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Abstract. Many robots solve complex tasks in closed environments that are fully known
by the robot designer. Robots are much rarer in our every day environment. The main
reasons are its complexity and openness that frequently result in unpredictable situations
created by new objects or new dynamics of interaction. Numerous applications of robotics
would benefit from robot abilities to deal with open environments. A lot of research is
focused on this topic, but a question remains unanswered: how to evaluate the ability of
a robot to face new contexts? The performance of a robot in a particular environment
says little about what this performance will be in a different environment, even if it
seems similar. A robot programmed to manipulate boxes may not be able to manipulate
balls of the same size. Likewise, a robot perception system may be fooled by a change
of luminosity. Consequently, the performance to expect in a new situation cannot be
systematically deduced from what has been observed in known situations. There is then
a need for a criterion that allows to compare approaches with respect to their ability to
endow robots with the robustness or adaptive abilities to deal with new situations. To
this end, it is proposed to define criteria based on the notion of creativity. A definition
is given in the context of robotics and examples of use for learning and developmental
processes are given.

1. Introduction

Robots are used on a daily basis in factories, where their environment is fully controlled
and tuned to make their work fast and efficient. These successes can be attributed to
adapted mechanical devices associated with efficient control laws. Artificial Intelligence has
also obtained successes with the victory of a computer program against a professional hu-
man player in the game of Go [Silver et al., 2016], a notoriously hard game [Müller, 2002].
Researches in all fields related to robotics from mechanics to artificial intelligence have
then reached a maturity that can be observed in these noticeable successes where most
humans, if not all, are clearly outperformed by machines. Meanwhile, activities performed
on a daily basis by humans, like washing dishes, folding laundry or even just emptying a
dishwasher, remain challenges for robotics whereas every human can do it after training.
What makes the difference between factory problems like ’pick and place’, games like Go
or Chess for which machines are now extremely efficient and emptying any kind of dish-
washer containing any kind of tableware that is easy for humans but completely out of
reach for robots? This gap mainly stems from the way the problem is defined. For factory
problems like ’pick and place’ or for the game of Go, the world is closed and static: all
the concepts and rules are known beforehand and do not change along time. In a real-life
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context of a dishwasher emptying task, the tableware or the place where to put it may
change. The dishwasher itself may also change. Many different models actually exist that
have different features and are thus not used exactly in the same way. Changing features
of the problem to solve requires the robot, its mechanical features, perception system and
control system to be able to cope with it. In some applications, a fixed but robust controller
associated to an adapted morphology can deal with new situations. Autonomous vacuum
cleaners and other lawnmowers can be deployed in very different environments without any
change. They have thus been able to invade the consumer market [Jones, 2006]. In other
applications, like the dishwasher example, no robust robot has been found yet.
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Figure 1. The performance of a robot is not necessarily constant over
different contexts. Robots A and B are specialists, very efficient in a specific
context, but poorly performing in others. Robot C generalizes better, but
has a lower performance with respect to A and B in their specific contexts.

Demonstrations have been made of robots cooking [Bollini et al., 2013], folding tow-
els [Maitin-Shepard et al., 2010] or emptying a dishwasher [Srinivasa et al., 2008]. These
demonstrations prove that it is possible for a robot to perform such tasks, at least in the
conditions used for these experiments, so why does it remain a challenge? A demonstra-
tion of a robot’s behavior shows its ability to deal with a particular task in a particular
environment. It does not demonstrate at all what its performance would look like for the
same task, but in a different environment, even if the difference is limited, in particular
if the robot designer is not here to adapt its software or hardware (Figure 1). The gap
is between what is within reach for a robot in known situations and what is possible in
situations whose precise details are unknown to the robot designer. These environments
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Figure 2. Dealing with an open environment implies to deal with contexts
that may be unknown to the robot designer. Robot A performs better than
B in known contexts, but B outperforms A in other contexts. This difference
is not measurable during the design phase. The challenge is to find measures
that can reflect this difference. Creativity is proposed to address this issue.

