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Abstract—In clinical practice, the finger tapping movement is 
often validated visually, thus resulting in a coarse diagnostic 

resolution. However, by using miniature inertial sensor mounted 

on fingertip of index finger, finger tapping performance can be 

quantified, allowing objective assessment of specific 
characteristics or changes in the finger tapping pattern over time. 

Various parameters such as cadence, tapping duration, speed, 

and tapping angle can be extracted for detailed analysis of 

patient’s motor performance. However, the listed parameters, 

although intuitive and simple to interpret, do not always carry all 
necessary information regarding subject’s motor performance. 

Here we present kinematic parameters extracted from spectral 

analysis that are significant for finger tapping assessment. With 

these parameters, tapping’s intravariability, movement 

smoothness and anomalies that occur within the tapping 
performance can be identified and observed, providing significant 

information for further diagnostics and monitoring progress of 

the disease of response to therapy. 

 
Index Terms— frequency analysis, finger tapping, Parkinson's 

disease  

I. INTRODUCTION 

Frequency analysis is widely used for assessment of motor 

abilities of Parkinsonian patients. Hand tremor is often 

quantified with some usual frequency-derived measures 

obtained from Fast Fourier Transform (FFT), such as 

amplitude, median power frequency, power dispersion, and 

power percentage within the 4–7 Hz frequency range [1]. By 

using some other methods, such as filter-bank analysis, cross 
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correlation and new method comprising Empirical Mode 

Decomposition and the Hilbert Spectrum, it is possible to 

obtain even more information about tremor that can be useful 

for clinicians [2]-[3]. 

Frequency-derived measures were also extracted from the 

results of the Welch's averaged modified periodogram method 

of spectral estimation performed on the acceleration data and 

used for assessment of stride-to-stride variability in Parkinson 

disease (PD) patients and healthy subjects [4]. They defined 

four parameters for the main peak of the power spectral 

density function: the frequency, the amplitude, the width at 

half of its amplitude and the slope from the point of the peak’s 

maximum to the point of half of the peak’s  amplitude. Power 

spectral density was also used to analyze freezing of gait in PD 

patients [5]. Researchers defined new index, named Frequency 

Ratio as the square of the total power in the 3–8 Hz band, 

divided by the square of the total power in the 0.5–3 Hz band. 

Results showed that defined parameter can be used for better 

differentiation between patients than traditional gait spatial 

measures.  

Most behavioral actions require the detection of localized 

features in specific time moments. In these applications, the 

frequency analysis can be performed by time-frequency 

algorithms Short-Time Fourier Transform (STFT), or Wavelet 

Transform (WT) [6]-[7]. Time-frequency algorithms allow 

analysis of signal’s frequency content over time. Due to that 

fact, those methods are far more efficient than Fourier analysis 

whenever a signal is dominated by transient behavior or 

discontinuities such as human movement. Both STFT and 

discrete Wavelet transform were used in the detection of 

transient episodes of freezing behavior and tripping in inertial 

data. [8]. Wavelets were superior at describing anomalies, 

pulses and other transient events that start and stop within a 

movement signal [9]. Parameters expressing main frequencies, 

pattern decrement and activity volume of the basic finger 

tapping rhythm and vigor of the performed movements were 

extracted from the coefficients of the results of continuous 

wavelet transform performed on gyro signals , providing 

classification between PD patients and healthy subjects [10].  

Frequency analysis can also provide information about 

movement smoothness, which is often impaired in patients 

with PD and other neurological disorders [11]. Movement 

smoothness can be assessed by analyzing the spectral arc 

length (SPARC) [12]. 

Repetitive finger tapping represents one of the descriptive 

characteristics of the patient motor ability that is included in 
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Unified Parkinson’s disease rating scale (UPDRS test, e.g. 

Fahn et al, 1987). In clinical practice, the finger tapping 

performance is often validated visually, which results in a 

rough diagnostic resolution [14]. However, using the 

appropriate instrumentation, such as miniature inertial sensors, 

finger tapping performance can be quantified, allowing 

objective assessment of specific characteristics or changes in 

the finger tapping pattern over time [15]. This approach can 

provide detailed spectral analysis of the movements, and reveal 

spectral components hidden in the performed movement 

indicating possible motor impairment and assisting in further 

diagnostics [16].  

Here we suggest a set of frequency derived parameters that 

can provide detailed assistance in PD diagnostics and 

monitoring progress of the disease or response to therapy. 

II. METHODS AND MATERIALS 

A. Instrumentation 

One miniature (10x12mm) and lightweight inertial sensor 

comprising a 3D gyroscope L3G4200 (STMicroelectronics, 

USA) was placed on a fingertip of the index finger, allowing 

subjects to perform tapping test with in a most natural manner. 

Sensor was wirelessly connected to a remote computer, where 

a custom-made graphical user-friendly interface developed in 

CVI (CVI 9.0, NI LabWindows, USA) controlled data 

acquisition [17].  

