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Abstract In the increasingly explored domain of action
analysis, our work focuses on action detection—i.e., seg-
mentation and classification—in the context of real appli-
cations. Hough transform paradigm fits well for such
applications. In this paper, we extend deeply optimized
Hough transform paradigm to handle various feature types
and to merge information provided by multiple sensors—
e.g., RBG sensors, depth sensors and skeleton data. To this
end, we propose and compare three fusion methods applied
at different levels of the algorithm, one being robust to data
losses and, thus, to sensor failure. We deeply study the
influence of merged features on the algorithm’s accuracy.
Finally, since we consider real-time applications such as
human interactions, we investigate the latency and com-
putation time of our proposed method.
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1 Introduction

Action recognition is an increasingly explored field in
computer science with many applications such as video
surveillance, video games, augmented reality, automatic
annotation, smart homes and health monitoring.

Our work focuses on real-life applications in the con-
text of human action analysis. In this framework, input
videos are not segmented—relatively to actions. More and
more methods are proposed to analyze human action or
activity but most of them consider the problem of short
segmented video classification while only a few ones deal
with large unsegmented videos. This task is a more dif-
ficult one task since the algorithm needs to perform both
segmentation and classification. Thus, in this paper, we
present an action detection—segmentation and recogni-
tion—algorithm.

In the context of a real application, multiple sensors are
likely to be used to capture as much information as pos-
sible—e.g., kinect sensors capture both RGB and depth
information—or to cover the largest possible area. The
number of involved sensors depends on the monitored area.
Real-life application-oriented algorithms have to handle
successfully a variable number of sensors and, ideally, to
merge information coming from different feature types.
Furthermore, since some extracted features can be
unavailable at some times—e.g., skeleton data extracted
from classical depth sensors—algorithms are expected to
profit from multi-sensor data when available, while staying
robust to data failure.

In applications involving human interaction, such as
robotic ones, low latency is a crucial issue to be addressed.
It involves both low computation time and low reaction
time, i.e., the algorithm has to detect an action from as little
frames as possible.



In this paper, we present an action recognition method
performing both segmentation and recognition of actions in
video streams. We chose Hough transform paradigm for its
short latency and computation time properties. We adapt
deeply optimized Hough transform (DOHT) to exploit
various feature types and manage a variable number of
sensors. More precisely, we propose and compare three
information fusion methods, one of them aims to be robust
to data loss. A major effort is also made on the choice of
low-level features, either in terms of modality (skeleton or
video) or in terms of descriptors [HOG, HOF, Trajectory
Shape (TS)]. Again, the performance is studied both for
accuracy and computation time points of view. Lastly, we
study the trade-off between latency and accuracy in order
to find a good compromise. The proposed features, fusion
strategies and models are evaluated on the TUM Kitchen
dataset [47] since it combines several views, several
modalities and video streams.

Our main contribution, guided by the implementation of
areal-time action recognition system, is threefold. First, we
propose a method to merge information coming from
various sensors that is able to manage sensor failure or
momentary lack of data since these are frequent situations
occurring in real-life applications. Second, we introduce a
comparative study on the most suitable characteristics to be
employed in this context. Third, computation times are
studied according to all parameters of the method, i.e.,
features, number of views and latency. These elements are
essential to get the best trade-off between performance,
speed and latency.

The remainder of this paper is organized as follows.
Section 2 describes the works related to action detection
and recognition by focusing on two main issues: charac-
terization of actions on one hand and their modeling on the
other hand. Section 3 presents the detection principle based
on the Hough transform paradigm. Section 4 discusses in
details the proposed strategies to merge information com-
ing from different sensors. This fusion is performed at three
different levels: descriptor level, vote level and score level.
Section 5 explains the experimental protocol, describes the
database and reports the results obtained with fusion of
views and fusion of descriptors. Section 6 deals with
computation times and latency. Section 7 concludes the
paper and discusses potential future works.

2 Related works

At first, motion-based recognition was developed for cyclic
motion [1, 2] or gesture interpretation [14—16], for instance.
Darell and Pentland used normalized correlation between an
input gesture and constructed models, along with Dynamic
Time Warping to detect gestures. In the context of hand

gestures, Davis et al. [16] tracked the finger trajectories
(direction of motion and displacement) in order to build a
motion code used to recognize the hand gesture. For action
recognition, work was done to recognize human motion as
walking, running and skipping actions [17, 21, 27] by
describing the human body motion with a combination of
line segments for both upper and lower body parts. These
segments were then used in a scenario hierarchy [6, 17] to
describe and recognize the target actions. Yamato et al. [56]
made an effort to recognize tennis strokes using Hidden
Markov Models (HMM). For a more detailed review of
motion-based recognition, see [0, 29, 44] for surveys.

Since, action analysis has been a widely explored
domain and can be categorized into two major topics:
action characterization and action temporal modeling.
While the first one extracts features independently on the
actions in order to describe a video, the last one aims to
build a temporal model of actions and is supervised. This
section presents some work in action recognition and is
organized according to this categorization.

