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Abstract Medical orthoses aim at guiding anatomical joints along their nat-
ural trajectories while preventing pathological movements, especially in case
of trauma or injuries. The motions that take place between bone surfaces
have complex kinematics. These so-called arthrokinematic motions exhibit
axes that move both in translation and rotation. Traditionally, orthoses are
carefully adjusted and positioned such that their kinematics approximate the
arthrokinematic movements as closely as possible in order to protect the joint.
Adjustment procedures are typically long and tedious. We suggest in this pa-
per another approach. We propose mechanisms having intrinsic self-aligning
properties. They are designed such that their main axis self-adjusts with re-
spect to the joint’s physiological axis during motion. When connected to a
limb, their movement becomes homokinetic and they have the property of au-
tomatically minimizing internal stresses. The study is performed here in the
planar case focusing on the most important component of the arthrokinematic
motions of a knee joint.

Keywords Self-adjustment · Singular mechanisms · Orthosis design

V. A. D. Cai
Ho Chi Minh city University of Technology and Education, Vietnam
E-mail: dungcva@hcmute.edu.vn

P. Bidaud
ONERA - Chemin de la Hunire 92120 Palaiseau France
E-mail: bidaud@isir.upmc.fr

V. Hayward
Sorbonne Universites, UPMC Univ Paris 06, UMR 7222, ISIR, Paris, 75005, France
E-mail: hayward@isir.upmc.fr

F. Gosselin
CEA, LIST, Interactive Robotics Laboratory, Gif-sur-Yvette F-91190, France
E-mail: florian.gosselin@cea.fr

Meccanica 52(3):713--728 (2017).

Author's accepted copy, final version on publisher's website



2 Viet Anh Dung Cai et al.

1 Introduction

Medical orthoses serve a number of purposes. One of their function is to com-
pensate for abnormal joint mobility associated with mechanical deficits. They
can also contribute to protect a joint from internal injuries due to overstress-
ing or overstretching. Functionally, they must guide the anatomical joint along
a desired set of trajectories and prevent undesired movements to take place.
These functions can be obtained by means of mechanisms designed to provide
mechanical constraints that are reciprocal to the healthy mobility of a joint.
At the same time, the free movements of the joint must be such that residual
stresses impinging on the limbs be minimized during large joint excursions.

Compensation for abnormal mobility implies that the combined limb-orthosis
structure be overconstrained. The mobility, m, of the orthosis, must be smaller
than the dimension of the associated space (e.g. m < dim(SE(3))). Movement
restriction implies the design of mechanical constraints needed to protect the
joint. The protection function of the joint sets requirements on the kinematics
of the orthosis in order to fit the joint it protects.

1.1 General kinematic properties of the human knee joint

Unlike mechanical joints of ordinary machines, anatomical joints are mobile
in all directions. However, the geometry of the articular surfaces in contact,
the ligaments, and the muscles acting through the tendons force a joint to
move along preferred trajectories according to the load applied, the muscle
co-contraction activation, and other factors. As a result, standard lower pairs,
or even higher pairs, can only serve as mere gross approximations and some
standardization is required to model the joint’s motions [1].

Measurements show that, for instance, the instantaneous axis of rotation
of even a ‘simple’ joint such as the knee is far from being fixed. The so-called
arthrokinematic motion depends on the bone surfaces geometry, among other
factors. The anatomical details of the articular surfaces, the organization of
the ligaments, capsules and menisci, combined with the influence of various
pathologies owing to age, trauma, or habitual activity determine its kine-
matics. Complex behaviour partly results from the fact that knee movements
involve a combination of rolling and sliding movements of the femur relatively
to the tibia combined with the action of the cruciate ligaments [2]. It is nev-
ertheless possible to develop a kinematic model for the knee joint, taking into
account ligaments, capsules and the geometry of the articular surfaces [3–5],
but the question of parameter identification always remains. To this end, elec-
tromechanical devices being able to measure the kinematics, the stability, the
rigidity and the laxity of the knee joint in patients suffering knee injuries were
designed as described in [6].

Several studies show that the movements of a healthy knee include a prin-
cipal flexion-extension movement with an amplitude which is conventionaly
represented to vary between 0◦ and 5◦ in extension and between −130◦ and
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−150◦ in flexion [7]. Since the femoral condyles’ surfaces are approximately
twice as long as that of the tibial plateau, the knee movement is not simply a
rolling movement. During joint flexion, the movement of the femoral condyles
is a compound motion comprising three phases described as follows:

1. A rolling phase takes place when the flexion angle is smaller than −15◦ for
the internal condyle and up to −20◦ for the external condyle,

2. A rolling and sliding phase occurs when the flexion angle is between −15◦

and −120◦ approximatively,
3. A sliding phase arises from −120◦.

As a consequence, the position of the knee joint axis varies in the range
of several millimeters and its orientation fluctuates by several degrees. The
displacement of the femoral condyles on the tibial plateau is in the range of
0.8 to 1.2 cm [8] and the angular deviation is of the order of 10◦ [9]. It should
also be noticed that while the knee is almost blocked at complete extension
and that only flexion is possible, when fully flexed, internal rotation becomes
possible and the knee lets the tibia rotate around its axis with amplitudes of the
order of ±30◦. All these movements that occur around the joint axis define the
so called arthrokinematics of the joint. Figure 1a, following the methodology
proposed in [10] and using the data from [9], gives the visualisation of the
variations of the instantaneous joint axis configuration. The curled surface
represents the intersection of the moving axis with a family of sagittal planes
parametrized by their distance from the axis of the tibia.

