S	Kahn	101,	Luba	Kalaydjieva	102,242,	

Stephen	Lawrie	134,	Cathryn	M	Lewis	156,	Kuang	Lin	156,	Don	H	Linszen	243,	Ignacio	

Mata	239,240,	Andrew	M	McIntosh	134,	Robin	M	Murray	142,	Roel	A	Ophoff	80,	Jim	



	 68	

Van	Os	143,156,	John	Powell	156,	Dan	Rujescu	81,83,	Muriel	Walshe	156,	Matthias	

Weisbrod	236,	Durk	Wiersma	244.217		

	

Department	of	Statistics,	University	of	Oxford,	Oxford,	UK.	218	Wellcome	Trust	Sanger	

Institute,	Wellcome	Trust	Genome	Campus,	Hinxton,	Cambridge,	UK.	219	Cambridge	

Institute	for	Medical	Research,	University	of	Cambridge	School	of	Clinical	Medicine,	

Cambridge,	UK.	220	Telethon	Institute	for	Child	Health	Research,	Centre	for	Child	Health	

Research,	University	of	Western	Australia,	Subiaco,	Western	Australia,	Australia.	221	

Diamantina	Institute	of	Cancer,	Immunology	and	Metabolic	Medicine,	Princess	

Alexandra	Hospital,	University	of	Queensland,	Brisbane,	Queensland,	Australia.	222	

Department	of	Epidemiology	and	Population	Health,		London	School	of	Hygiene	and	

Tropical	Medicine,	London,	UK.	223	Department	of	Epidemiology	and	Public	Health,	

University	College	London,	London,	UK.	224	Molecular	and	Physiological	Sciences,	The	

Wellcome	Trust,	London,	UK.	225	Peninsula	School	of	Medicine	and	Dentistry,	Plymouth	

University,	Plymouth,	UK.	226	Clinical	Neurosciences,	St	George's	University	of	London,	

London,	UK.	227	Department	of	Medical	and	Molecular	Genetics,	School	of	Medicine,	

King's	College	London,	Guy's	Hospital,	London,	UK.	228	Biomedical	Research	Centre,	

Ninewells	Hospital	and	Medical	School,	Dundee,	UK.	229	Department	of	Clinical	

Neurosciences,	University	of	Cambridge,	Addenbrooke's	Hospital,	Cambridge,	UK.	230	

Institute	of	Ophthalmology,	University	College	London,	London,	UK.	231	National	

Institute	for	Health	Research,	Biomedical	Research	Centre	at	Moorfields	Eye	Hospital,	

National	Health	Service	Foundation	Trust,	London,	UK.	232	Department	of	Molecular	

Neuroscience,	Institute	of	Neurology,	London,	UK.	233	OxfordCentre	for	Diabetes,	

Endocrinology	and	Metabolism,	Churchill	Hospital,	Oxford,	UK.	234	Fundació	de	

Docència	i	Recerca	Mútua	de	Terrassa,	Universitat	de	Barcelona,	Spain.	235	Child	and	

Adolescent	Psychiatry,	University	of	Technology	Dresden,	Dresden,	Germany.	236	

Section	for	Experimental	Psychopathology,	General	Psychiatry,	Heidelberg,	Germany.	

237	Institute	of	Cognitive	Neuroscience,	University	College	London,	London,	UK.	238	

Mental	Health	Sciences	Unit,	University	College	London,	London,	UK.	239	Centro	



	 69	

Investigación	Biomédica	en	Red	Salud	Mental,	Madrid,	Spain.	240	University	Hospital	

Marqués	de	Valdecilla,	Instituto	de	Formación	e	Investigación	Marqués	de	Valdecilla,	

University	of	Cantabria,	Santander,	Spain.	241	Centre	for	Clinical	Research	in	

Neuropsychiatry,	The	University	of	Western	Australia,	Perth,	Western	Australia,	

Australia.	242	Western	Australian	Institute	for	Medical	Research,	The	University	of	

Western	Australia,	Perth,	Western	Australia,	Australia.	243	Department	of	Psychiatry,	

Academic	Medical	Center,	University	of	Amsterdam,	Amsterdam,	The	Netherlands.	244	

Department	of	Psychiatry,	University	Medical	Center	Groningen,	University	of	

Groningen,	The	Netherlands.	

