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Abstract

We propose a new diffeomorphic matching algorithm and use it to learn nonlinear dynamical systems with the guarantee that
the learned systems have global asymptotic stability. For a given set of demonstration trajectories, and a reference globally asymp-
totically stable time-invariant system, we compute a diffeomorphism that maps forward orbits of the reference system onto the
demonstrations. The same diffeomorphism deforms the whole reference system into one that reproduces the demonstrations, and is
still globally asymptotically stable.
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1. Introduction

We consider the problem of learning dynamical systems (DS)
from demonstrations. More precisely, given a list of trajectories
(xi(t)) observed as timed sequences of points in Rd, the objec-
tive is to build a smooth autonomous system ẋ = f (x) (i.e. a
vector field) that reproduces the demonstrations as closely as
possible.

The ability to construct such DS is an important skill in imi-
tation learning (see for example [1]). The learned systems can
be used as dynamical movement primitives generating goal-
directed behaviors [2].

Modeling movement primitives with DS is convenient for
closed loop implementations, and their generalization to unseen
parts of the state space provides robustness to spatial perturba-
tions. Moreover, the choice of autonomous (i.e. time-invariant)
systems, while not always suitable or preferable, is interesting
in many situations as they are inherently robust to temporal per-
turbations.

The most common movement primitives consist of motions
that converge toward a single targeted configuration. They
correspond to globally asymptotically stable DS. But classi-
cal learning algorithms cannot provide the guarantee that their
output is always globally asymptotically stable. They might
produce DS with instabilities or spurious attractors. This issue
has recently been studied by Khansari-Zadeh and Billard [3, 4]
who proposed several approaches to learn globally asymptot-
ically stable nonlinear DS. One of the main ideas they in-
vestigated consists in learning a Lyapunov function candidate
(or simply Lyapunov candidate1) L that is highly compatible

1In this paper (cf. Definition 1), a Lyapunov function candidate is a C1

function from Rd to R≥0, radially unbounded, taking the value 0 at a target
point x∗ and with no other local extremum. We generally assume x∗ = 0.

with the demonstrations in the following sense: at almost ev-
ery point xi(t j), the estimated or measured velocity vi(t j) is
such that its scalar product with the gradient of L is negative:
vi(t j) ·∇L(xi(t j)) < 0. Once L is found, a learning algorithm op-
timizes a weighted sum of DS that admit L as a common Lya-
punov function, therefore ensuring the global asymptotic stabil-
ity of the resulting DS. Alternatively, L can be used to modify
movement primitives by correcting trajectories whenever they
would violate the compatibility condition.

The main limitation of this method comes from the difficulty
to find good Lyapunov candidates. In SEDS (Stable Estima-
tor of Dynamical Systems), one of the first algorithms proposed
by Khansari-Zadeh and Billard, the Lyapunov function is set to
be the l2-norm squared (‖ · ‖2), which means that all trajectories
produced by the learned DS are such that the distance to the tar-
get is monotonically decreasing. In their more recent algorithm
CLF-DM (Control Lyapunov Function-based Dynamic Move-
ments), the search for a Lyapunov candidate is done among a
set called Weighted Sums of Asymmetric Quadratic Functions
(WSAQF). It highly increases the set of DS that can be learned,
but the restrictions remain significant as the search is limited to
a small convex subset of the set of Lyapunov candidates.

To go further, Neumann and Steil [6] suggested to initially
compute a Lyapunov candidate with the above method, and
then apply a simple diffeomorphism (of the form x 7→ η(x)x,
with η(x) ∈ R≥0) that deforms the space and transforms the
Lyapunov candidate into the function x 7→ ‖x‖2, thus simpli-
fying the trajectories of the demonstrations. In the deformed
space, an algorithm like SEDS is then more likely to learn a
globally asymptotically stable DS that reproduces faithfully the
demonstrations.

In this paper, we propose a more direct diffeomorphism-
based approach. Our contribution is twofold.
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• First, we introduce a new algorithm for diffeomorphic
matching (Sections 2 and 3) and show from experimen-
tal comparisons that it tends to be one or two orders of
magnitude faster than a state-of-the-art algorithm.

