
Chained formulation of 3D path following for nonholonomic
autonomous robots in a Serret-Frenet frame

Ali Oulmas1,2, Nicolas Andreff2 and Stéphane Régnier1

Abstract— The problem of 3D path following of nonholo-
nomic systems in closed-loop is addressed. The kinematic model
in a local coordinate system using a Serret-Frenet frame with
sideslip and attack angles is used to express the motion of the
robot. A new derivation of the chained form with five states and
three inputs is developed to linearize the kinematic model of
the robot in order to design a decoupled stable controller. The
3D path following is validated experimentally using a magnetic
helical swimmer with visual servo control by following first
a helix trajectory then an inclined sinusoidal trajectory. The
results show the accuracy and robustness of the controller.

I. INTRODUCTION

Three-dimensional autonomous robots with nonholonomic
constraints such as autonomous underwater vehicles (AUV)
and some unmanned aerial vehicles (UAV) are extremely ef-
ficient and flexible. Hence, they present solutions to complex
or dangerous tasks [1]. For most of these applications, the
nonholonomic systems need to follow a desired path to reach
a specific location to observe and perform tasks. Two classic
kinematic control paradigms exist: trajectory tracking and
path following.

This paper focuses on path following because in the
presence of disturbances it presents better performance
with regard to accuracy and smoother convergence to the
path [2]. Indeed, in trajectory tracking, perturbations result
in many undesired effects, essentially due to time delays.
To overcome this problem, the trajectory tracking tends to
compensate the delay by speeding up the velocity of the robot
(limited by actuator constrains that impose a saturation on the
velocity amplitude) or cutting the trajectory (reduced motion
precision). On the other hand, the path following method
allows for more precise motion by following the path without
any time specification.

In the literature, many researchers demonstrated a 3D path
following of nonholonomic autonomous robot in closed-loop.
For instance, [3] proposed to use backstepping techniques
with Lyapunov theory for the path following of an AUV
in space. A recent filtered backstepping control is used
in [4] for the path following of a model-scaled autonomous
helicopter in order to overcome the drawback of singularities
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in space. Sliding mode techniques are also used in [5] for
an underwater vehicle. These techniques have been shown to
be simple and robust against uncertainties. Another approach
using the chained system with continuous state feedback law
is used in [10] for the planar path following of mobile robots.
This approach was extended to an underwater autonomous
robot using an H-2 optimal controller for trajectory tracking
in [6]. However, because the robot kinematics were expressed
in a global frame, this linear time-varying (LTV) controller
is not fully decoupled, and the controllability analysis was
provided only for the case of constant velocity.

The first contribution in this paper is to describe the system
in a local coordinate system using the Serret-Frenet frame
with sideslip and attack angles instead of the global frame.
The desired motion is thereby expressed in terms of the path
parameters (curvilinear abscissa, curvature, torsion . . . ). The
second contribution is to extend [10] to 3D noholonomic au-
tonomous systems with five states and three inputs to design
a stable and decoupled controller for 3D path following. The
model in [10] will become a subset of our general form and
according to [6], the proposed controller is decoupled and
linear time invariant (LTI) and the velocity does not affect
the control. In addition, the control takes into account the
weight of the robot and lateral disturbances.

This approach was validated in experiments using a wire-
less helical swimmer actuated magnetically by following
different curves (a helix trajectory and an inclined sinusoidal
trajectory) in space (namely, in a viscous fluid).

This paper is organized as follows: Section II describes the
3D error kinematic model of the robot in a local frame with
sideslip and attack angles. Section III details the conversion
of the system into the chained form and the control law that
allows the path following. Section IV shows the magnetic
manipulation system used to steer the swimmer wirelessly.
Section V shows the experimentation results obtained by
applying the 3D control on the prototype.

II. KINEMATIC MODEL IN THE SERRET-FRENET FRAME
OF AN AUTONOMOUS MOBILE ROBOT IN SPACE

To control the autonomous robot, a model describing its
behavior is necessary. Therefore, an error kinematic model
with the Serret-Frenet frame associated to the reference
path is used to express the desired motion in terms of
the path parameters. The nonholonomic constraints are also
considered.