	

Acknowledgements		

Data	Processing	and	Statistical	analyses	were	carried	out	on	the	Genetic	Cluster	

Computer	(http://www.geneticcluster.org)	hosted	by	SURFsara	and	financially	

supported	by	the	Netherlands	Scientific	Organization	(NWO	480-05-003)	along	with	a	

supplement	from	the	Dutch	Brain	Foundation	and	the	VU	University	Amsterdam.	The	

GRAS	data	collection	was	supported	by	the	Max	Planck	Society,	the	Max-Planck-

Förderstiftung,	and	the	DFG	Center	for	Nanoscale	Microscopy	&	Molecular	Physiology	of	

the	Brain	(CNMPB),	Göttingen,	Germany.	The	Boston	CIDAR	subject	and	data	collection	

was	supported	by	the	National	Institute	of	Mental	Health	(1P50MH080272,	RWM;	

U01MH081928,	LJS;	1R01MH092380,	TLP)	and	the	Massachusetts	General	Hospital	

Executive	Committee	on	Research	(TLP).	ISC	–	Portugal:	CNP	and	MTP	are	or	have	been	

supported	by	grants	from	the	NIMH	(MH085548,	MH085542,	MH071681,	MH061884,	

MH58693,	and	MH52618)	and	the	NCRR	(RR026075).	CNP,	MTP,	and	AHF	are	or	have	

been	supported	by	grants	from	the	Department	of	Veterans	Affairs	Merit	Review	

Program.	The	Danish	Aarhus	study	was	supported	by	grants	from	The	Lundbeck	

Foundation,	The	Danish	Strategic	Research	Council,	Aarhus	University,	and	The	Stanley	

Research	Foundation.	Work	in	Cardiff	was	supported	by	MRC	Centre	(G0800509)	and	

MRC	Programme	(G0801418)	Grants,	the	European	Community's	Seventh	Framework	

Programme	(HEALTH-F2-2010-241909	(Project	EU-GEI)),	the	European	Union	Seventh	



	 70	

Framework	Programme	(FP7/2007-2013)	under	grant	agreement	n°	279227,	a	

fellowship	to	JW	from	the	MRC/Welsh	Assembly	Government	and	the	Margaret	Temple	

Award	from	the	British	Medical	Association.	We	thank	Novartis	for	their	input	in	

obtaining	CLOZUK	samples,	and	staff	at	The	Doctor's	Laboratory	(Lisa	Levett/	Andrew	

Levett)	for	help	with	sample	acquisition	and	data	linkage	and	in	Cardiff	(Kiran	

Mantripragada/Lucinda	Hopkins)	for	sample	management.	CLOZUK	and	some	other	

samples	were	genotyped	at	the	Broad	Institute	(which	has	a	separate	acknowledgment)	

or	by	the	WTCCC	and	WTCCC2	(WT	(083948/Z/07/Z).	We	acknowledge	use	of	the	British	

1958	Birth	Cohort	DNA	(MRC:	G0000934)	and	the	Wellcome	Trust	(068545/Z/0/	and	

076113/C/04/Z),	the	UK	Blood	Services	Common	Controls	(UKBS-CC	collection),	funded	

by	the	WT	(076113/C/04/Z)	and	by	NIHR	programme	grant	to	NHSBT	(RP-PG-0310-

1002).	Virginia	Commonwealth	University:	BPR	and	KSK	thank	all	the	faculty	of	the	

Virginia	Institute	for	Psychiatric	and	Behavioral	Genetics	for	invaluable	insights	and	

discussions	over	many	years.	BSM,	SAB,	BTW,	BW,	KSK	and	BPR	were	supported	by	

National	Institute	of	Mental	Health	grant	R01	MH083094	to	BPR.	Sample	collection	was	

supported	by	previous	funding	of	National	Institute	of	Mental	Health	grant	R01	

MH041953	to	KSK	and	BPR.	Genotyping	was	supported	by	National	Institute	of	Mental	