• Then, we explain how it can be used to directly map sim-
ple trajectories of a DS like ẋ = −x onto the trajectories
of the training data (Section 4). This gives a new way to
generate Lyapunov candidates as well as globally asymp-
totically stable smooth autonomous systems reproducing
the demonstrations.

The most direct applications of this work are in motor control
and robotics, but we believe that learning globally asymptoti-
cally stable nonlinear DS and computing Lyapunov candidates
can be useful for various types of systems and control design
problems.

2. Diffeomorphic locally weighted translations

Given a smooth (symmetric positive definite) kernel func-
tion kρ(x, y), depending on some parameter ρ, such that
∀x, kρ(x, x) = 1 and kρ(x, y) → 0 when ‖y − x‖ → ∞, given
a “direction” v ∈ Rd and a “center” c ∈ Rd, we consider the
following locally weighted translation:

ψρ,c,v(x) = x + kρ(x, c)v.

Theorem 1. If ∀(x, y) ∈ Rd × Rd, ∂kρ
∂x (x, y) · v > −1, then ψρ,c,v

is a smooth (C∞) diffeomorphism.

Proof. For a given x ∈ Rd, let us try to find y ∈ Rd such that
ψρ,c,v(y) = x. This can be rewritten y = x − kρ(y, c)v, so we
know that y must be of the form x + rv. The equation becomes
ψρ,c,v(x+rv) = x, i.e.: rv+kρ(x+rv, c)v = 0. If v = 0, ψρ,c,v is the
identity (and a smooth diffeomorphism), and y = x. Otherwise,
solving ψρ,c,v(y) = x amounts to solving r + kρ(x + rv, c) = 0.

Let us define:

hx : r ∈ R 7→ r + kρ(x + rv, c) ∈ R.

If ∂kρ
∂x (x, c) · v > −1, we get: ∀r ∈ R, dhx

dr (r) > 0. Because of the
absolute monotonicity of hx, and since hx(r) tends to −∞ when
r tends to −∞, and to +∞ when r tends to +∞, we deduce that
there exists a unique sρ,c,v(x) ∈ R such that hx(sρ,c,v(x)) = 0.
It follows that the equation ψρ,c,v(y) = x has a unique solution:
y = x + sρ,c,v(x)v. We conclude that ψρ,c,v is invertible, and:

ψ−1
ρ,c,v(x) = x + sρ,c,v(x)v.

The implicit function theorem can be applied to prove that sρ,c,v
is smooth, and as a consequence ψρ,c,v is a smooth diffeomor-
phism.

With Gaussian Radial Basis Function (RBF) kernel:

We now consider the following kernel (with ρ ∈ R>0):

kρ(x, y) = exp
(
−ρ2‖x − y‖2

)
.

We have:

∂kρ
∂x

(x, y) · v = −2ρ2 exp
(
−ρ2‖x − y‖2

)
(x − y) · v,

with the lower bound:

∂kρ
∂x

(x, y) · v ≥ −2ρ2 exp
(
−ρ2‖x − y‖2

)
‖x − y‖.‖v‖.

The expression on the right takes its minimum for ‖x−y‖ = 1
√

2ρ
,

which yields:

∂kρ
∂x

(x, y) · v ≥ −
√

2‖v‖ρ exp
(
−

1
2

)
.

We pose ρmax(v) = 1
√

2‖v‖
exp

(
1
2

)
. Applying Theorem 1,

v = 0 or ρ < ρmax(v) implies that ψρ,c,v is a smooth diffeo-
morphism. In that case, sρ,c,v(x), and as a result ψ−1

ρ,c,v(x), can be
very efficiently computed with Newton’s method.

3. A diffeomorphic matching algorithm

In this section we are interested in the following problem:
given two sequences of distinct points X = (xi)i∈{0,...,N} and
Y = (yi)i∈{0,...,N}, compute a diffeomorphism Φ that maps each xi

onto yi, either exactly or approximately. More formally, defin-
ing dist(A,B) = 1

N+1
∑
i
‖ai − bi‖

2 for two sequences A and B

of N + 1 points, and denoting by Φ(X) the sequence of points
(Φ(xi))i∈{0,...,N}, we want to find a diffeomorphism Φ that mini-
mizes dist(Φ(X),Y).

