
Implementation of haptic communication in comanipulative tasks: a
statistical state machine model

Lucas Roche1 and Ludovic Saint-Bauzel1

Abstract— This paper presents an experimental evaluation
of physical human-human interaction in lightweight condition
using a one degree of freedom robotized setup. It explores
possible origins of Physical Human-Human communication,
more precisely, the hypothesis of a time based communication.
To explore if the communication is correlated to time a,
statistical state machine model based on physical Human-
Human interaction is proposed. The model is tested with 14
subjects and presents results that are close to human-human
performances.

I. INTRODUCTION

Robotic devices have progressed from fully autonomous
robots to systems that can share their actions with humans.
Due to the dangerous nature of rigid high-velocity robots,
their environment used to be constrained, and human pres-
ence restricted during operation. But recent developments
and proofs of safety have brought back the human in the
robot workspace. Robots are now more often bound to work
alongside humans and to cooperate with them to accomplish
a wide range of tasks[1]. This cooperation often implies co-
manipulation, and hence interaction via direct – or indirect
– physical contact.

This contact between humans and robots brings many
issues into the design of robots. Indeed, the complexity
of human behavior makes us unpredictable for machines.
Peshkin et al. have proposed numerous robot designs called
cobots[1], which are currently able to work alongside the
human operator. The issues of human-robot contact are there
addressed using various impedance control methods [2].
Impedance control allows disturbance rejection and uncer-
tainty management, and has been proven extremely efficient,
from industry to medical robots.

In physical human-human co-manipulation, the role dis-
tribution amongst the partners is important to achieve the
task. Jarassé et al.[3] explain that multiple role combinations
can be used efficiently. According to their framework, a
co-manipulative task can be defined as a cooperative task
in which a follower/leader approach is an optimal strategy,
but no hypothesis on which partner has to be the leader
is made. Using pure impedance control generally means
imposing a master/slave behavior for the human (master)
and the robotic partner (slave). While this is sufficient to
ensure good performances in most co-manipulative tasks,
it struggles to reach the performances obtained in human-
human co-manipulation. Our assumption is that the fixed role
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distribution in human-robot interaction cannot compare to
the efficiency of flexible roles in human-human interaction.
The ability to change roles, that can be observed in human-
human cooperation, implies the existence of some kind
of communication, or common understanding, during the
operation.

The hypothesis that there is communication in haptic co-
manipulation has already been explored. Multiple studies
have been focusing on physical Human-Human Interac-
tion (pHHI), as well as physical Human-Robot Interaction
(pHRI). The objective of studying the way humans cooperate
in co-manipulation situations is to be able to replicate these
behaviors, or at least understand them well enough to help
robots adapt to humans. Reed et al. [4] demonstrated that
in one degree-of-freedom pointing tasks, humans dyads
performed better than individuals, result confirmed in sev-
eral other studies [5] [6] [7] [8]. They also observed that
replicating human behavior could be easily done and can
reduce the perceived difference between a human partner
and a robotic partner. However, a simple reproduction of
the human behavior on a task doesn’t seem sufficient to
reach the same performances in pHRI than in pHHI [9] [10]
[11]. The work of Ganesh & al. [11] further confirmed that
pHHI allows to enhance performances, even when the human
subject isn’t aware of the presence of a partner. Still, neither
a perfectly operating partner, nor a recording of a previously
performing human can reach the performances (both in terms
of precision and improvement), that a pair of humans are able
of.

These experiments show that there is an advantage in
collaboration, which leads to suppose the existence of some
kind of haptic communication. Humans seem to be able,
somehow, to communicate through physical interaction -
either consciously or not. The existence of this communica-
tion has been more precisely observed by Groten&Feth [6]:
in their experiment, they first obtained results comparable
to Reed [4], this time for tracking tasks; secondly, they
compared performances of human dyads in a co-manipulative
tracking task, depending on the presence – or not – of haptic
feedback between the subjects. Results show that humans
indeed perform better when they are able to feel the action
of their partner through haptics, confirming a possibility of
communication via haptic channel.