Health	grant	R01	MH083094	to	BPR,	National	Institute	of	Mental	Health	grant	R01	

MH068881	to	BPR	and	Wellcome	Trust	Case	Control	Consortium	2	grant.	We	thank	

Novartis	for	their	input	in	obtaining	CLOZUK	samples,	and	staff	at	The	Doctor's	

Laboratory	(Lisa	Levett/	Andrew	Levett)	for	help	with	sample	acquisition	and	data	

linkage	and	in	Cardiff	(Kiran	Mantripragada/Lucinda	Hopkins)	for	sample	management.	

Our	work	was	supported	by:	Medical	Research	Council	(MRC)	Centre	(G0800509;	

G0801418),	the	European	Community's	Seventh	Framework	Programme	(HEALTH-F2-

2010-241909	(Project	EU-GEI)),	the	European	Union	Seventh	Framework	Programme	

(FP7/2007-2013)	under	grant	agreement	n°	279227,	a	fellowship	to	JW	from	the	

MRC/Welsh	Assembly	Government	and	the	Margaret	Temple	Award	from	the	British	

Medical	Association.	CLOZUK	and	some	other	samples	were	genotyped	at	the	Broad	

Institute	(which	has	a	separate	acknowledgment)	or	by	the	WTCCC	and	WTCCC2	(WT	



	 71	

(083948/Z/07/Z).	We	acknowledge	use	of	the	British	1958	Birth	Cohort	DNA	(MRC:	

G0000934)	and	the	Wellcome	Trust	(068545/Z/0/	and	076113/C/04/Z),	the	UK	Blood	

Services	Common	Controls	(UKBS-CC	collection),	funded	by	the	WT	(076113/C/04/Z)	and	

by	NIHR	programme	grant	to	NHSBT	(RP-PG-0310-1002).	The	recruitment	of	families	in	

Bulgaria	was	funded	by	the	Janssen	Research	Foundation,	Beerse,	Belgium.	We	are	

grateful	to	the	study	volunteers	for	participating	in	the	Janssen	research	studies	and	to	

the	clinicians	and	support	staff	for	enabling	patient	recruitment	and	blood	sample	

collection.	Informed	consent	was	obtained	from	all	participants	or	their	parents	or	

guardians.	We	thank	the	staff	in	the	Neuroscience	Biomarkers	Genomic	Lab	led	by	

Reyna	Favis	at	Janssen	for	sample	processing	and	the	staff	at	Illumina	for	genotyping	

Janssen	DNA	samples.	We	also	thank	Anthony	Santos,	Nicole	Bottrel,	Monique-Andree	

Franc,	William	Cafferty	of	Janssen	Research	&	Development)	for	operational	support.	

Funding	from	the	Netherlands	Organization	for	Health	Research	and	Development	

(ZonMw),	within	the	Mental	Health	program	(to	GROUP	consortium	for	collecting	

patients	and	clinical	data).	High-Density	Genome-Wide	Association	Study	Of	

Schizophrenia	In	Large	Dutch	Sample	(R01	MH078075	NIH/National	Institute	Of	Mental	

Health	PI:	Roel	A.	Ophoff).	The	Danish	Council	for	Strategic	Research	(Journ.nr.	09-

067048);	The	Danish	National	Advanced	Technology	Foundation	(Journ.nr.	001-2009-2);	

The	Lundbeck	Foundation	(Journ.nr.	R24-A3243);	EU	7th	Framework	Programme	

(PsychGene;	Grant	agreement	nr.	218251);	EU	7th	Framework	Programme	(PsychDPC;	

Grant	agreement	nr.	286213).	The	Wellcome	Trust	supported	this	study	as	part	of	the	

Wellcome	Trust	Case	Control	Consortium	2	project.	E.	Bramon	holds	a	MRC	New	

Investigator	Award	and	a	MRC	Centenary	Award.	The	TOP	Study	was	supported	by	the	

Research	Council	of	Norway	(#213837,	#	217776,	#	223273),	South-East	Norway	Health	

