
Efficient Reinforcement Learning for Humanoid Whole-Body Control

Ryan Lober1, Vincent Padois1 and Olivier Sigaud1

Abstract— Whole-body control of humanoid robots permits
the execution of multiple simultaneous tasks but combining
tasks can often result in unexpected overall behaviors. These
discrepancies arise from a variety of internal and external
factors and modeling them explicitly would be impractical.
Reinforcement learning can be used to eliminate the effects
of the deleterious factors through trial and error but generally
requires many trials to converge on a solution. In humanoid
robotics such improvidence can be costly. In this paper we show
how the efficiency of the learning can be improved through use
of Bayesian optimization. This is accomplished by intelligently
exploring a model of the latent cost function derived from the
quality of the task executions. We demonstrate the efficacy
of the technique through two different simulated scenarios
where various factors impede the robot from accomplishing
its objectives.

I. INTRODUCTION

Humanoids are versatile robotic platforms, which derive their
utility from a high degree of redundancy and the ability to interact
with their environment. Whole-body controllers exploit this by
controlling all degrees of freedom (DoF) simultaneously [1],
allowing multiple concurrent tasks to be executed under con-
straints. Task combinations and sequences can produce complex
overall behaviors and are a major step towards real-world appli-
cations [2]. Unfortunately, determining the right task(s) for a cer-
tain job is a challenging problem [3]. Furthermore, the combina-
tion of multiple tasks often generates unexpected/unwanted over-
all behaviors. These discrepancies can arise from a number of
sources, task priorities, loss of Jacobian rank, model/environment
constraints and uncertainties, perturbations, etc. For simplicity
we will refer to these sources as disturbances.

Considering the innumerable reasons for which a task may
fail in a dynamic environment, at the planning stage, is compu-
tationally intractable and practically inefficient. One solution to
this problem is to use reinforcement learning (RL) [4], [5], [6].
The robot executes its task(s), evaluates them according to one or
multiple criteria, and then uses this metric to improve the task(s).
This improvement is realized by optimizing the task parameters
according to the metric, which in RL literature can be referred to
as a reward, score, fitness, or cost — the term, cost, is used in this
study. Given the task execution cost, the goal is to minimize this
cost by adjusting the task parameters [7], [8]. Given the typically
non-convex and non-linear nature of the cost functions, sample
based optimization techniques, such as stochastic optimization,
are commonly employed1. These stochastic optimization rou-
tines scale well with problem dimensionality but require many

1 The authors are with - Sorbonne Universités, UPMC Univ Paris 06,
UMR 7222, Institut des Systèmes Intelligents et de Robotique, F-75005,
Paris, France - CNRS, UMR 7222 , Institut des Systèmes Intelligents et de
Robotique, F-75005, Paris, France
e-mail: firstname.lastname@isir.upmc.fr

1This is typically referred to as policy search.

Fig. 1: The humanoid robot, iCub, performing a complex
combination of tasks.

task executions to find an optimum, primarily due to the fact that
many samples are needed to estimate the cost function gradient
[9]. Compounding this, is the fact that the the mapping from
the space of the optimization variables, or task parameters, to
the space of the cost function is highly non-linear and possibly
discontinuous [5].

Executing many trials on a humanoid robot is a time-
consuming and possibly dangerous for the robot. Additionally,
because stochastic search is unbounded, one has to be careful
that the robot does not test overly aggressive and possibly harm-
ful movements during the RL — especially when balancing is
involved.

The intent of this study is to provide a straightforward way
of improving on these shortcomings. To do so, we present two
contributions. Firstly, in Section III-B, we propose a way of
evaluating how well a task was executed and indirectly mea-
suring the influence of unpredicted disturbances. This metric is
represented by a set of cost functions which enable the appraisal
of the quality of task execution. Secondly, in Section III-C, we
show that by choosing a more intuitive and low-dimensional task
parameterization, we are able to use Bayesian optimization (BO),
which has proven to be the technique of choice for optimizing
expensive cost functions in few trials [10], as is the case with
robotic experimentation [11], [12], [13], [14]. The key benefit
of BO is that it models the underlying cost function given a
few samples and proposes the next best set of parameters to test
which will both minimize the predicted cost and improve the
cost function estimation. This procedure quickly and efficiently
explores the parameter space for the tasks in a bounded manner.