1.2 Usual guidelines for orthosis design

The design of orthotic mechanisms is often arranged so that the center of
rotation of pairs of simple mechanical joints located on each side of the limb
move along desired trajectories. An example of such realization is the so-called
polycentric joint, which can be seen in several passive orthosis designs. In this
design, illustrated in Fig. 1b, the instantaneous center of rotation of one of
the articulated side-members is made to depend on the relative position of the
two braces [11–14].

However, even with such advanced designs, the effectiveness of a medical
orthosis is conditioned by the ability of the orthopedist, or of the user, to
affix it on the limb segments so that its axis of rotation remains as close as
possible to the anatomical joint it protects. This requires a long and tedious ad-
justment procedure. One typically accomplishes customization through plastic
deformations of the orthosis structure or through modifications of the attach-
ment interfaces [15]. Shortcomings of this approach are that the constraints
imposed are always approximative and that attachments can never be rigid.
The same principle is applied to both semi-active, or active orthoses which are
designed to provide additional torque control to the anatomical joint in order
to gradually recover the sensori-motor system. One can cite the knee brace
designed with springs to assist stand to sit and sit to stand motion [16], or
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Fig. 1 a) Graphical representation of the knee instantaneous helical axis [9] (the variations
in the knee axis are amplified for better visibility, the curves generated by the intersection of
the knee axis with different sagital planes should be reproduced by the instantaneous center
of rotation of medical orthoses). b) Example of knee orthosis with one polycentric joint -
Image adapted from Herzberg and al. [12].

knee powered orthoses designed to correct the user’s movements in the stance
phase [17] or to provide rehabilitation exercise for patients after stroke [18].

1.3 The self-adjusting mechanism approach

We present in what follows a novel approach to the problem of meeting an 
orthosis functional requirements that do not involve manual intervention and 
illustrate it in the case of the human knee. Additional degrees of freedom 
(DOFs) that permit the complete mechanism (the anatomical joint plus the 
external orthosis) to reconfigure itself so that the orthosis axis self-aligns op-
timally with the varying instantaneous joint axis are introduced. This paper 
extends the results of previous research [19] by presenting a more complete 
model of the horizontal self-adjustment movement together with the analysis 
of the vertical self-adjustment movement. In contrast to other designs, em-
ployed more particularly in active orthoses, where additional DOFs remain free 
all throughout the joint movements [20–25], we focus in this work on passive 
orthoses. The extra DOFs are blocked after a short period of self-adjustment, 
after which the orthosis can work normally to protect the anatomical joint.

For the sake of exposition, the analysis performed in this paper assumes
that the knee joint can be modeled as a simple pivot joint (i.e. a revolute joint
- R). Indeed, one can note from Section 1.1 that the knee flexion is of much
greater amplitude than the other components of the complex knee arthrokine-
matic motion. Hence, an orthosis able to naturally follow this motion, even
approximatively, should already greatly reduce potential stresses of the knee
due to a wrong installation of the orthosis on the leg. Also, focusing on sim-
pler planar mechanisms allows one to simplify the calculations and to better
analyze the behavior of the linkage during different operating phases. Further
studies will be conducted for spatial knee models in the future.
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Despite the fact that real anatomical joints are compliant owing to the
presence of visco-elastic tissues, we will consider a knee joint to be a rigid pivot
assuming that the parasitic movements permitted by the knee compliance are
small compared to the knee flexion. It would nevertheless be interesting to
take the knee joint compliance into account in future studies [26].

The additional DOFs can be prismatic joints (P), introduced on both sides
of the orthosis main joint, such that, when considering the most simple sys-
tems using a simple revolute joint (R) to guide the knee movement, the en-
hanced orthosis becomes a PRP mechanism. The same principle would apply
to poly-centric (PC) joint orthoses, which are usually designed to follow the
complex movements of a real knee joint. In this case we would employ a P-PC-
P mechanism to enhance this type of orthoses and include the self-adjustment
property.

We consider two cases. In the first, we study what we term the horizontal
self-adjusting mechanisms, where the orthosis is free to move in the direction
of the thigh and of the calf such that, after self-adjustment, the orthosis axis
is in their bisecting plane. In the second case, we consider what we term the
vertical self-adjusting mechanisms. The latter mechanism allows the orthosis
to move in a direction perpendicular to the thigh and to the calf. By combin-
ing these two mechanisms, two self-adjustment movements can be performed
consecutively, as will be further explained in section 2.2, ensuring that the
orthosis and the knee axis become aligned.

This article is organized as follows. These two types of mechanisms are first
introduced in Section 2. Then horizontal and vertical self-adjustment move-
ments are more specifically studied and analyzed in Sections 3 and 4. In Sec-
tion 5, horizontal and vertical self-adjusting mechanisms (both of PRP type)
are simulated in order to validate the theoretical analysis. Finally, Section 6
discusses the results and concludes.

2 Self-adjustment property

2.1 Introduction of two basic types of self-adjusting mechanisms

The mechanisms under study are shown together with the knee joint in Figs. 3
and 4, which for the purpose of simplicity, is represented here by a hinge joint.
These two mechanisms include a main hinge joint (R) plus two additional
prismatic joints (P). Auxiliary rotational joints, at D1 and D2, are included
to represent the torsional elasticity of the attachments, as further described
below. The resulting mechanisms are of type PRP. When connected with the
knee joint they form a closed-chain mechanism which has only one degree of
freedom. However, when the two prismatic joints are aligned, i.e. when the
mechanisms are in a singular configuration, they gain one degree of freedom,
allowing the sliding joints to move freely. It should be noted that since the
mechanisms are designed to track the knee joint movement, the main hinge
joints (R) will vary between −10◦ and 150◦ only when attached to the human
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leg. Therefore, the only singular configuration that can occur in practice is
when both prismatic joints are aligned on opposite sides of the pivot joint.
Thus, only one unique singular configuration needs to be considered.