2.1 Features

To capture information about the real world and more
precisely about human motion, several low-cost sensors are
available. We report below some features extracted from
the most current sensors, i.e., camera, motion capture and
depth sensors.

2.1.1 Video-based features

In order to extract and exploit information contained in
video streams, most of the existant methods adopt local
features, an extension of interest points [22] introduced for
object recognition applications. For instance, Laptev [31]
proposed Space-Time Interest Points (STIPs), aiming to
extract salient local structures: pixel groups with high
variation in both space and time. Laptev et al. [32] then
used these interest points in a multi-scale approach and
combined them with space-time pyramids and nonlinear
multi-channel SVMs to recognize segmented actions.

An intuitive approach, when dealing with video streams,
is to extract salient trajectories and process them as
descriptor to recognize actions. Trajectories can be
extracted with the well-known Kanade—Lucas—Tomasi
tracker (KLT) or with interest points matching across
temporal dimension [11, 36, 37, 46].

Sun et al. [46] proposed a hierarchical spatio-temporal
context modeling. The idea is to describe context around
interest points at different levels, namely point-level con-
text, intra-trajectory context, inter-trajectory context and
then to combine feature channels through a multi-channel
nonlinear SVM as in [32]. More precisely, once SIFT



features have been extracted and trajectories computed
with KLT tracker, the authors model the point-level con-
text averaging the SIFT descriptor over all points from the
extracted trajectory. Intra-trajectory is described by an
ergodic Markov chain, and inter-trajectory context is
described by a trajectory proximity descriptor based on a
Markov Stationary Distribution calculated from closed
trajectories.

To exploit the discriminative ability of trajectories and
in order to benefit from dense sampling, which has shown
to improve results in the image classification field [41],
Wang et al. [49] extract trajectories over a dense grid using
optical flow for tracking. Irrelevant trajectories (e.g.,
immobile points) are then ignored. The authors proposed 4
features to describe the videos: Trajectory Shape (TS),
Histogram of Gradient (HoG) [12], Histogram of Optical
Flow (HOF) [13] and Motion Boundary Histogram (MBH).
MBH showed to outperform previous descriptors, particu-
larly on videos with camera movement since it removes
constant camera motion. Later, Wang et al. [50] improved
this work considering camera motion when extracting tra-
jectories and integrating a human detector as a filter. These
dense trajectory descriptors have shown to be effective and
have been widely used for action recognition [39].

2.1.2 Motion capture (MoCap)-based features

Another explored field for action recognition is associated
with motion capture (MoCap). Tenorth et al. [47] proposed
the TUM Kitchen Dataset, presented in Sect. 5.1, providing
sequences of skeleton joint coordinates suitable for action
recognition. Barnachon et al. [5] proposed an exemplar-
paradigm-based method to recognize actions from MoCap
data. More precisely, they extract local histogram of action
poses as features and compare actions through dynamic
programming. Recently, Amor et al. [3] used Kendall’s
shape framework to characterize shapes of individual
skeletons.

2.2 Depth-based features

More recently, with the emergence of low-cost depth
sensors, efforts were done to profit from information con-
tained in 3D space. First, work was done to create or adapt
features from RGB domain to depth or RGB-D (RGB and
depth combined) domain [42, 48, 55].

Oreife and Liu [42] proposed a descriptor, named His-
togram of Oriented 4D Normals (HON4D), which is
“analogous to the histogram of gradients in color sequen-
ces”. It encodes both orientation and magnitude of the
surface in 4D space. Xia and Aggarwal [55] proposed a
method called DSTIP which allows the extraction of STIPs
from depth videos. They introduced a feature designed to

describe 3D depth cuboids called Depth Cuboid Similarity
Feature (DCSF). Wang et al. [51] used depth information
to describe 3D context around areas of interest through
Local Occupancy Patterns (LOP) describing how the area
is filled in a 3D grid.

Other works [24, 40, 45] combined RGB and depth
information since these two channels are complementary,
encoding both color appearance and 3D shape. For
instance, in order to compute 3D Trajectories of Surface
Patch (ToSP), Song et al. [45] compute STIPs and apply
the KLT tracker in RGB domain to extract trajectories
before extending them to 3D space since interest points are
much more easily extractable from RGB images than from
depth maps.

Finally, depth sensors paved the way for MoCap
methods in realistic context for action recognition since
they can be used for skeleton extraction without heavy and
invasive equipment. Wang et al. [51] defined actionlet
ensemble being a discriminative subset of joints for a
particular action and combined it with the Local Occu-
pancy Patterns they introduced.

Wang et al. [52] proposed a graph model which benefits
from skeleton data during training process, avoiding heavy
manual annotation of body parts. However, at testing time,
this model only uses 2D information. This way, their
Multiview Spatio-Temporal AND-OR graph (MST-AOG)
can be applied on data provided by simple cameras.

