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Abstract

With the development of surveillance cameras, person
re-identification has gained much interest, however re-
identifying people across cameras remains a challenging
problem which not only requires a good feature descrip-
tion but also a reliable matching scheme. Our method can
be applied with any feature and focuses on the second re-
quirement. We propose a robust bidirectional sparse coding
method that improves simple sparse coding performances.
Some recent work have already explored sparse represen-
tation for the re-identification task but none has considered
the problem from both the probe and the gallery perspec-
tives. We propose a bidirectional sparse representations
method which searches for the most likely match for the test
element in the gallery set and makes sure that the selected
gallery match is indeed closely related to the probe. Exten-
sive experiments on two datasets, CUHKO3 and iLIDS-VID,
show the effectiveness of our approach.

1. Introduction

Person re-identification consists in matching people cap-
tured with different cameras. The images available for that
task not only depend on the people themselves, but also
on the environment, the cameras and the person detector.
All those factors make the re-identification very challeng-
ing. Indeed, the color rendering of someone’s clothes can
be drastically different depending on the camera and on
whether the image has been captured in an indoor or out-
door place, by a sunny or cloudy day. Moreover the quality
of the detector, the camera viewpoint and the person’s pose
can lead to huge misalignment issues. Consequently, the
variability between two images of the same person can be
greater than that of two different people.

Most of the studies on person re-identification focus on
appearance modelling [6, 8, 9, 24, 27] and on learning a
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metric [7, 10, 11, 28, 29, 37] so that the intraclass variability
becomes smaller than the interclass variability. Some recent
work tackle more specific difficulties such as occlusion [33,
39] and low image resolution [12]. Open-world person re-
identification is discussed in [5, 38].

Our work focuses on the matching part of person re-
identification. It can work with any hand-crafted feature, or
after a Mahalanobis metric learning step. It is best used in
the multi-shot setting where multiple images of gallery and
test cameras are available. This should be the case in real
applications since those images usually come from tracking
algorithms which extract tracklets of people.

Sparse coding has been shown to yield good results for
the person re-identification task [13, 23]. It is based on the
sparse representation of probe elements using gallery ele-
ments where therefore probe and gallery clements do not
play a symmetric role. The main idea of our method is to
exploit not only the effectiveness of sparse coding used in
its traditionnal way but also to make it even more robust by
symmetrizing the re-identification problem.

The bidirectional sparse coding method we present here
is a three steps approach. The first step is the direct col-
laborative sparse representation where probe elements are
approximated by a sparse linear combination of gallery ele-
ments. The second step is the reverse sparse representation
where a collaborative sparse representation of gallery ele-
ments is computed using the probe elements and a generic
dictionary. The third step is the ranking step: residual er-
rors from the two previous steps are combined and ranked
by increasing values. This method is more robust than the
simple sparse representation. It significantly improves re-
sults in the multi-shot case, especially in the first ranks.

2. Related work

Numerous approaches have been developped to tackle
the person re-identification problem. Early person re-
identification methods essentially attempted to define good
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hand-crafted descriptors that would discriminate people
well. Based on body symmetry, Farenzena et al. [8] de-
fine the parts of the body from which color and texture fea-
tures are extracted while Cheng et al. [6] use a probabilistic
model to find 6 body parts. Bak et al. [4] use covariance
matrices on patches as descriptors. In those methods, dif-
ferent similarity measures are computed according to the
features extracted or the body part where it comes from and
a heuristic combination of those are used for the final rank-
ing. Later, methods involving a learning step on training
data emerged. Gray and Tao [9] used Adaboost to learn a
set of discriminative features. Other early works aimed at
handling the difference in camera color rendering by learn-
ing a camera color transfer function to recover the transfor-
mations from one camera to another [3, 30].

Recent methods are now mainly based on metric learn-
ing, neural networks and transfer learning. Metric learning
approaches aim at learning a metric that better separates im-
ages belonging to the same person from those belonging to
different people. While methods presented in [20, 21] learn
one single metric to distinguish people captured from two
cameras, Liong et al. [22] propose a combination of global
and local metrics. The main drawback of current metric
learning methods is that they do not perform well when the
metric is learnt on a database and tested on another one.

