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Abstract— Commercialized upper limb prostheses do not
match the expectations of amputated people, especially tran-
shumeral amputees. Most of them report a lack of function-
ality, mostly explained by a counter-intuitive control strategy.
This paper presents the first implementation of an automatic
prosthesis control approach based on natural coordinations
between upper limb joints and IMU-based humeral orientation
measurement. Two healthy individuals were able to use the
prosthetic forearm attached to their upper arm to point at
targets in a 3D workspace with a reasonable error. The results
demonstrate the potential applications of automatizing the
motion of some joints along the upper limb, in the same way
as human upper limbs are controlled.

I. INTRODUCTION

For the past five years, the progress in mechatronics has
made possible the development of more and more anthro-
pomorphic prosthetic limbs, especially prosthetic hands [1].
This has led to a growing attention toward the field of
upper limb prosthetics from the public and the research
community. However, among commercialized solutions, few
have been developed for patients with transhumeral or higher
amputation levels: there are passive prosthetic elbows, like
the 12K44 ErgoArm R©Hybrid Plus (Ottobock c©) that can be
manually locked into a desired position, and active prosthetic
elbows, like the DynamicArm 12K100 (Ottobock c©), and
the UtahArm3+ (Motion Control, Inc.). Most transhumeral
amputees report that their prosthesis is lacking functionality,
and does not provide the expected assistance in Activities
of the Daily Living (ADLs) [2]. Counter-intuitive control is
often cited as a limiting factor for prosthesis usage.

Myoelectric control is the most common method to control
an externally-powered prosthetic upper limb [3]. Due to
myoelectric signal-related issues, this method has been used
for a long time as an on/off control strategy, even if more
advanced methods have been developed in the last decades
[4]. Although the control complexity increases with the am-
putation level and the number of degrees of freedom (DoFs)
to control, the same on/off control strategy is applied to
forearm and arm prostheses, yielding a dimensionality issue
with more controllable outputs than control inputs. Trans-
humeral prosthesis users eventually achieve good control of
hand and wrist, but have difficulties in general when an
active myoelectric elbow is added to the prosthetic arm. Arm
amputation level influences strongly the ability of a person
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to perform ADLs, and compared to lower amputation lev-
els, the compensatory strategies developed by transhumeral
amputees to overcome the impairment involve significantly
more the rest of the body, causing shoulder, back, and
contralateral limb disorders [5]. Numerous studies have in-
vestigated alternatives to myoelectric control, such as control
strategies involving ultrasound signals [6], myokinemetric
signal [7], myokinetic signals [8], mechanomyographic sig-
nals [9], and residual limb motion [10], [11]. One possible
and yet less explored solution relies on the use of residual
limb motion and the knowledge of human upper limb motor
control to design a more natural control strategy.

The human upper limb is characterized by its number of
DoFs (9, including scapula elevation and protraction), greater
than the number required to position and orientate the hand
in a 3D space: given a hand position (3 constrained DoFs
for the end-effector), there exist more than one solution for
the arm joint kinematics. Upper limb prosthetics are built
with numerous DoFs in order to duplicate the human arm
mobility. A big issue of replicating the human upper limb
behavior is to find the most natural kinematic solution for
the given number of DoFs despite the redundancy of human
arm motion. Instead of considering motor control as a single-
input (neural signal)-single output (one muscle) control
scheme, human arm motion is explained in several studies
by a coordination between joint kinematics that depends on
the performed task [12], [13]. Previous analyses of upper
limb movements during reaching or grasping tasks have
shown evidence of recurrent patterns in joint kinematics, for
instance between wrist and fingers [14], as well as between
movement direction and hand azimuth [15], and humeral
inclination and elbow flexion [16]. This coordinated joint
motion yields intuitive upper limb motion where one focuses
only on hand action.