When the closed chain is not in this singular configuration, the main hinge
joint of the mechanism automatically self-locates. This non-singular configura-
tion is called the operating configuration and the special property of this type
of mechanisms is called the property of self-adjustment. When the mechanism
is in an operating configuration, the axis of rotation of the main hinge joint
self-locates to align as closely as possible with the actual knee instantaneous
axis of rotation as required by the support and guidance roles of the orthosis.
The close coincidence of axes ensures the mechanical decoupling between the
physiological movements and those prevented by the mechanism and, recip-
rocally, between the constraints associated with the physiological movements
and the constraints imposed by the mechanism. This behavior is described in
more detail below and analyzed in subsequent sections.

2.2 Self-ajustement property

Referring to Figs. 3 and 4, let b and b′ be the distances between the knee axis
and the segments of the mechanism. b and b′ are positive constants. Their
values depend on the initial configuration of the closed chain. If b 6= b′, the
mechanism can never reach the position where θ2 = 0 and the mechanism
can not be made singular. This situation is to be avoided. On the contrary, if
b = b′, θ2 can be equal to 0. In this case, the mechanisms are in their singular
configuration and the prismatic joints are free to slide, giving rise to internal
movement. It is through this internal movement that the main hinge joint can
relocate itself.

We can demonstrate that when internal movement is permitted, the mech-
anism is blocked. It is in this configuration that any torque applied by the user
through the anatomical joint (modeled by P1 or P2) will create internal loading
in the mechanism, which can be eliminated if an additional joint, for example
at D1 or D2, is provided. These additional joints, modeled by spring-loaded
hinges, represent the inevitable elasticity due to soft tissues present between
the orthosis brace and the bone.

When loaded, these additional joints force the mechanisms to exit the
singular configuration. Misalignment during operation is thus accompanied
with an angular deflection of the additional joints which, in turn, generate a
torque tending to move the main joint. We will demonstrate that if certain
geometrical conditions are fulfilled, this torque will return the rotational joint
of the PRP mechanism toward its operating position. We call this mode of
action ‘self-adjusting internal movement’.

As will be demonstrated in later sections, the pin joint of the horizontal
PRP mechanism is located in the bisecting plane of the closed chain after
self-adjustment, that is, when the chains are closed and not in a singular
configuration. This can be stated as follows: for the first mechanism, the knee
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axis is in the symmetry plane when the following geometrical condition is
verified (D′1 being the projection of the point P1 on the segment C1D1, see
Fig. 3),

||A1B1|| = b = ||C1D
′
1|| = b′ (1)

As will be further demonstrated, the main hinge joint of the vertical PRP
mechanism is coaxial with the knee axis after self-adjustement, provided ver-
tical self-adjustment is performed after the horizontal one. Indeed the second
mechanism operates only if the following geometrical conditions, which require
that the horizontal self-adjustment be performed before the vertical adjust-
ment, are verified (D′2 denoting the projection of P2 on C2D2 and H1 and H2

the projections of P2 on linkages (1) and (2) of the mechanism, see Fig. 4),

||A2P2|| = ||B2H1||, ||P2D
′
2|| = ||H2C2|| (2)

Moreover, the knee and mechanism axes coincide when the following con-
ditions are verified:

||A2B2|| = ||D′2C2|| = 0, ||A2P2|| = ||B2O2||, ||P2D
′
2|| = ||O2C2|| (3)

The main hinge joint of the mechanism is thus located on these symmetry
planes. However, in order to fulfill the above geometrical conditions, it is nec-
essary that initially, during fixation onto the leg, the PRP mechanism is in its
singular configuration.

Both vertical and horizontal adjustment mechanisms can obviously be in-
tegrated into a single mechanism as shown on figure 2, so as to obtain an
automatic planar alignment of the joint axis passing through the point O with
the axis of the physiological joint. To create the horizontal self-adjustment mo-
tion, the two vertical translational joints (ṙv1

and ṙv3
) are blocked and the two

horizontal translational joints (ṙh1
and ṙh3

) are freed and vice-versa for the
vertical self-adjustment motion. This adaptation will be realized successively
by releasing and blocking the prismatic joints of horizontal and vertical self
adjustment mechanisms presented respectively in section 3 and 4. Once the
mechanism is well-adjusted onto the user’s limb, and the orthosis’ principal
axis (θ̇2) is located as close as possible to the knee, all these DOFs are blocked
so that the device can work in normal mode to protect the knee joint.

2.3 Geometrical properties of PRP mechanisms

When the first mechanism is in its operating configuration, the following prop-

erty is verified (with α1 = Ô1P1H1 and α2 = Ô1P1H2, see figure 3):

sinα1

sinα2
=

b

b′
(4)
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B

C

P

O

D

Fig. 2 Kinematic diagram showing the combination of the two adjustment mechanisms by
horizontal and vertical prismatic joints (respectively rhi

and rvi with i = 1, 3) allowing both
horizontal and vertical self-adjustment. Subsequently, these variables will be denoted simply
ri and ṙi. Segment AP represents the thigh, segment PD the calf. The knee is modeled as
a pivot joint of angle θ5. The orthosis is composed of segments AB, BO, OC and CD. BO
and OC are articulated through a revolute joint R of angle θ2 passing through point O.
The orthosis is rigidly attached to the thigh at point A and through a spring of stiffness K
acting on a revolute joint of angle θ4 to the calf at point D. Prismatic joints between points
O and B, resp. O and C allow horizontal self-adjustment. Prismatic joints between points
A and B, resp. D and C allow vertical self-adjustment.