2.3 Modeling of action

Several methods exist to model actions in the action
recognition literature. The first one is a simple extension of
the bag-of-word feature, used in object recognition, to
spatio-temporal bag of word [32]. It consists in character-
izing spatio-temporal volume around Space-Time Interest
Points (STIPs) and representing them by words. Recogni-
tion is then obtained using a SVM on the histogram of
words. The use of histograms in this method has the dis-
advantage of loosing spatial and temporal dimensions. This
is a major disadvantage since these dimensions contain
abundant information about occurring actions.

A simple method to compare features exploiting temporal
aspect is to align them temporally before estimating dis-
tances. This alignment and comparison can be performed
using Dynamic Time Warping (DTW) [38]. That is what
Barnachon et al. [5] proposed in order to resolve the action
recognition problem, looking for the nearest neighbor of the
tested exemplar in a temporal alignment independent way.

Generative methods can also be used for modeling
temporal information. In such a paradigm, actions can be
modeled by Hidden Markov Model (HMM) [18] or
grammars [30] for example. In [18], each sequence is first
characterized by a sequence of movelet codewords—a



movelet being a collection of shape motion and occlusion
of image patches corresponding to main parts of the body.
Then, each action is modeled using HMM. The approach
proposed in [30] takes advantage of similitude between
speech and human action. Thus, authors first modelled
action units using Hidden Markov Models—as done for
words in speech analysis— and model action as sentences
using an action grammar.

Finally, Conditional Random Field CRF [60] used by
Wang et al. [53] is an extension of HMM to a discrimi-
native context.

Deep learning [33] is a recent and popular approach of
machine learning that automatically learns a hierarchy of
features based on low-level descriptors. It has been
employed in [25] in the context of action recognition to
extract features from both spatial and temporal dimensions,
capturing motion information encoded in multiple adjacent
frames. Baccouche et al. [4] extend the convolutional neural
networks to 3D and thus, automatically learn spatio-tempo-
ral features. In a second step, a recurrent neural network is
trained to classify each sequence of the learned features.

The above modeling methods all consider an action
recognition problem. Since videos extracted from real
applications are not segmented, we need to handle action
analysis for detection (segmentation and recognition).

Adapting methods initially designed for action recog-
nition to action detection is a first way to go. For instance,
Hoai et al. [23] proposed a discriminative temporal
extension of the spatial bag-of-words model. Classification
is performed robustly within a multi-class SVM framework
applied on a large number of segments. Inference over
segments is done with dynamic programming.

Yu et al. [59] proposed to build action proposals based
on human and motion detectors. These action proposals can
then be used to detect actions in unsegmented videos.

Another approach, proposed in [58], classifies and
localizes human actions using a Hough transform voting
framework. Mapping between densely sampled feature
patches and their corresponding votes in a spatio-temporal-
action Hough space is learned with random trees. Contrary
to the previous presented methods, the latter does not need
the use of a classifier applied on an important amount of
segments to perform the segmentation and has low latency.
For these reasons, our work focuses on Hough transform
paradigm, presented in next section.

3 Hough transform paradigm

3.1 Introduction

In this section, we describe Hough paradigm and its usage
for action recognition. Hough paradigm has proven to be an

efficient way to detect object [19], track them [20] and has
been recently used for action recognition [8, 28, 57].

The action detection process using Hough transform can
be simply described as a two step model:

1. Feature extraction and quantization resulting in a set of
words (c1,4), (c2,12), - - ., (cn, ty) where c is the label
of the word—named codeword—and ¢ is the time
where it was extracted and N is the total number of
extracted words in a sequence. In the following, when
there is no ambiguity, we note them (c, ) for
simplicity.

2. Voting process: each word (c, f) votes with a weight
6(a, d;, c) for an action a, centered on time ¢ + 0.

Hough score is then computed as:
H(fa) = 0(a,t —tc), ()
()

and detection at each time ¢ is done by pooling the maximal
value of H(t,a):

at) = argznaXH(t, a) (2)

Classification accuracy of Hough transform algorithms
highly depends on weights 6(a,d;,c), learned on the
training database. Their number depends on the number of
action a to detect, the maximal displacement time consid-
ered for voting M (—M <d,<M) and the number of
extracted codeword c. Action detection methods based on
Hough transform paradigm mostly differ on the estimation
of these weights, more precisely on the parameters con-
sidered for optimization.

A very intuitive way to estimate these weights is to
compute statistics on the learning database. Leibe et al. [34]
proposed the Implicit Shape Model (ISM) where the weights
are proportional to the number of detections of a codeword ¢
at the relative time 6, to the center of the action a.