Since intuitiveness is a thought characteristic for prosthetic
control, the joint coordination approach is a promising so-
lution in which a prosthetic joint is controlled automatically
based on inter-joint relationships without having the user’s
intention expressed explicitly [17]. To this aim, researchers
have applied several regression tools in order to map prox-
imal to distal joints motion. Principal Component Analysis
(PCA) is a common method, although linear, to model inter-
joint relationships: it is applied in [18] to predict lower
limb distal joint motion. Although prosthetic lower limbs are
active as well, their control scheme uses the repeatability of
human walking pattern, and thus, it is easier to predict the
knee motion based on the analysis of the healthy contralateral
lower limb joints. Prediction of upper limb distal joints



is complicated by the fact that the system does not know
what activity the user wants to perform with its prosthetic
hand; hence, one solution is to make a different model
for each type of task (e.g. reaching). Since the function
that relates upper limb kinematics is likely to be nonlin-
ear, Artificial Neural Networks (ANNs) are best suited to
approximate the relationship between shoulder and elbow
kinematics. An ANN architecture is tested in [19] to predict
distal joint kinematics; the selected ANN inputs require
the measurement of 3 shoulder angles (humeral inclination,
humeral longitudinal axis direction, humeral rotation), and
2 shoulder translations (shoulder elevation/depression and
protraction/retraction), which is difficult to achieve outside a
laboratory environment. Upper limb inter-joint coordinations
for various ADLs are modeled in [20] using Radial Basis
Function Networks (RBFNs), but the manipulated objects
positions remain in a 2D workspace, and the established
model requires that the direction the prosthesis user wants to
point is known prior to movement initiation. Popović et al. in
[21] fed a similar ANN architecture with goniometers-based
upper limb measures to investigate the coupling between
shoulder and elbow angular velocities. Nonetheless, none of
these methods has been tested in a real case scenario, when
camera-based motion capture systems are not available.

This paper presents an automatic elbow control method
based on natural coordinations between shoulder and elbow
kinematics: as healthy individuals would use their upper
limbs, prosthesis wearers focus only on controlling the end
effector with voluntary myoelectric control for instance,
while the intermediate joints like a prosthetic elbow are
simultaneously and automatically controlled with residual
limb motion. Previous results have shown that elbow motion
could be predicted based on IMU-based residual limb motion
measurement [22]. In the present study, a 1-DoF prosthetic
elbow prototype that can be fitted on healthy subjects was
built, and in this first experimental evaluation, two healthy
individuals performed a 3D pointing task with the modified
prosthetic forearm driven by this novel IMU-based control
approach.

II. METHODS

Two able-bodied right-handed individuals (males, age 24
and 27, height 182 and 183 cm) participated in the study.
Subjects provided written informed consent to participate
in the study, performed in accordance with the Declaration
of Helsinki. The experimental session was divided in two
consecutive parts: the training data acquisition and the con-
trol test. The first part consisted in recording natural upper
limb pointing movements. Training data set was then used to
build the subject’s inter-joint coordinations model that was
utilized during the second half of the experiment to control
a prosthetic elbow in a reaching task.

A. Prosthetic elbow

The participants were equipped with a prosthetic elbow
(Fig. 1A), a 1-DoF prototype that was designed based on

the functional characteristics of commercialized active elbow
prostheses.

The prototype is made of an aluminum structure with a
forearm shape and is actuated by a brushless Maxon geared
motor (12V EC-max 30 with a GP32C planetary gearhead
with a 159:1 ratio) and a couple of spiral bevel gears (1:1
gear ratio). The prosthetic elbow prototype is able to generate
a joint nominal torque of 5.5 Nm at a nominal speed of 250
deg/s (41.7 rpm). It is velocity driven by an EC motor drive
Elmo Whistle 2.5/60 (Elmo Motion Control, Ltd.) thanks
to an optical encoder (AMT 103, 2048 PPR) placed on the
motor rear shaft. The weight of the prosthetic elbow is 745g
(without batteries, since it was externally powered during
the experiments) and reached 1140g considering the extra
weight of the elbow orthosis on which the prosthetic forearm
was attached. The orthosis was installed on the subjects such
that the prosthesis rotation axis was aligned with the elbow
flexion/extension axis.