Authority	(#	2013-123)	and	K.G.	Jebsen	Foundation.	This	work	was	supported	by	the	

Donald	and	Barbara	Zucker	Foundation,	the	North	Shore	–	Long	Island	Jewish	Health	

System	Foundation,	and	grants	from	the	Stanley	Foundation	(AKM),	the	National	

Alliance	for	Research	on	Schizophrenia	and	Depression	(AKM),	and	the	NIH	(MH065580	

to	TL;	MH001760	to	AKM).	SynSys,	EU	FP7-242167,	Sigrid	Juselius	Foundation,	The	



	 72	

Academy	of	Finland,	grant	number:	251704,	Sohlberg	Foundation.	The	Swedish	

Research	Council	[grant	numbers	2006-4472,	2009-5269,	2009-3413]	and	the	County	

Councils	of	Västerbotten	and	Norrbotten,	Sweden	supported	the	collection	of	the	

scz_umeb_eur	and	scz_umes_eur	samples.	The	Betula	Study,	from	which	the	Umea	

controls	were	recruited,	is	supported	by	grants	from	the	Swedish	Research	Council	

[grant	numbers	345-2003-3883,	315-2004-6977]	and	the	Bank	of	Sweden	Tercentenary	

Foundation,	the	Swedish	Council	for	Planning	and	Coordination	of	Research,	the	

Swedish	Council	for	Research	in	the	Humanities	and	Social	Sciences	and	the	Swedish	

Council	for	Social	Research.	The	GRAS	(Göttingen	Research	Association	for	

Schizophrenia)	data	collection	has	been	supported	by	the	Max	Planck	Society,	the	Max	

Planck	Förderstiftung,	and	the	DFG	(CNMPB).	We	thank	all	GRAS	patients	for	

participating	in	the	study,	and	all	the	many	colleagues	who	have	contributed	over	the	

past	10	years	to	the	GRAS	data	collection.	We	acknowledge	support	from	the	North	

Shore	–	LIJ	Health	System	Foundation	and	NIH	grants	RC2	MH089964	and	R01	

MH084098.	We	acknowledge	support	from	NIMH	K01	MH085812	(PI	Keller)	and	NIMH	

R01	MH100141	(PI	Keller).	EGCUT	work	was	supported	by	the	Targeted	Financing	from	

the	Estonian	Ministry	of	Science	and	Education	[SF0180142s08];	the	US	National	

Institute	of	Health	[R01DK075787];	the	Development	Fund	of	the	University	of	Tartu	

(grant	SP1GVARENG);	the	European	Regional	Development	Fund	to	the	Centre	of	

Excellence	in	Genomics	(EXCEGEN;	grant	3.2.0304.11-0312);	and	through	FP7	grant	

313010.	Milan	Macek	was	supported	by	CZ.2.16/3.1.00/24022OPPK,	NT/13770–4and	

00064203	FN	Motol.	For	the	scz_tcr1_asn	dataset	funding	from	the	National	Medical	

Research	Council	(Grant:	NMRC/TCR/003/2008)	and	the	Biomedical	Research	Council,	

A*STAR	is	acknowledged.	Genotyping	of	the	Swedish	Hubin	sample	was	performed	by	

the	SNP&SEQ	Technology	Platform	in	Uppsala,	which	is	supported	by	Uppsala	

University,	Uppsala	University	Hospital,	Science	for	Life	Laboratory	-	Uppsala	and	the	

Swedish	Research	Council	(Contracts	80576801	and	70374401).	The	Swedish	Hubin	

sample	was	supported	by	Swedish	Research	Council	(IA,	EGJ)	and	the	regional	

agreement	on	medical	training	and	clinical	research	between	Stockholm	County	Council	



	 73	

and	the	Karolinska	Insititutet	(EGJ).	B.J.M.,	V.J.C.,	R.J.S.,	S.V.C.,	F.A.H.,	A.V.J.,	C.M.L.,	

P.T.M.,	C.P.,	and	U.S.	were	supported	by	the	Australian	Schizophrenia	Research	Bank,	

which	is	supported	by	an	Enabling	Grant	from	the	National	Health	and	Medical	Research	