– If b = b′, then α1 = α2. The line connecting both pin joints is the sym-
metry axis of the closed chain. The prismatic joints then slide in opposite
directions, with the same speed. The angular velocities of the knee and the
mechanism are equal (θ̇2 = θ̇5).

– If b 6= b′, then the mechanism can never reach its singular position.

In the case of the second mechanism, the following properties are verified
outside the singular configuration:

– The axes of rotation of the knee and the mechanism are perfectly aligned.
– Their angular velocities are equal (θ̇2 = θ̇5).
– The velocities of the prismatic joints are equal to zero.

These properties are demonstrated in the following sections by connecting
the PRP mechanisms to a simplified model of the knee joint. The analysis of
the self-adjustment movements is then described in details and illustrated by
simulations.
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3 Analysis of the horizontal self-adjustment movement

3.1 Modeling of the horizontal PRP mechanism

The horizontal PRP mechanism is shown in Fig. 3 fixed onto the leg. For the
purpose of this analysis, the knee joint is represented as a hinge. A pin joint
and a torsional spring of stiffness K are introduced at point D1 to represent
the torsional elasticity of the attachments which can deform under constraints.

With γ = ̂P1D1C1 = π/2 + θ4 denoting the angle between the calf and the
mechanism at D1 and γ0 its initial value when the PRP mechanism has just
been attached, any angular variation at D1 produces a torque caused by the
deformation of the torsional spring, defined by:

CD1
= K(γ − γ0) (5)

During its movement, the system will tend to minimize the elastic energy
stored in the torsional spring. The torque generated by this spring will create
the self-adjustment movement.

P1

H2 

(0) 

(1) 

(2) 

(3) 

(4) 

r1

r3

q2

A1

B1

D1

C1

D1’ 

O1,2

b

b ’ 

q2

q5

q4

q5

q4

H1 

a1 

a
X1

Y1

l Z0 X0

Y0

r1

r3

l3

Z1,2

X2

Y2

l4

X4

Y4

a2 

X5

Y5

Z5

q2

a'

g 

Z3,4
X3

Y3

ladjx 

Fig. 3 Homokinetic PRP mechanism allowing a horizontal self-adjustment. Segment A1P1

represents the thigh, segment P1D1 the calf. The knee is modeled as a pivot joint of angle
θ5. The orthosis is composed of segments A1B1, B1O1, O1C1 and C1D1. B1O1 and O1C1

are articulated through a revolute joint R of angle θ2 passing through point O1. The orthosis
is rigidly attached to the thigh at point A1 and through a spring of stiffness K acting on a
revolute joint of angle γ to the calf at point D1. Prismatic joints at points B1 and C1 allow
horizontal self-adjustment. See the text for more details.
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3.2 Kinematic model of the horizontal PRP mechanism

The loop-closure kinematic equations of the coupled system can be expressed
at point P1 as follows:

JP1(q).q̇ = 0 (6)

In this equation, q̇ = (ṙ1 θ̇2 ṙ3 θ̇4 θ̇5)> denotes the vector of the joints
speeds of the complete mechanism (the anatomical joint plus the orthosis)
and JP1(q) = ($1 $2 $3 $4 $5) its Jacobian matrix expressed at point P1,
$i being the unit twist of joint i which can be written $i = (xi 0)> for a
prismatic joint of axis xi and $i = (P1Oi ∧ zi zi)

> for a revolute joint along
axis zi passing through Oi (here O3=O4=D1 and O5=P1, see figure 3).

3.3 Constraints imposed during the attachment phase

We assume the user standing still when the orthosis is attached to the leg,
i.e. the knee joint at P1 is fixed. Then if during the movement θ4 remains
unchanged, the distance b′ between P1 and the segment O1C1 (b′ = C1D

′
1) will

be constant. The distance b = A1B1 between P1 and the segment O1B1 being
also constant, if b 6= b′, the mechanism cannot fully extend (i.e. segment O1B1

aligned with O1C1) if the attachment at point D1 does not deform. Distances
b and b′ must be equal to avoid this phenomenon. The PRP mechanism has
to be in a singular configuration (θ2 = 0) during its fixation on the thigh and
calf (segments P1A1 and P1D1) to respect this geometrical condition.

3.4 Analysis of the singular configuration

To analyse the behaviour of the proposed mechanism, we compute the Jacobian
matrix of the closed loop mechanism shown on figure 3 at point P1 in the frame
R0 = (A1,x0,y0):

JP1(q)/R0
=

1 cos θ2(l3 + l4 sin θ4)− sin θ2(r3 − l4 cos θ4) cos θ2 l4 sin(θ2 + θ4) 0
0 sin θ2(l3 + l4 sin θ4) + cos θ2(r3 − l4 cos θ4) sin θ2 −l4 cos(θ2 + θ4) 0
0 1 0 1 1


(7)

Knowing that (l3 + l4 sin θ4) = b′ and r3− l4 cos θ4 = a′ and that b′ cos θ2−
a′ sin θ2 = b and b′ sin θ2 + a′ cos θ2 = −a (with (a,b) the components of vector
P1O1 in the frame R0), we obtain:

JP1(q)/R0
=

1 b cos θ2 l4 sin(θ2 + θ4) 0
0 −a sin θ2 −l4 cos(θ2 + θ4) 0
0 1 0 1 1

 (8)
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When θ2 = θ̇2 = 0, the loop-closure kinematic system of equations at point
P1 can be written as follows:

ṙ1 + ṙ3 + θ̇4l4 sin θ4 = 0

−θ̇4l4 cos θ4 = 0

θ̇4 = −θ̇5
(9)

Assuming that l4 6= 0, we get θ̇4 = 0 and θ̇5 = 0 (cos θ4 6= 0 as θ4 is
a small angle). The mechanism is in a singular configuration and the knee
cannot move. On the other hand, ṙ1 = −ṙ3. Both prismatic joints can slide at
the same speed. An internal movement appears where the orthosis can move
freely in parallel with the leg.