Following this work, some authors proposed to weight
this expression in order to take benefit from the discrimi-
native power of different elements. Thus, Maji et al. [35]
put emphasis on the discriminative power of each code-
word, with a weight w, learned during the training step. For
Zhang et al. [61], not all training examples represent
actions with the same accuracy. They introduced a weight
to model how important each training example should be.
Finally, Wohlhart et al. [54] revealed that learning these
weights with a linear SVM can be viewed as learning a
different weight for each time displacement J,.

These previous methods optimizes weights 6 consider-
ing only one parameter. None of them takes into account
the influence of all parameters at the same time. This issue
was addressed by [8] that defined the deeply optimized
Hough transform (DOHT), aiming to learn weights



considering all three parameters a, J, and c. As this global
optimization gives better results than the previously
described ones, we chose to follow this paradigm.

3.2 Deeply optimized Hough transform (DOHT)

With the goal to find actions occurring at time ¢ through a
Hough transform process, Chan-Hon-Tong et al. [8] pro-
posed a new formulation to optimize the Hough weight
6(a, d;, c). Among others, this model makes the assumption
that a codeword extracted at time ¢ should provide less and
less information when time displacement ¢, increases.
Then, the training process to solve consists of:
HZH(}}EDZO(lTeg(B) +C X Ldata(é))

under constraints:
YV, 1 a # ai,(t):
0(a(£). ¢ —
Z ( ((lv(t/), r—1t, C)) + f(l‘/) >1 (3)
(ce,r)EV —H(Q,t =1, C)
Va,c, 61175[2:
{ 0 <0p<0= 9((1, 5[17C) < H(a, 2, C)
0 S 571 S 572 = 9(617 5[17C) Z H(a7 5127 C)

where V is the set of training examples, a(f) is the actual
action occurring, Lgu,(€) is a loss function introduced to
allow some data constraints to be unsatisfied and Ly, (0) is
added to prevent over-fitting. Coefficient C mitigates the
trade-off between attachment to data and regularity as in
[7, 10]. Note that in DOHT formulation, extracted features
vote for an action presence rather than for the action center.
More details on this formulation, expressed as a linear
problem that can be efficiently solved, will be found in [8].

As the number of constraints is very large and can be not
tractable, Chan-Hon-Tong et al. [9] introduce a new for-
mulation, which can be solved using SVM and which is
based on a set J™' of intervals /. With this new formu-
lation, the problem is equivalent to find a function w() > 0
satisfying:

0(a,6r,c) ~ Y wla,1,¢) x 7,(8), ()
Iejfull

where 7™ is the set of all temporal intervals included in
[—M, M] containing 0 and M is the maximal time dis-
placement considered during voting step and is set to the
maximal length of actions by the authors. y;(¢) is defined
as:

w00 =

1 rel

0 t&l ®)

With this new formulation, Ly, and Lgy, are defined as
Lieg = ||w||§ and Lgy, = ||¢]|,. The formulation (Eq. 3) is
then expressed as a standard multi-class SVM [10, 26]:

min ¢ (Iwl}3 + € x 1)
underconstraints:
YV, 1 a # ai)(1):
Z(C,t)éV.IGj‘““ ((W(“T/(t/)? Lc)—w(a.1,c))y (! —1))
+E(7) > 1.
(6)
In order to speed up the training step, the authors replaced
JM with a subset of intervals J, reducing the number of
constraints. This subset is designed in such a way that the
more interval boundaries are near O the higher granularity is.
More formally, these intervals are defined as:

J={[-27"M,27"M]} witho, B € {0,....n;, +o0}. (7)

Thus, for example, using n; = 4, leads to 25 intervals.
The whole training process is summarized in Fig. 1 and
testing process in Fig. 2.

4 Fusing information in the DOHT paradigm

In the original paper [9], DOHT was only applied to
skeleton joint data. Yet, in deployed applications, skeleton
data is not available at all time as, for example, for video-
surveillance systems based on camera sensors. Besides,

Training set
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Fig. 1 Learning process
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Fig. 2 Testing process

multiple sensors are generally required to cover an area and
the sensor number highly depends on the application and
on the shape of the monitored area. We are therefore faced
with a twofold problem: the problem of managing variable
nature of data and the problem of managing an unknown
and variable number of sensors.

To handle these issues, this paper introduces a data
fusion template using Hough paradigm. It aims to benefit
from as much information as possible, whatever the
nature of data or the number of sensors. As proposed in
[43], this fusion can be performed at three different
levels, namely low level, middle level and high level,
corresponding to descriptor-level, vote-level and score-
level fusion in the DOHT paradigm. In the following, we
refer to them with the latter formulation. These levels
will be described in next sections as well as their pro
and cons.