are called open environments. If a demonstration is not enough to estimate progresses on
robotics applications in open environments, what is missing? It is argued here that there
is a need for a new and specific criterion to better report the ability of a robot to deal
with such open environments (Figure 2). I propose to take into account the knowledge
available to the robot when it is switched on. Does it know the objects it will manipu-
late? Does it know their shape, size, weight, color, texture? Does it already know how
to manipulate them? How to discriminate them from the background? Such choices are
aimed at simplifying robot programming, but in the same time every choice made limits
the range of environments and objects the robot can adapt to. A robot that can empty a
dishwasher without precisely knowing the tableware or the dishwasher model, is expected
to easily adapt to new tableware or dishwasher models, whereas a robot programmed for
specific ones will hardly adapt to new situations. The new criterion should then take into
account an originality or novelty criterion with respect to what is known beforehand. This
originality criterion alone is not enough as it does not take into account the efficiency
of the robot to fulfill the task. A random behavior can easily be reported as original,
but it does not mean that it is interesting. Originality needs to be associated with per-
formance. Creativity is defined as a process that can create both original and effective
products [Stein, 1953, Runco and Jaeger, 2012]. I propose to use this notion of creativity
to estimate the ability of robots to deal with open environments.
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In the following, I propose a definition of creativity adapted to robotics in open en-
vironments and propose some measures that could allow Kuhn’s normal science in this
domain [Kuhn, 1970]. Learning and development are two kinds of approaches that are
expected to generate the adaptive properties a robot would need to be able to face an open
environment. I briefly propose how to take creativity into account in both approaches.

2. Creativity in robotics: a definition

Creativity is an important feature of human activity. As such, it has drawn a lot of atten-
tion to describe and characterize it [Stein, 1953, Guilford, 1967, Runco and Jaeger, 2012],
find its neuroanatomical substrate [Dietrich, 2004] and try build computer programs that
can generate creative products like paintings or drawings [Boden, 1998, Kowaliw et al., 2009].
It has been defined as the ability to design a product that is both original and efficient
[Stein, 1953, Runco and Jaeger, 2012]. Originality corresponds to the core of this concept:
a solution that is not new nor original will not be qualified as creative. Efficiency is also
important to distinguish a creative solution from a randomly generated one. It is proposed
here to start from this general definition and to refine it in the context of robot adaptation
to new situations.

The product considered here is a policy and its observable result: the behavior, i.e.
the sequence of observed robot states and actions in a particular environment together
with their impact on this environment, including any available performance measure. The
expression ’policy design process’, noted P, will be used to refer to any kind of decision,
learning or developmental process that generates a policy in a particular context.

Assessing creativity is an important issue when considering artificial systems expected to
generate creative products. It is required to compare competing approaches and drive re-
search work towards the most creative systems. In the case of artistic creations, the evalua-
tion can be attributed to the way humans react to the generated product [Colton et al., 2012]:
can they make the difference between art works made by the computer generated and by a
human artist? Would people buy it or vote for it? Relying on human evaluations to assess
the creativity of robot behaviors is possible, but it is proposed here to define a quantitative
criterion. It is a difficult task [Boden, 1998], but the special case of Robotics may provide
some guidelines about how to proceed.

Evaluating efficiency requires specific criteria, if it may be difficult to define in general
[Boden, 1998], such criteria are often already available in Robotics. Most learning algo-
rithms are driven by a function estimating the performance of the behavior policy under
consideration, may it be called value, reward or fitness function.

Originality is not so straightforward to get. It is not an absolute notion. It makes
creativity difficult to assess in general as it depends on a cultural context [Boden, 1998]
and on prior knowledge [Oxman, 1990]. Design is considered to be, in fact, ”a dynamic
process of adaptation and transformation of the knowledge of prior experiences in order
to accommodate them to the contingencies of the present” [Oxman, 1990]. This general
definition perfectly fits the robotics application considered here. The behaviors are built
by the behavior design process that relies on the knowledge used to build and train it. The
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originality of a behavior can then be considered as relative to a database K of the knowledge
available to the observer that estimates it and that will typically be the knowledge base
used to build and train the behavior design process . The originality of a behavior policy
π is expected to significantly change when it is measured with respect to knowledge bases
K − {π} and K + {π}.