Council	(Australia)	[No.	386500],	the	Pratt	Foundation,	Ramsay	Health	Care,	the	Viertel	

Charitable	Foundation	and	the	Schizophrenia	Research	Institute	and	the	NSW	

Department	of	Health.	C.P.	is	supported	by	a	Senior	Principal	Research	Fellowship	from	

the	National	Health	and	Medical	Research	Council	(Australia).	We	acknowledge	the	help	

of:	Johanna	Badcock,	Linda	Bradbury,	Jason	Bridge,	David	Chandler,	Janell	Collins-

Langworthy,	Trish	Collinson,	Milan	Dragovic,	Cheryl	Filippich,	David	Hawkes,	Danielle	

Lowe	,	Kathryn	McCabe,	Tamara	MacDonald,	Barry	Maher,	Bharti	Morar	Marc	Seal,	

Heather	Smith,	Melissa	Tooney,	Paul	Tooney,	and	Melinda	Ziino.	The	Danish	Aarhus	

study	was	supported	by	grants	from	The	Lundbeck	Foundation,	The	Danish	Strategic	

Research	Council,	Aarhus	University,	and	The	Stanley	Research	Foundation.	The	Perth	

sample	collection	was	funded	by	Australian	National	Health	and	Medical	Research	

Council	project	grants	and	the	Australian	Schizophrenia	Research	Bank.	The	

Bonn/Mannheim	sample	was	genotyped	within	a	study	that	was	supported	by	the	

German	Federal	Ministry	of	Education	and	Research	(BMBF)	through	the	Integrated	

Genome	Research	Network	(IG)	MooDS	(Systematic	Investigation	of	the	Molecular	

Causes	of	Major	Mood	Disorders	and	Schizophrenia;	grant	01GS08144	to	M.M.N.	and	

S.C.,	grant	01GS08147	to	M.R.),	under	the	auspices	of	the	National	Genome	Research	

Network	plus	(NGFNplus),	and	through	the	Integrated	Network	IntegraMent	(Integrated	

Understanding	of	Causes	and	Mechanisms	in	Mental	Disorders),	under	the	auspices	of	

the	e:Med	Programme.(GSK	control	sample;	Müller-Myhsok).	This	work	has	been	

funded	by	the	Bavarian	Ministry	of	Commerce	and	by	the	Federal	Ministry	of	Education	

and	Research	in	the	framework	of	the	National	Genome	Research	Network,	

Förderkennzeichen	01GS0481	and	the	Bavarian	Ministry	of	Commerce.	M.M.N.	is	a	

member	of	the	DFG-funded	Excellence-Cluster	ImmunoSensation.	M.M.N.	also	received	

support	from	the	Alfried	Krupp	von	Bohlen	und	Halbach-Stiftung.	M.R.	was	also	

supported	by	the	7th	Framework	Programme	of	the	European	Union	(ADAMS	project,	



	 74	

HEALTH-F4-2009-242257;	CRESTAR	project,	HEALTH-2011-1.1-2)	grant	279227.	Roche:	

Thanks	are	expressed	to	Olivia	Spleiss	for	great	support	in	genetic	data	generation,	

Daniel	Umbricht	and	Delphine	Lagarde	for	their	valuable	support	in	clinical	and	genetic	

data	sharing,	and	Anirvan	Ghosh	for	continuous	encouragement.	Authors	also	wish	to	

thank	all	investigators	and	patients	who	participated	in	the	Roche	clinical	studies.	Jo	

Knight	holds	the	Joanne	Murphy	Professor	in	Behavioural	Science.	We	thank	Maria	

Tampakeras	for	her	work	on	the	samples.	The	Stanley	Center	for	Psychiatric	Research	at	

the	Broad	Institute	acknowledges	funding	from	the	Stanley	Medical	Research	Institute.	

Swedish	schizophrenia	study	(PI	CMM,	PFS,	PS,	SM):	We	are	deeply	grateful	for	the	

participation	of	all	subjects	contributing	to	this	research	and	to	the	collection	team	that	

worked	to	recruit	them:	E.	Flordal-Thelander,	A.-B.	Holmgren,	M.	Hallin,	M.	Lundin,	A.-K.	