II. BACKGROUND

In the following section, we provide the requisite background
information for this work. An overview of task-based whole-
body control is presented, followed by a brief introduction to BO.



A. Whole-Body Control

Whole-body controllers reactively calculate the joint torques
necessary to accomplish some set of tasks in either operational-
space or joint-space, for all of the DoF of the given robot,
while respecting physical constraints. This is done by solving
a constrained convex optimization problem at each time step.
The objective of the problem is a weighted sum of task errors,
and its constraints are the equations of motion, articulation and
actuation limits, and contacts. Task errors, are calculated as the
difference between the current system accelerations/wrenches
and some desired values. These desired values, are generally
provided by trajectories. The control problem can then be solved
efficiently using a Quadratic Program. The reader is directed to
[2] for a more detailed explanation of this controller. The weight
associated with each task error determines its relative priority,
with larger weights meaning higher priorities. Alternatively, hi-
erarchical approaches to task priorities can be implemented [15],
[16].

B. Bayesian Optimization

BO is a non-linear and non-convex optimization technique,
popular in fields where evaluating a cost function is burdensome,
as in robotics. As with any optimization, the goal of BO is to
minimize a cost function, f ,

ω∗ = arg min
ω

f(ω) , (1)

with optimization variables, ω. Unlike other optimization tech-
niques, rather than randomly sample the cost function to estimate
gradient information, BO constructs a global model of the cost
function based on the observed samples

[
ω1,ω2, . . .ωn

]
∈ Ω

and their corresponding costs,
[
j1, j2, . . . jn

]
∈ j. This model,

commonly referred to as the surrogate function, is then used to
determine the next set of parameters to test, which both minimize
the estimated cost and improve the model accuracy.

The tool used to build this model is known as a Gaussian
process (GP). For an unobserved optimization variable set, ω̂,
it tells us their predicted cost mean, ĵµ and variance, ĵσ2

2.

[
ĵµ
ĵσ2

]
=

[
K∗K

−1jT

K∗∗ −K∗K−1KT
∗

]
= GP(ω̂,Ω, j) . (2)

In (2), the K matrices are determined by evaluating a mean
and covariance function over the training and unobserved data.
Here we use the zero mean and squared exponential covariance
kernel functions [17]. The term K is the projection of each
training datum, ωi, into the kernel space, K∗ is the projection
of ω̂ into the kernel space, and K∗∗ is the projection of ω̂ into
a kernel defined by itself. Evaluating (2) is commonly referred
to as GP regression and implementation details can be found in
[17].

Given the surrogate function, the next step in BO is to de-
termine the optimal set of parameters, ω̂∗, to sample on the
next evaluation of the cost function. To do so, the exploitation
and exploration of the surrogate function must be balanced.
Simply choosing the minimum predicted value may leave us in
a local minimum, and areas of high variance should be explored

2Henceforth, the hat symbol, •̂, is used to indicate and unobserved, or
unmeasured, variable.

to improve the surrogate’s accuracy. An acquisition function is
therefore used to balance the exploration and exploitation of
the knowledge about the cost function [18]. It is a function
of the estimated cost means and variances, facq(ĵµ, ĵσ2). The
terms ĵµ and ĵσ2 are determined by evaluating the GP surrogate
function over the entire input space, Ω̂,[

ĵµ
ĵσ2

]
= GP(Ω̂,Ω, j) . (3)

To obtain Ω̂, the search space must be bounded and discretized.
This means that the search space grows as mn, where m is the
number of increments between bounds, and n is the dimension
of ω ∈ Rn×1. This is the principle limitation of BO. Recently,
a method for circumventing this limitation has been proposed in
[19], but is not used in this work.

