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Abstract

Online model-free reinforcement learning (RL) methods with continuous actions are play-
ing a prominent role when dealing with real-world applications such as Robotics. How-
ever, when confronted to non-stationary environments, these methods crucially rely on an
exploration-exploitation trade-off which is rarely dynamically and automatically adjusted
to changes in the environment. Here we propose an active exploration algorithm for RL
in structured (parameterized) continuous action space. This framework deals with a set of
discrete actions, each of which is parameterized with continuous variables. Discrete explo-
ration is controlled through a Boltzmann softmax function with an inverse temperature g
parameter. In parallel, a Gaussian exploration is applied to the continuous action param-
eters. We apply a meta-learning algorithm based on the comparison between variations of
short-term and long-term reward running averages to simultaneously tune 8 and the width
of the Gaussian distribution from which continuous action parameters are drawn. When
applied to a simple virtual human-robot interaction task, we show that this algorithm out-
performs continuous parameterized RL both without active exploration and with active
exploration based on uncertainty variations measured by a Kalman-Q-learning algorithm.
Keywords: Reinforcement Learning, Exploration/Exploitation, Multi-Armed Bandits,
Meta-Learning, Active Exploration, Parameterized /Structured Reinforcement Learning.

1. Introduction

Important progresses have been made in recent years in reinforcement learning (RL) with
continuous action spaces, permitting successful real-world applications such as Robotics
applications (Kober and Peters, 2011; Stulp and Sigaud, 2013). Nevertheless, a recent re-
view on reinforcement learning applied to Robotics (Kober et al., 2013) highlighted, among
other points, that (i) a variety of algorithms have been developed, each being appropri-
ate to specific tasks: model-based versus model-free, function approximation versus policy
search, continuous versus discrete action spaces; (ii) important human knowledge is injected
concerning the search in the parameter space, either by reducing it through learning from
demonstration, or by pre-adjusting parameters such as the exploration rate based on the
prior determination of the total number of episodes in the experiment. In particular, the
balance between exploration and exploitation is often pre-determined with human prior
knowledge and does not extend well to tasks with non-stationary reward functions.

To address the first issue, the recent proposal of RL algorithms in structured Parame-
terized Action Space Markov Decision Processes (PAMDP) (Masson and Konidaris, 2016;
Hausknecht and Stone, 2016) seems to open a promising line of research. It combines a
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set of discrete actions Ag = {ai1,a2,...,ax}, each action a € A, featuring m, continuous
parameters {07,...,05 } € R™e. Actions are thus represented by tuples (a,07,...,05, ) and
the overall action space is defined as A = Ugeca,(a,07,...,05, ). This framework has been
successfully applied to simulations of a Robocup 2D soccer task where agents have to learn
to timely select between discrete actions such as running, turning or kicking the ball, and
should learn at the same time with which speed to run, which angle to turn or which strength
to kick. To ensure algorithm convergence, Masson and Konidaris (2016) alternate between
learning phases: (i) given a fixed policy for parameter selection, they use Q-Learning to
optimize the policy discrete action selection; (ii) Next, they fix the policy for discrete action
selection and use a policy search method to optimize the parameter selection. In contrast,
Hausknecht and Stone (2016) learn both in parallel by employing a parameterized actor
that learns both discrete actions and parameters, and a parameterized critic that learns
only the action-value function. Instead of relying on an external policy search procedure,
they are thus able to directly query the critic for gradients.

Nevertheless, the exploration-exploitation trade-off is fixed in these methods, thus falling
into the second issue raised by Kober et al. (2013)’s review. Exploration in continuous action
spaces being different from discrete spaces, Hausknecht and Stone (2016) adapt e-greedy
exploration to parameterized action space by picking a random discrete action a € Ay with
probability € and sampling the action’s parameters ¢¢ from a uniform random distribution.
€ is arbitrarily annealed from 1.0 to 0.1 over the first 10,000 updates, thus requiring human
prior knowledge about the duration of the task to appropriately tune exploration.

Here we use the Gaussian exploration for continuous action parameters proposed by van
Hasselt and Wiering (2007), which in the original formulation uses a fixed Gaussian width o.
We then apply a noiseless version of the meta-learning algorithm of Schweighofer and Doya
(2003), which tracks online variations of the agent’s performance measured by short-term
and long-term reward running averages. At each timestep, we use the difference between the
two averages to simultaneously tune the inverse temperature §; used for selecting between
discrete actions a;, and the width o; of the Gaussian distribution from which each continuous
action parameter 67 is sampled around its current value. We test our algorithm on a
simple simulated human-robot interaction, where the algorithm tries to maximise reward
computed as the virtual engagement of the human in the task, this engagement representing
the attention that the human pays to the robot. We show that the proposed algorithm
outperforms both continuous parameterized RL without active exploration and with active
exploration based on uncertainty variations measured by a Kalman-RL algorithm (Geist
and Pietquin, 2010).