Dealing with open environments requires to adapt to new and unforeseen future situ-
ations. As the future is, by definition in an open environment, not fully predictable, the
proposed originality criterion shifts future to the present, and present to the past: the orig-
inality of a behavior found to solve a problem in the present time given what the system
knew in the past, is expected to be an estimation of how the system will react to future
situations given what it knows in the present.

Given a knowledge base and a behavior observed, how to estimate its originality? A
behavior that is already present in the knowledge base is not expected to be original,
but what about other behaviors? A behavior that can be deduced in a straightforward
manner from the knowledge base is not expected to be original either. A robot that knows
how to walk or run at a constant speed can actually reach any intermediate speed by
alternating between the two behaviors. To what extent is it original with respect to its
initial knowledge base? The definition of originality requires to define a process that uses
the reference knowledge base. Given a knowledge base K, a robot policy design process P
chooses a policy π in a particular context c, defined by a task and a domain1: π = P(K, c).
The originality criterion needs to be defined with respect to a given reference policy design
process Pref and a reference knowledge base Kref . The originality criterion estimates the
ability of another policy design process P to go beyond Pref capability with the same
knowledge base Kref in a particular context.

At least two different definitions have been proposed in the literature to compute novelty
or originality. The first one relies on the notion of surprise and on the ability to predict (or
not) observed patterns [Schmidhuber, 1991, Schmidhuber, 2010]. A behavior is considered
as surprising if the robot cannot accurately predict the results of the corresponding motor
commands. A robot with the ability to make predictions and observe how they change,
can use this information as an artificial curiosity driving the predictive model learning
[Schmidhuber, 1991, Oudeyer et al., 2007, Schmidhuber, 2010]. A policy with a behavior
that differs from those predictions is then original. Described in the proposed formalism,
Kref is here the set of trained predictors at a particular moment and Pref relies on these
predictors to determine what to do. The second definition is similar, but does not rely on
a prediction system. It considers originality as the novelty with respect to what has been
observed so far [Lehman and Stanley, 2011]. A policy is considered as novel if its behavior
is different enough from what was observed up to now. This definition allows to design a
novelty metric as an average distance between the behavior of the policy to test and the
behaviors in a set of observations [Lehman and Stanley, 2011]. Kref in this case is the set
of observed behaviors and corresponding policies, and Pref is a process that chooses the

1The task is described by a reward function and the domain is the configuration of the environment.
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policy to apply in Kref with no modification. A policy generating a behavior that differs
from those in Kref is then original.

These different analyses lead to the following definition for creativity in a robotics con-
text:

Definition: Given a policy π generated by a design process P in a context c with the help
of a knowledge base Kref (π = P(Kref , c)), the creativity of π is a (v(π), ρ(Pref ,Kref , π))
pair where:

• v(π) is a value function evaluating the performance of a policy π (v(.) defines a
task);
• Pref is a reference policy design process;
• ρ(Pref ,Kref , π) is an originality metric that evaluates the originality of a policy π

with respect to the use of knowledge base Kref by a policy design process Pref .
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Figure 3. Comparison of the creativity of different behaviors. See text for details.

This definition associates both efficiency and originality criteria. Comparing two differ-
ent problem solving approaches requires to take both into account. They can be aggregated
with a weighted average, but this approach has a drawback: two studies using different
weights can reach opposite conclusions. The Pareto dominance relations used in multi-
objective optimization [Deb, 2001] can thus be more appropriate to reach a parameter-
independent conclusion. In this relation, a solution y is said to dominate another solution
x, if both conditions 1 and 2 are true:

(1) the solution y is not worse than x with respect to all objectives;
(2) the solution y is strictly better than x with respect to at least one objective.
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With this definition, nothing can be said about C and D (Figure 3): C is more original
but D is better performing. C neither dominates nor is dominated by D. E is dominated
by D, as D is better on both objectives. B has the same performance than A, but less
originality. It is thus less creative. A is then the most creative behavior in this example as
it dominates B, C, D and E.
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Figure 4. Comparison of creativity values with low boundaries for origi-
nality and performance. With these values, both B and C (Figure 3) are
discarded.