If Groten & Feth [6] demonstrated that haptic channel
enable existence of communication, the following questions
remains: How does it work? Can we model this communica-
tion? This paper will try to explore some hypothesis on the
origin of the haptic communication in co-manipulative tasks.



Fig. 1. Description of the experimental setup: The two subjects use a one dof haptic interface to share the control over a virtual object. Visual feedback
about the position of the object is given on their respective screen as a cursor.

The proposed methodology is to analyse experimental data
and extract the feature that is best able to predict the choice
of the dyad.

To explore these questions, a specific haptic tele-operated
robot will be used, its control and the statistical state model is
presented in (II). Then the experimentation protocol and the
assessment method is explained in (III). Explored questions
are presented and discussed in (IV).

II. MATERIAL AND METHODS

The present work is dedicated to the study of the commu-
nication through haptics in co-manipulative precision tasks,
namely, tasks involving low amplitude (hand/fingers move-
ments) and low efforts (less than 5 Newtons).

A. Material

The system is constituted of two one-degree-of-freedom
handles. The mechanical design of each handle, called haptic
interface, is inspired from the Stanford University’s HapKit
[12] and can be seen in Figure 1. The actuation is done
by a DC motor connected to the handle through a cable
transmission. The user places his finger on the handle, and
can perform leftward or rightward motions during the task.

The controller of the handles and the data acquisition is
implemented on a Real-Time operating system (Xenomai -
1 kHz actualization frequency), while the graphical interface
runs on another computer. The communication between the
two computers is realized by a direct Ethernet connection
and the use of UDP and TCP protocols. The average time-
delay in this connection is 0.2 ms and is deemed negligible
compared to human response time.

The control of the two handles is based on a teleoperation
scheme with a virtual inertia added. They share a position-
based control over a virtual object: the position of the virtual
object is equal to the mean position of the two handles (each
handle thus contributes to half of the displacement/velocity
of the virtual object). The position of the virtual object is
displayed for each subject on their respective monitor as a
cursor (see Figure 1). This cursor can move horizontally de-
pending on the position of the handles. The co-manipulative
task that the subjects have to complete is a tracking task: a
path (white line over black background ) is scrolling down on

their monitor, at a speed of 35mm/s. The subjects are asked
to keep the position of the common virtual object (cursor)
as close as possible to the scrolling path. To further incite
each subject to cooperate, they are told that their goal is to
maximize the common performance of the dyad. Feedback
about the common performance is given by the color of the
cursor, which changes based on the distance between the
closest path and the cursor (see Figure 2):
• Green if |Xcursor −XPath| < 5mm
• Yellow if 5mm < |Xcursor −XPath| < 10mm
• Red if |Xcursor −XPath| > 15mm

The path is composed of a semi-randomly generated
succession of curves, divided in two categories.

1) The "BODY" category is composed of sinusoidal paths
of random direction but fixed duration. The purpose of
these parts is to keep the subjects focused on the task
between two of the studied parts.

2) The "CHOICE" category is the aim of the experiment:
at fixed intervals, the path splits into a fork, imposing
a clear choice to be made concerning the direction that
the subjects need to follow (see Figure 2). Considering
that the subjects can neither see nor hear each other,
the only way they can come to an agreement about the
direction to choose is to use either the visual feedback
of the monitor, or the haptic feedback of the handles.

While the path’s structure is strictly the same for both
subjects, each subject is encouraged to follow a highlighted
trajectory. During the CHOICE parts, subjects receive some
information about which side they have to choose [6]; this
information can differ, creating situations of agreement or
conflict, distributed in three cases. This is done by high-
lighting one of the two paths of the fork (see Figure 2):
• SAME: Both subjects have the same information, no

conflict occurring.
• OPPO: Opposite information given to each subject,

inducing a conflicting situation.
• ONE: Only one subject has the information, this con-

dition forces the subjects to be ready to take initiative
in case they are the only one having information about
the path to choose. ONE exists to discourage subject to
keep a passive strategy all along the trial.