4.1 Descriptor-level fusion

Descriptor fusion is the lowest proposed fusion level. This
fusion consists in a concatenation of feature descriptors
right after extraction, producing a larger feature as shown in
Fig. 3a. Quantization (codebook computation and repre-
sentation) is then computed using k-means on these con-
catenated features, and the rest of the algorithm is executed.
In other words, these features are the new input of the
DOHT algorithm. At this level, the main goal is to compute
a descriptor containing more information. In our case, with
dense trajectories, descriptor fusion is applied on features

(a)

localized :)
features \—

localized (:)
features \—

localized
features

Descriptor Level

(b)

(0

scores 2

Score Level

Fig. 3 Three fusion levels in the DOHT Paradigm. a Descriptor-level
or low-level fusion. b Vote-level or middle-level fusion. ¢ Score-level
or high-level fusion

extracted on the same track leading to a more complete
descriptor of extracted data. This new descriptor is richer
than simple ones since it may contain temporal information
from HOF and spatial information from HOG, for instance.
Note that this feature level fusion can only be used for data
coming from a single sensor or, otherwise, requires to match
data across sensors. In this last case, a disadvantage is the
high sensitivity of this fusion to sensor failure.

4.2 Vote-level fusion

To combine features at the vote level, codebooks are first
generated for each feature independently. Then, during the
learning step, the dimensions of vote map 6(a,d,,c) are
increased in order to learn weights in a jointly way. The
third dimension size is now the summation of the extracted
codebook number from each feature as illustrated in
Fig. 3b. Note that since weight learning is not done inde-
pendently for each feature but in a jointly way, more
importance is given to high representative descriptor
instances for each action.



As a result, a sensor failure during the testing step at
time ¢ will simply lead to a lack of descriptor for this sensor
at this instant. Other sensors will still generate votes so that
the algorithm can output a score; since the predicted action
is the one associated with the highest score value, ranking
is not highly affected and the output is, in most cases,
unaffected. Thus, this vote level can be computed with a
variable number of sensors. Finally, as codeword genera-
tion is done independently for each sensor, middle-level
data fusion can be performed with different modalities
(RGB, depth, skeleton, etc.).

4.3 Score-level fusion

Finally, fusion can be computed at the highest level,
namely score level as illustrated in Fig. 3c. Here, it consists
in computing the score H;(t,a) at time ¢ for each action
a and sensor or descriptor s independently, then balancing
sensor importance in a global way rather than in a local
way like in the vote-level fusion. To do so, we run a SVM
on Hough scores estimated independently for each sensor/
descriptor H,(t,a). After learning, a global score H(t, a) is
obtained and used to classify actions. By principle, this
level of fusion cannot be employed with missing sensors as
one of the sensor scores Hs(f,a) will be empty and thus it
perturbs the estimation of the global score. An advantage is
that, as for the vote-level fusion, the fusion can be done for
different sensors and different modalities.

5 Results

In order to evaluate information fusion, we chose dense
trajectory [49] and skeleton trajectory [8] as input feature,
with 15 and 10 frames length, respectively. We evaluated
DOHT algorithm with a 3000 words codebook for visual
features and 5 words for each skeleton feature. These
parameters are those used in the original papers [8, 49].
Note that contrary to descriptors extracted from dense
image trajectories, the tracklets from skeleton joints are
very constrained by human movements. Moreover, dense
trajectory descriptors contains more variable information
based on appearance and shape (as HoG and TS for
example). They are also more numerous as they are
extracted on a dense grid. The maximal displacement time
is set to M = 50 frames and n; = 4 is employed to define
intervals (Eq. 7).

Moreover, we chose to use the TUM Kitchen Dataset
since it is well adapted to action detection (most of the
databases are dedicated to recognition and provide only
segmented actions) and contains multiple points of view
and modalities (RGB captured with 4 camera views and
skeleton data captured with motion capture).

Kitchen side

)2 &

Table

& ®

Fig. 4 Approximate position of each camera (red), with the actor
(blue circle) being on kitchen side

Fig. 5 Different camera views in TUM Kitchen Database. a Example
from View 0. b Example from View 1. ¢ Example from View 2.
d Example from View 3

5.1 TUM Kkitchen dataset

TUM Kitchen Dataset proposed by [47] is composed of 19
videos in which 4 subjects are setting the table in either a
natural or a more robot like way. Videos have been
recorded with four cameras homogeneously located around
the scene as represented in Fig. 4. An example of camera
views is presented in Fig. 5. Depending on where the
performed action takes place in the scene, specific cameras
will be more suitable than the others. Thus, in the illus-
trated example, since the person is facing backwards in
views 0 and 1, corresponding cameras capture a limited
information on the performed action. This database also
includes motion capture data, RFID and magnetic sensors.



Table 1 Accuracy on TUM when considering each descriptor
independently

TS HoG HOF Skeleton
View 0 75.0 81.8 79.6 81.5
View 1 72.6 81.3 76.5
View 2 70.5 80.5 74.7
View 3 73.5 77 74.5

Bold values indicate the highest results

Videos are labeled according to 9 actions being Carrying
while locomoting, Reaching, taking something, Lowering
an object, Releasing/Grab something, Opening door,
Closing door, Opening a drawer and Closing a drawer.