Employing large and representative training data helps
avoiding overfitting. Neural networks are a tool that can
handle large amount of data. In person re-identification,
several works [1, 17] propose to learn a deep neural network
that takes a pair of images as input and outputs whether
they describe the same person. Another work [35] trains
a siamese network on three body parts. However training
a neural network requires large representative and labeled
training datasets that are hard to obtain.

The labeling problem is even worse for methods which
make use of visual attributes. In [16], in addition to usual
color and texture features, an SVM is trained to detect at-
tributes such as the presence of hat, short, skirts, etc. Be-
sides people’s identity, labeled clothing is also needed for
training the SVM. One way to use attributes without labeled
data, is presented in [26]. Attributes are latent, they are
learnt through a probabilistic model. Another way to go be-
yond the lack of labels is to use transfer learning which aims
at transfering the knowledge acquired on a task to a simi-
lar but different task. Shi et al. [31] transfer knowledge of
clothing attributes learnt on labeled fashion dataset to per-
son re-identification. Zheng et al. [36] propose to learn for
each query the usefulness of a feature based on reference
information collected from any kind of images datasets.

Our work is mostly related to sparse representation
and dictionary learning. Sparse representations have been
widely explored in face recognition for their robustness
against occlusion and corrupted data, but it is only recently

that person re-identification approaches have taken interest
in this kind of methods. In dictionary learning approaches,
sparse representation is used as a feature. The idea is to
learn a single dictionary [14, 15] or a coupled dictionary
[2, 25] so that gallery and probe elements of the same per-
son have similar sparse representations. In sparse represen-
tation methods [13, 23], the ranking is based on the resid-
ual errors computed thanks to the sparse coding. However,
since the representations are sparse, no information is avail-
able to actually rank people from a certain rank onwards.
In [23], Lisanti et al. present an iterative method to deal
with this ranking issue. The work in [13] aims at better
exploiting gallery multi-shot by introducing a group penal-
isation term which favors sparse reconstructions where the
few participating dictionary elements belong to even fewer
identities. Yet another way to exploit sparse representa-
tions in person re-identification is proposed by [18]. Dis-
tances and sparse representations are computed on features
extracted both from the whole image and from body parts.
The matching is based on the distances which are weighted
by confidence values computed with the residual errors.

Though several methods using sparse representation
have already been proposed for person re-identification, as
far as we know, the proposed method is the first to exploit
the asymmetric role of probe and gallery elements in sparse
reconstructions. Our method improves performances com-
pared to single direct Lasso sparse representation. It is a
matching method that can be used with any feature. There-
fore one can choose input features that result from a super-
vised learning step on training data.

3. Bidirectional sparse representations
3.1. Problem notations

‘We consider problems with two cameras. Known identi-
ties are captured by the gallery camera. Test images come
from the probe camera. All test identities are present in the
gallery.

Let K be the number of distinct people in the gallery.
For each person k € [1, K], N images are available in the
gallery camera so that there is a total of N, = ch{:l Ny,
images in the gallery. Each image is described by a col-
umn vector of length d. Let g,i be the feature associated
with the #*" image of person k, and G = [gi, ... ,gfcv""]
be the matrix containing all the features of gallery person
k. The concatenation of all the gallery features form the
gallery dictionary G = [G1,...,Gx] of size d x N,.

When given n images of a probe person [, the aim of per-
son re-identification is to find the most likely match in the
gallery. Let p] stand for the feature vector of the 4" image
of probe person [ and P, = [p}, ..., p}"] be the matrix con-
taining all the features of probe personl. P = [Py,.. ., Pk]
is the concatenation of the probe dictionaries.
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Figure 1. Overview of ABSR for multi-shot person re-identification with the direct and reverse sparse representations and the combination
of the associated residual errors. Sparse matrices and residual errors are in gray scale, the darker the square, the smaller the value.