Fig. 2. Illustration of the different decision types: SAME, ONE and OPPO.
The data about the choices is recorded from a 2s timezone around the
path’s fork (in red on the leftward figure). Visual feedback about the dyad’s
performance is given through the color of the cursor (from left to right :
green, yellow, red).

The subjects are informed about these choices and the
different decision types beforehand.

B. CHOICE Parts analysis

Each Choice Phase is composed of a straight line lasting
one second, followed by a fork where the path splits into
two different paths. The paths merge again after 3 seconds
of straight line. The analysis is conducted over a 2 seconds
duration around the fork (see Figure 2). The horizontal
position of the cursor is noted Xcursor. A negative value
of Xcursor means that the cursor is on the left, a positive
value means that the cursor is on the right. After the fork,
the leftward and rightward paths are respectively situated at
Xleft = −XMAX and Xright = XMAX ,
with XMAX = 80 pixels ' 25mm.

C. Intention predictor

We define a predictor as a physical parameter which can
be used to predict the direction that a dyad will take in
a CHOICE part. In order to find the parameter that best
predicts the behavior of the dyad, an analysis of experimental
data is performed. The data was obtained previously with six
pairs of subjects using the setup.

The optimal predictor should have a perfect accuracy, and
obtain results as early as possible during the CHOICE part,
in order to allow for reaction time from both the robot and
the human. Analysis of the experimental data shows that
most predictors increase in accuracy as the analysis time
approaches the fork (tchoice = 1s).

However, the analysis must end before completion of the
actual motion. In order to respect this constraint, the analysis
end time is fixed at 0.9 second after the start of the CHOICE
part. This timing is based on the data analysis: only 5% of
the motions are completed at 0.9 second, which is considered
an acceptable margin of error.

Many predicting parameters can be defined and compared:
• XT : Position of the cursor at time tstop

1.
XT = Xcursor(tstop)

• XM : Mean position over [tstart; tstop]1.

XM =
N∑

k=1

Xcursor(k)
N

• VT : Instantaneous velocity at time tstop
1.

VT = Ẋcursor(tstop)
• VM : Mean velocity over [tstart; tstop]1.

VM =
N∑

k=1

Ẋcursor(k)
N

TABLE I
ACCURACY OF THE DIFFERENT PREDICTORS AT 0.9 SECOND AFTER THE

START OF THE CHOICE PHASE (* FOR THIS CRITERIA 0.9 SECOND IS

THE AVERAGE CROSSING TIME)

Predictor Accuracy at 0.9 second (%)
XT 87.05
VM 86.81
VT 86.36
FM 82.72
XM 74.09

SRMS 53.43
1C* 94.23

• FM : Mean sum of forces applied
on the handle over [tstart; tstop]1.

FM =
N∑

k=1

FSubject1(k)+FSubject2(k)
N

• Mean signed RMS deviation.

SRMS =
N∑

k=1

(Xcursor(k)−XM )∗|Xcursor(k)−XM |
N

• 1C : First Crossing of a threshold (XTH ) :
if(Xcursor(t) > XTH) → 1C = right
if(Xcursor(t) < −XTH)→ 1C = left.

The precision of these predictors at 0.9 second is exposed
in table II-C. As we can see, the only predictor that is able
to reach over 90% accuracy is the First Crossing parameter.

The First crossing parameter (1C) is constructed based on
the hypothesis that initiative of the subjects is a preponderant
factor in the choice of the dyad. This parameter is designed
experimentally.

We define the First Crossing parameter as the time at
which the individual position of one of the two subjects exits
the interval [−XTH ;XTH ]. An illustration can be seen on
Figure 3.

The accuracy of the First Crossing predictor (1C) is criti-
cally linked to the time needed to reach the threshold. Indeed,

1tstart and tstop are variable parameters allowing to tune the size of the
interval in which data is analysed. The results presented here are obtained
with values of these parameters which maximize the precision.