The database is split into training and testing parts fol-
lowing the scheme defined in [57], and algorithm was
trained to estimate the action associated with the left hand
motion in each frame. Accuracy is defined as the number of
correct predictions divided by the total number of frames in
the testing videos.

5.2 Results with independent descriptors

For comparison, we first evaluate each descriptor inde-
pendently, i.e., dense descriptors in images [49] [(Trajec-
tory Shape (TS), Histogram of Oriented Gradient (HOG),
Histogram of Optical Flow (HOF)] and skeleton descrip-
tors [8]. We obtained the results presented in Table 1.
We observe that, in the context of the TUM Kitchen
Dataset, visual aspect is more informative than other features.
For example, since we do not use spatial localization of
extracted features, Trajectory Shape of points around the hand
for the action Taking something will be similar to other dis-
placements as Carrying While Locomoting so this descriptor
will not be very discriminative. On the contrary, visual aspect
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Fig. 6 Confusion matrices on View 0 of TUM Kitchen dataset. 1:
carrying while locomotion, 2: reaching, 3: taking something, 4:
lowering object, 5: releasing/grab something, 6: opening door, 7:

(encoded by HOG feature) will probably extract information
as presence of an object or drawer, for instance. For this par-
ticular example of Taking something, TS gives an accuracy of
26% while HOG gives 72% on view 0. Figure 6 shows con-
fusion matrices of these descriptors on view 0.

5.3 Results on feature fusion

We compute feature fusion by computing all possible
combinations of visual features being Trajectory Shape,
Histogram of Gradients and Histogram of Optical Flow.

We observed in Table 2 that best results are likely
obtained when combining Trajectory Shape and Histogram
of Gradient. These two features are complementary since
the first one encodes movement in the image, while the
second one encodes visual aspect. On the contrary, features
as TS and HOF are both extracted from optical flow and
merging them does not improve results.

We also observe that the lowest fusion level leads to the
more accurate results. More generally: the lower the fusion
level is, the greater the performance is.

To evaluate the stability of DOHT algorithm according
to the learning parameter, we ran it for various values of
parameter C of the SVM (the parameter that controls the
trade-off between the attachment to data and the regularity,
see Eq. 3). Results are reported in Fig. 7 for the low-level
fusion. For all configurations, results are quite stable when
C > 2 which shows that our method does not highly
depend on this parameter and does not need fine tuning. To
avoid over-fitting, we chose to keep the lowest stable value,
being C = 2 in the following.

We can also notice in Table 2 that views 0 and 1 lead to
the best performance. Actually, as they focus on the
kitchen, they are really reliable to recognize actions such as
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DOHT output

closing door, 8: opening drawer, 9: closing drawer. a Trajectory shape
(TS). b Histogram of gradient (HOG)



Table 2 Accuracy on TUM

dataset for different TS + HOG TS + HOF HOG + HOF TS + HOG + HOF
combinations of visual View 0
descriptors
Low level 82.5 78.6 80.5 80.6
Medium level 80.3 79.3 81.9 81.2
High level 79.2 78.9 814 80.0
View 1
Low level 81.7 76.5 78.2 78.0
Medium level 80.1 76.6 80.4 80.0
High level 78.2 79.4 79.4 78.6
View 2
Low level 80.7 74.1 79.7 78.3
Medium level 78.1 734 80.0 77.6
High level 78.1 73.9 78.5 77.3
View 3
Low level 77.9 74.5 77.5 77.9
Medium level 77 75.0 77.2 77.2
High level 76.9 75.4 76.4 76.8
Italic values outperform corresponding single descriptor performance
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Fig. 7 Influence of parameter C on accuracy with feature fusion at
the low-level fusion, for each configuration

Opening door, Closing door, Opening a drawer and
Closing a drawer. The two other views are more appro-
priate to recognize actions performed around the table. As
we do not know a priori the actions carried out, merging
the views is a natural approach.

5.4 Results on view fusion

In order to benefit from information extracted from dif-
ferent points of view in the scene, we evaluated our algo-
rithm for all possible combinations of view pairs. Since it
gave best results at low-level fusion, we kept the new TS +
HOG feature introduced in Sect. 5.3.

Information coming from different views is combined at
middle and high fusion level—they cannot be fused at the
lowest level as described in Sect. 4. Results are resumed in
Table 3.

Table 3 Views fusion accuracy in DOHT paradigm according to the
fusion level

Views Medium level High level
Fusion of 2 views
o+ 1 83.1 (40.6) 83.0 (40.5)
a1+2) 82.1 (40.4) 82.1 (+0.4)
oO+2 83.9 (+1.4) 82.5 (+0.0)
a1+3) 81.7 (+0) 81.5 (-0.2)
O+ 3) 83.4 (4+0.9) 82.0 (—0.5)
2+3) 80.1 (—0.6) 79.5 (—1.2)
Fusion of all views
All 83.1 (40.6) 83.2 (+0.7)

In brackets, the difference between the fusion score and the best view
score used in the fusion

Depending on the configuration of the room, different
views can be unequally informative. For instance, since
view 0 and 1 are located on the same side of the kitchen
relatively to the direction of movements, they are less
complementary than view 0 and 2 which can help each
other when occlusions occur—see Fig. 5 for camera
positions.