2. Active exploration algorithm

The algorithm is summarized in Algorithm 1. It first employs Q-Learning (Watkins and
Dayan, 1992) to learn the value of discrete action a; € Ay selected at timestep ¢ in state s;:
Qu+1(81, 1) = Qu(s1, ar) + ag[re + ymax(Qu(set1, a)) — Qulse, ar)] (1)

where ag) is a learning rate and vy is a discount factor. The probability of executing discrete
action a; at timestep ¢ is given by a Boltzmann softmax equation:
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exp (BeQi(s¢, aj))
Yoaerp (BeQi(se,a))

where ; is a dynamic inverse temperature meta-parameter which will be tuned through
meta-learning (see below).

P(aj|st, Br) =

(2)

In parallel, continuous gf ¢ parameters with which action a; is executed at timestep ¢

are selected from a Gaussian exploration function centered on the current values Hfi (s¢) in
state s; of the parameters of this action (van Hasselt and Wiering, 2007):

naj 1 s a;
PO flst,a1,00) = —g—eon (~(Grf = 074 (0))?/(20)) 3)

where the width o, of the Gaussian is a meta-parameter which will be tuned through meta-
learning (see below) and action parameters 6, (s;) are learned with a continuous actor-critic
algorithm (van Hasselt and Wiering, 2007). A reward prediction error is computed from
the critic: 0 = r¢ + YVi(sp41) — Vi(s¢) and is used to update the parameter vectors wtc and
wi* of the neural network function approximations in the critic and the actor:

oVi(s ~ 06¢,(st)
wic,t+1 = wio,t + acd 5;((;) and wftﬂ = w{}t + aA‘St(qu,t - GZt(St))(;ZiA (4)
it it

where a¢c and a4 are learning rates. In contrast to the original version where th updates
are performed only when §; > 0 (van Hasselt and Wiering, 2007), here we update them all
the time and proportionally to d; as in (Caluwaerts et al., 2012).

Finally, in order to perform active exploration on 3; and oy, we implement a noiseless
version of the meta-learning algorithm proposed by (Schweighofer and Doya, 2003). We
compute short- and long-term reward running averages:

Ar(t) = (r(t) = 7(t))/71 and AF(t) = (7(t) — 7(t))/72 ()

where 71 and 75 are two time constants. We then update §; and oy with:

B = F(u(r(t) — 7(t))) and op = G(u(r(t) — 7(1))) (6)

where p is a learning rate, F'(x) > 0 is affine, and 0 < G(x) < 20 is a sigmoid.

We also compared this meta-learning algorithm with the Kalman Q-Learning proposed
by (Geist and Pietquin, 2010). However, in contrast to the original formulation which
proposes a purely exploratory agent by replacing Q-values in Equation 2 by the action-
specific diagonal terms of the covariance matrix — these terms representing the current
variance/uncertainty about an action’s Q-value —, here we multiply these terms by a weight
1 and add them as exploration bonuses b} to Q-values in Equation 2. We also use the
covariance terms to tune action-specific oy with function G(x).
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Algorithm 1 Active exploration with meta-learning

1: Initialize W§407 wico, Qi,0, Bo and o9
2: for t =0, 1,’2, ... do
3: Select discrete action a; with softmax(s, Bt) (Eq. 2)
Select action parameters 07, with GaussianExploration(s, at, 07, 0¢) (Eq. 3)

4

5. Observe new state and reward {sii1, 741} < Transition(st, at, 0,)

6:  Update Qy1(st,a;) in the discrete Q-Learning (Eq. 1)

7. Update function approx. wgt 41 and wft 41 in continuous actor-critic (Eq. 4)
8 if meta-learning then

9 Update reward running averages 7(¢) and r(¢) (Eq. 5)

10: Update §; and o, (Eq. 6)

11:  end if

12: end for
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Figure 1: Simulations of the parameterized reinforcement learning (RL) algorithm with (A)
fixed o = 20 and 8 = 4 (no active exploration), (B) fixed o = 10 and 5 = 4 (no
active exploration), (C) of and b tuned by Kalman-RL (active exploration) or
(D) ot and S tuned by meta-learning (active exploration).
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3. Experiments

We test the algorithm described in Section 2 in a simple simulated human-robot interaction
involving a single state, 6 discrete actions, and continuous action parameters between -
100 and 100. The task is similar to a non-stationary stochastic multi-armed bandit task
except that rather than associating a fixed probability of reward to each discrete action, an
action will yield reward only when its continuous parameters are chosen within a Gaussian
distribution around the current optimal action parameter p* with variance o* (which are
unknown to the robot). Every n timesteps, u* changes so that the task is non-stationary
and requires constant re-exploration and learning by the robot.