3.1. State of the art
Since the sequences X and Y can be very different in shape,

to the best of our knowledge the state-of-the-art existing tech-
niques to solve this problem are based on the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework in-
troduced in the seminal article by Joshi and Miller [7]. Its core
idea is to work with a time dependent vector field v(x, t) ∈ Rd

(t ∈ [0, 1]), and define a flow φ(x, t) via the transport equation:

dφ(x, t)
dt

= v(φ(x, t), t),

with φ(x, 0) = x. With a few regularity conditions on v (see
[8] for specific requirements), x 7→ φ(x, t) is a diffeomorphism.
The resulting diffeomorphism Φ(x) = φ(x, 1) is given by:

Φ(x) = x +

∫ 1

0
v(φ(x, t), t)dt.

Using an appropriate Hilbert space, the vector fields x 7→ v(x, t)
can be associated to an infinitesimal cost whose integration is
interpreted as a deformation energy.

Various gradient descent algorithms have been proposed to
optimize v with respect to a cost that depends both on the de-
formation energy and on the accuracy of the mapping, whether
the objective is to map curves [9], surfaces [10], or, as in our
case, points [11].
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3.2. Our algorithm
The LDDMM framework has several advantages. For exam-

ple, it tries to minimize the deformation, and allows the compu-
tation of similarity measures between diffeomorphic geomet-
rical objects. However, Φ is not in closed-form, so once ob-
tained, evaluating it requires an integration that can be slightly
time-costly. In our context, it can be necessary to use Φ inside
a control law, so its evaluation (and that of Φ−1) must be very
fast.

We propose a completely different and novel approach to
diffeomorphic matching, based on the diffeomorphic locally
weighted translations presented in the previous section, which
are functions that can be evaluated extremely quickly.

We fix a number of iterations K, and two parameters 0 <
µ < 1 and 0 < β ≤ 1. K is defined empirically, as the num-
ber of iterations required for a good approximation depends on
the intrinsic difficulty of the problem. µ is a kind of “safety
margin”: strictly less than 1, it ensures that the results cannot
be arbitrarily close to non-invertible functions. β is similar to
a learning rate: a small value allows only small modifications
at every iteration, resulting in a slower but usually more sta-
ble convergence. Typically, on the examples presented in this
paper, we use K = 150, µ ≈ 0.9 and β ≈ 0.5.

Initially, we define Z := X. Every iteration updates Z. The
j-th iteration can be briefly described by the following steps:

1. we select the point p j in Z that is the furthest from its
corresponding target q in Y (see lines 7 to 9 in the pseudo-
code below);

2. we consider the locally weighted translation ψρ j,p j,v j of di-
rection v j = β(q−p j), center p j, and Gaussian RBF kernel
kρ j , optimizing ρ j ∈ [0, µρmax(v j)] to minimize the error
between ψρ j,p j,v j (Z) and Y;

3. we perform the update: Z := ψρ j,p j,v j (Z).

The resulting (smooth) diffeomorphism is the composition of
all the locally weighted translations:

Φ = ψρK ,pK ,vK ◦ · · · ◦ ψρ2,p2,v2 ◦ ψρ1,p1,v1

Here is a description of the algorithm in pseudo-code:

1: Input: X = (xi)i∈{0,...,N} and Y = (yi)i∈{0,...,N}
2: Parameters: K ∈ N>0, 0 < µ < 1, 0 < β ≤ 1
3:
4: Z = (zi)i∈{0,...,N}
5: Z := X
6: for j = 1 to K do
7: m := arg max

i∈{0,...,N}

(
‖zi − yi‖

)
8: p j := zm

9: q := ym

10: v j := β(q − p j)
11: ρ j := arg min

ρ∈[0,µρmax(v j)]

(
dist(ψρ,p j,v j (Z),Y)

)
12: Z := ψρ j,p j,v j (Z)
13: end for
14: return (ρ j) j∈{1,...,K}, (p j) j∈{1,...,K}, (v j) j∈{1,...,K}

Five remarks:

Figure 1: On the left, the dashed curve is a trajectory represented by a sequence
of points Y = (yi)i∈{0,...,N}. The solid line is X =

(
y0 + i

N (yN − y0)
)
i∈{0,...,N}.

The right side shows the result of the application of the diffeomorphism Φ con-
structed by our algorithm to map X onto Y.

• Here we have presented a version of the algorithm in
which the parameter β is constant, but we can also make it
vary iteration after iteration, for example by increasing it
towards 1.