Fig. 3. Description of the First Crossing parameter: time at which the
individual position of a subject drift from the central position of 30% of the
total target distance. Results show that the Leading subjects have statistically
lower starting times.



if increasing the threshold size enhances the performance, it
also increases the time at which the threshold is crossed, and
thus the time at which the analysis is completed. Considering
the strong time constraint over the prediction, it is mandatory
to select parameters allowing to obtain an average crossing
time inferior to 0.9 second. At the same time, the predictor’s
accuracy needs to the greatest possible. Choosing a value
of XTH equal to 30% of the total distance between the
middle path and one side path allows to reach an accuracy
of 94.23%, with an average analysis time of 0.899 second,
which satisfy all of our constraints. The First Crossing time
detected is always at least 0.1 second before the motion
ending time, with an average of 0.20 second between the
two, which is sufficient for the robotic system to react.

D. Statistical state machine model

These findings are used to design an algorithm which can
reproduce the observed behavior, while staying as simple as
possible. The objective is to evaluate how this algorithm can
perform as a partner in a cooperative precision task.

The algorithm (see Figure 4) is designed to model a
simplistic human behavior. Therefore the algorithm only has
access to information that would be otherwise available to
a human subject: (a) The target trajectory; (b) The position
of its handle (simulated); (c) The position of the cursor on
the monitor; (d) The effort transmitted through the handle.
Indirectly, the algorithm can also determine the position of
its partner’s handle (through the position of the cursor and
its own handle).

In the BODY parts, the algorithm follows the path. The
controller parameters are adjusted in these parts to induce a
lower stiffness, in order to avoid a "too perfect to be human"
feeling from the human user. When confronted to a CHOICE,
the algorithm generates a minimum-jerk trajectory[13] from
its current position to the target position, based on the
choice it has to make. The starting time for this trajectory is
generated from a normally distributed variable based on the
average and standard deviation of the human behavior data.
(In a ONE decision type trial where the robot doesn’t have
a privileged choice, a direction is chosen at random, with a
greater starting time).

If the human partner initiates2 a motion before the starting
time of the robot, the robot lets the human lead, entering
"Follower Mode". If the human started a motion in the di-
rection the robot wanted to head, nothing changes, otherwise,
the robot generates a new trajectory to follow. If the human
partner did not initiate a motion before the beginning of
the robot’s trajectory, the robot enters "Leader Mode" and
initiates the movement along its planned trajectory.

The robot can leave the "Leader Mode" if the interaction
force exceed the force threshold (Fthreshold = 0.7N ) for a
duration of ∆Tth = 0.2s.3

2Taking the initiative is here defined as engaging a movement of the
handle resulting in a displacement of the virtual object superior to 30% of
the distance between the starting position and the target.

3These values were determined using the Human-Human experimental
data and correspond to the mean values observed in HFOP condition.

Fig. 4. Schematic functioning of the algorithm. The algorithm is designed
to let the human lead the movement as a default. In the absence of human
initiative, the robot engage the movement toward its own target.

While in "Follower Mode", the robot can still change its
trajectory if the interaction force condition is met again, and
change its target between left and right to follow the human.

III. EXPERIMENTAL PROTOCOLS

The 2013 study of Feth & Groten proves the existence of
human-human communication through the haptic channel, al-
though their study is restricted to higher load co-manipulative
tasks. This experimental protocol is here applied to a light
weighted setup, the aim being to study the possibility to
predict the behavior of a human dyad. This protocol will
be summed-up in the following section and the criteria are
also re-explained here. However to have a more detailed
description, one can refer to [6].

The experiment is composed of many trials involving
each time a pair of subjects. A trial is defined as two
human subjects realizing a co-manipulative tracking task as
presented in Figure 1.

The three possible decision types (SAME, ONE, OPPO)
presented in II-A, are combined with three experimental
conditions:
• Haptic-Feedback-from-Object-and-Partner (HFOP):

the positions of the handles are kept identical by
a PID controller with high gain simulating a rigid
connection[14]. In addition, the virtual object is given a
simulated inertia of 40 grams. These 40 grams represent
the weight of a common surgical tool. The visual
feedback of the cursor is identical for both subject and
represents the position of the virtual object.

• Hidden Robotic Partner (HRP): the subjects believe
they are doing the task together, while they are actually
independently performing their task each paired with
their own robotic partner. The subjects have visual
feedback concerning their own task and virtual object
on their monitor, and can feel the haptic feedback from
the virtual inertia and the efforts of their robotic partner.