The prosthesis is controlled by a Raspberry Pi, which
controls the motor driver and reads the data from an x-
IMU (x-io Technologies, Ltd.) placed on the subject’s arm
(Fig. 1A). The inertial sensor measures upper arm orientation
represented as quaternions using the embedded sensor fusion
algorithm AHRS (Attitude Heading Reference System) [23].
The x-IMU is reset at the beginning of each experimental
session, and its position remains unchanged during the whole
experiment. The IMU data output rate is 256 Hz.

B. Experimental setup

The experimental setup is illustrated in Fig. 1A where
the subjects are pointing at targets while sitting on a chair.
The participants wore a wrist splint, designed for sport
activities, to prevent wrist flexion. They used a rod rigidly
attached to the wrist splint’s back or to the prosthesis to
reach the targets. The targets were represented by a bright
push button mounted on a 7-DoF robotic arm (WAMTM arm,
Barrett Technology, Inc.); they were randomly presented to
the subjects, who could not predict the target locations since
they were shown only one at a time.

For analysis purpose (since control uses exclusively IMU
data), upper limb motion was recorded with a camera-based
motion capture system, Codamotion (Charnwood Dynamics,
Ltd.), with an acquisition frequency of 100 Hz. Two cameras
and 8 markers were used in the setup: 7 markers were
placed on the subjects’ arm and forearm, the eighth marker
measured the prosthesis rod position, as depicted in Fig. 1A2.

C. Experimental protocol

1) Acquisition of training data: During the first part of
the experiment, the task was to point at 19 targets located in
front of the subjects. In order to account for the constant
distance between the two pointing rods (Fig. 1A2), the
subjects were asked to reach a target located on the left
border of a disk which was centered on the WAM robotic arm
target (Fig. 1A). Targets were located within a workspace
of size 20x60x60 cm3, as shown in Fig. 1C. Subject-robot
distance was adjusted prior to the session such that the



Fig. 1. A: Experimental setup. The elbow prosthesis, to which an IMU is connected, was mounted on an upper limb orthosis attached to the participants’
arm and forearm. The subjects were pointing at a target with a rod rigidly attached to a wrist splint during the training data acquisition (A1) or to a
prosthetic elbow prototype fixed to his arm during the control test (A2). The target was presented to the subject by a WAM robotic arm. The subjects were
equipped with Codamotion markers. B: Anatomical angles γ, α, β describe the upper limb posture. C: Positions of the 19 targets to which the subjects
pointed at during the trials. The star-shaped marker denotes the shoulder location. Kinematics information from numbered targets was included in the
training data set.

subjects could reach all targets. The subjects were asked
not to move their trunk during the experiment, but were not
physically constrained. The starting position, to which they
had to come back after every movement, was defined after
all sensors were placed on the subjects: the participants were
sitting on a chair, with their forearm resting on the armrest
(Fig. 1A). Since inter-joint coordinations are influenced by
the external weight applied on the upper limb segments,
the prosthesis was attached to the subjects even during the
training data acquisition (Fig. 1A1), but in an inactive mode
(locked into an extended position). No particular instruction
on movement duration or speed was given to the participants.
For each target, the subjects stayed for 2 seconds at the
starting position, went towards the target, pushed the button
with the rod tip, stayed immobile for 2 seconds, and went
back to the starting position, while the WAM robotic arm was
moving its end effector to the next target location. During
this first part, the IMU was connected to a computer to record
arm kinematics while the participants performed natural
pointing movements. One trial of 19 pointing movements
was performed three times.