• The line 11 of the algorithm performs a nonlinear opti-
mization, but it depends only on one bounded real variable,
so a minimum can be found very quickly and precisely.

• We can add a fixed upper bound ρM > 0 for all ρ j, and a
regularization term in the cost of the optimization problem
of line 11, to prevent the diffeomorphism from overly de-
forming the space to get a perfect matching. Simply using
inputs with a dense representation (large value of N) has a
similar effect (and it barely slows the algorithm down).
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• Again in line 11, dist can be replaced by any distance, e.g.
the largest singular value norm of (X − Y) (with X and Y
written as (N + 1)-by-d matrices).

• Nothing prevents the algorithm from getting stuck in a lo-
cal minimum, so a general proof of convergence cannot be
found. However, as we show in the next sections, exper-
imental results give empirical evidence that the algorithm
is efficient and converges quickly in practice, even on dif-
ficult matching problems. In future work, we will try to
further improve the algorithm and get convergence proofs
under realistic assumptions.

3.3. Experimental evaluation

We compared our algorithm to an implementation of diffeo-
morphic matching in the LDDMM framework developed by J.
Glaunès (the “Matchine” software [12]).

Given a sequence of points Y = (yi)i∈{0,...,N} representing a
trajectory, we set X = (xi)i∈{0,...,N} =

(
y0 + i

N (yN − y0)
)

i∈{0,...,N}
and applied our algorithm or the LDDMM algorithm to con-
struct a diffeomorphism Φ such that Φ(X) and Y match. Fig-
ure 1 displays the result of our algorithm on four 2D trajecto-
ries, and Table 1 shows a comparison of the results obtained
on these trajectories with our algorithm and the LDDMM al-
gorithm. For each trajectory, we tried with representations as
sequences of 21, 51 and 101 points (i.e. N = 20, N = 50,
N = 100). For both algorithms, the same parameters were kept
across all the trials. In all cases, our algorithm provided a sub-
stantial speedup. For example, with N = 50, Φ was learned in
average 58 times faster and evaluated 240 times faster, while
the error dist(Φ(X),Y) was 2.67 times smaller. The tests were
made on an Intel(R) Core(TM) i7-4700MQ @ 2.4 GHz with
4GB of RAM.

4. Learning globally asymptotically stable nonlinear dy-
namical systems

In this section, we show how a diffeomorphic matching al-
gorithm can be used to learn globally asymptotically stable DS
that reproduce demonstration trajectories.

4.1. Definitions and theorems

Remark: we only consider dynamical systems ẋ = f (x) such
that f (x) is locally Lipschitz.

Definition 1. A Lyapunov candidate L is a continuously differ-
entiable function from Rd to R≥0 taking the value 0 at a “tar-
get point” x∗ , with no other local extremum, and radially un-
bounded (‖x‖ → ∞ ⇒ L(x)→ ∞).

Definition 2. A Lyapunov candidate L with target point x∗ is
said to be compatible with the DS ẋ = f (x) if:

∀x ∈ Rd, x , x∗ ⇒ f (x) · ∇L(x) < 0.

The following is a classical theorem in Lyapunov stability
theory (see for example [13], Chapter 4):

N our algorithm LDDMM
Learning: average 20 0.25 s 2.78 s

duration of the 50 0.25 s 14.5 s
construction of Φ 100 0.26 s 53.3 s

Forward evaluation: 20 3.05 ms 157 ms
average duration of the 50 3.35 ms 804 ms
computation of Φ(X) 100 3.72 ms 3130 ms
Backward evaluation: 20 29.8 ms 145 ms
average duration of the 50 35 ms 798 ms
computation of Φ−1(Y) 100 38.5 ms 3110 ms

Accuracy of the 20 3.49×10−3 18.2×10−3

mapping: average 50 8.32×10−3 22.2×10−3

value of dist(Φ(X),Y) 100 9.51×10−3 22.0×10−3

Generalization: 20 19.8×10−3 20.3×10−3

average value of 50 9.51×10−3 21.6×10−3

dist(Φ(X1000),Y1000) 100 11.5×10−3 22.3×10−3

Table 1: Comparison of experimental results for the 4 examples of Figure 1.
Remark: standard deviations are negligible for our algorithm: it is determin-
istic, and the computation times depend almost entirely on the input size (N)
and on the fixed number of iterations (K). Y is obtained by subsampling from
an initial recording of 1000 points: Y1000. X1000 is the linear progression from
y0 to y999. To get a sense of how precisely the mapping generalizes around
the set of training points, we compute dist(Φ(X1000),Y1000). We observe that
for N = 50 and N = 100, our results are about twice as accurate as the ones
obtained with the algorithm based on LDDMM.