3.2. Sparse coding of probe elements

The idea of collaborative sparse representation is to ap-
proximate an element of an unknown class by a sparse linear
combination of a few reference elements that belong to dif-
ferent known classes. Reconstructing the test element only
once with a sparse combination of elements from several
classes forces reference elements to compete against each
other and only the most similars are selected. The unknown
class is associated to the class that participates the most.

In our person re-identification problem, we compute the
sparse representation A; of probe elements P; using ref-
erence gallery dictionary G by solving the following opti-
mization problem:

Af ZargAmiHIIH — GA[5 + N[ Ay (1
1

where ||.||r is the Frobenius norm and ||.||; is the £1-norm.
1P — GA%
enforces the sparsity of A;, and X balances the trade-off be-
tween the overall reconstruction error and the sparsity of the
representation. This £; penalized optimization problem is
also known as the Lasso problem.

Leterrp, go.c = |2 — GkAﬂk”% be the residual error
of the reconstruction of probe clements P, using only the
gallery identity k& where Az*| ;. 18 the submatrix of A; con-
taining only the rows describing the participation of gallery
dictionary Gy, in the reconstruction of P;. One way to rank
gallery identities is by using their increasing residual error.
The best match is given by:

k™ = argminerrp, q,.¢ 2)
k

3.3. Sparse coding of gallery elements

A probe person [ being better reconstructed by a gallery
person k than k&’ only means that k is more similar to the
test person than &', it does not imply that the gallery person
k is actually similar to the probe person. In order to build a
robust correspondence between probe and gallery person, a
reciprocal relation is needed. P, must be well reconstructed
by G when competing against other G/ and G, must be
well represented by P} as well when competing with other
Py, The additional optimization problem to be solved, is
the optimization problem of Eq. (1) where the role of G
and P are switched:

B = argBminHGk — PBk||2F + Y| Bkl|1 3)
.

where 7 is a trade-off parameter between the reconstruction
error and the sparsity.

However, since in real world applications, not all iden-
tities probe images are available at a given testing time, it
is not possible to use this perfectly symmetric approach to
compute the sparse representation of gallery features with
the complete probe dictionary and infer the residual errors.
Instead, we propose to substitute in Eq. (3) the unavailable
probe clements of P = [Py,..., P, ..., Px] with a generic
dictionary D defined as described in section 3.5, i.e. P is re-
placed by T'(P;, D) = [P, D]. For every gallery identity k,
we now solve the following optimization problem:

By = af%min||GA< — [P, DIBl[p +1Bellt 4
k

Let errg, . p.r(p,0) = |[Gr — PlBk|l||F be the resid-
ual error of the reconstruction of the gallery elements G



with the probe elements P; where B}, is the submatrix of
Bj; containing only the rows describing the participation of
probe elements P in the reconstruction of Gy. These resid-
ual errors represent how well gallery elements Gy, are re-
constructed by the probe elements P, when put in compe-
tition with the generic dictionary D. These residual errors
alone can be used for ranking gallery identities. Probe per-
son can be associated to the identity verifying:

k‘* = aI‘ngliIl €T7’Gk P, ,T(Pl ,D) (5)

3.4. Combination of both representations

In order to have a robust person re-identification sys-
tem, we combine both sparse representations’ residual er-
rors: err{ TP = err +err so that the

. kel P[,Gk,G Gk,Pl ,T(PL,D)

best match for probe id [ is given by:
k* = argminerry 7 (6)
k

We name SBSR, for Symmetric Bidirectional Sparse
Representation, the method combining equations Eq. (1)
and Eq. (3) that can be used in the ideal case when all
the images of all the probe identities are available at testing
time, in an offline setting for example. We call Asymmet-
ric Bidirectional Sparse Representation (ABSR) the method
combining equations Eq. (1) and Eq. (4) because the col-
laborative representations are not computed the same way
for probe and gallery elements (the reverse representation
requires an additional dictionary). ABSR can be used in an
online context where test identities arrive one by one.