2) Building the RBFN-based regression model: Data from
the two measurement systems, Codamotion and IMU, were
synchronized offline. In order to describe the arm posture, the
shoulder and elbow angles introduced in [24] and illustrated
in Fig. 1B were utilized with the following notation: γ, the
direction angle, characterized the humerus pointing direction,
α, the inclination angle, represented the angle between the
humeral longitudinal axis and the trunk vertical axis, and β
described the elbow flexion angle. For instance, the angular
configuration (γ,α,β) is (0,90,0) deg in right lateral shoulder

abduction with maximal arm extension.

Shoulder angles were derived from x-IMU data, while
the elbow angular position was derived from the Codamo-
tion system. Shoulder and elbow angular velocities were
numerically computed from angular position measurements.
An RBFN-based regression, described in [25] and imple-
mented in a Matlab script, was performed offline to model
the inter-joint relationship between (γ̇,α̇) and β̇, using the
kinematic information from 10 out of the 19 targets (Fig.
1C). Building the inter-joint coordination model comprises
two offline steps: the training phase that uses a training data
set (measured set of triplets (γ̇,α̇,β̇)) from 2 out of 3 trials to
approximate the nonlinear function that relates shoulder kine-
matics to the elbow angular velocity, and the testing phase
that uses the approximated function and measured shoulder
kinematics (γ̇,α̇) from the remaining trial to estimate offline
the elbow angular velocity. The training data set that yielded
the best offline estimation results was selected to build the
online model.

3) Control of prosthesis: The model built with the training
data set was used as a control law for the prosthesis motor.
During the second part of the experimental session, the IMU
was connected to the prosthesis controller that ran the em-
bedded RBFN-based regression algorithm: based on training
parameters, the control algorithm converted the inertial data
into a desired elbow angular velocity value that was sent to
the motor controller. The participants forearms were blocked
into a constant position with the lockable elbow orthosis;
hence, only their arm, which the prosthesis was fixed to, was
mobile (Fig. IA2). The subjects pointed at the same targets as
previously using a rod that extended the prosthetic forearm



(Fig. 1A2). They received the instruction to bring the rod
tip the closest to the target by moving their arm, and if they
could, to press the button. For each target, the subjects started
the movement, went toward the target, stayed immobile for
2 seconds (Fig. 2), then came back to the initial position,
and stayed immobile for 2 seconds while the WAM robotic
arm moved the target to the next location and the prosthesis
came back automatically to the initial position, chosen at the
beginning of the control test (Fig. 1A2).

D. Analysis

Several metrics were computed to evaluate the subjects
performance in controlling the prosthetic elbow to reach
the targets. The functional performance of each subject was
assessed by the precision error, that was defined as the 3D
distance between the tip of the rod attached to the prosthesis
and the target when the subjects reached the target or when
the movement stopped, and the movement duration, that was
the time needed for the subjects to reach the target. The
movement duration was also computed for the first training
trial, and was used as reference (natural movements). Natural
and prosthetic elbow flexion motion were compared, and
shoulder, scapula and trunk linear displacements were also
analyzed to quantify eventual compensatory movements.

III. RESULTS

A. Offline testing

In the model validation process, the RBFN-based re-
gression model was obtained by mapping the IMU shoul-
der/Codamotion elbow data from 2 out of the 3 training
trials for each subjects, and was used with IMU shoul-
der kinematics from the third trial to predict the elbow
angular velocity offline. The regression algorithm perfor-
mance was assessed by comparing the predicted angular
velocities with the Codamotion-based measurements for each
target numbered in Fig. 1C. Table I groups the Root Mean
Square (RMS) error between measured and estimated elbow
angular velocity RMSvel, the relative error between the
peak values of measured and predicted velocities Errpeak,
the RMS error between measured and reconstructed elbow
angle from integrated predicted angular velocity RMSpos,
and the relative error between the measured and estimated
final angular positions (when the hand reaches the target)
Errfinal, averaged over the 3 trials and all targets. The
overall predicted angular position error was less than 15 deg
for both subjects, and was equal to 12.6% ± 6.6% for Subject
1, and 18.4% ± 14.5% for Subject 2, of final elbow position.