Minimizing facq w.r.t. ω, we find the next best set of opti-
mization variables to test, ω̂∗, which balance the exploration and
exploitation of f ,

ω̂∗ = arg min
ω

facq(ĵµ, ĵσ2) . (4)

The real cost function of our problem is sampled by evaluating
the optimal variable set, ω̂∗. In robotics, this corresponds to
executing the task(s) and calculating their cost. Given this new
data, ω∗, and its cost, j∗, the surrogate is updated3. The update
consists simply of concatenating the new data to the old data
and reevaluating (2). The optimization concludes when some
problem-dependent convergence criterion is met.

III. METHODS
This section details the technical contributions of this work.

We first detail waypoint-based task trajectories used to guide the
evolution of tasks. Then we develop a general way of measuring
execution quality of tasks. We proceed with the specific BO
components necessary to optimize waypoint-based trajectories.
Finally, the complete task optimization algorithm is presented.

A. Task Trajectories
Tasks in whole-body control are generally guided by some

form of trajectory to ensure smooth movements. In this study,
trajectories are generated from a series of waypoints, which
represent coordinates of particular importance. Here, we use
the variable, ξ, to represent generic task trajectory coordinates.
Inherent in these waypoints are the overall objectives of some
task; e.g., for a point to point reaching task, the waypoints are
given by the start and goal coordinates of the reach. A single
waypoint, λi, with n DoF, is given by,

λi =
[
ξ1, ξ2, . . . , ξn

]T
i

, (5)

while a set of nλ waypoints is denoted,

Λ =
[
λ1,λ2, . . . ,λnλ

]
. (6)

A time step, tλi , must be associated to each λi. This can be
done by hand or via some heuristic method. From Λ and tλ,

a trajectory can be generated which outputs
[
ξT , ξ̇

T
, ξ̈
T
]T

at

each time step, t, from tλ1 to tλnλ . In this study, the trajectory
generation scheme proposed in [20] is used, which is tantamount
to basis-spline functions.

3Note the omission of the hat symbol, •̂, indicating that ω∗ and j∗ have
been observed.



B. Estimating Task Quality
To quantify the quality of a set of tasks in a whole-body con-

troller, three component costs are calculated over the execution
of the tasks. These costs provide an indirect measure of possible
disturbances without explicitly modeling them.

Firstly we make the hypothesis that, if the trajectory tracking
is imperfect, then for some reason disturbances exist, and the
execution of the tasks in question is less than optimal. This is
characterized by the tracking error cost,

jtracking(t) = ‖εξ(t)‖2 , (7)

where εξ(t), is the task error w.r.t. its reference at time, t.
Secondly it is assumed that the overall objective of any trajectory
is to reach its goal coordinate, which is the final waypoint, i.e.

jgoal(t) = γ(t)‖εξλnλ (t)‖2 , (8)

where εξλnλ (t), is the difference between the task’s current
coordinates and the final waypoint in its trajectory. The term εξ is
used to represent a generic error term and is not explicitly defined
because it’s calculation a function of the parameterization used
(see Ch. 1 of [21]). The term γ(t) is a function which weights
the error over time, applying exponentially greater penalties as

t exceeds tλnλ , i.e. γ(t) =

(
t
tλnλ

)10

. Finally, to avoid energy

inefficient tasks, an energy cost is calculated using,

jenergy(t) = ‖τ (t)‖2 . (9)

Because jenergy is often orders of magnitude greater than the
other component costs, it is necessary to scale this term. To do
so, we take the maximum value of j1energy in the first execution
of the tasks and use this as a scaling factor, i.e.

jenergy :=
jenergy

max(j1energy)
. (10)

All subsequent task execution energy costs are scaled by the
max(j1energy) factor from the first execution. The total quality
cost, jT , of the tasks is the time averaged sum of (7), (8) and (9),

jT =

te∑
t=0.0

[jtracking(t) + jgoal(t) + jenergy(t)]

te
, (11)

where te is the total duration of the task execution. In practice,
we find that scaling jT for each trial w.r.t. the jT from the first
iteration, similarly to the energy scaling in (10), is an effective
technique for improving solver convergence and is implemented
in this study, i.e.

jT (i) :=
jT (i)

jT (1)
. (12)

C. Bayesian Task Optimization
Similarly to [22], we implement a Lower Confidence Bounds,

or LCB, acquisition function because we are concerned with
minimization.