Extreme solutions may not be interesting: a random solution may have the largest
possible originality, as it can be generated with an empty knowledge base, but at the
same time, it will have a poor performance. Likewise, a behavior generated with a system
that has a full knowledge of the environment may have a high performance, but it has no
originality. With the Pareto dominance relation, these two particular behaviors are equally
creative, or more precisely, they are both non dominated. As both are of no real interest
with respect to creativity as they are either not performing the task at all or completely
task-specific, I suggest to define minimal values for both performance and originality and
discard the behaviors that are below these limits (Figure 4). As the robot is expected to
solve the task, at least partly, the lower bound on performance can reflect this minimal
expected task resolution. The lower limit for originality may be chosen to reject all policies
that can be deduced by Pref from Kref . This results in ρmin = ε > 0 (no matter how small
ε is).
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3. A simple example

To illustrate how this criterion could be used, the example of a robot that has to grasp
a basket will be considered. This object is complex enough so that it can be grasped in
several different ways.

The proposed reference behavioral design process Pref consists in a program able to
make the robot arm follow a particular trajectory, including a particular grasp strategy
– grasping the basket at the handle, for instance. This is a typical low-level controller
generated with methods from control theory. Given a particular trajectory – including
gripper movement – it makes the robot follow it with as much stability and accuracy as
possible. This behavioral design process is clearly not adaptive. If the basket is moved and
if the given trajectory is unchanged, a robot arm following the behavior proposed by Pref
will still try to grasp it at the former position and will thus fail.

A second behavior design process Pvis may be a vision-based approach that determines
the trajectory based on visual inputs [Hutchinson et al., 1996]. Pvis will typically rely on
object visual features to track the object and determine robot movements to reach and
grasp it2. It will rely on the knowledge of object visual features like its shape, color, etc.
The grasping strategy is imposed by the robot programmer. It will be considered that it
is the same as the one above: grasping by the basket handle. The main difference is that
the trajectory will be adapted to different basket positions thanks to the visual feedback.

A third behavior design process Pdev may rely on a developmental approach, as in
[Kraft et al., 2010], to learn how to grasp any kind of objects. Pdev relies on the exploration
of grasping hypotheses with a dedicated algorithm and may thus find a lot of different
grasping strategies for a basket [Kraft et al., 2010].

To be fair, Kref should contain all the trajectories used to design both behavior design
processes, but of course not the trajectories that are automatically generated by the explo-
ration process of Pdev. Pref consists in following the most appropriate trajectory in Kref ,
if any.
Pvis and Pdev should be able to grasp the basket at positions for which no trajectory

exists in Kref . The behaviors generated by both approaches in these cases, will be different
from trajectories in Kref and thus have a significant originality. The performance should
also be above that of Pref , that will fail here. Pvis will always use the same grasping strat-
egy. Pdev may find different grasping strategies. Some may have similar efficiency or even
a better one, but others may be less efficient. This situation will be frequent, in particular
if Pdev did not have enough time to explore the relevance of all possible grasping strategies.
The ones that differ from Pvis grasping strategy should also be more different from Kref

and thus more original than any trajectory generated by Pvis, as Kref contains trajectories
that are representative of Pvis grasping strategy. The originality of the behaviors generated
by Pdev will then counterbalance their eventual and relative inefficiency. Pdev will then not
be dominated by Pvis. Both approaches would be considered as equally creative when
compared with the Pareto dominance relation. This ability to innovate by finding different
grasping strategies would have been probably completely dominated with a comparison

2It can actually compute the trajectory and rely on Pref to make the robot follow it.
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relying on performance only, as usually done in statistical learning when a generalization
ability is tested on new experimental setups. The proposed creativity criterion allows to
balance performance with the ability to go beyond the boundaries of the knowledge avail-
able when the behavior design process has been implemented. This is an expected feature
of the creativity criterion, as this ability, even if it can result in less performing solutions
in some cases, should help to face unforeseen situations.