3.5 Analysis of the self-adjustment movement

For the analysis of the self-adjustement property, we compute the Jacobian
matrix at point D1 in the frame R2 = (O2,x2,y2). With r3 and −l3 the
components of the vector O1D1 written in the frame R2, the Jacobian matrix
becomes:

JD1(q)/R2
=

 cos θ2 l3 1 0 −l4 sin θ4
− sin θ2 r3 0 0 l4 cos θ4

0 1 0 1 1

 (10)

3.5.1 Self-adjustment at fixed knee position

We first assume that the knee is fixed (θ̇5 = 0), i.e. we make the analysis
at a given leg position. With this assumption, the last column of JD1(q)/R2

vanishes and the loop-closure kinematic equations at pointD1 can be expressed
as follows: 

ṙ1 cos θ2 + l3θ̇2 + ṙ3 = 0

−ṙ1 sin θ2 + r3θ̇2 = 0

θ̇2 = −θ̇4
(11)

– When θ2 = 0, if r3 6= 0 then θ̇2 = θ̇4 = 0 and ṙ1 = −ṙ3. The main hinge
joint cannot move. However, as was established in section 3.4, an internal
mobility appears and the two prismatic joints can slide freely if external
forces, as for example the gravity, apply.

– When θ2 6= 0, we get (with ladjx = r3 cos θ2 + l3 sin θ2 the coordinate of the
vector O1D1 along x0):

ṙ1 =
r3

sin θ2
θ̇2, ṙ3 = − ladjx

sin θ2
θ̇2 (12)
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The speeds ṙ1 and ṙ3 have opposite signs, which means that the sliders
move in the same sense, leading the mechanism to the equilibrium position
in which θ̇4 = 0. The larger r3 and ladjx, the faster the adjustement.
As can be seen from Fig. 3, θ4 is negative and will thus increase towards
0 due to the spring torque, i.e. θ̇4 > 0. As a consequence, we deduce from
eq. 11 that θ̇2 < 0, and from eq. 12 that ṙ1 > 0 and ṙ3 < 0 (since θ2 is also
negative). Distance a, which is smaller than a′, will increase (the orthosis
will move to the right). When the spring is back to its neutral position, we
have θ̇4 = 0 thus θ̇2 = 0, ṙ1 = 0 (outside the singular configuration) and
ṙ3 = 0. The self-adjustment movement stops.

3.5.2 Self-adjustment with moving knee

When θ5 6= 0, the loop-closure kinematic equations are:
ṙ1 cos θ2 + l3θ̇2 + ṙ3 = l4 sin θ4θ̇5

−ṙ1 sin θ2 + r3θ̇2 = −l4 cos θ4θ̇5

θ̇2 = −θ̇4 − θ̇5
(13)

Thus we get:

ṙ1 =
−r3

sin θ2
θ̇4 +

−r3 + l4 cos θ4
sin θ2

θ̇5, (14)

ṙ3 =
r3 + l3 tan θ2

tan θ2
θ̇4 +

(r3 − l4 cos θ4 + l3 tan θ2 + l4 sin θ4 tan θ2)

tan θ2
θ̇5 (15)

Knowing that r3−l4 cos θ4 = a′, (r3+l3 tan θ2) cos θ2 = ladjx, l3+l4 sin θ4 =
b′ and (a′ + b′ tan θ2) cos θ2 = −a (see Fig. 3), we obtain:

ṙ1 =
−r3

sin θ2
θ̇4 −

a′

sin θ2
θ̇5, ṙ3 =

ladjx
sin θ2

θ̇4 −
a

sin θ2
θ̇5 (16)

– We can see from eq. 16 that the knee flexion (θ̇5 > 0) tends to move the
sliders in opposite directions (θ̇5 generates rotations of r1 and r3 of the
same sign). This phenomenom remains after self-adjustment (see below).

– During the knee flexion (θ̇5 > 0), we can see from the last equation of
system 13 that both θ2, the orthosis angle, and/or θ4, the spring angle at
the calf attachmnent, change. If the orthosis is not in the bissecting plane
of the leg, it is obvious that for a given value of r1, the orthosis can rotate
only if the calf attachment also rotates. As a consequence, the spring loads
up and the induced torque tends to move both sliders in the same direction
(θ̇4 generates r1 and r3 rotations of opposite signs according to eq. 16).
Referring to Fig. 3 again, θ4 is negative and will thus increase towards 0 due
to the spring torque, i.e. θ̇4 > 0. As a consequence, the spring action will
tend to increase r1 and decrease r3 (θ2 is negative). Distance a, which is
smaller than a′, will increase until a = a′, i.e. the orthosis lies in the symetry
plane of the leg. If a = a′, the orthosis can rotate without modifying the
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spring angle (whose stiffness prevents rotations at calf attachment in this
configuration). In other words, we will have θ̇4 = 0 and ṙ1 = ṙ3. The
orthosis will remain in the symetry plane of the leg (see next section).