LCB(Ω̂,Ω, j) = ĵµ −
√
κĵσ2 , (13)

where the term κ is calculated using a variant of the no-regret for-
mulation developed in [23], κ = 2 log

(
0.3i

5
2π2

)
. To determine

the convergence of BO, we use the confidence, C, of the optimal
variable’s predicted cost,

C =
(

1− ĵ∗σ2

)
100 , (14)

which yields a percentage measure of how sure we are that the
optimal variables, ω̂∗, will produce a cost, ĵ∗µ, if executed. Once
C is higher than some threshold set by the user the optimization
is stopped. This is a valid condition for convergence because the
optimization occurs over the entire bounded and discrete search
space. Thus any optimum found with sufficient confidence is
a global optimum [10]. Using C for our convergence criterion
eschews the need to choose a minimum change in cost for
convergence. This is convenient because such criteria are often
arbitrary or non-trivial to calculate.

The optimization variables, ω, must be selected from the
trajectory waypoint data, Λ and tλ, by the user. For instance,
consider the following trajectory waypoints,

Λ =
[
λ1 λ2 λ3

]
tλ =

[
tλ1 tλ2 tλ3

]
,

(15)

depending on the meaning of these waypoints, we may not wish
to modify them. However, for waypoints which do not represent
strict goal coordinates for the task, we may have the liberty to
modify their values and times. In the case of (15), we could chose
to optimize the vector ω = [λT2 , t2]T . Alternatively we could
add an “optimization” waypoint to the set,ω = [ξ′T , t′]T , which
could be picked from the trajectory at time, t′,

Λ =
[
λ1 λ2 ξ′ λ3

]
tλ =

[
tλ1 tλ2 t′ tλ3

]
.

(16)

To bound the BO search space we find that the minimum and
maximum values for each DoF of Λ and tλ,

Ω̂ ∈
[
min

([
Λ
tλ

])
,max

([
Λ
tλ

])]
, (17)

provide a good rule-of-thumb first choice. The space between
these bounds is then discretized. The grid size used for discretiza-
tion depends on the coordinate systems being used. For Cartesian
waypoints, we estimate that our robot is no more accurate than
2cm so we use a 3cm grid size. For the time coordinates, we use
some fraction of the movement duration e.g.

tnλ
ng

, where ng is the
number of desired grid steps along tλ. Finally, the search space
is scaled to [0, 1] in each dimension to improve the cost function
approximation. This is a common technique in machine learning
known as feature scaling.

The overall whole-body task optimization framework is sum-
marized by Algorithm 1. Given a set of tasks, their component
costs, (7), (8), and (9) are computed during execution. Once
finished, jT is evaluated using (11). If the quality cost indicates a
failure of the robot to achieve its goals, BO is initialized with
the waypoint variables selected for ω and their resultant jT .
The BO then proposes a new set of waypoint variables to test,
ω̂∗, which should decrease the cost of the task and improve
the approximation of the latent cost function. The optimization
waypoint variables, ω, are then replaced with ω̂∗ and the tasks
are executed on the robot. Using the quality cost, j∗T , of the new
variables, the BO update can be performed. This optimization
loop is iterated until the BO confidence, C, is greater than 99%.



Algorithm 1 Task Optimization Algorithm

1: given Λ and tλ, generate trajectory
2: execute tasks
3: calculate quality cost jT (11)
4: select optimization waypoint data ω (15) & (16)
5: determine optimization bounds (17)
6: while C < 99% do (14)
7: update BO with ω and jT
8: solve for ω̂∗ and C (4)
9: ω := ω̂∗

10: execute tasks
11: calculate quality cost jT
12: end while

IV. SIMULATIONS

In this section, we detail the experimental setups of two
simulated scenarios. The objective of these tests is to show how
a variety of complex factors can degrade the overall behavior
of the robot, and by optimizing for the task quality, we are
able to correct for these factors. All simulations are executed
in the Gazebo [24] environment using the ODE physics engine
and a real-time clock4. A simulation of the humanoid robot,
iCub, is used as the test platform. The first scenario provides
a demonstration of the overall task optimization framework
using a toy obstacle avoidance scenario. In the second, more
complex, scenario a set of dynamically incompatible tasks, ac-
tuator limits, and environmental interactions generate a com-
plicated set of factors which degrade the robot’s ability to
perform its desired tasks. In both tests, we explicitly prevent
the use of environmental information for the RL. The code
for this study is open access and can be downloaded from:
https://github.com/rlober/humanoids-2016.