Sundberg,	C.	Pettersson,	R.	Satgunanthan-Dawoud,	S.	Hassellund,	M.	Rådstrom,	B.	

Ohlander,	L.	Nyrén	and	I.	Kizling.	Funding	support	for	the	Sweden	Schizophrenia	Study	

(PIs	Hultman,	Sullivan,	and	Sklar)	was	provided	by	the	NIMH	(R01	MH077139	to	P.F.S.	

and	R01	MH095034	to	P.S.),	the	Stanley	Center	for	Psychiatric	Research,	the	Sylvan	

Herman	Foundation,	the	Friedman	Brain	Institute	at	the	Mount	Sinai	School	of	

Medicine,	the	Karolinska	Institutet,	Karolinska	University	Hospital,	the	Swedish	Research	

Council,	the	Swedish	County	Council,	the	Söderström	Königska	Foundation.	We	

acknowledge	use	of	DNA	from	The	UK	Blood	Services	collection	of	Common	Controls	

(UKBS	collection),	funded	by	the	Wellcome	Trust	grant	076113/CI04/Z,	by	the	Juvenile	

Diabetes	Research	Foundation	grant	WT0618S8,	and	by	the	National	Institute	of	Health	

Research	of	England.	The	collection	was	established	as	part	of	the	Wellcome	Trust	Case-

Control	Consortium.	We	thank	the	study	participants,	and	the	research	staff	at	the	study	

sites.	This	study	was	supported	by	NIMH	grant	R01MH062276	(to	DF	Levinson,	C	

Laurent,	M	Owen	and	D	Wildenauer),	grant	R01MH068922	(to	PV	Gejman),	grant	

R01MH068921	(to	AE	Pulver)	and	grant	R01MH068881	(to	B	Riley).	The	authors	are	

grateful	to	the	many	family	members	who	participated	in	the	studies	that	recruited	

these	samples,	to	the	many	clinicians	who	assisted	in	their	recruitment.	In	addition	to	

the	support	acknowledged	for	the	Multicenter	Genetics	Studies	of	Schizophrenia	and	



	 75	

Molecular	Genetics	of	Schizophrenia	studies,	Dr.	DF	Levinson	received	additional	

support	from	the	Walter	E.	Nichols,	M.D.,	Professorship	in	the	School	of	Medicine,	the	

Eleanor	Nichols	Endowment,	the	Walter	F.	&	Rachael	L.	Nichols	Endowment	and	the	

William	and	Mary	McIvor	Endowment,	Stanford	University.	This	study	was	supported	by	

NIH	R01	grants	(MH67257	to	N.G.B.,	MH59588	to	B.J.M.,	MH59571	to	P.V.G.,	MH59565	

to	R.F.,	MH59587	to	F.A.,	MH60870	to	W.F.B.,	MH59566	to	D.W.B.,	MH59586	to	J.M.S.,	

MH61675	to	D.F.L.,	MH60879	to	C.R.C.,	and	MH81800	to	P.V.G.),	NIH	U01	grants	

(MH46276	to	C.R.C.,	MH46289	to	C.	Kaufmann,	MH46318	to	M.T.	Tsuang,	MH79469	to	

P.V.G.,	and	MH79470	to	D.F.L.),	the	Genetic	Association	Information	Network	(GAIN),	

and	by	The	Paul	Michael	Donovan	Charitable	Foundation.	Genotyping	was	carried	out	by	

the	Center	for	Genotyping	and	Analysis	at	the	Broad	Institute	of	Harvard	and	MIT	(S.	

Gabriel	and	D.	B.	Mirel),	which	is	supported	by	grant	U54	RR020278	from	the	National	

Center	for	Research	Resources.	Genotyping	of	half	of	the	EA	sample	and	almost	all	the	

AA	sample	was	carried	out	with	support	from	GAIN.	The	GAIN	quality	control	team	(G.R.	

Abecasis	and	J.	Paschall)	made	important	contributions	to	the	project.	We	thank	S.	