The creativity of Pdev could also be measured relative to Pvis and Kref . It should lead
to the same conclusion.

4. Creativity to study learning and development in robotics: an example

Learning is a concept with many different facets [Wilson and Keil, 2001]. The focus
here will be on learning in the presence of a performance measure or reward. Given (1)
a task, (2) a training experience and (3) a performance measure, a computer program
is said to learn if its performance at the task improves with experience [Mitchell, 1997].
Reinforcement learning in particular aims at learning what to do so as to maximize a
numerical reward signal [Sutton and Barto, 1998]. A robot with such a feature should
be able to deal with new and unforeseen situations by discovering the adapted behavior
through a trial and error process. Robotic features are anyway still challenging for current
learning methods. First, the environment is continuous, as are most perceptions and mo-
tor commands whereas reinforcement learning, in its most standard definition, is discrete
[Sutton and Barto, 1998]. Discrete states and actions can be defined, but their numbers
needs to be minimized because of the curse of dimensionality. Furthermore, this definition
has a critical impact on learning efficiency [Kober et al., 2013] and requires an expertise
on the task that may not be available and impedes robot adaptation abilities. Reinforce-
ment learning has been adapted to continuous domains [Doya, 2000], but the exploration
of possible actions remain an open issue. Modifying the behavior policy so as to follow the
gradient of increasing performance is a simple strategy to improve robot efficiency. These
strategies make anyway a strong assumption: the gradient of increasing reward leads to
the searched policy. This assumption is reasonable if the starting policy is close enough
to the searched one. Demonstrations made by human experts are expected to be close
to efficient solutions. Using them to bootstrap the learning process has led to successful
experiments in challenging scenarios like helicopter aerobatics [Ng et al., 2006] or robots
playing table tennis [Mülling et al., 2013], but following a gradient does not always lead
to optimal solutions [Stanley and Lehman, 2015]. The reward may be constant over large
areas of the policy space: no gradient is available there to drive the learning process. Fur-
thermore, the gradient of increasing performance can be misleading and drive to a dead-end
[Lehman and Stanley, 2011]. The creativity criterion should help to balance the ability to
find new behaviors through learning with their potential inefficiency with respect to what
dedicated methods can do. It is then a quantitative criterion that will give a chance to
adaptive methods with respect to non adaptive ones.

A performance criterion is already available with these learning algorithms, but what
could the originality criterion look like for learning? It could focus on the limits of gradient
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following approaches and could thus compare the policy π = P(Kref , c) to the policies
obtained by performing local gradient ascent on the policies in Kref .

Learning, as defined above, requires the definition of fixed representations for the re-
ward, the policy and any other concept used by the learning algorithm. The performance
of the learning process highly depends on these representations [Kober et al., 2013]. In
an open-ended environment, this representation may need to be updated along time, for
instance if new objects come into play, or if the environment changes.This ability seem
to be one of the main feature of humans cognitive abilities [Karmiloff-Smith, 1995]. De-
velopmental robotics proposes to go further than mere learning and to build a system
not aimed at the resolution of one particular task, but built to develop along time and
switch from one task to another [Weng, 2001], while drawing inspiration from human
development [Guerin et al., 2013]. In a developing robot, the path towards getting an
appropriate behavior may be long and require that it builds its own intrinsic motiva-
tions [Oudeyer and Kaplan, 2007, Baldassarre and Mirolli, 2013] as well as representations
[Guerin et al., 2013, Doncieux, 2015].

What could the creativity criterion look like for developmental robotics and what could
it be used for ? A performance criterion needs to be defined. It can either be provided
by a human or by an external device and it should estimate the performance of the robot
on the task chosen to test the creativity of the system. The knowledge base used for the
originality criterion should include the behavior primitives available at the beginning of
the developmental process as well as the preprogrammed motivations and representations.
If an external caregiver helps the robot by showing it what to do, these demonstrations
may also be taken into account. As for learning, the reference policy design process may
be a gradient following approach. Here, it would try to improve the provided primitives
and demonstrations on the basis of available motivations. The creativity criterion would
highlight the possibility to go beyond this initial knowledge, without the need to necessarily
perform better than other alternative approaches.