B. Online control test

Each subject was asked to use the prosthesis to point at
targets while their forearm was locked into a fixed position.
The RBFN-based regression algorithm computed in real time
the elbow angular velocity using the training parameters and
the shoulder angular velocity (γ̇, α̇) derived from the online
IMU measurement. The calculated elbow angular velocity
was sent as control signal to the motor controller; an instance

Angular velocity errors Angular position error
RMSvel (deg/s) Errpeak (%) RMSpos (deg) Errfinal (%)

Subject 1 13.2 ± 3.11 32.97 ± 12.5 7.96 ± 2.04 12.48 ± 6.55
Subject 2 11.9 ± 4.78 28.74 ± 19.08 11.4 ± 8.85 18.43 ± 14.47

TABLE I
OFFLINE VALIDATION: RESULTS OF COMPARISON BETWEEN ESTIMATED

AND MEASURED ELBOW ANGULAR VELOCITY

of (γ̇,α̇,β̇) from one reaching movement with prosthesis is
depicted in Fig. 2.

The task performance was assessed with the precision
error and the duration time. The precision error (Fig. 3A)
between the position reached by the prosthesis end tool and
the target, averaged over all targets, was 1.5 cm ± 1.2 cm for
Subject 1, and 6.4 cm± 5.8 cm for Subject 2. For each target,
the time needed to reach the target with the rod attached to
the prosthesis (control test) and the time needed to reach the
target with the rod attached to the hand (natural movements)
are calculated and the values are depicted in Fig. 3B. The
overall time to reach a target naturally was 1.56 s ± 0.20
s for Subject 1, and 1.37 s ± 0.12 s for Subject 2, while
using the prosthesis, the duration time was 2.33 s ± 0.42 s
for Subject 1, and 1.64 s ± 0.35 s for Subject 2.

Elbow ranges of motion were computed for both types
of movements: the elbow flexion angle varied between 0.02
deg and 44.3 deg for Subject 1 (resp. between 9.2 deg and
48.8 deg for Subject 2) during natural pointing movements,
and varied between 18.6 deg and 52.6 deg (resp. between
11.1 deg and 55.0 deg) when the prosthesis was used
for the pointing task. Difference values between final and
initial elbow angle are depicted in Fig. 3C. The shoulder
displacements were analyzed with the motion capture system
recordings during natural pointing movements and reaching
movements using the prosthesis. Natural movements and
movements when the subjects are controlling the prosthesis
were first processed separately: for both types of movements,
the 3D shoulder displacement, calculated between initial and
final positions (see Fig. 1A), was defined as dnatural =

Fig. 2. Embedded algorithm’s inputs and output signals for one movement
of Subject 1 toward target 19. The IMU-based shoulder angular velocities
measurements (solid grey and dotted black lines) are utilized by the RBFN-
based regression algorithm to compute online the elbow angular velocity
(solid line with round markers).



Fig. 3. Reaching task assessment for the two participants. Movements are compared to natural movements from the first training trial, and results show
that the movement strategy is changing when pointing at targets using a prosthesis.

Mfinal −Minitial, dprosthesis = Mfinal −Minitial, where
Minitial ∈ R3 (resp. Mfinal ∈ R3) denoted the shoulder
marker position when the subjects started the movement
(resp. reached the target or stopped the movement), and
dnatural ∈ R3 (resp. dprosthesis ∈ R3) denoted the distance
between initial and final shoulder positions when the subjects
reached the target naturally (resp. when the subjects used the
prosthesis to point at one target). The value dshoulder ∈ R3,
defined as dshoulder = dprosthesis − dnatural, represented
the difference between the shoulder displacement during
a natural movement and the shoulder displacement while
controlling the prosthesis. The values are depicted in Fig.
3D. Averaged over all movements, the displacement along
the forward direction (X axis) was 3.5 cm ± 4.5 cm for
Subject 1, and 7.9 cm ± 3.1 cm for Subject 2.