Theorem 2. If a DS ẋ = f (x) is compatible with some Lya-
punov candidate L, then it is globally asymptotically stable.

Note that Definition 1 is stronger than the usual definition
of Lyapunov candidates in that they must have no other local
extremum than x∗. This is very important when the objective
is to construct globally asymptotically stable DS, as the stan-
dard approach is to first compute a good Lyapunov candidate,
and then a DS that is compatible with it. But if the gradient of
the Lyapunov candidate vanishes at several points (which can
be difficult to check), then no DS can be compatible with it.
Therefore, it is crucial to ensure by construction that the Lya-
punov candidate has no undesired extremum.

Definition 3. We say that L is a Lyapunov function for the DS
ẋ = f (x) if it is a Lyapunov candidate compatible with ẋ = f (x).

Definition 4. Two DS ẋ = f (x) and ẋ = g(x) are said to be
diffeomorphic, or smoothly equivalent, if there exists a diffeo-
morphism Φ : Rd → Rd such that:

∀x ∈ Rd, g(Φ(x)) = JΦ(x) f (x),

where JΦ(x) is the Jacobian matrix: JΦ(x) = ∂Φ
∂x (x). If Φ is aCk-

diffeomorphism, then the DS are said to be Ck-diffeomorphic.

Theorem 3. If two DS ẋ = f (x) and ẋ = g(x) are diffeomor-
phic, then if one is globally asymptotically stable, both are.

Proof. Without ambiguity we can call these DS f and g. Let Φ

be a diffeomorphism such that ∀x ∈ Rd, g(Φ(x)) = JΦ(x) f (x).
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For any forward orbit of f , i.e. any trajectory (x(t))t≥0 such that
ẋ = f (x), let us consider the trajectory

(
Φ(x(t))

)
t≥0. We have:

d
dt

(
Φ(x(t))

)
= JΦ(x(t))ẋ(t) = JΦ(x(t)) f (x(t)) = g

(
Φ(x(t))

)
.

This implies that
(
Φ(x(t))

)
t≥0 is a forward orbit of g. More

generally, any orbit (y(t))t≥0 of g can be written
(
Φ(x(t))

)
t≥0,

with x(0) = Φ−1(y(0)
)
, and (x(t))t≥0 orbit of f . If f is globally

asymptotically stable, then all orbits (x(t))t≥0 converge towards
some target point x∗, and thus all orbits (y(t))t≥0 of g converge
towards Φ(x∗), which proves that g is globally asymptotically
stable. A similar demonstration proves the converse implica-
tion.

Theorem 4. Let ẋ = f (x) and ẋ = g(x) be two C1-
diffeomorphic DS, and let Φ be a C1-diffeomorphism such that
∀x ∈ Rd, g(Φ(x)) = JΦ(x) f (x). If L is a Lyapunov function for
ẋ = f (x), then L ◦ Φ−1 is a Lyapunov function for ẋ = g(x).

Proof. Again, we call these DS f and g. We also pose
M = L ◦ Φ−1. Using Theorem 2, we know that f is glob-
ally asymptotically stable, and by Theorem 3, g is globally
asymptotically stable as well. Let x∗ be the target point of f .
Φ(x∗) is the target point of g. Let us consider a forward or-
bit (y(t))t≥0 of g. It can be written

(
Φ(x(t))

)
t≥0, with (x(t))t≥0

forward orbit of f (cf. proof of Theorem 3). It follows that
M(y(t)) = L(x(t)), and if y(t) , Φ(x∗), i.e. x(t) , x∗, then
d
dt
(
M(y(t))

)
= g(y(t)) · ∇M(y(t)) = d

dt
(
L(x(t))

)
< 0. Besides,

it can be verified that M is a Lyapunov candidate (with target
point Φ(x∗)), so M is a Lyapunov function for g.