3.6 Kinematic analysis of the mechanism after the self-adjustment movement

Assuming that the resistance of the torsional spring at D1 prevents large
motions at the calf attachment after self-adjustment, segments P1D1 andD1C1

can be considered rigidly connected and θ4 fixed at a constant value. The
Jacobian matrix written at point P1 in the frame R2 is:

JP1(q)/R2
=

 cos θ2 l3 + l4 sin θ4 1 0
− sin θ2 r3 − l4 cos θ4 0 0

0 1 0 1

 (17)

Knowing that l3 + l4 sin θ4 = b′ and r3 − l4 cos θ4 = a′, the loop-closure at
P1 provides the following system of equations:

ṙ1 cos θ2 + b′θ̇2 + ṙ3 = 0

−ṙ1 sin θ2 + a′θ̇2 = 0

θ̇2 = −θ̇5
(18)

The linear velocities of the two prismatic joints can hence be computed as:

ṙ1 =
a′

sin θ2
θ̇2, ṙ3 =

−a′ cos θ2 − b′ sin θ2
sin θ2

θ̇2 =
a

sin θ2
θ̇2 (19)

Thus, knowing that after auto-ajustment a = a′, we obtain finally:

ṙ3 = ṙ1 (20)

The velocities of the prismatic joints are equal. They move in opposite
senses at the same speed and P1 remains at the symmetry axis of the mecha-
nism. It is worth noting that if a = a′ tends to zero, i.e. if the main hinge joint
of the orthosis is close to the knee axis, the movements of the sliders become
negligible as ṙ3 and ṙ1 also tend to zero.

4 Analysis of the vertical self-adjustment movement

4.1 Modeling of the vertical PRP mechanism

The vertical PRP mechanism is shown in Fig. 4. It is composed of a main
hinge joint and two prismatic joints orthogonal to segments B2O2 and O2C2.
We assume that the system is already adjusted horizontally and we consider
that segments H1B2 and P2A2 are equal, that is:

H1B2 = P2A2 = l1 (21)
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Fig. 4 Homokinetic PRP mechanism allowing a vertical self-adjustment. Segment A2P2

represents the thigh, segment P2D2 the calf. The knee is modeled as a pivot joint of angle
θ5. The orthosis is composed of segments A2B2, B2O2, O2C2 and C2D2. B2O2 and O2C2

are articulated through a revolute joint R of angle θ2 passing through point O2. The orthosis
is rigidly attached to the thigh at point A2 and through a spring of stiffness K acting on
a revolute joint of angle γ to the calf at point D2. Prismatic joints between points A2 and
B2, resp. D2 and C2 allow vertical self-adjustment. See the text for more details.

An elastic element of stiffness K is introduced at point D2 to simulate the

flexibility of the attachment. We denote γ = ̂P2D2C2 = π/2 + θ4 the angle
between the calf and the mechanism and γ0 its initial value obtained when
the orthosis is in its initial position where θ2 = 0. The spring at D2 is at
equilibrium in this configuration.

4.2 Kinematic model of the vertical PRP mechanism

As for the horizontal PRP mechanism, for the purpose of this analysis, we
write the Jacobian matrix of the closed loop system composed of the leg and
orthosis in the base frame R0 = (A2,x0,y0) at point P2 and in the frame R2 =
(O2,x2,y2) at point D2. These equations will be clarified in the foregoing.

4.3 Mechanical constraint in the attachment phase

Initially, the mechanism is necessarily located in the configuration in which
the segments P2A2 and P2D

′
2 are aligned. If these segments are in flexion at

that moment, the mechanism can not enter its singular configuration later.
For example if the segment O2C2 is longer than P2D

′
2, it will prevent the

mechanism to enter its singular configuration where O2C2 = P2D
′
2.
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4.4 Analysis of the singular configuration

To analyse the behaviour of the vertical PRP mechanism, we compute the
Jacobian matrix at point P2 in the frame R0 = (A2,x0,y0):

JP2(q)/R0
=

0 cos θ2(r3 + l4 sin θ4)− sin θ2(l2 − l4 cos θ4) sin θ2 l4 sin(θ2 + θ4) 0
1 sin θ2(r3 + l4 sin θ4) + cos θ2(l2 − l4 cos θ4) − cos θ2 −l4 cos(θ2 + θ4) 0
0 1 0 1 1


(22)

Knowing that (r3 + l4 sin θ4) = b′ and l2− l4 cos θ4 = a′ and that b′ cos θ2−
a′ sin θ2 = b and b′ sin θ2 + a′ cos θ2 = −a (a and b being the components of
vector P2O2 in the frame R0), this equation can be written in a simplified
form as follows:

JP2(q)/R0
=

0 b sin θ2 l4 sin(θ2 + θ4) 0
1 −a − cos θ2 −l4 cos(θ2 + θ4) 0
0 1 0 1 1

 (23)

When θ2 = θ̇2 = 0, the system of loop-closure kinematic equations can be
written: 

θ̇4l4 sin θ4 = 0

ṙ1 − ṙ3 − θ̇4l4 cos θ4 = 0

θ̇4 = −θ̇5
(24)

It is worth noticing that knee movements produce similar calf attachment
displacements (θ̇4 = −θ̇5). Thus assuming that l4 6= 0, l4 sin θ4 will not remain
null even if it is momentarily and we assume that l4 sin θ4 6= 0. In this case
θ̇4 = θ̇5 = 0 and ṙ1 = ṙ3. The mechanism is in a singular configuration and
the knee can not move. On the other hand, both prismatic joints slide in the
same direction. An internal movement appears where the orthosis can move
freely perpendicular to the thigh.