IV. DISCUSSION

Two healthy participants succeeded in using a prosthetic
elbow, on which their own inter-joint coordination model
was implemented as control law, to reach targets in a 3D
workspace. The control law was modeled based on record-
ings of healthy pointing movements prior to the control test
using a RBFN-based regression method. To the authors’
knowledge, this is the first reported automatic control im-
plementation that uses IMU-based input signals and upper
limb inter-joint coordination to control a prosthetic elbow.
The approach to build the inter-joint coordination model
was chosen to be realistic: the present setup had 19 testing
targets, 10 of which were also used for training the algorithm.
The fact that the subjects could point at targets that were
not included in the training data set demonstrate the spatial
generalization property of the presented control method. The

precision error was very encouraging for Subject 1 (less than
2 cm, knowing that the target diameter itself was 2 cm).

It is clear from Fig. 3 that the two participants performed
differently when using the prosthesis: Subject 1 succeeded in
reaching 16 targets out of 19 with an overall error of 1.5 cm
± 1.2 cm, while Subject 2 reached 9 targets with an overall
error of 6.4 cm ± 5.8 cm. Although movement durations
were similar for both subjects during natural reaching move-
ments, they increased more for Subject 1 than for Subject 2
when both used the prosthesis to point at the targets. This
suggests that Subject 1 adapted his behavior to the task
by slowing down his arm motion. There is an important
difference between the ranges of motion of the natural and
the prosthetic elbow, supporting the fact the subjects used
different strategies to achieve the task by controlling the
prosthesis. The shoulder displacement analysis confirm this
hypothesis. The difference in shoulder displacements during
natural movements and movements with the prosthesis are
dominant in the forward direction: there is more shoulder
forward motion when the subjects use the prosthesis to
achieve the task. Subject 2, who did not adjust his motion
timing, modified his upper body motion in order to reach
a target: the difference of shoulder displacements along the
X-axis during natural movements and movements with the
prosthesis is 3.5 cm ± 4.5 cm for Subject 1, and 7.9 cm ±
3.1 cm for Subject 2.

Natural reaching movements are usually decomposed in
two phases: at first, the Central Nervous System (CNS)
controls in an open-loop manner the hand such that it reaches
approximately the desired location, then a fine, slower,
closed-loop control permits the individual to adjust precisely



the hand’s position and orientation. It seems that Subject
2, even though he was not performing natural movements
anymore, used this ballistic strategy to control his upper
arm to reach a target: his movement duration were similar
to natural times, and the compensatory strategy proves that
the upper body was involved to compensate for a mismatch
between prosthesis motion and expected forearm motion. A
more careful control of prosthesis end tool was applied by
Subject 1 who slowed his upper arm motion; since the targets
could be reached with the prosthesis, less compensatory
movements were needed. Further analysis of compensation
strategies will be developed in the future work.

V. CONCLUSIONS AND FUTURE WORK

In this study, healthy individuals succeeded in using a
prosthetic forearm (motorized elbow to which was attached
a pointing rod) to reach targets in a 3D workspace; the
prosthetic elbow motion responded automatically to the
subjects’ upper arm motion. To this aim, an inter-joint
coordination model from the subjects was implemented on
the prosthesis controller that relied on the signals of an
IMU, hence removing the constraints related to myoelectric
control; the IMU will be directly attached to the prosthesis
socket in future designs. The presented control strategy is
intuitive since the prosthesis is controlled by a model of
natural upper arm movements. The participants recruited in
this study did not learn how to control the prosthesis prior
to the experimental session: the reported results correspond
to their first and only trial. Therefore better results could be
expected with short training. In future studies, more IMUs
will be involved in the control method in order to be robust
to body movements such as walking or bending. In addition,
a quantification of the effects of inertial sensors drift will be
performed.