4.2. Overview of the method
The objective of our approach is to learn a smooth diffeo-

morphism Φ that maps forward orbits of the DS ẋ = −x (i.e.
line segments) onto the observed trajectories (the demonstra-
tions). The mapping obtained is at first purely geometrical,
but the initial DS can be transformed into ẋ = −γ(x)x, with
γ : Rd → R>0, to adjust the velocities without modifying the
forward orbits. If the matching is accurate, the result is that Φ

deforms the whole DS ẋ = −γ(x)x into the globally asymptot-
ically stable DS ẋ = −γ(Φ−1(x))JΦ(Φ−1(x))Φ−1(x) that repro-
duces well the demonstrations. Additionally, since x 7→ ‖x‖
is a Lyapunov function for ẋ = −γ(x)x, x 7→ ‖Φ−1(x)‖ is a
Lyapunov function for ẋ = −γ(Φ−1(x))JΦ(Φ−1(x))Φ−1(x) (cf.
Theorem 4), and therefore a Lyapunov candidate highly com-
patible with the demonstrations. This transformation of a glob-
ally asymptotically stable DS into another one via diffeomor-
phism has strong similarities with the construction of naviga-
tion functions proposed in [14], which is based on the fact that
navigation properties are invariant under Ck-diffeomorphisms
for k ≥ 1.

Trajectories being represented as sequences of points, the
problem of forward orbits mapping can be cast as diffeomor-
phic matching. In the case of a unique demonstration Y =

(y(ti))i∈{0,...,N}, with ti = i∆t, we want to find a diffeomorphism
that maps X =

(
y(0) + i

N
(
0 − y(0)

))
i∈{0,...,N}

onto Y (the trajec-
tory is assumed to arrive at the target: y(tN) = 0). To do so,

we simply use the algorithm presented in Section 3.2. The dif-
feomorphism ΦK obtained after K iterations can be such that
ΦK(0) , 0, so we add an extra iteration that picks pK+1 = ΦK(0)
and vK+1 = 0 − ΦK(0). This ensures that the final diffeomor-
phism Φ verifies ΦK(0) = 0. Remark: the structure of Φ makes
it easy to efficiently compute JΦ(x) at any given point.
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Figure 2: The diffeomorphism Φ, that maps the trajectory X onto Y, transforms
a globally asymptotically stable DS with X as a forward orbit into a globally
asymptotically stable DS with Y as a forward orbit (top row). Using this prop-
erty, we can modulate the initial vector field while keeping X unchanged to
obtain systems with different behaviors that all reproduce the demonstration Y.

4.3. Results
The top row of Figure 2 shows the result of mapping the

straight trajectory X (on the left) onto the trajectory Y (on
the right). The diffeomorphism Φ that realizes this matching
also transforms the entire DS ẋ = −x into a nonlinear globally
asymptotically stable DS that reproduces the trajectory Y (as
the forward orbit of y(0)).

Modifying the initial DS without changing the forward orbit
of x(0) leads, by application of Φ, to another DS that still re-
produces Y. On the bottom row of Figure 2, we use a linear
system that keeps x(0) as an eigenvector associated with eigen-
value −1 (ensuring that its forward orbit is not modified), but
has a negative eigenvalue of absolute value greater than 1 in the
orthogonal direction (unlike the DS ẋ = −x). This results in a
transformed DS that “tracks” more agressively the trajectory Y,
bringing robustness in the sense that, after a perturbation, the
systems goes back quickly to the reference trajectory Y. The
DS of the top row corresponds to another notion of robustness,
in which the reproduction of the pattern has more importance.

We evaluated our approach on the LASA Handwriting
Dataset [15], similarly to [3, 4, 6]. On all cases shown in Fig-
ure 4, a set of 7 trajectories ending at the same point demon-
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Figure 3: On the left: a smooth autonomous systems, learned with our method, that reproduces a motion pattern (demonstrations are in black, reproduced trajectories
in red). The trajectories on the right show that the velocity profiles are quite accurately reproduced as well (again, demonstrations in black and reproductions in red).

strate a single pattern of handwriting motion. For each of
these patterns, we create an average timed sequence of points
Y = (y(i∆t))i∈{0,...,N} based on the 7 trajectories, and apply our
matching algorithm to construct a diffeomorphism Φ that maps
X =

(N−i
N y(0)

)
i∈{0,...,N} onto Y. This gives a Lyapunov candidate

x 7→ ‖Φ−1(x)‖. We compare it to the optimized WSAQF Lya-
punov candidates obtained with the method of Khansari-Zadeh
and Billard [4] also used in [6]. On the 1st column of Figure 4
are displayed level sets of the WSAQF Lyapunov candidates,
and on the 2nd column level sets of our Lyapunov candidates.
We can observe that the level sets of the Lyapunov candidates
produced by our method have a richer geometry and exhibit
variations that are more suitably adapted to the training data.