B. Experiments 

Twenty patients  with Parkinson's disease (Age: 61,39±9,7) 

and twelve age and gender matched controls (Age: 

56,53±9,13) were enrolled in this study. They were asked to 

repeatedly tap index finger and thumb, as rapidly and as 

widely as possible for 15 s, as described in [18]. Three trials 

per affected hand were recorded for each subject, with a 

resting period of one minute in between. The study was 

performed at the Neurology Clinic, Clinical Centre of Serbia, 

Belgrade in accordance with the ethical standards of the 

Declaration of Helsinki. All the participants gave informed 

written consent prior to the participation in the study.  

C. Signal processing 

Gyroscope signals were recorded with the sampling 

frequency fs=200 Hz. Acquired signals were calibrated and 

directly processed by custom-made software (scripts written in 

Matlab 7.6.0., R2008a). Examples of recorded gyro signals for 

one healthy control (CTRL) and two PD patients are presented 

in Fig. 1.  

Continuous Wavelet transform (CWT), Welch's averaged 

modified periodogram method of spectral estimation and 

Spectral Arc Length method (SPARC) were applied on the 

observed 15 s long sequences of the signal. The methods were 

performed for the frequency range between 0.01 and 20 Hz 

(the frequency increment 0.01 Hz), covering the complete 

possible spectral content of finger tapping. 

 
Fig. 1.  A recorded gyro signals for one healthy subject (top panel) and two 

PD patients (middle and bottom panels).  

 

1) Continuous Wavelet transformation 

For this application, we applied continuous wavelet 

transform based on FFT algorithm, as used in [10]. The 

representation of wavelet function obtained using the FFT was 

calculated based on the scale (reciprocal of each frequency 

from the defined band) and multiplied with the gyro signal in 

frequency domain. Applying the inverse FFT, complex 

coefficients of CWT in the form of a matrix were obtained. 

Results were normalized by dividing the coefficients with 

square root of the scale. Time resolution of the result was 

5 ms. For this application, we applied a mother wavelet with 

center frequency f0=1 Hz and time-frequency resolution σ=0.7, 

from complex Morlet Wavelet family.  

 

 
Fig. 2.  3D scalogram showing CWT coefficients and frequency content in 

time, example for one healthy and two PD patients. 
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Examples of obtained CWT coefficients, presented in a form 

of 3D scalogram, are shown in Fig. 2.  

By summing the absolute values of CWT coefficients , we 

calculated cross-sectional area perpendicular to the t-axis 

(CSA-Ttot) [10]. Final CSA-Ttot characteristic was expressed as 

percent of the maximum energy of CSA-Ttot characteristic. For 

each sample, we found parts of the signal with energy loss 

below 50 % or 25 % (dark and light grey lines in Fig. 3b, 

respectively). This can be used for finding signal parts were 

tapping performance was disturbed regarding its basic 

rhythmic behavior, e.g. motor blocks.  

 

 
Fig. 3.  CSA-T tot [%] distribution for subject marked PD1 in Fig.1; light and 

dark grey lines mark energy loss below 50 and 25 % respectively.  

 

2) Welch's method of spectral estimation for assessment of 

tapping intravariability 

For this application, we applied Matlab built-in function 

called “pwelch”. We used a window size of 800 samples, with 

a 50% overlap between the windows . A FFT length was 2 

times the next higher power of 2 of the signal length. For each 

subject we extracted four parameters for the main peak 

(dominant harmony) of the obtained power spectral density 

function (Fig. 4) [4]: the frequency f, the amplitude h, the 

width w (at half of peak’s amplitude) and the slope s 

(calculated from the peak maximum to the point of half of the 

peak’s amplitude). Weiss et al. showed that smaller slope and 

higher width for PD patients indicate more prominent stride-

to–stride intravariability [4].  

 

 
Fig. 4.  Power spectral density of finger tapping sequence for one healthy 

subject and two PD patients, showing peak’s frequency and amplitude (f, h), 

slope (s) and width at half of peak's amplitude (w). 

 

3) Spectral Arc Length method for assessment of tapping 

smoothness  

SPARC method is a modified Spectral Arc Length method, 

defined in [13]. It represents the signal smoothness as a single 

scalar, by calculating the arc length of the Fourier spectrum 

within the defined frequency range (form 0 to 20Hz) of a given 

angular velocity. Bigger values correspond to greater 

smoothness.  

We repeated procedure for all taps, which were previously 

segmented. For each subject we calculated total measure of 

tapping smoothness, expressed as descriptive statistics 

(average±std.dev), and trend of change in smoothness  across 

all segmented taps, represented by the slope of the fitted linear 

regression line across the corresponding smoothness 

characteristic (Fig. 5).  
 

 

 

 
Fig. 5.  SPARC smoothness characteristic with corresponding slope (red 

dashed line) for one healthy subject and two PD patients.  

 

D. Statistical analysis 

The two groups were compared according to the mean 

values using t-test for two independent samples (if both groups 

satisfied the normal distribution) or Mann-Wilcoxon test (if the 

distributions were not normal). Statistical significance was 

determined with 2-tailed tests when p<0.05. Statistical analysis 

was performed in SPSS v17.0 (Chicago, IL). 