Since the inter-joint coordinations cannot be modeled on
transhumeral amputees, future efforts will also be focused on
the determination of a generic model that will be used with
patients. This automatic control method yields promising re-
sults, and could be combined with conventional end-effector
myoelectric control to achieve simultaneous control of hand
and elbow. Therefore, future investigations will involve more
generic ADLs including grasping.
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[6] D. S. González and C. Castellini, “A realistic implementation of
ultrasound imaging as a human-machine interface for upper-limb
amputees,” Front. Neurorobot., vol. 7, 2013.

[7] R. L. Abboudi, C. Glass, N. Newby, J. Flint, W. Craelius, et al.,
“A biomimetic controller for a multifinger prosthesis,” IEEE Trans.
Rehabil. Eng., vol. 7, no. 2, pp. 121–129, 1999.

[8] M. Kuttuva, G. Burdea, J. Flint, and W. Craelius, “Manipulation
practice for upper-limb amputees using virtual reality,” Presence
(Camb), vol. 14, no. 2, pp. 175–182, 2005.

[9] J. Silva, W. Heim, and T. Chau, “A self-contained,
mechanomyography-driven externally powered prosthesis,” Arch.
Phys. Med. Rehabil., vol. 86, no. 10, pp. 2066–2070, 2005.

[10] Y. Losier, K. Englehart, and B. Hudgins, “Evaluation of shoulder
complex motion-based input strategies for endpoint prosthetic-limb
control using dual-task paradigm,” J. Rehabil. Res Dev., vol. 48, no. 6,
p. 669, 2011.

[11] R. D. Lipschutz, B. Lock, J. Sensinger, A. E. Schultz, and T. A.
Kuiken, “Use of a two-axis joystick for control of externally powered,
shoulder disarticulation prostheses,” J. Rehabil. Res. Dev., vol. 48,
no. 6, p. 661, 2011.

[12] J. Soechting and F. Lacquaniti, “Invariant characteristics of a pointing
movement in man,” J. Neurosci., vol. 1, no. 7, pp. 710–720, 1981.

[13] M. Desmurget and C. Prablanc, “Postural control of three-dimensional
prehension movements,” J. Neurophysiol., vol. 77, no. 1, pp. 452–464,
1997.

[14] Y. Paulignan, C. MacKenzie, R. Marteniuk, and M. Jeannerod, “The
coupling of arm and finger movements during prehension,” Exp. Brain
Res., vol. 79, no. 2, pp. 431–435, 1990.

[15] A. Roby-Brami, N. Bennis, M. Mokhtari, and P. Baraduc, “Hand
orientation for grasping depends on the direction of the reaching
movement,” Brain Res., vol. 869, no. 1, pp. 121–129, 2000.

[16] F. Lacquaniti and J. F. Soechting, “Coordination of arm and wrist
motion during a reaching task,” J. Neurosci., vol. 2, no. 4, pp. 399–
408, 1982.

[17] F. Montagnani, M. Controzzi, and C. Cipriani, “Exploiting arm posture
synergies in activities of daily living to control the wrist rotation in
upper limb prostheses: A feasibility study,” in EMBC, pp. 2462–2465,
2015.

[18] H. Vallery and M. Buss, “Complementary limb motion estimation
based on interjoint coordination using principal components analysis,”
in Computer Aided Control System Design, pp. 933–938, 2006.

[19] R. R. Kaliki, R. Davoodi, and G. E. Loeb, “Evaluation of a noninvasive
command scheme for upper-limb prostheses in a virtual reality reach
and grasp task,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 792–
802, 2013.

[20] S. D. Iftime, L. L. Egsgaard, and M. B. Popović, “Automatic determi-
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[21] M. Popović and D. Popović, “Cloning biological synergies improves
control of elbow neuroprostheses,” IEEE Eng. Med. Biol. Mag.,
vol. 20, no. 1, pp. 74–81, 2001.

[22] M. Merad, A. Roby-Brami, and N. Jarrassé, “Towards the imple-
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