The reward is given by a dynamical system which is based on the virtual engagement
e(t) of the human in the task. This engagement is supposed to represent the attention that
the human pays to the robot. It starts at 5, increases up to a maximum e,,q,, = 10 when
the robot performs the appropriate actions with the appropriate parameters, and decreases
down to a minimum e,,;, = 0 otherwise:

e(t) + ni(emaz — e(t))H(0F), if a(t) =a* & H(0F) >0
e(t+1) = qe(t) — nemin —et)HOF), ifa(t)=a* & H(O) <0
e(t) + na(emin — €(t)), otherwise

where 71 = 0.1 is the increasing rate, 72 = 0.05 is the decreasing rate, and H(x) is the

reengagement function given by H(x) = 2 (ea:p (— (‘T;J ﬁ;)2> — 0.5) where a*, p* and o* are
respectively the optimal action, action parameter and variance around a*.

The reward function is then computed as 7(t + 1) = (1 — Ne(t + 1) + AAe(t + 1) where
A = 0.7 is a weight. This reward function ensures that the algorithm gets rewarded in cases
where the engagement e(t + 1) is low but nevertheless has just been increased by the action
tuple (a(t),0%(t)) performed by the robot.

We first simulated the algorithm without active exploration (thus with a fixed o = 20) in
a task where the optimal action tuple (a*, u*) is (ag, —20) during 200 timesteps (¢* = 10 in
all the experiments presented here), then switches to (a2, —20) until timestep 600. Figure 1A
shows that the algorithm first learns the appropriate action tuple (ag, —20), then takes some
time to learn the second tuple, making the engagement drop between timesteps 200 and 400
and eventually finds the second optimal tuple. Nevertheless, o = 20 makes the robot select
action parameters 5{} with a large variance (illustrated by the clouds of blue dots around
the learned action parameters 67 and 69 plotted as black curves). As a consequence, the
engagement is not optimized and always remains below 7.5. In contrast, the same algorithm
with a smaller fixed variance o = 10 can make the engagement reach the optimum of 10
when the optimal action tuple is learned (Figure 1B before timestep 400), but results in
too little exploration which prevents the robot from finding a new action parameter which
is too far away from the previously learned one (after timestep 400, the new optimal action
tuple is (ag,20)). These two examples illustrate the need to actively vary the variance oy
as a function of changes in the robot’s performance.

We next tested active exploration with the Kalman Q-Learning algorithm in a task
alternating between optimal tuples (a2, —20) and (ag, 20) every 400 timesteps (Figure 1C).
The diagonal terms of the covariance matrix COV in the Kalman filter nearly monotonically
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Figure 2: Comparison of engagement in 10 simulations of the meta-learning model (red),
the model without active exploration (blue), and the Kalman-QL (green).

decrease, resulting in a large variance o, when action ag is executed until about timestep 600,
and progressively decreasing the variance until the end of the experiment. Nevertheless, the
algorithm quickly finds the appropriate action parameters and rapidly shifts between actions
as and ag after each change in the task condition. In the long run, the model progressively
averages the statistics of the two conditions and learns to perform both actions with 50/50
probabilities (bottom part of Figure 1C) which decreases the simulated engagement (top).

We then tested active exploration with the meta-learning algorithm in a slightly more
difficult task where the optimal action tuple alternate between (a2, —50) and (ag, 50) every
1000 timesteps (Figure 1D). Transient drops in the engagement result in transient decreases
in the exploration parameter ; as well as transient increases in the variance o;. This enables
the algorithm to go through quick transient but wide exploration phases and to rapidly
reconverge to exploitation, thus maximizing the simulated engagement.

Finally, we performed 10 simulations of each model on the difficult version of the task and
plotted the average and standard deviation of the simulated engagement (Figure 2). The
blue curve shows the performance of the algorithm without active exploration (i.e. fixed
o = 19 obtained through parameter optimization), which adapts to each new condition
but never exceeds a plateau of about 6. The green curve shows the active exploration
with Kalman, which adapts faster at the beginning but progressively decreases its maximal
engagement. The red curve shows the active exploration with meta-learning which initially
takes more time to adapt but then only performs short transient explorations and reaches
the optimum engagement of 10.

4. Conclusion

In this work, we have shown that a meta-learning algorithm based on online variations of
reward running averages can be used to adaptively tune two exploration parameters simul-
taneously used to select between both discrete actions and continuous action parameters
in a parameterized action space. While we had previously successfully used the Kalman
Q-Learning proposed by Geist and Pietquin (2010) to coordinate model-based and model-
free reinforcement learning in a stationary task (Viejo et al., 2015), it was not appropriate
for the current non-stationary task. The proposed active exploration scheme could be a
promising solution for Robotics applications of parameterized reinforcement learning.
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