III. RESULTS 

By observing the examples of recorded gyro signals (Fig. 1), 

one can notice that healthy subject had rapid and vigorous 

performance, patient PD1 also performed rapidly and 

vigorously (nut less than healthy subject), however  less 

rhythmical and with noticeable amplitude changes within the 

signal, as a consequence of motor block that occurred during 

the performance. The patient PD2 had slow and unsmooth but 

more rhythmical tapping performance. By observing some of 

the usual parameters, such as mean velocity, tapping duration, 

etc., clinicians cannot detect nor quantify such noticeable 

characteristics of tapping performance. In order to obtain such 

evaluation, frequency analysis of gyro data should be 

performed. Due to those facts, we applied CWT, SPARC and 
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Welch's method of spectral estimation on the 15 s long 

sequences of the signal. By using CWT we can detect and 

localize anomalies within tapping signal (marked with red 

rectangle in Fig 3). Although some signal changes were visible 

in patient PD1 even from the raw gyro data (tapping 

performance marked with red rectangular, around 6s), the 

second tapping "anomaly" (marked with blue rectangular, 

around 12s) could skip unnoticed without implementation of 

the suggested CTW method. By combining CSA-T calculation 

and an intuitive graphical representation such as 3D scalogram 

of CWT, clinicians can perform assessment of anomalies in 

tapping pattern, analyze the severity of such movements and 

localize them in time. 

Tap-to-tap variability can be assessed with Welch’s 

algorithm, while tapping smoothness and its decrement in time 

can be accessed with SPARC algorithm. By combining results 

from all three performed methods, clinicians can have crucial 

information about tapping performance that can be used for 

further analysis, or assistance in diagnostics .  

The applied analysis  is summarized in Table 1, showing 

descriptive statistics (average±std.dev) for the listed frequency 

parameters for all participants, as well as the statistical 

difference between the two groups.  
 

TABLE I 

DESCRIPTIVE STATISTICS OF WELCH AND SPARC BASED PARAMETERS OF 

FINGER TAPPING FOR PD PATIENTS. 

 

Param. CTRL (av±std) PD (av±std) p-value 

f 3.47 ± 0.92 2.10 ± 1.21 0.002 

h 1.34 ± 0.29 1.14 ± 0.39 0.039 

s 3.42 ± 0.70 2.90 ± 1.09 0.042 

w 0.39 ± 0.04 0.42 ± 0.07 0.041 

SPARC -3.13 ± 0.13 -3.69 ± 0.70 0.001 

SPARCS -0.0005± 0.003 -0.03± 0.05 0.373 

 

The statistical analysis showed all parameters (except slope 

of SPARC) have statistically significant differences between 

patients with PD and healthy subjects. 

Results presented in Fig. 6 show distribution of PSD based 

parameter for two groups: healthy subjects and PD patients.  

 

 
Fig. 6.  Boxplot representation of PSD based parameters for healthy 

subjects and PD patients.  

SPARC smoothness parameter distributions among 10 

healthy subjects and 10 PD patients are shown in form of a 

boxplot in Fig. 7. 

 
Fig. 7.  Boxplot representation of SPARC smoothness for 10 healthy 

subjects and 10 PD patients (upper and lower panels, respectively). 

 

SPARC analysis showed that healthy subjects have small 

intra- and intersubject variability of tapping smoothness, while 

PD patients have wider ranges of SPARC index within their 

tapping sequences (intravariability) as well as among 

themselves (intervariability). This proves the SPARC 

parameter suitable for analysis of tapping performance and its 

potential for differential diagnostics.  

IV. DISCUSSION AND CONCLUSION  

We have presented results of performed frequency analysis 

applied on gyro signal acquired from one miniature sensor 

mounted on subject’s index finger, used for finger tapping 

movement quantification.  

CWT based results allow us to observe frequency content of 

signal over time (Fig 2), but also to analyze signal in the terms 

of energy changes that can be useful for anomaly detection 

(marked with red rectangle in Fig 3). In previous studies, 

greater signal intravariability was defined with smaller slope 

and larger width of the most prominent peak within the power 

spectral density function obtained with Welch’s algorithm. 

Parameters describing f, h, s and w of the most prominent peak 

of the PSD function were found significantly different between 

two groups (grey shaded cell in Table 1) with smaller values of 

slope and width parameters for PD group, meaning greater 

tapping intravariability for PD patients , which agrees with the 

results from Weiss et al, performed on gait data [4]. Smaller 

values of SPARC based parameter correspond to smoother 

movements. We demonstrate (Table 1, Fig 7) that PD patients 

have decreased movement smoothness, with statistically 

significant difference from healthy subjects. This method can 

help accessing patient’s motion smoothness  and its decrement 

in time. Also, common analysis of these methods allow 

detection of some changes (blue rectangle in Fig 3 and Fig 5), 

that aren’t visible in the gyro signal, thus can be overlooked. 

In this way, finger tapping can be quantified, in the terms of 

its rhythmic behavior, vigor of its performance, tapping 

intravariability, tremor and motor blocks that can occur within 

the tapping performance. This method allows monitoring of 

patient’s response to therapy and progress of the disease, and 
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comparison with other evaluated patients. Future work would 

include implementation of the defined parameters for 

automated differential diagnostic system. 
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