The kinematics of the autonomous robot with nonholo-
nomic constraints are in general developed using an absolute
global frame U = { x y z } with origin O and a moving
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body frame Br = { xB yB zB} attached to the body of the
robot located at G the center of mass of the robot (Fig. 1).
The orientation of the robot is characterized by the inclina-
tion angle θi and the direction angle θd . The former is the
angle between the horizontal plane xOy and the axis of the
robot and the latter is the angle between the vertical plane
zOx and the axis of the robot. The rotational velocity of the
frame Br is BrωBr = [ Ωx Ωy Ωz ].

In order to compensate the weight of the robot and lateral
deviations caused by several external disturbances such as
wind, swell or fluidic current, the so-called wind frame
W={xw yw zw } is introduced [7]. The total linear velocity
v of the robot is defined as the linear velocity along the xw
axis of the wind frame W which is given as:

v =
1

Cα Cβ
vp (1)

where α and β are respectively the sideslip and attack angles
while vp is the propulsion velocity along the robot axis xB.
Thus, the linear velocity of W is WvW = [ v 0 0 ]T . The
rotation matrix from W to Br corresponds to the sequence
of rotation (−β ,α,0) and is given by [8]:

Br RW =

 Cα Cβ −Cα Sβ −Sα

Sβ Cβ 0
Sα Cβ −Sα Sβ Cα

 (2)

For ease of notation, we defined C·= cos(·), S·= sin(·) and
T ·= tan(·).

The path to be followed is denoted by C (s) which
is described with the curvilinear coordinate s, the curva-
ture and torsion of the path being respectively c and τ .
F={xF yF zF } is the Serret-Frenet frame that moves along
the path C (s). xF and yF are respectively tangent and normal
to the path while zF represents the binormal to the path and is
given by the cross product of xF and yF. F is characterized by
the reference direction angle θdc and the reference inclination
angle θic and its linear and angular velocities with respect
to the global frame expressed in F are given respectively by
FvF = [ ṡ 0 0 ]T and FωF = [ τ ṡ 0 c ṡ ]T [9].

The aim of path following problem is to minimize the
distance and orientation errors between the robot and the
reference path. For that purpose, the following state vector
is defined:

q =


s
dy
θde
dz
θie

=


s
dy

θd−β −θdc
dz

θi−α−θic

 (3)

where dy and dz represent respectively the vertical and
horizontal distances between the robot center of mass G and
the point S closest to the path while θde and θie represent
respectively the direction and inclination angle errors.

The position UGW of the robot in the global frame U can
be expressed as in Fig. 1:

UGW = USF + URF
FGW (4)

Fig. 1: 3D Path following of a nonholonomic autonomous
robot.

where URF is the rotation matrix from F to U and USF
is the closest point on the path expressed in the global
frame U while FGW is the position of the robot in the Serret-
Frenet frame and its velocity is hence FĠW =

[
0 ḋ y ḋ z

]T .
Differentiating (4) with respect to the time and expressing it
in the Serret-Frenet frame gives:

FRW
WvW = FvF + FĠW + F

ωF × FGW (5)

where FRW is the rotation matrix from W to F using Euler
angles and is given by:

FRW =

 CθdeCθie −Sθde CθdeSθie
SθdeCθie Cθde SθdeSθie
−Sθie 0 Cθie

 (6)

The angle rates θ̇ie and θ̇de are computed from the relative
angular velocity between the Serret-Frenet frame F and the
frame W as follows:

FṘW = FRW S
(

Wωr
W,F

)
(7)

where S(·) is a skew-symmetric matrix and Wωr
W,F is the

relative angular velocity which is given as shown in [3] by:

W
ω

r
W,F = W

ωBr +
W
ω

r
W,Br −

W
ωF (8)

Solving (5) for ṡ, ḋ y and ḋ z and (7) for θ̇ie and θ̇de
gives the following error kinematic model of 3D autonomous
robots:

ṡ =
v Cθde Cθie

1− c dy
(9.a)

ḋ y = v Sθde Cθie + τ dz ṡ (9.b)

ḋ z = − v Sθie− τ dy ṡ (9.c)