The CLF-DM method of Khansari-Zadeh and Billard [4]
could be used with these Lyapunov candidates to correct any
learned DS and ensure global asymptotic stability. But as
mentioned above, the diffeomorphism also provides a way to
directly get a globally asymptotically stable DS that reproduces
the motion pattern. We define a function γ : Rd → R>0 such
that, starting at x(0) = y(0) with t = 0, the DS ẋ = −γ(x)x
produces a trajectory that passes by the points N−i

N y(0) at
times i∆t, for i ∈ {1, . . . ,N − 1}, and converges asymptotically
towards 0 for t > (N − 1)∆t. A simple choice for γ is
γ(x) =

‖y(0)‖
N∆t‖x‖ for ‖x‖ ≥ ‖y(0)‖

N and γ(x) =
‖y(0)‖

N otherwise (but
it is easy to design a smoother function with the same desired
properties). Φ transforms the DS ẋ = −γ(x)x into one that
reproduces the demonstrations and their velocity profiles, as
shown in Figure 3. The eigenvalue in the direction orthogonal
to y(0) can be adjusted according to the variability of the 7
demonstrations, or to get a better rate of convergence towards
the demonstrations (cf. Figure 2). The vector fields obtained
with our method are shown on the 4th column of Figure 4,
and the vector fields obtained with the τ-SEDS method of
Neumann and Steil [6] based on WSAQF are shown on the 3rd
column.

4.4. Comparison with previous approaches

The existing approaches follow a two-step process:

1. Compute a Lyapunov candidate L, highly compatible with
the demonstrations.

2. Compute a DS compatible with L that reproduces the
demonstrations.

Neumann and Steil [6] add a diffeomorphic deformation be-
tween step 1 and step 2 to simplify the construction of the DS,
and Khansari-Zadeh and Billard [4] separate step 1 and step 2
completely, noticing that any DS reproducing the demonstra-
tions can be corrected into a globally asymptotically stable DS
once the Lyapunov candidate L is known. In both approaches,
step 1 is crucial because the Lyapunov candidate restricts the
possibilities of the DS of step 2. But a major difficulty is that the
set of Lyapunov candidates (Definition 1) is rather ill-behaved
in the sense that it is non-convex and not closed under addition
or multiplication: the sum or product of two Lyapunov candi-
dates is not necessarily a Lyapunov candidate, as local extrema
might appear. To circumvent this difficulty, a solution is to re-
strict the search to a convex subset of the set of Lyapunov candi-
dates. The computation of the Lyapunov candidates (step 1) is
based on WSAQF [4, 6]. Another method could be mentioned:
NILC [5, 6], but it does not result in globally valid Lyapunov
candidates. As mentioned by Neumann and Steil (Lemma 1 in
[6]), any WSAQF Lyapunov candidate L (with target point 0) is
compatible with the DS ẋ = −x:

∀x ∈ Rd, x , 0⇒ −x · ∇L(x) < 0.

Interestingly, the set of Lyapunov candidates that are compati-
ble with a fixed globally asymptotically stable DS (in this case
ẋ = −x) is a convex cone. Thanks to this property, searching for
a WSAQF Lyapunov candidate can be done efficiently. But the
compatibility to ẋ = −x is a serious restriction (note that NILC
has exactly the same restriction, and that it is this restriction that
allows the simple diffeomorphic deformation proposed in [6]),
and our method does not have it. For example, in Figure 4, 2nd
column, the Lyapunov candidates of the 1st, 2nd, 5th and 6th
rows are not compatible with ẋ = −x. Moreover, the WSAQF
Lyapunov candidates are constructed as sums of convex func-
tions, and as such their level sets define convex regions: for
any WSAQF Lyapunov candidate L, for any λ > 0, the set

6



Figure 4: Demonstrations are in black, and reproduced trajectories in red. On the left: level sets of the Lyapunov candidates obtained with WSAQF (1st column)
and with our approach (2nd column). On the right: streamlines of the DS produced by τ-SEDS (WSAQF) [6] (3rd column) and with our approach (4th column).
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{x ∈ Rd | L(x) ≤ λ} is convex. This is an even stronger re-
striction. In Figure 4, 2nd column, all the Lyapunov candidates
found with our method have level sets that define non-convex
regions.