Merging information from different views outperforms
single view results, and best results are obtained when
combining views 0 and 2. Once again, concatenating
information at the lowest possible level gives best results.

Combining all four views does not increase results,
probably due to the information redundancy and to the
large number of weights the SVM has to deal with.



5.5 Results on modalities fusion

In this section, we investigate the performance when fusing
modalities, i.e., RGB data and skeleton data. Benefitting
from of the previous section results, we use a combination
of TS + HOG at the lowest level of fusion as image
descriptor. This descriptor is then combined with the
skeleton data. This new fusion can only be achieved at
medium and high fusion level, giving an accuracy of 85%
which outperforms single modality results.

5.6 Robustness to missing data or sensor failure

In this section, we study the influence of loss of informa-
tion or sensor failure on accuracy. This can be a critical
issue, particularly for real-life applications where sensors
can be sporadically unavailable for some reason. We
evaluate this effect for two configurations. In the first one,
the learning is done with (TS + HOG) features combined
at the low level of fusion, then the 4 views are merged at
the middle level of fusion. In the second case, (TS + HOG)
features are combined at the low fusion level and then the
views and the skeleton data are merged at the middle level
of fusion. Please remember that only the intermediate level
can manage the lack of data (Sect. 4). For both configu-
rations, at testing time, we ran the algorithm while ignoring
data from one sensor.

Table 4 shows results obtained with a sensor failure.
Results emphasize that the method still performs well when
data from one view are lost at testing time. Indeed,
whichever view is missing, results do not vary signifi-
cantly, showing the method’s ability to exploit all available
data. Worst results are obtained when skeleton data were
available at training time and dropped at testing time and,
still, the algorithm shows an accuracy of 72.2% which is in
the range of results obtained with only one feature.

These results show a good robustness of the algorithm to
sensor failure or missing data, which is a crucial charac-
teristic of real systems.

Table 4 Average accuracy (%) on TUM dataset when a particular
sensor is unavailable at testing time

Learning data 4 views 4 views + skeleton
All features 83.1 85.0
View 0 out 77.7 83.1
View 1 out 80.2 83.3
View 2 out 82.2 84.5
View 3 out 81.3 85.0
Skeleton out X 72.2

Data fusion of views or skeleton is done at the middle level of fusion

6 Computation time and latency

In this section, we evaluate two relevant performance cri-
teria in the context of real applications: computation time
and latency. The first one depends on the detection method
and on input features. The second one is defined as the
delay between input frame and the corresponding output
decision.

6.1 Latency

In applications such as health care or robot interaction, low
latency can be very important to guaranty a safe usage. In
this section, we investigate the influence of latency on
detection performances.

In the DOHT Paradigm, a frame f; captured at time ¢
receives votes from features extracted at time 7+ o,
0, € [—M;M)]. As a result, action prediction for the frame f;
is fully completed after time ¢ + M. In other words, the
DOHT paradigm has a maximal theoretical prediction
latency value equal to M, which is half the size of the
voting window.

However, since Hough score is a progressive sum of
received votes, it can be calculated frame after frame. This
way, we can compute a partial Hough score at each feature

extraction time. Let us denote H" "] (¢, a) the Hough score
for frame f; extracted at time ¢, regarding action a and
computed from votes extracted on [Ty, 7).

In order to investigate the influence of latency
—M < <M on detection rates, we computed a partial Hough

score HI™M "Z](t, a) rather than a completed score. Note that
when [ is negative, prediction is done using only frames
extracted before time ¢, and that this is predicting the action
of frame ¢ before this frame has actually been observed.
Figure 8 shows accuracy of the algorithm depending on
M and latency /. We observe a strong improvement around
| = 0—and less variations after / = 10 for all configura-
tions. This is consistent with the fact that DOHT method
mainly votes around the central frame . The figure also
shows the impact of parameter M on accuracy results. One
could think that accuracy would increase with M since we
exploit more and more information, but we observe that
results are higher when M = 20—corresponding to a vote
window of 40 frames/1.6 s—with a score of 86.1% which
is our best result, and slightly decrease when M grows. This
is a consequence of the implementation of the decreasing
constraint (Egs. 4, 7) in approximated DOHT. Indeed, this
constraint is handled by a fixed number of intervals which
individual size increases with M. Some weights 6 become
thus less discriminant since they receive predictions from
numerous frames. For comparison, Fig. 10 shows action
length distribution in the TUM Kitchen Dataset. This
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Fig. 9 Confusion matrices when combining information from all
views and skeleton data. For class correspondences, report to Fig. 6

length has to be compared to 2 M since codewords local-
ized in the interval [ — M, 1 + M| are used to predict action
at time t. We provide the confusion matrix for this con-
figuration (Fig. 9), showing that fusion of descriptors
reduces confusion between classes (compared to Fig. 6 for
instance).