• Subjects separated (ALONE): the two subjects per-
form the same tracking task independently. Two sep-
arated setup constituted of one of the haptic interfaces
and one monitor are used for each subject. Two different



virtual objects are simulated with halved mass and each
subject executes the task alone, with visual feedback
from the monitor, and haptic feedback from their own
virtual object. This experimental condition serves two
principal purposes: It draws a comparison between the
performances of a single subject with the performances
of a dyad, and is used as a buffer trial between the other
2 conditions, to reduce the potential learning effects and
sensory memory between HFOP and HRP trials.

Each experiment is a succession of 6 trials, which can be
ordered in two different configurations a and b.

a) HRP (×2)
ALONE(×2)

HFOP (×2)

b) HFOP (×2) HRP (×2)

At the beginning of the experiment, the subjects are
explained the rationale of the setup and told about the
different choices in the task. They are also told that two
different experimental conditions are tested: they can either
perform the task alone (ALONE), or cooperate through
comanipulation (HFOP). In reality, the HRP condition is also
tested, although the subjects are unaware of this fact. The
order between HRP and HFOP in the first and third parts of
the experiment is drawn at random beforehand. For each pair
of subjects, there are two trials per condition; the first one is
used as training, the second one for data analysis. Each trial
is 120s long, containing 16 choices randomly picked from
one of the 3 different decision types (SAME, ONE, OPPO).

The subjects are physically separated by an opaque screen
to prevent any visual clue about the actions of their partners,
and wear audio headphones playing white noise to prevent
any auditory clue.

IV. RESULTS
All comparison between the different statistical data sets

presented here are calculated using a Student’s t-test.

A. Performance criterion
We measured the precision of the dyad in the task with

a performance criterion [6]. This parameter is obtained by
first calculating the RMS:

RMS =

√√√√ 1

N

N∑
k=1

(xt,k − xo,k)2 (1)

where xt,k and xo,k are respectively the target position and
the virtual object position at time step k. This RMS error for
a choice is then compared to RMSmax the maximum RMS
obtained on the whole sample of trials

Performance = 1− RMS

RMSmax
(2)

This performance indicator is preferred over RMS error for
clarity: the better the results, the greater the performance.

B. Experimental results: Statistical state machine evaluation
experiment

The experiment was conducted on 14 subjects (mean age
22.9, 11 males, 3 females), for a total of 1120 choices
recorded (224 in HFOP, 448 in ALONE, 448 in HRP).

Fig. 5. Performances for the three experimental conditions (ALONE, HFOP
and HRP) and the three decisions types (SAME, ONE and OPPO)

1) Change of scale: The change of scale doesn’t affect the
general behavior of the subjects during the experiment. The
results obtained during the experiments lead to performances
that are similar to those found by Feth&Groten[6].

2) Performances: The results of this section are illustrated
in Figure 5.

There is a significant effect of the decision type on
performance, both for the HFOP and HRP condition. (a) In
HFOP, the OPPO decision type leads to significantly worse
performances than SAME and ONE (p < 0.005 for both).
(b) In HRP, ONE is significantly better than both SAME
and OPPO (p < 0.005 for both). In ALONE, no significant
difference is found between the decision types.

The performance is also significantly affected by the
experimental condition : (c),(d)The HFOP condition leads
to worse performances in all three decision types (p <
0.001); The HRP condition leads to better performances than
ALONE condition for the ONE decision type, and worse
for the OPPO one (p < 0.005 for both). The influence of
the decision type on performance is detailed in Table II4,
and the influence of the experimental condition is detailed
in Table III4.