4.5 Analysis of self-adjustment movement

To analyse the self-adjustment property, we compute the Jacobian matrix of 
the complete mechanism (composed of the leg and the orthosis) at point D2 
in the frame R2 = (O2, x2, y2):

JD2(q)/R2
=

sin θ2 r3 0 0 −l4 sin θ4
cos θ2 l2 −1 0 l4 cos θ4

0 1 0 1 1

 (25)
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4.5.1 Self-adjustment at fixed knee position

As for the horizontal mechanism, we first assume that the self-adjustment
occurs around a given leg position, i.e. that the knee is fixed (θ̇5 = 0). This
hypothesis remains valid for an infinitesimal motion around the current knee
angle if the leg is moving. Under this assumption, the last column of JD2(q)/R2

disappears and the system of loop-closure kinematic equations are:
ṙ1 sin θ2 + r3θ̇2 = 0

ṙ1 cos θ2 + l2θ̇2 − ṙ3 = 0

θ̇2 = −θ̇4
(26)

With ladjz = r3 cos θ2 − l2 sin θ2 the component of the vector O2D2 along
y0, we get:

ṙ1 = − r3
sin θ2

θ̇2 ṙ3 = − ladjz
sin θ2

θ̇2 (27)

The prismatic joints slide in the same direction as ṙ1 and ṙ3 are of the same
sign. To illustrate this phenomenom, we refer again to Fig. 4. As θ4 < 0, the
spring at D2 produces a torque which tends to cancel θ4, hence θ̇4 > 0. From
the last equation of system 26, we deduce that θ̇2 < 0 and from equation 27
that ṙ1 and ṙ3 are negative (sin θ2 < 0). Both prismatic joints will slide towards
the leg, i.e. the main hinge joint z2 will get closer to the knee axis z5. When
the spring is back to its neutral position, θ̇4 = 0, thus θ̇2 = 0, ṙ1 = 0 and
ṙ3 = 0 (outside the singular configuration). The self-adjustment movement
stops. The same is true when O2 and P2 are coincident as r3 = ṙ3 = 0 in this
case, thus ṙ1 = 0 (outside the singular configuration).

4.5.2 Self-adjustment with moving knee

When θ5 6= 0, the loop-closure system of kinematic equations of the system at
point D2 are: 

ṙ1 sin θ2 + r3θ̇2 = l4 sin θ4θ̇5

ṙ1 cos θ2 + l2θ̇2 − ṙ3 = −l4 cos θ4θ̇5

θ̇2 = −θ̇4 − θ̇5
(28)

Thus we get:

ṙ1 =
r3

sin θ2
θ̇4 +

r3 + l4 sin θ4
sin θ2

θ̇5, (29)

ṙ3 =
r3 − l2 tan θ2

tan θ2
θ̇4 +

(r3 + l4 sin θ4 − l2 tan θ2 + l4 cos θ4 tan θ2)

tan θ2
θ̇5 (30)
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We can see on Fig. 4 that r3 + l4 sin θ4 = b′, (r3 − l2 tan θ2) cos θ2 = ladjz,
l2 − l4 cos θ4 = a′ and (b′ − a′ tan θ2) cos θ2 = b. Previous equations can thus
be written:

ṙ1 =
r3

sin θ2
θ̇4 +

b′

sin θ2
θ̇5, ṙ3 =

ladjz
sin θ2

θ̇4 +
b

sin θ2
θ̇5 (31)

Both knee movements (θ̇5 6= 0) and spring action (θ̇4 6= 0 due to the spring
torque) produce movements of the sliders in the same direction. Refering to
Fig. 4, θ5 increases as the knee is bent, i.e. θ̇5 > 0. Also θ4 < 0 and will tend
to increase towards its initial value due to the spring torque, i.e. θ̇4 > 0. Thus
both ṙ1 < 0 and ṙ3 < 0 (sin θ2 < 0) and both prismatic joints slide in the same
direction towards the leg.

5 Simulation of the self-adjustement mechanisms

Previous theoretical results are verified numerically using the dynamics sim-
ulation software SolidWorks Motion Analysis. The considered mechanism is
shown in Fig. 5 and the mass properties of the mechanical parts are given in
Tab. 1. A pin joint is introduced at the calf attachment of the leg to take into
account the attachment’s flexibility. We suppose, however, that the mechanism
is fixed rigidly to the thigh. In order to initiate the horizontal self-adjustment
movement, the two vertical sliders are blocked. Then once the mechanism is
aligned in the horizontal direction, the two horizontal sliders are blocked in
return and the two vertical sliders are released in order to create the vertical
self-adjustment movement. It is noticed that the knee must fully extended (at
0◦) before switching between the horizontal and the vertical self-adjustment
motions.

Sliders for horizontal self-adjustment

Sliders for vertical self-adjustment

Long linear rail

Long linear rail

Linear rail

(S1)
(S2) (S3)

(S4)

Fig. 5 The simulated self-adjustment mechanism.

Figure 6 displays the results of the simulation of the horizontal self-adjustment
motion. The knee joint is set to move from 0 ◦ to −120 ◦ during 1 second,
the stiffness of the calf attachment at 1 N.m/◦ with a damper coefficient of
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100 N.m/(◦/s), and the friction coefficient of the two sliders at 0.01. The
self-adjustment movement takes place at approximately 17◦ in flexion. Large
displacements occur in the two sliders and lead the mechanism to its equilib-
rium position. Then, they move slowly at the same speed. The angular velocity
of the orthosis fluctuates during the self-adjustment movement and becomes
equal to the knee joint’s velocity once the mechanism is re-adjusted.

Long Rail Rail (S1) (S2) (S3) (S4)
Size (mm) 10x2x140 10x12x120 5x30x200 - - 5x30x220
Mass (g) 114.5 97.2 234.5 257.3 257.9 258.5
Mzz (kg.mm2) 185.9 118.2 774.9 807.2 808.4 1031.8

Table 1 Dimension and mass property of the mechanical parts.