θ̇ie = Ωy Cβ −Ωz Sβ Sα− α̇ Cβ + τ ṡ Sθde (9.d)

θ̇de = Ωz
Cα

Cθie
+

β̇

Cθie
− τ ṡ T θie Cθde− c ṡ (9.e)

Note that these equations are not defined at dy =
−1
c and θie

must differ from π

2 [π].
To check the validity of this model, we calculated the

projection of these equations in the horizontal plane setting
the variables dz, τ , α , θie and Ωy to zero, which gave us the
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kinematic model used by Samson in [10] and [11] for the
planar path following of mobile robots:

ṡ =
v Cθde

1− c dy

ḋ y = v Sθde

θ̇de = Ωz + β̇ − c ṡ

(10)

III. CHAINED FORM AND CONTROL LAW

A. Chained form

The total linear velocity v is not aligned with the thrust
direction xB of the robot because of the weight and lateral
disturbances. Therefore, to drive the robot to the path, the
total linear velocity v should be aligned with the tangent of
the reference path. In other words, the distances dy and dz
and the orientations θie and θde must be servoed to zero. For
that purpose, a stable control law is necessary:

(v, Ωy, Ωz) = f (dy, dz, θie, θde) (11)

The angular velocity Ωx along the robot axis is not consid-
ered because the error in roll does not perturb the path fol-
lowing [3]. The number of inputs is less than the number of
degrees of freedom which makes the nonholonomy.

The kinematic model of the autonomous robot formed
by (9) is nonlinear. In order to control this kind of system,
a solution consists in linearizing it around the equilibrium
dy = dz = θde = θie = 0. Samson et al. have established
an approach to convert the models of planar mobile robots
(unicycle, car-like, with trailers) into linear models using
chained form with two inputs and three states [10]. The
conversion of multi-inputs nonholonomic systems into the
chained form is presented in [12] for the fire truck example.
Inspired by [11], [12] and [13], we propose to convert
the kinematic system of the 3D autonomous robot into the
following chained form with three inputs and five states:

ẋ1 = u1 (12.a)
ẋ2 = x3 u1 (12.b)
ẋ3 = u2 (12.c)
ẋ4 = x5 u1 (12.d)
ẋ5 = u3 (12.e)

where x = (x1,x2,x3,x4,x5)
T is the state vector and

u = (u1,u2,u3)
T is the input vector. The transformations

of (9) into the chained form start by choosing the first
variable state as:

x1 = s (13)

Thus, from (9.a):

u1 = ẋ1 = ṡ =
v Cθde Cθie

1− c dy
(14)

The input u1 is a function of the total linear velocity v. Then,
the second variable state is chosen as the horizontal distance:

x2 = dy (15)

Thus, from (9.b):

ẋ2 = ḋ y = v Sθde Cθie + τ dz ṡ (16)

Then, from (12.b), (14) and (16), x3 is obtained as:

x3 = (1− c dy) T θde + τ dz (17)

Therefore, from (12.c) yields:

u2 = ẋ3

= τ ḋ z +dz ṡ d τ

ds +(1− c dy) θ̇de (Cθde)
−2

−
(
c ḋ y +dy ṡ d c

ds

)
T θde

(18)

where θde and θie must differ from π

2 [π] and dy from −1
c .

Replacing ṡ, ḋ y, ḋ z and θ̇de by their values in (9), the input
u2 is obtained in function of the steering angular velocity Ωz:

u2 = γ21 Ωz + γ22 (19)

where γ21 and γ22 are the following scalar variables:

γ21 = (1− c dy) Cα (Cθde)
−2 (Cθie)

−1

γ22 = β̇ (1− c dy) (Cθde)
−2 (Cθie)

−1

+ v
−1+c dy

(
2(1− c dy)τ Sθie +

(
τ2 dy−dz

d τ

ds

)
Cθde Cθie

+
(
(−2+C(θde)

2)
c(cdy−1)

Cθde
+(cτ dz +dy

d c
ds )Sθde

)
Cθie

)
Note that γ22 depends on the total linear velocity v of the
robot and the derivative of the sideslip angle β̇ .
In the same way, the fourth state variable is chosen as the
vertical distance:

x4 = dz (20)