Our method can potentially learn more complex Lyapunov
candidates because it finds them indirectly (via diffeomor-
phisms), and, instead of being based on good properties of a
subset of the set of Lyapunov candidates, it is based on the sta-
bility under composition of diffeomorphisms. On top of that,
the heuristic proposed in our algorithm performs a fast dif-
feomorphic matching in a way that is dimension-independent,
which is not true for the optimization problems used in previous
approaches. It potentially leads to a speed-up that can be criti-
cal in contexts in which the ability to learn and re-learn quickly
is important.

5. Conclusion

In this paper, we presented a new algorithm for diffeomor-
phic matching and a way to use it to learn globally asymp-
totically stable nonlinear autonomous dynamical systems from
demonstrations. While the demonstrations were 2D single
motion patterns in the results we presented, our algorithm
scales well to higher dimensions (because all its parameters are
dimension-independent) and can be extended to handle multi-
ple motion patterns, although in some cases topological issues
may prevent the convergence of the matching. It should also
be noted that we can only produce vector fields that are diffeo-
morphic to the DS ẋ = −x, which is not true for all globally
asymptotically stable smooth autonomous systems. A related
limitation concerns 2D spiral trajectories, which cannot be re-
produced. In future work, we will try to combine our approach
with existing methods to extend its possibilities. For instance,
Kronander et al. [16] suggest to iteratively reshape DS by lo-
cally applying full-rank modulations such as scalings and ro-
tations, and Khansari-Zadeh and Khatib [17] compute stable
time-invariant control policies expressed as the negative gra-
dient of a scalar potential function minus a dissipative field.
These works do not guarantee the global asymptotic stability
of the resulting controllers, but we see in them approaches that
could be complementary to ours.

The main advantages of our method are:

1. speed: unlike [4] and [6], we do not need a second learning
phase once the Lyapunov candidate has been found, and
we do not rely on numerical optimization of parameters
whose number rapidly increases with the dimensionality;
instead, the simple iterative algorithm we use has a con-
stant number of parameters, and we empirically verified its
quick convergence for many difficult matching problems.

2. simplicity: of implementation because the algorithm is
very short, but also of use thanks to the small number of
parameters to adjust.

For these reasons, we believe it can be applied with ease to
efficiently learn a large variety of globally asymptotically stable
autonomous systems, with applications in dynamic movement
primitives construction or more generally in control design. If

instead of ẋ = −x, we start with an initial DS that has a limit
cycle, our approach can be adapted to learn limit cycle systems.

Finally, being significantly faster than a state-of-the-art algo-
rithm, our diffeomorphic matching algorithm itself might be of
interest for completely different applications, such as for exam-
ple image registration.
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Descartes, http://www.mi.parisdescartes.fr/∼glaunes/matchine.zip.

[13] H. K. Khalil, Nonlinear Systems, 2002.
[14] E. Rimon, D. E. Koditschek, The construction of analytic diffeomor-

phisms for exact robot navigation on star worlds. Transactions of the
American Mathematical Society 327 (1) (1991) 71–116.

[15] “LASA Handwriting Dataset”, version 2.0, Copyright (C) 2010
S. Mohammad Khansari-Zadeh, LASA Laboratory, EPFL,
https://bitbucket.org/khansari/lasahandwritingdataset.

[16] K. Kronander, M. Khansari, A. Billard, Incremental motion learning with
locally modulated dynamical systems, Robotics and Autonomous Sys-
tems 70 (2015) 52–62.

[17] M. Khansari-Zadeh, O. Khatib, Learning potential functions from human
demonstrations with encapsulated dynamic and compliant behaviors, Au-
tonomous Robots (2015) 1–25.

8