A. Obstacle Avoidance

In this toy example, the goal is to illustrate the key components
of the task optimization. The root link of the robot is fixed to
isolate task disturbances to the presence of the obstacle and
remove any possible issues due to maintaining balance. The
robot is given a trajectory for its right hand Cartesian task from
the hand’s starting position to a point 25cm above it with the
following waypoints,

Λ =
[
zstart zgoal

]
tλ =

[
tstart tgoal

]
,

(18)

where zstart = 0.0m, zgoal = 0.25m, tstart = 0.0s, and
tgoal = 2.5s. The x and y axes of the task frame are constrained
to force the robot to move in a straight line along the z-axis
preventing the robot from moving around the obstacle. Full-body
and torso posture tasks are used to keep the robot in an upright
posture and avoid unactuated limbs.

The robot must optimize the right hand Cartesian task to
avoid an obstacle, of which it has no knowledge or perception.
Furthermore, because we cannot modify the right hand task

4All simulations are run on a computer with an Intel® Core™ i7-4900MQ
CPU, with a 2.80GHz clock.

waypoints, an optimization waypoint is inserted into (18),

Λ =
[
0.0 z′ 0.25

]
tλ =

[
0.0 t′ 2.5

]
.

(19)

Here, t′ is taken as the median time of the movement, 1.25s, and
z′ = ξ(t′) = 0.12m. This waypoint is then used as the initial
optimization variable data for Algorithm 1, ω = [z′, t′]

T
=

[0.12, 1.25]
T . The objective variable, ω, is in R2×1, so the

surrogate function mean within the BO may be visualized. The
task execution is terminated if the hand has reached its goal
location to within 3.0cm or the movement has exceeded 10.0s
in total duration. At exactly 1.0s, an obstacle is inserted into the
path of the robot’s hand trajectory at z = 0.12m; however, this
information is not used in any way during the task optimization.
This obstacle is a 1.0cm thick flat plate.

B. Moving a Heavy Weight
The aim of this simulation is to show how the task optimiza-

tion can compensate for a complex combination of factors which
impair the overall behavior of the robot. In this example, the
robot is standing on a flat surface and maintaining balance, while
trying to move a 1.0kg cube from its starting point to a target
location on a flat table. The feet are not fixed to the ground. The
cube is affixed to the right hand and its mass is greater than the
maximum effective payload of the iCub’s right arm, which is
approximately 0.5kg when fully extended. An orientation task
is used to maintain the cube’s bottom surface parallel to the
table top. Balance is achieved through a Center of Mass (CoM)
position task, the objective of which is to maintain the CoM’s
ground projection in the center of the support polygon defined by
the convex hull of feet contacts. A torso Cartesian task along with
a full-body posture task keep the robot upright. Qualitatively,
the principle sources of task quality degradation are the heavy
payload, which the actuators of the right arm are incapable of
correctly supporting, and the conflict between the right hand task
and the overall balance of the robot. Task execution is terminated
if the cube has reached its goal location to within 3.0cm or the
movement has exceeded 15.0s in total duration.

The right hand trajectory consists of three waypoints,
at the start, middle, and goal of the movement,
Λ = [λstart,λmid,λgoal], and tλ = [tstart, tmid, tgoal].
The middle waypoint is chosen at 5.0cm above the table to
avoid dragging the cube, and is also selected as the optimization

variable, ω =
[
λTmid, tmid

]T
. The optimization bounds are

restricted in this simulation, to a hyperrectangle centered at ω.
The bounds are given by ω ± [1.0, 0.05, 0.05, 0.02]

T . We
restrict the search space in this example to prevent the robot
from exploring movements which would cause it to fall, to
more accurately mimic a real-world reinforcement learning
experiment.