Thus, from (9.d):

ẋ4 = ḋ z = −v Sθie− τ dy ṡ (21)

From (12.d), (14) and (21), x5 comes as:

x5 = (c dy−1) T θie C(θde)
−1− τ dy (22)

Finally, from (12.e) and (22):

u3 = ẋ5

= − τ ḋ y−dy ṡ d τ

ds +
(
c ḋ y +dy ṡ d c

ds

) T θie
Cθde

−
(
θ̇ie (Cθie)

−2 + θ̇de T θdeT θie
) 1−c dy

Cθde

(23)

where θde and θie must differ from π

2 [π] and dy from −1
c .

Replacing ṡ, ḋ y, θ̇ie and θ̇de by their values in (9), the input
u3 is obtained in function of the steering angular velocities
Ωz and Ωy:

u3 = γ31 Ωy + γ32 Ωz + γ33. (24)

where γ31, γ32 and γ33 are defined as:

γ31 = (−1+ cdy)Cβ C(θde)
−1 C(θie)

−2

γ32 = (1− cdy) (Cθde)
−1 (Cθie)

−2
(
Sα Sβ −Cα Sθie T θde

)
γ33 = (1− cdy)

(
α̇ Cβ − β̇ Sθie T θde

)
− v Cθie

1−cdy

(
dy Cθde

d τ

ds

−dy T θie
d c
ds +

(
dz τ +2(1− cdy)T θde

) (
τ Cθde + cT θie

))
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Note that γ33 depends on the total linear velocity v and the
derivatives of the sideslip and attack angles respectively β̇

and α̇ .
Now, considering the following change of variables:

∀i = 1, ..5,
d

dx1
xi = x′i (25.a)

u12 =
u2

u1
(25.b)

u13 =
u3

u1
(25.c)

The chained form model (12) can be rewritten as:

x′1 = 1; x′2 = x3; x′3 = u12

x′4 = x5; x′5 = u13
(26)

the derivative of xi with respect to the curvilinear abscissa s
defines a system independent of the total linear velocity v of
the autonomous robot. Therefore, the control law (11) will
be:

v(t) = arbitrary 6= 0
(Ωy, Ωz) = f (dy, dz, θie, θde)

(27)

The model (26) is clearly linear and time invariant (LTI) as
it can be rewritten:

x′2
x′3
x′4
x′5

=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




x2
x3
x4
x5

+


0 0
1 0
0 0
0 1

[ u12
u13

]
(28)

B. Control

Therefore, a simple state feedback control law is enough
to reach and pursue the reference path:

[
u12
u13

]
=−

[
kd1 kt1 0 0
0 0 kd2 kt2

]
x2
x3
x4
x5

 (29)

where kt1, kd1, kt2 and kd2 are the control gains and are
strictly positive. The closed loop performance can be ad-
justed using these parameters.
Replacing (26) in (29) gives the following equation:

ë+Kt ė+Kd e = 0. (30)

with:

e =
[

x2
x4

]
; Kt =

[
kt1 0
0 kt2

]
; Kd =

[
kd1 0
0 kd2

]
The solution of (30) gives the convergence of both e and
ė to zero. After expansion, (30) gives two decoupled 1-
dimensional 2nd order systems:{

x′′2 + kt1 x′2 + kd1 x2 = 0

x′′4 + kt2 x′4 + kd2 x4 = 0
(31)

that independently converge to zero under appropriate gain
tuning.
Finally, using (15), (17), (20) and (22) leads to the conver-
gence of the distances dy and dz and the orientations θie and
θde to zero. Thus, a spatial path following is achieved.