TABLE II
INFLUENCE OF THE DECISION TYPE OVER PERFORMANCE

Condition SAME vs ONE SAME vs OPPO ONE vs OPPO
HFOP SAME ∼ ONE SAME > OPPO∗∗ ONE > OPPO∗∗

HRP SAME < ONE∗ SAME ∼ OPPO ONE > OPPO∗∗

ALONE SAME ∼ ONE SAME ∼ OPPO ONE ∼ OPPO

TABLE III
INFLUENCE OF THE EXPERIMENTAL CONDITION OVER PERFORMANCE

Dec. Type ALONE vs HFOP HRP vs HFOP ALONE vs HRP
SAME ALN > HFOP ∗∗ HRP > HFOP ∗∗ ALN ∼ HRP
ONE ALN > HFOP ∗∗ HRP > HFOP ∗∗ ALN < HRP∗∗

OPPO ALN > HFOP ∗∗ HRP > HFOP ∗∗ ALN > HRP ∗

3) Starting times: The starting time of the leader is
significantly inferior to the starting time of the follower for
both HFOP and HRP conditions (p < 0.001 for both). The
starting time parameter isn’t influenced by the experimental
condition.

4(*): p-value < 0.05 - (**): p-value < 0.005



4) Dominance: In the HRP condition, the human subjects
take the lead in 66% of the choices, against 34% for the
robot, this difference is statistically significant (p < 0.005).

5) Robot alone: When running without a human partner,
the robot reaches performances that are significantly better
than humans in HFOP conditions (p < 0.001), but worse
than humans in ALONE condition (p < 0.001).

C. Discussion

Concerning the influence of the experimental condition
over the performances: the HFOP condition leads to worse
performances than the ALONE condition when confronted
to the CHOICEs parts. This result seems logical since a
subject performing the task ALONE doesn’t have to handle
the resolution of conflicts, nor does he have to deal with the
uncertainty caused by the movements of his partner.

Most importantly, the results obtained in the HRP condi-
tion (robotic partner) are significantly better than the results
in HFOP (human partner). This is a promising result, consid-
ering the relative simplicity of the state-machine algorithm
used. Actually, the human-robots dyads from HRP condition
achieve performances similar to the human subjects perform-
ing the task alone for the SAME decision type, and even
better for the ONE decision type. Only when confronted
to the OPPO parts does the HRP condition lead to worse
performance, but while still being indubitably better than
the HFOP condition. Performing the task with our robotic
partner seems to be easier, and to simplify the resolution of
conflicting situations, compared to a standard pHHI situation.

One could argue that the precision of the robot leads
to the performance enhancement. The experiment is set-up
to avoid this issue. First, the robot is limited in torque by
design, therefore the system cannot force the human to move
against its will. The human is always able to resist and block
the robot action, while still being able to feel its action.
Moreover, the control is tuned with small gains, meaning that
when performing without a human partner, the robot reaches
worse performances than humans in ALONE condition. The
good performances of the human-robot dyads thus only come
from an actual complementarity.

On the same token, while the robot was indeed less
dominant in the choice of a path, which comes directly
from the conception of the algorithm - it was able to win
around one third of the conflicts, and was far for being totally
passive.

While encouraging, the results presented in this article
still need some deepening. The one degree of freedom setup
presents a strong simplification of physical human-human
interaction. Furthermore, the tracking task with a binary
choice is also strongly simplifying the wide range of possible
haptic communication. There is room for strengthening the
conclusions of this study.

CONCLUSION AND PERSPECTIVES

The analysis of experimental data acquired with our setup
revealed that time is an important factor when communi-
cating through haptic channel. Furthermore, the initiative

parameter we defined in II-C allows us to accurately predict
the result of the negotiations in pHHI. Based on these
observations, we designed an algorithm aiming to reproduce
the behavior of a human partner, and used it in a pHRI
experiment.

Considering the observed importance of the initiative in
physical interaction, we can make the assumption that tactile
clues are helpfull for humans to infer the actions of their
partner and to adapt his/her behavior.

Future work will be done concerning the development of
a more dominant algorithm, to study the stability for more
complex scenarii (greater number of degree of freedom and
of choices), and more conflicting situations. Additionally,
the influence of the a priori concerning the nature of the
partner was not studied in this paper. Lastly, the initiative,
even if proved to be an important factor, can’t allow a full
reproduction of human behavior in co-manipulative task.
New parameters will have to be studied and added to our
model to achieve a good human-robot synergy.
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