V. RESULTS
This section presents the results for the test simulations de-

scribed in Sec. IV. For both tests, the time of an optimization
iteration is equal to the time it takes to complete an execution,
which is limited in both simulations to 10s and 15s respectively,
plus the time it takes to compute the BO update, which never
exceeds 1.0s. The BO update occurs in parallel to the task
executions and takes far less time to compute than the robot does

https://github.com/rlober/humanoids-2016


(a) Starting posi-
tion. (b) Original task. (c) Optimized task.

(d) Trajectory plots.

Fig. 2: This figure shows the original, z, and optimized, z∗

tasks for the “Obstacle Avoidance” simulation detailed in
Sec. IV-A. In 2(b) it can be seen that the robot is blocked
by the yellow obstacle introduced at 1.0s. Task optimization
generates a trajectory which causes greater acceleration at
the beginning of the movement, moving the right arm above
the obstacle before it arrives 2(c). This allows the robot to
reach its goal, indicated by the red sphere, which we can
confirm in the trajectory plot, 2(d).

to reset itself for another trial. Recordings of these simulations
can be found in the submission’s accompanying video.

A. Obstacle Avoidance

In Fig. 2, the main results of the simulation are presented. Fig-
ures 2(b) and 2(d) show that the original task execution fails due
to the yellow obstacle impeding the movement of the hand. After
7 optimization iterations, it can be seen in Figs. 2(c) and 2(d) that
the optimized trajectory moves the hand quickly enough to avoid
the obstacle and attain its goal. One of the key things to note in
Fig. 2(d) is that the optimal waypoint found for this task actually
generates a trajectory outside of the robot’s workspace. This has
the effect of creating strong accelerations in the beginning of the
movement allowing the robot to avoid the obstacle. Normally
such a trajectory would generate dangerous movements, but the
whole-body controller does not execute the infeasible portions
of the trajectory because they violate the control constraints and
conflict with the other tasks. This can be seen in Fig. 2(d) where
the real task trajectory, z∗real, only partially follows the reference,
z∗µ. This is interesting because the optimized trajectory is more
counterintuitive than the original trajectory, yet it is an effective
solution to this problem.

In Fig. 3, the BO surrogate function mean, ĵµ, is plotted. Here,

Fig. 3: A plot of the surrogate function cost mean, ĵµ, within
the task optimization described in Algorithm 1. This figure
shows the quality cost landscape of the obstacle avoidance
simulation after 7 iterations. The task executions, or cost
function samples, are plotted by the green dots. The blue
dot represents the optimal variables found for this simulation.
Using these values for the task’s optimization waypoint, the
obstacle is successfully avoided.

we observe that the cost landscape generated by this disturbance
scenario is most elevated after the obstacle insertion time and
below the z-height of the obstacle. This is logical because any
waypoint in this region of the search space would result in a
failure to reach the goal. Each sample of the real cost function
is indicated by a green dot, and represents a task execution.
The blue dot shows the optimal value found by BO with high
confidence and corresponds to the optimal waypoint shown in
Fig. 2(d).

B. Moving a Heavy Weight

In Fig. 4, the original and optimized task executions for this
example are shown. Although the differences are imperceptible
in these still frames, the robot manages to attain the desired
weight target to within 3.0cm of error, as shown by Fig. 4(d).
After 11 task trials, the robot learns how to accomplish its
objectives by placing the middle waypoint closer to the goal and
sooner in the trajectory resulting in a task trajectory with higher
initial accelerations. These accelerations increase the task error
term and consequently the optimal torques needed to accomplish
it. This causes the whole-body controller to preferentially accom-
plish the hand task and deviate the CoM task. Task equilibrium
is reestablished at the end of the hand movement when the
velocities and accelerations go to zero. This solution is quite
intuitive to anyone who has moved a heavy object; however, it
would be difficult to plan such a dynamic movement.

VI. CONCLUSION

Whole-body control can exploit the utility of humanoid robots
to the fullest through multi-tasking; however, there is no guar-
antee that they will be executed properly due to task priorities,
model/environment constraints and uncertainties, perturbations,
etc. Accounting for these factors directly would be computation-
ally untenable, and in this article, we showed how RL can be used
correct such issues in an efficient manner.