C. Actuation

The linearization gives the following control:{
u2 = γ21 Ωz + γ22
u3 = γ31 Ωy + γ32 Ωz + γ33

(32)

By knowing the position of the autonomous robot G and the
path parameters (s, τ and c), the steering angular velocities
Ωy and Ωz can be computed from (32) as follows:{

Ωz = (u2− γ22) γ
−1
21

Ωy =
(

u3− γ33− γ32 γ
−1
21 (u2− γ22)

)
γ
−1
31

(33)

where the input u2 is computed using (25.b) and (29) and is
given as:

u2 = −kd1 u1 x2− kt1 |u1| x3
= −kd1 u1 dy− kt1 |u1| (τ dz +(1− c dy)T θde)

(34)

In the same way, u3 is computed from (25.c) and (29) and
is given as:

u3 = −kd2 u1 x4− kt2 |u1| x5

= −kd2 u1 dz− kt1 |u1|
(
−τ dy

+(c dy−1)C(θde)
−1 T θie

) (35)

The controller is asymptotically stable when u1 = ṡ, the
velocity along the path, is constant. Therefore, ṡ depends on
the total linear velocity v as shown in (9.a). Similar to [11], v
has to satisfy certain conditions to ensure the stability: it must
be a bounded differentiable time-function, its derivative has
to be bounded and v(t) must not tend to zero when t tends
to infinity.

As γ33 depends on α̇ and β̇ , which reflect the variations
of the interaction with the environment, the controller also
depends on them. Several control strategies can be imple-
mented (that can not be discussed in length in this paper
and are not mutually exclusive) including: i) to provide a
feedforward estimate; ii) to rely on exteroceptive sensing;
iii) to derive an observer similar to the one in [17], which
allows for compensating side-slipping in 2D all-terrain con-
trol within the framework proposed in [12]; iv) to introduce
the associated dynamics in the controller, such as in [18].

In the remainder of this paper, we considered α and β

as constant because the experimental environment is rather
still and rely on vision feedback for compensating the minor
disturbances arising from this choice.

IV. APPLICATION TO MAGNETICALLY ACTUATED
HELICAL SWIMMERS

The proposed control law for 3D path following was
experimentally tested using a magnetically actuated helical
swimmer with 14 mm length and 1 mm in diameter. Helical
swimmers can be considered as autonomous vehicles with
nonholonomic constraints, since they advance in direction
of their axis by converting the rotary motion into linear
motion. However, lateral displacements caused mainly by
the boundary effect [14], thermal noise and microfluidic
flow are considered as disturbances (similar to the sideslip
angle β ). Moreover, the apparent weight which is defined as
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Fig. 2: Magnetic manipulation system

the resultant of the gravity and buoyancy forces is nonzero,
thus creates a downward drift defined as the attack angle
α in Fig. 1. The closed-loop control aims to correct these
disturbances.

In order to wirelessly actuate the helical swimmer in
space, a non contact magnetic system composed of three
pairs of coils in Helmholtz configuration is used to gener-
ate a uniform rotating magnetic field in the center of the
workspace (Fig. 2). The magnetic torque T applied on the
helical swimmer is given by:

T = M×B (36)

where M is the magnetic moment of the helical swimmer and
B the magnetic field. The magnetic torque tends to align the
magnetic moment with the applied magnetic field. Therefore,
with a rotating magnetic field and a helical tail, the helical
swimmer can advance by converting the rotational motion
into linear motion.

The magnetic field can be decomposed into a magnetic
field B⊥ perpendicular to the helical swimmer axis and a
magnetic field B‖ parallel to the helical swimmer axis [15].
The first vector yields the open-loop self-rotation of the
helical swimmer and is given by:

B⊥ = B0 cos(2π f t) ũ+B0 sin(2π f t) ṽ (37)

where B0 is the magnetic flux density in the center of the
workspace and ũ and ṽ are the basis vectors of the plane
perpendicular to the axis of the helical swimmer.
The second vector yields the steering of the helical swimmer
in order to reach the target orientation and can be expressed
as [15]:

B‖ =−sign(B⊥ n∗) λ ‖ n×n∗ ‖ n (38)

where n and n∗ are respectively the real-time and desired
orientations of the helical swimmer and λ is the control gain.
The tuning of this gain is empirical.

The position G and orientation of the swimmer are re-
constructed by stereovision. The helical swimmer axis n is
related to the direction and inclination angles as follows:

n =
[

Sθi Cθi Sθd Cθi Cθd
]T (39)

B‖ is thus the ”actuator” associated to the steering angular
velocities Ωz and Ωy in (33), which are related to the desired
inclination and direction angles as follows:{

θ ∗d (t) = θd(t) + Ωz dt

θ ∗i (t) = θi(t) + Ωy dt
(40)

which is transformed into n∗ thanks to (39).
In the case of helical swimmers, the propulsion velocity

vp is defined thanks to the so-called propulsion matrix [16].