The strength of our method lies in its bidirectional as-
pect. It is particularly useful for elements that are subject to
ambiguity. If probe elements P; have about the same small
residual errors for several gallery identities, the right match
might be in the first ranks but not necessarily be the first
choice. The extent of P;’s contribution to the reconstruction
of the gallery dictionary elements gives additional informa-
tion about the similarity between the probe and each gallery
identity. Though the reverse sparse representation might
also present ambiguities, it usually involves a slightly dif-
ferent small group of people in which case combining both
sparse representation residual errors will favor commun el-
ements. Combining both sparse representations helps lever-
aging ambiguities for similar people. This is illustrated in
the overview of our method in Figure 1.

3.5. Choice of D

Given a test identity [ captured with the probe camera,
the idea of the reverse sparse representation is to find the
gallery identities &k for whose reconstruction the test iden-
tity [ participates the most when competing against some

other identities. We denote D; the features associated to the
identities that are competing against P;.

In SBSR, all probe images are available at testing time,
so Py competes against { P }y¢[j1,..., x|)\; in the reconstruc-
tion of gallery elements G, i.e.

Dy =[|I,..

'a-Pl—17-F)l+17"'7PK|] (7)

When test elements arrive one by one, P is unavailable
when testing identity [ for I’ # [, so another choice for D;
is needed. In our ABSR method, the choice we make is to
form a generic dictionary D by selecting one image from
the probe camera for each person in a known training set,
ie.

Vl, Dl =D= [|Pt7"1 ) --'}th’zu ” (8)

where tr; refers to the i*" identity of the training set which
contains images from M people. With this choice, D
should be varied enough to represent well every gallery
identity. Features in D and P, are extracted from the same
camera, allowing a fair competition between identities. On
the contrary, if D contains features extracted from gallery
camera images, while P, comes from the probe camera, the
reconstruction of G will be biased, favoring images cap-
tured with the gallery camera which have similar color ren-
dering, pose and viewpoint, rather than focusing on the dif-
ference between people.

4. Experimental results
4.1. Implementations details and feature extraction

Optimization. The optimizations problems presented in
Eq. (1), Eq. (3) and Eq. (4) are £;-norm minimization
problems. They can be solved using proximal algorithms.
We used the SPAMS library '.

Parameters. The parameters A and ~ have been set to 0.2
in all our experiments.

Features. Images arc resized to 128 x 64 pixels and we ex-
tract state-of-the art LOMO features [20]. Distance metric
learning method XQDA [20] is applied to training set fea-
tures giving a symmetric definite positive matrix M that can
be decomposed into M = LT L. Our final base features are
LOMO features projected into a lower dimensional space
by the projection matrix L and normalized to unit £o-norm.

4.2. Datasets and evaluation protocol

CUHKO03. The CUHKO3 dataset is composed of two sets
of 13164 images of 1360 people captured by 6 cameras in a
university campus. One set of images forms the CUHKO03
detected dataset, and the other set forms the CUHKO3 la-
beled dataset. In the first case, the bounding boxes have
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been automatically found by a detector, while in the second
case, the bounding boxes have been manually labeled. Each
person is observed by one of the three pairs of cameras and
has an average of 4.8 images in each camera view. We adopt
the same 20 splitings as in [17] with 100 identities for test-
ing and 1260 identities for training. However, instead of the
single-shot test settings usually used, we adopt a multi-shot
protocol using all the available images in both probe and
gallery cameras as described in subsection 4.3.
iLIDS-VID. iLIDS-VID contains sequences of images
of 300 people captured by 2 cameras in a busy airport,
so the main difficulty comes from the occlusions. The
sequences have variable length (22 to 192 images). We
use 10 random splits of our data into training and testing
sets, each containing images of 150 identities. We adopt a
multi-shot protocol using all the images of the sequences.

4.3. Results.

We use CMC, Cumulative Match Curve, to evaluate the
performance of our method. A CMC curve shows for every
rank 7 the percentage of people well recognised at any rank
smaller or equal to r.