(a) Starting posi-
tion. (b) Original task. (c) Optimized task.

(d) Distance to goal.

Fig. 4: This figure shows the original and optimized tasks for
the “Moving a Heavy Weight” simulation detailed in Sec. IV-
B. In 2(c) it can be seen that the robot comes up just short of
its goal location. By optimizing the middle waypoint of the
task, the robot is able to accelerate more at the beginning of
the movement, building up sufficient inertia to reach its goal
within the acceptable error, as demonstrated by Fig. 4(d).

First it was demonstrated how to calculate the quality of task
execution through a few simple cost functions. This metric mea-
sured how various disturbances affected the task executions with-
out explicitly modeling them. Second by using the task trajectory
waypoints as parameters, it was shown how BO could minimize
the task quality cost and compensate for unexpected/unwanted
behaviors. Via two different scenarios, the efficacy of this tech-
nique was demonstrated by solving complex problems in very
few trials. We believe this to be a promising step towards more
robust and effective RL on systems with little margin for error,
such as humanoids.

Unfortunately, Bayesian optimization suffers from the curse
of dimensionality and beyond 8 optimization variables we will
quickly run out of memory. Therefore, the first course of action
is to explore ways of eliminating the need to discretize the BO
input space and use local search techniques instead. This would
enable the method to be extended to higher dimensional tasks,
such as those in the joint-space.

ACKNOWLEDGMENTS

This work was partially supported by the European Commis-
sion, within the CoDyCo project (FP7-ICT-2011-9, No.600716)
and by the RTE company through the RTE/UPMC chair Robotics
Systems for field intervention in constrained environments held
by Vincent Padois.

REFERENCES

[1] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic
behavior and control of human-like robots,” International Journal of
Humanoid Robotics, vol. 1, no. 01, pp. 29–43, 2004.

[2] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in IEEE International Conference on Robotics and Automation, May
2011, pp. 1283–1290.

[3] F. Keith, N. Mansard, S. Miossec, and A. Kheddar, “Optimization
of tasks warping and scheduling for smooth sequencing of robotic
actions,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009, pp. 1609–1614.

[4] M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-
level imitation learning using variance-based movement optimization,”
in IEEE/RSJ International Conference on Robotics and Automation,
May 2009, pp. 1177–1184.

[5] R. Lober, V. Padois, and O. Sigaud, “Multiple task optimization using
dynamical movement primitives for whole-body reactive control,” in
IEEE-RAS International Conference on Humanoid Robots, Nov 2014,
pp. 193–198.

[6] S. Calinon, D. Bruno, and D. Caldwell, “A task-parameterized prob-
abilistic model with minimal intervention control,” in IEEE Interna-
tional Conference on Robotics and Automation, May 2014.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement Learning in
Robotics: A Survey,” The International Journal of Robotics Research,
2013.

[8] F. Stulp and O. Sigaud, “Robot Skill Learning: From Reinforcement
Learning to Evolution Strategies,” Paladyn Journal of Behavioral
Robotics, vol. 4, no. 1, pp. 49–61, Aug. 2013.

[9] ——, “Policy improvement: Between black-box optimization and
episodic reinforcement learning,” pp. 1–15, 2012.

[10] J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012, vol. 37.

[11] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Auto-
matic Gait Optimization with Gaussian Process Regression,” in IJCAI,
vol. 7, 2007, pp. 944–949.

[12] Cully, A., Clune, J., Tarapore, D., and Mouret J.-B., “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, may
2015.

[13] R. Martinez-Cantin, N. de Freitas, and J. Castellanos, “Analysis of
Particle Methods for Simultaneous Robot Localization and Mapping
and a New Algorithm: Marginal-SLAM,” in IEEE International Con-
ference on Robotics and Automation, April 2007, pp. 2415–2420.

[14] P. Englert and M. Toussaint, “Combined Optimization and Reinforce-
ment Learning for Manipulations Skills,” in Proceedings of Robotics:
Science and Systems, 2016.

[15] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, 2014.