These results emphasize the fact that the algorithm gives
pretty good results with a short latency, even when com-
puted with a large voting window, since it computes a
result evolving frame after frame. Another interpretation

40 T T T T

occurences

40 60
action lenght

Fig. 10 Action lengths histogram in the TUM Kitchen database

could be that the algorithm efficiently exploit information
from action beginning. This property suits well for real-life
applications.

6.2 Computation time

As emphasized in [9], DOHT detector’s complexity for
each frame extracted at time ¢ € [0,7] is O(M, A) since
votes are computed on a time window of size 2M for each
action a € A with A = card(.A). As a result, computation
time for each frame varies linearly with M, A and the
number of features extracted in this frame.

Figure 11 shows computation time of our algorithm in
relation with M, half the size of the considered time win-
dow during voting step. Note that we did not optimize the
extraction step and that we used available code from [49]
for visual feature extraction. This code uses a heavy grid
sampling of trajectories which could be enhanced.

As expected, vote computation time grows linearly with
M. For M =20, which gives best results according to
Sect. 6.1 (accuracy of 86.1%), the overall process consid-
ering all four views and skeleton data requires 0.127 s,
with vote process only requiring 0.029 s. This corresponds
to a 8 fps frame rate, without time optimization (task
parallelization for instance). This confirms that DOHT is
suitable for real-time applications.

When using only skeleton data, as in [9], the number of
extracted features at each frame is lower. With K =5
centers—for K-means—we observe a maximum computa-
tion time of 1.02 ms (Fig. 12). Note that this result does not
consider extraction time since skeleton features are directly
provided in the TUM dataset. For comparison, when using
the same M = 50 with dense trajectories, computing time
is 98 ms. Note that this time can be reduced with opti-
mization and dimension reduction.

All time were measured on an “Intel(R) Xeon(R) CPU
E5-2687W 0 @ 3.10GHz”, using 16 cores when computing
votes, without heavy optimization.
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Fig. 12 Computation time using only skeleton data. Since skeleton
data are given in the TUM dataset, extraction time is not available

6.3 Comparison with state-of-the-art methods

In this section, we compare our results to state-of-the-art
algorithms. Results are presented in Table 5 according to
original labels proposed by [47] or after splitting the first
class (Carrying while locomoting) into two classes namely
Walking and Standing, following [57].

Our method outperforms previous works presented in
[8], showing that the DOHT algorithm can benefit from
information fusion. Without further optimization and with
the same parameters, we compare our result on modified
labels proposed in [57] and our method achieves

Table 5 Comparison with published results on TUM datasets

Method Result
Original TUM labels
DOHT (8] 81.5
DOHT (27 joint skeleton) 83.0
ours (HOG + HOF, one view, M=50) 82.5
ours (all Views, M=20) 84.6
ours (all Views + Skeleton, M=20) 86.1
Modified label (following[57])
All features + HF [57] 81.5
ours (all Views + Skeleton) 81.6

Results are just extracted from the corresponding papers and do not
come from reimplementation

comparable results. Note that we did not include results
published in [5] since this work uses segmented data.

7 Conclusion

In this article focusing on action detection, we presented an
information fusion method aiming to benefit from as much
information as possible. This information fusion has been
performed at three different levels in the deeply optimized
Hough transform paradigm which fits well for real-time
systems thanks to its ability to deal with unsegmented data
and its low latency property. The medium-level fusion
enables to merge effectively information from completely
different sensors as RGB and skeleton for instance.

We evaluated this method on the TUM Kitchen Dataset
since it is composed of various views and allows com-
bining skeleton and RGB data targeting human action
detection. We used the well-known dense trajectories fea-
tures as input to our detection process and more precisely
Trajectory Shape, Histogram of Gradient and Histogram of
Optical Flow.

Feature fusion has first been evaluated at three different
levels. Then, we evaluated the DOHT ability to success-
fully combine information provided by different views
from the dataset. Finally, we merge all views, relevant
features and skeleton data.

Our results emphasized that the method successfully
merges available information in the context of action
recognition with detection accuracy close to state-of-the-art
results.

Furthermore, it has proven its robustness to information
loss which is a relevant issue for real-world applications
where sensors can sporadically fail to deliver a signal.

Finally, we evaluated the latency of the DOHT algo-
rithm—induced by the voting time window—and obtained
best results, 86.1%, when outputting action with a delay of 20



frames and a computation time of 0.127 s. This includes dense
trajectories extraction, which could be accelerated. When
using skeleton data only, overall computation time is 1 ms.
Theses results show that the DOHT algorithm is suited for
real-time applications dealing with human action detection.
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