Multi-shot protocol on CUHKO03. Our bidirection-
nal sparse representations approach is a multi-shot method,
so instead of using the usual single-shot protocol on the
CUHKO3 dataset, we will compare our method with the
multi-shot results that we computed using the XQDA ap-
proach [20] whose code is available online. The Figure
2 shows the CMC on the CUHKO3 detected dataset for
four testing protocols (SvsS, MvsS, SvsM and MvsM) using
only the XQDA metric learning approach. The letters S and
M stand for Single-shot and Multiple-shots. The first letter
corresponds to images in the probe camera and the second
one to those in the gallery camera. Thus MvsS (Multiple
versus Single) means that for each person, several images
from the probe camera are available but only one from the
gallery camera is. In [20], the multi-shot protocol is not
clearly specified, here we defined the distance between a
probe identity and a gallery identity as the average distance
between every pair of features from those two identities in
the corresponding camera. The Figure 2 clearly shows how
useful it is to have several images of the same person. With
the SvsS protocol, the XQDA method yields 47.3% at first
rank and up to 65.7% for the MvsM protocol.

Robustness of the ABSR approach. For CUHKO3 de-
tected, CUHKO3 labeled and iLIDS-VID, we can see re-
spectively in Tables 1, 2 and 3 that compared to simple
metric learning XQDA, using Lasso sparse representation
after the XQDA metric step, greatly improves first rank
re-identification rate with a 4% or 5% raise for CUHKO03
datascts and 9% for iLIDS-VID compared to XQDA only.
Using our ABSR approach we further obtain a 3% increase

0.9 -

o
)
T

o
3

o
o

Recognition rate

—47.3% SvsS

——53.0% MvsS
58.3% SvsM
—65.7% MvsM

0.5

04 I I I I I
2 4 6 8 10 12 14 16 18 20

Rank

Figure 2. CMCs on CUHKO3 detected. Results for different test-
ing protocols: SvsS (Single vs Single), MvsS (Multi-shot in probe,
Single-shot for gallery), SvsM (Single-shot in probe, Multi-shot in
gallery), MvsM (Multi-shot in both probe and gallery).

| Method || Rank 1 | Rank 5 | Rank 10 | Rank 20 |

XQDA [20] 65.7 91.5 95.6 97.8
Lasso + XQDA 70.6 92.0 96.2 97.6
ABSR + XQDA || 74.1 92.5 96.6 98.1
SBSR + XQDA || 77.8 94.5 97.6 98.9

Table 1. CMC scores at ranks 1, 5, 10 and 20 on CUHKO3 de-
tected. Best and second best results are in bold. SBSR is in gray
since it requires all testing images at testing time.

on all three datasets. Overall with a multi-shot protocol, our
ABSR + XQDA method outperforms XQDA method alone
by 8.4% on CUHKO3 detected, by 6.9% on CUHKO3 la-
beled and by 12.1% on iLIDS-VID. On iLIDS-VID, we also
compared our method with recent state-of-the art papers.
The results are reported from the papers [14, 19, 32, 34],
we did not recompute their code on the same 10 random
partitions that we used for our experiments, but since re-
sults are averaged over 10 random partitions, the results
should be representative enough of the performances of
each approach. Combining our bidirectional sparse repre-
sentation matching method with metric learning XQDA, we
clearly surpass AFDA [19] (37.5%) and MTL-LORAE [32]
(43.0%) on iLIDS-VID dataset.

Influence of dictionary D. With our simple choice for
D, Tables 1, 2 and 3 already show a 3% improvement
for ABSR over Lasso for rank-1 recognition rate on all
tested datasets. If all the probe images corresponding to the
gallery identities are available at testing time, we can gain
up to 7% at first rank with SBSR compared to Lasso. Ta-
ble 4 presents experiments conducted on CUHKO3 detected



| Method || Rank 1 | Rank 5 [ Rank 10 | Rank 20 |

XQDA [20] 70.4 93.9 972 98.8
Lasso + XQDA 74.5 94.5 97.0 97.9
ABSR + XQDA || 77.3 95.2 97.4 98.6
SBSR + XQDA || 81.4 96.5 98.1 98.7

Table 2. CMC scores at ranks 1, 5, 10 and 20 on CUHKO03 labeled.
Best and second best results are in bold. SBSR can be applied only
if all testing images are available at testing time, so it is in gray.