The results of the vertical self-adjustment are displayed on Fig. 7. We make
the hypothesis that the orthosis is already adjusted in the horizontal direction.
The first attachment is supposed to be rigid and a torsional spring is added
at the calf attachment. As in the case of horizontal self-adjustment, the knee
joint is set to move from 0◦ to −120◦ during 1 second, the stiffness of the calf
attachment at 1 N.m/◦ with a damper coefficient of 100 N.m/(◦/s), and the
friction coefficient of the two sliders at 0.01.

The self-adjustment occurs when the torque in the spring reaches 4.1 N.m.
This is much higher than the spring’s torque of the horizontal self-adjusting
mechanism, which means that the vertical self-adjustment is more difficult to
obtain than the horizontal one. This can be explained by the fact that, in the
vertical self-adjustment simulation, the force generated by the calf attachment
(which is modeled as a torsional spring) is nearly perpendicular to the direc-
tion of movement of the first slider joint. It makes it difficult to create the
self-adjustment movement. On the contrary, in the horizontal self-adjustment
simulation, this force component is transmitted nearly in the direction of move-
ment of the two sliders, thus facilitating the self-adjustment movement.

6 Discussion and conclusion

In this paper, novel mechanisms which can self-adjust to a supporting struc-
ture, i.e. self-align with its joints, are proposed. Such mechanisms are par-
ticularly well suited for the design of orthoses that automatically align with 
the anatomical joints they protect. The conditions of the self-adjustment in 
horizontal and vertical directions are formulated and analyzed. This study is 
performed for the knee joint, modeled here as a simple pivot joint to simplify 
the calculations and allow a better understanding of the system behavior dur-
ing the different operating phases, but the proposed principles could apply to 
any other joint as well.

One typical PRP mechanism that performs horizontal or vertical self-
adjustment motions, leading the orthosis axis of rotation to be aligned with
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the anatomical joint’s one, is introduced. The vertical adjustment is performed
after the horizontal one. The mechanisms must be attached to the limb in
their singular configuration. When they get out of this configuration, the
restoring torque produced at the attachment moves the mechanism toward
its functioning position, the orthosis axis being in the symmetry plane of the
leg after horizontal auto-adjustment and aligned with the knee after verti-
cal auto-adjustment. After self-adjustment, the sliding axes can be fixed. The
mechanism becomes again a classic orthosis (this applies both for passive and
active devices).

It can be noticed that a higher torque in the calf attachment, synony-
mous with a larger deformation of this component, means a more difficult
self-adjustment. On the contrary, the smaller these values, the better the per-
formance of the mechanism. Hence the deformation of the calf attachment as
well as the value of the torsional moment it creates before the self-adjustment
movement can be used as performance criteria measuring the efficiency of
different mechanisms.

While this study is limited to a simple case for the above-mentioned rea-
sons, it would be interesting to study whether the principle of adding additional
prismatic joints to design self adjusting mechanisms can be extended to more
complex systems. In particular, it would be interesting to study if the pin
joint of the proposed designs may be replaced with a poly-centric joint with
a variable instantaneous center of rotation (see Fig. 1) to better fit complex
movements of a real knee joint. One can expect that the advantage of the pro-
posed designs compared to existing orthoses will remain and that enhanced
P-PC-P mechanisms will automatically be positioned in an optimal configu-
ration, i.e. the closest to the anatomical joint. It would also be interesting to
extend this study to other spatial mechanisms in order to allow an adaptation
to more complex joints as e.g. shoulder or wrist , and/or to take into account
their compliance, referring for example to [26].

It can also be noticed that, while the mobility of the skin is not explicitly
taken into account in this paper, it will not modify the functioning of the
system. As a matter of fact, during self-adjustment motion, the mechanism’s
principle rotational axis will continue to move as close as possible to the in-
stantaneous helical axis (IHA) of the anatomical joint. If the skin movement is
taken into account, this instant screw axis of the two body segments will sim-
ply include the skin movement effects besides the bone movements. A device
with a polycentric joint allowing to follow the complex knee bone and skin
movements would however certainly be more adapted than a simple pivot in
this case. One simple way to design such a joint is to measure in advance the
relative motion of the two corporal segments, including skin movements, using
a 6 axes electro-goniometer [9][27]. The polycentric axis of the device can be
designed according to these data.

The authors are aware of the fact that these results are only theoretical at
the moment. The next step will be to implement the proposed principles on
physical mock-ups and test their behavior in real situation.
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Top: PRP mechanism in different representative configurations. (a) Initial configuration.
(b) Configuration before self-adjustment. (c) Configuration just after self adjustment. (d)
Final configuration after complete knee flexion. Bottom: (1) Orthosis angle (θ2). (2) Orthosis
angular velocity (θ̇2). (3) Displacement of the sliders 1 and 3. (4) Velocity of the sliders 1 and
3. (5) Angle at the calf attachment (θ4). (6) Torque at the calf attachment. The horizontal
axis represents the angle of the knee joint.

Fig. 6 Horizontal self-adjustment of the PRP mechanism.
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Top: PRP mechanism in different representative configurations. (a) Initial configuration. (b)
Configuration during the beginning of self-adjustment. (c) Configuration after self adjust-
ment. (d) Final configuration after complete knee flexion. Bottom: (1) Orthosis angle (θ2).
(2) Orthosis angular velocity (θ̇2). (3) Displacement of the sliders 1 and 3. (4) Velocity of
the sliders 1 and 3. (5) Angle at the calf attachment (θ4). (6) Torque at the calf attachment.
The horizontal axis represents the angle of the knee joint. Letters beside the curves inform
on the data values at knee angles corresponding to configurations.

Fig. 7 Simulation results of the vertical self-adjustment movement.