[16] A. Dietrich, C. Ott, and A. Albu-Schffer, “An overview of null space
projections for redundant, torque-controlled robots,” The International
Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.

[17] C. E. Rasmussen and C. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[18] E. Brochu, V. M. Cora, and N. de Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” ArXiv e-
prints, Dec. 2010.

[19] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. M. A. Patwary, Prabhat, and R. P. Adams, “Scalable Bayesian
Optimization Using Deep Neural Networks,” ArXiv e-prints, Feb.
2015.

[20] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task prioriti-
zation in Whole-Body Control,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, Sept 2015, pp. 3944–3949.

[21] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer
Science & Business Media, 2008.

[22] D. Cox and S. John, “A statistical method for global optimization,”
in Systems, Man and Cybernetics, IEEE International Conference on,
Oct 1992, pp. 1241–1246 vol.2.

[23] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Gaussian
Process Optimization in the Bandit Setting: No Regret and Experimen-
tal Design,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, 2010,
pp. 1015–1022.

[24] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3. IEEE, 2004,
pp. 2149–2154.

http://www.worldscientific.com/doi/abs/10.1142/S0219843604000058
http://www.worldscientific.com/doi/abs/10.1142/S0219843604000058
http://dx.doi.org/10.1109/ICRA.2011.5980202
http://dx.doi.org/10.1109/ICRA.2011.5980202
http://dx.doi.org/10.1109/ROBOT.2009.5152439
http://dx.doi.org/10.1109/ROBOT.2009.5152439
http://dx.doi.org/10.1109/IROS.2009.5354341
http://dx.doi.org/10.1109/IROS.2009.5354341
http://dx.doi.org/10.1109/ICRA.2014.6907339
http://dx.doi.org/10.1109/ICRA.2014.6907339
http://ijr.sagepub.com/content/32/11/1238.abstract
http://ijr.sagepub.com/content/32/11/1238.abstract
http://www.degruyter.com/view/j/pjbr.2013.4.issue-1/pjbr-2013-0003/pjbr-2013-0003.xml
http://www.degruyter.com/view/j/pjbr.2013.4.issue-1/pjbr-2013-0003/pjbr-2013-0003.xml
http://www.springer.com/us/book/9789401068987
http://www.springer.com/us/book/9789401068987
http://ijcai.org/papers07/Papers/IJCAI07-152.pdf
http://ijcai.org/papers07/Papers/IJCAI07-152.pdf
http://www.nature.com/nature/journal/v521/n7553/abs/nature14422.html#supplementary-information
http://www.nature.com/nature/journal/v521/n7553/abs/nature14422.html#supplementary-information
http://dx.doi.org/10.1109/ROBOT.2007.363681
http://dx.doi.org/10.1109/ROBOT.2007.363681
http://dx.doi.org/10.1109/ROBOT.2007.363681
http://ijr.sagepub.com/content/early/2014/05/01/0278364914521306.abstract
http://ijr.sagepub.com/content/early/2014/05/01/0278364914521306.abstract
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
http://adsabs.harvard.edu/abs/2010arXiv1012.2599B
http://adsabs.harvard.edu/abs/2010arXiv1012.2599B
http://adsabs.harvard.edu/abs/2010arXiv1012.2599B
http://adsabs.harvard.edu/abs/2015arXiv150205700S
http://adsabs.harvard.edu/abs/2015arXiv150205700S
http://dx.doi.org/10.1109/IROS.2015.7353932
http://dx.doi.org/10.1109/IROS.2015.7353932
http://www.springer.com/fr/book/9783540239574
http://dx.doi.org/10.1109/ICSMC.1992.271617
http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/0912.3995
http://arxiv.org/abs/0912.3995
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/IROS.2004.1389727

	INTRODUCTION
	BACKGROUND
	Whole-Body Control
	Bayesian Optimization

	METHODS
	Task Trajectories
	Estimating Task Quality
	Bayesian Task Optimization

	SIMULATIONS
	Obstacle Avoidance
	Moving a Heavy Weight

	RESULTS
	Obstacle Avoidance
	Moving a Heavy Weight

	CONCLUSION
	References