5. Discussion

The proposed creativity criterion is a tool aimed at encouraging progress on the road
towards robots that are adaptive to open environments. It should enable Kuhn’s normal
science by allowing quantitative comparisons between approaches. The creativity of a
robot, as defined here, is relative to a given knowledge base and a reference policy design
process. It has two interesting consequences. First, it encourages researchers to highlight
the knowledge they provide to their robot. Providing knowledge is not a problem per
se, but it may significantly reduce robot adaptive abilities. A typical example consists in
simplifying the robot vision process by defining objects as blobs of a given color that are
on top of a flat surface. Such assumptions clearly limit the adaptive abilities of the robot.
Knowledge like the effect of gravity on objects, for instance, will not limit robot adaptive
abilities that much, except if the robot is sent to space. Secondly, it requires to define a
reference policy design process and thus to make explicit the adaptive abilities that are
searched for: the ones that go beyond the reference policy design process.
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It is usual to test the generalization ability of algorithms relying statistical methods on
a test set that hasn’t been used during learning [Pinville et al., 2011]. The drawback of
this method with respect to the creativity criterion proposed here is that is only takes into
account the performance of the method. The creativity criterion also takes into account
the ability to go beyond the boundaries of the knowledge that has been initially provided.
A method that generates original behaviors that are performing a bit below alternative
approaches would be eliminated with such a comparison criterion. But is the ability to
perform better a good sign of adaptive abilities in new situations? The ability to generate
original behaviors may be much more promising, this is the hypothesis that has motivated
this work.

Does a robot need to be creative to face open environments? The creativity defined here
is relative and aims at driving research work. Each time some knowledge or policy design
process is identified to limit robot adaptive ability in a well identified context, a dedicated
creativity criterion can be built to test the ability of proposed robots to go beyond these
limits. Once the expected adaptivity has been reached, a new creativity criterion can be
defined for which what has been found is not creative anymore. The creativity of a policy
design process is then of interest only from a transient point of view to drive scientific
research and has neither absolute nor intrinsic meaning.

How could a robot be creative? Learning in continuous domains can be formalized
as an optimization problem [Stulp and Sigaud, 2013]. Local optimization methods alone
converge to local optima and their performance depends on the initial policies. Global
optimization methods are less dependent on this knowledge base. Evolutionary algo-
rithms allow global optimization by relying on the principles of variation and selection
[Eiben and Smith, 2008]. They can optimize parameters, but also allow to design struc-
tures [Floreano et al., 2008]. It has been proposed that human creativity may actually rely
on similar mechanisms [Campbell, 1960, Simonton, 2010, Dietrich and Haider, 2015] that
are also the basis of robot learning and adaptation algorithms [Doncieux et al., 2015]. An
interesting feature with respect to creativity is their ability to define a divergent search
process driven by the diversity of obtained behaviors [Mouret and Doncieux, 2012] or their
novelty with respect to the behaviors observed so far [Lehman and Stanley, 2011] and also
to combine it with convergent search objectives [Doncieux and Mouret, 2014]. Such a di-
vergent search process has been used to discover many different ways of walking for an
hexapod robot. It has been associated to a behavior selection process to allow the ro-
bot to deal with unforeseen damages, one of the situations a robot may face in an open
environment [Cully et al., 2015]. As no initial walking behaviors were provided, the behav-
iors discovered by the whole process are then very creative with respect to the proposed
measure.

6. Conclusion

Performance criteria do not evaluate the ability of a robot to deal with new situations. A
robot may be programmed to efficiently fulfill a task in a well identified and closed context,
but it does not mean that the same robot will still be efficient in environments that are
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even slightly different. This is not a major issue for some applications of robotics, notably
in factories, where the environment can be controlled, but it critically limits their potential
application in open contexts like our every day environment. The notion of creativity has
been defined to design new performance criteria more adapted to this context. Creativity
is a relative notion depending on a given knowledge base and on a reference policy design
process. Its definition aims at providing quantitative measures of progress in the field of
adaptive robotics.
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