V. EXPERIMENTAL RESULTS

In this section, the 3D control developed above is tested on
the prototype by following a helix and an inclined sinusoidal
trajectories.

A. Helix trajectory

The swimmer rotates in synchronization with the rotating
magnetic field at a frequency of f = 2.6 Hz and was initially
placed near the desired path.

1

0

-1

-2

-3

-4

-10

-15 10

15

20

25

Fig. 3: The 3D reconstruction of the trajectory drawn by the
helical swimmer while following a helix trajectory with the
control gains of kt1 = 0.004, kd1 = 0.05, kt2 = 0.3

Fig. 3 depicts the result of the 3D reconstruction by vision
of the helical swimmer position where the reference path is
drawn by a red line and the performed path is in blue. It
can be noted that the swimmer follows the helix trajectory
despite the curve complexity.

The distance and orientation errors are given in Fig. 4.
The distance error dz is maintained to zero, as well as the
inclination orientation error θie in Fig. 4.b. However, the
distance error dy is also maintained to zero but the direction
orientation error θde is not zero, as shown in Fig. 4.b.

0 50 100 150 200

1.5
1

0.5
0

-0.5
-1

-1.5
-2

2

(a)

50 100 150 2000

1

0

-1

3

2

-2

-3

(b)

Fig. 4: Evolution of the distance errors (a) and the orientation
errors (b) during the helix trajectory following.
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This can be explained by the fact that the environment
presents many lateral disturbances. The closed-loop control
compensates these disturbances by increasing the direction
angle and keeping the lateral error dy to zero.

A more complicated curve with variable curvature and
inclination will be tested in the next section.

B. Inclined sinusoidal trajectory

An inclined sinusoidal trajectory is generated in order to
evaluate the controller and the behavior of the swimmer
to this kind of path. The swimmer rotation frequency was
f = 3 Hz. Fig. 5 depicts the result of the 3D reconstruction

15

10

-55

10

20

25

30
-4

-2

0

-15

Fig. 5: The 3D reconstruction of the inclined sinusoidal
trajectory drawn by the helical swimmer with the control
gains of kt1 = 0.04, kd1 = 0.05, kt2 = 0.05 and kd2 = 0.08.

by vision of the helical swimmer position and compares it
to the reference path. The swimmer was initially placed near
the desired path. It can be seen that the swimmer follows
the path all along despite the succession and complexity of
curvatures. The controller is still efficient.

1.5
1

0.5
0

-0.5
-1

-1.5
-2
0 50 100 150 200

2

(a)

50 100 150 2000

1

0

-1

3

2

-2

-3

(b)

Fig. 6: Evolution of the distance error dz (a) and the
inclination orientation error θie (b).

It is noticed that at the end of the trajectory near the
beaker wall, the swimmer is affected by a lateral disturbance,
namely the boundary effect [14]. The closed-loop aims to
correct this error by increasing the direction angle as shown
in Fig. 6.b. To estimate the accuracy, we compute the

TABLE I: The trajectory errors.
Curves Errors dy (µm) dz (µm) θde (rad) θie (rad)

Helix RMS 83.4 199 0.349 0.151
SD 82.6 189 0.348 0.117

Sinus RMS 178 396 0.597 0.079
SD 173 337 0.594 0.068

root-mean-square (RMS) and standard deviation (SD) errors
(TABLE I). It can be seen that the accuracy of the path
following is submillimetric for both trajectories.

VI. CONCLUSIONS
A new approach to achieve a 3D path following of a non-

holonomic autonomous robot was introduced. The kinematic
model of the robot was expressed in a local frame using
the Serret-Frenet frame with a new chained formulation to
realize the control. The resulting system is decoupled and
linear time invariant. The method was validated and analyzed
through experimental results using a helical swimmer by fol-
lowing first a helix trajectory and then an inclined sinusoidal
trajectory. The results show that the controller is accurate and
stable.
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