Purcell	for	assistance	with	PLINK.	We	(DRW,	RS)	thank	the	staff	of	the	Lieber	Institute	

and	the	Clinical	Brain	Disorders	Branch	of	the	IRP,	NIMH	for	their	assistance	in	data	

collection	and	management.	We	thank	Ningping	Feng	and	Bhaskar	Kolachana	for	

Illumina	genotyping	and	for	managing	DNA	stocks.	The	work	was	supported	by	the	

Lieber	Institute	and	by	direct	NIMH	IRP	funding	of	the	Weinberger	Lab.	Pfizer	is	very	

grateful	to	the	study	volunteers	for	participating	in	our	research	studies.	We	thank	our	

numerous	clinicians	and	support	staff	for	enabling	patient	recruitment,	blood	sample	

collection,	and	biospecimen	administration.	Informed	consent	was	obtained	from	all	

participants,	their	parents	or	guardians.	Eli	Lilly	is	grateful	to	the	participants	of	clinical	

trials	and	research	studies	who	gave	consent	for	participation	in	this	study.	We	are	also	

grateful	to	Philip	J	Ebert	and	Jeffrey	S	Arnold	for	facilitating	our	participation	in	this	

project.	We	acknowledge	the	Irish	contribution	to	the	International	Schizophrenia	

Consortium	(ISC)	study,	the	WTCCC2	SCZ	study	&	WTCCC2	controls	from	the	1958BC	and	

UKNBS,	the	Science	Foundation	Ireland	(08/IN.1/B1916).	We	thank	the	Toronto	Centre	



	 76	

for	Applied	Genomics	for	technical	and	computational	assistance	and	funding	from	the	

University	of	Toronto	McLaughlin	Centre	and	Genome	Canada.	S.W.S.	holds	the	

GlaxoSmithKline-CIHR	Chair	in	Genome	Sciences	at	the	Hospital	for	Sick	Children	and	

University	of	Toronto.	We	acknowledge	use	of	the	Trinity	Biobank	sample	from	the	Irish	

Blood	Transfusion	Service	&	the	Trinity	Centre	for	High	Performance	Computing.	

Funding	for	this	study	was	provided	by	the	Wellcome	Trust	Case	Control	Consortium	2	

project	(085475/B/08/Z	and	085475/Z/08/Z),	the	Wellcome	Trust	(072894/Z/03/Z,	

090532/Z/09/Z	and	075491/Z/04/B),	NIMH	grants	(MH	41953	and	MH083094)	and	

British	1958	Birth	Cohort	DNA	collection	funded	by	the	Medical	Research	Council	(grant	

G0000934)	and	the	Wellcome	Trust	(grant	068545/Z/02)	and	of	the	UK	National	Blood	

Service	controls	funded	by	the	Wellcome	Trust.	We	acknowledge	Hong	Kong	Research	

Grants	Council	project	grants	GRF	774707M,	777511M,	776412M	and	776513M.		 	

	

	

Supplementary	data	references	

	
1.	 Desachy,	G.	et	al.	Increased	female	autosomal	burden	of	rare	copy	number	

variants	in	human	populations	and	in	autism	families.	Mol	Psychiatry	20,	170-5	
(2015).	

2.	 Zuberi,	K.	et	al.	GeneMANIA	prediction	server	2013	update.	Nucleic	Acids	Res	41,	
W115-22	(2013).	

3.	 Fromer,	M.	et	al.	De	novo	mutations	in	schizophrenia	implicate	synaptic	
networks.	Nature	506,	179-84	(2014).	

4.	 Witte,	J.S.,	Visscher,	P.M.	&	Wray,	N.R.	The	contribution	of	genetic	variants	to	
disease	depends	on	the	ruler.	Nat	Rev	Genet	15,	765-76	(2014).	

5.	 Sullivan,	P.F.,	Kendler,	K.S.	&	Neale,	M.C.	Schizophrenia	as	a	complex	trait:	
evidence	from	a	meta-analysis	of	twin	studies.	Arch.Gen.Psychiatry.	60,	1187-
1192	(2003).	

	