| Method || Rank 1 | Rank 5 [ Rank 10 [ Rank 20 |
DVDL* [14] 259 48.2 57.3 68.9
AFDA* [19] 37.5 62.7 73.3 81.8
DVR* [34] 39.5 61.1 71.7 81.0
MTL-LORAE*[32] 43.0 60.0 70.2 85.3
XQDA [20] 53.0 78.5 86.9 93.4
Lasso + XQDA 62.6 84.8 90.6 94.9
ABSR + XQDA 65.1 86.8 929 96.6
SBSR + XQDA 68.5 87.9 93.0 96.3

Table 3. CMC scores at ranks 1, 5, 10 and 20 on iLIDS-VID. Best
and second best results are in bold. SBSR is in gray since it can
be applied only if all testing images are available at testing time.
* refers to results reproduced from the quoted papers, they might
not have been computed with the same partitions.

[nlds || 50 [ 75 | 100 | 200 | 300 [ 400 |500 |
rank 1[[ 723727731 [73.9 [ 740 [ 740 [ 742
nlds [[ 600 [ 700 [ 800 [ 900 [ 1000 [ 1100 ] 1200
[rank 1 [[ 743742740742 [74.0] 741 [ 740 |

Table 4. Comparison of first rank recognition rate on CUHKO3
detected for different number of training identities represented in
the generic dictionary D.

where the number of identities in the dictionary D varies.
For each partition, the tests are computed for 10 random se-
lections of s identities out of 1260 training identities, with
s varying from 50 to 1260. Randomly selecting only 200
identities already seems to make D a generic dictionary.

Influence of features. The results discussed so far in-
volved LOMO features on which a supervised transforma-
tion had already been performed. To assess the effective-
ness of our approach, we also tested it with raw LOMO
features, another feature and its XQDA transformed ver-
sion. We chose a simple feature: HS (8 x 8 bins) and RGB
(4 x 4 x 4 bins) histograms are extracted from stripes of
16 pixels height with an overlap of 8 pixels and concate-
nated, resulting in a 1960 dimensional feature. The results
for CUHKO3 detected are summarized in Figure 3 and Ta-
ble 1. The same trend can be observed for every tested fea-
ture: ABSR performs better than Lasso. For raw LOMO
features, the first rank recognition for Euclidean distance is
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Figure 3. CMCs on CUHKO3 detected for the MvsM proto-
col. Comparison of Euclidean distance, Lasso, ABSR, SBSR for
LOMO and HSRGB features and their XQDA projected version.

only 12.0%, while using Lasso, it is raised up to 23.4%, and
with our ABSR method, it becomes 29.3%. Even if using
only XQDA metric learning with LOMO features already
achieves 65.7% recognition rate at first rank, combining it
with ABSR further increases performances to 74.1%.

5. Conclusions

In this paper, we presented two variants of our bidi-
rectional sparse representation method for person re-
identification: a symmetric one (SBSR) and an asymmet-
ric one (ABSR). These approaches aim at improving the
matching step in the person re-identification task, and can
be applied with any feature. The idea is to exploit the ro-
bustness of sparse coding using a bidirectional scheme. We
solve the Lasso problem in the traditional way by recon-
structing probe elements with gallery dictionary, but also
in the other way round by reconstructing gallery elements
with probe elements completed by a generic dictionary. We
showed with two different raw features that our BSR meth-
ods indeed improve performances by raising the first rank
recognition by more than 15% compared to Euclidean dis-
tance. When applied to state-of the art-feature LOMO com-
bined with the XQDA metric learning step, we also man-
age to get a 8.4% increase in recognition rate compared to
XQDA alone. Overall, our method outperforms state-of-
the art methods for multi-shot protocols on both CUHKO03
and iLIDS-VID datasets with a first rank recognition rate of
74.1% for CUHKO3 detected, 77.3% for CUHK labeled and
65.1% for iLIDS-VID. Future work will focus on learning
a better generic dictionary and on tackling the much harder
problem of open-world person re-identification.
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