
1

Approximation Enhancement for Stochastic Bayesian Inference

Joseph S. Friedman
1,2

*, Jacques Droulez
3
, Pierre Bessière

3
, Jorge Lobo

4
, Damien Querlioz

1

1
Centre de Nanosciences et de Nanotechnologies

CNRS, Univ. Paris-Sud, Université Paris-Saclay

220 rue André Ampère

91405 Orsay

France

2
Department of Electrical Engineering

The University of Texas at Dallas

800 W. Campbell Rd.

Richardson, TX 75080

USA

3
Institut des Systèmes Intelligents et de Robotique

Université Pierre et Marie Curie, CNRS

4 Place Jussieu

75005 Paris

France

4
Institute of Systems and Robotics

Department of Electrical and Computer Engineering

University of Coimbra

3030-290 Coimbra

Portugal

Email addresses: joseph.friedman@utdallas.edu, jacques.droulez@college-de-france.fr,

pierre.bessiere@college-de-france.fr, jlobo@isr.uc.pt, damien.querlioz@u-psud.fr

*Corresponding author

Highlights

• Orders-of-magnitude improvement in approximate Bayesian inference efficiency

• Bitstream autocorrelation limits inference approximation accuracy

• Autocorrelation successfully mitigated to improve Bayesian inference approximation

• Approximate Bayesian inference efficiently performed in hardware

2

Abstract

 Advancements in autonomous robotic systems have been impeded by the lack of a

specialized computational hardware that makes real-time decisions based on sensory inputs. We

have developed a novel circuit structure that efficiently approximates naïve Bayesian inference

with simple Muller C-elements. Using a stochastic computing paradigm, this system enables

real-time approximate decision-making with an area-energy-delay product nearly one billion

times smaller than a conventional general-purpose computer. In this paper, we propose several

techniques to improve the approximation of Bayesian inference by reducing stochastic bitstream

autocorrelation. We also evaluate the effectiveness of these techniques for various naïve

inference tasks and discuss hardware considerations, concluding that these circuits enable

approximate Bayesian inferences while retaining orders-of-magnitude hardware advantages

compared to conventional general-purpose computers.

Keywords: stochastic computing, Muller C-element, Bayesian inference, autocorrelation,

approximate inference

This work was supported by the EU collaborative FET Project BAMBI FP7-ICT-2013-C, project

number 618024 and a public grant overseen by the French National Research Agency (ANR) as

part of the “Investissements d’Avenir” program (Labex NanoSaclay, reference: ANR-10-LABX-

0035).

3

1. Introduction

 The development of autonomous robotic systems requires fast, low-power circuits that

enable real-time decision-making. Conventional approaches use general-purpose processors

with decision algorithms implemented in software and mapped to conventional Boolean logic

and arithmetic. Such systems have the ability to perform a wide range of tasks, but are not ideal

for any task, including decision-making. For systems dedicated to a single task, specialized

hardware can provide optimizations that lead to increased speed, reduced circuit area, and

decreased energy consumption.

 To autonomously reason and perform actions based on sensory information, Bayesian

inference efficiently incorporate information from independent sources [1]. Bayesian inference

has been suggested as a fundamental component of biological systems [2]–[4], and has been

successfully applied to robotics and other sensory-motor systems [5]. In such systems,

constantly-updated sensory information is provided to a reasoning circuit that makes decisions in

response to new information resulting from a constantly-changing environment [6]. For such

circuits, there are fundamental trade-offs between reaction time, circuit efficiency, and the level

of approximation used for the inference and reasoning. Therefore, the design of systems

specifically dedicated to Bayesian inference is an active research area, incorporating analog or

digital circuits to enable systems that are more efficient than computers [7]–[11].

In this context, we recently proposed an especially compact and energy efficient

computing system that provides approximate naïve Bayesian inference [12]. In this system,

based on Muller C-elements used in a stochastic computing paradigm, the approximate

probability of a particular event is calculated based on prior and evidence data. We demonstrated

a nearly one-billion-fold improvement in the area-energy-delay product for approximate

4

Bayesian inference, with exceptional robustness to hardware faults. However, we found that

bitstream autocorrelation leads to an approximation of the inference, limiting this system to tasks

that do not require exact computation.

 In this paper, we explore techniques to improve the quality of the approximation by

mitigating the bitstream autocorrelation. Circuits that reduce bitstream autocorrelation are

presented that remove the inaccuracy at the cost of additional hardware components that reduce

the system efficiency. We show that these autocorrelation mitigation techniques are effective in

reducing bitstream autocorrelation, even for difficult inference tasks. Finally, we conclude that

despite the hardware costs, autocorrelation mitigation permits the use of our stochastic C-

element structure for approximations of Bayesian inference with massive efficiency

improvements over conventional hardware systems.

2. Bayesian Inference with Stochastic C-Elements

 In this section, we summarize the findings of [12]. Approximate Bayesian inference can

be performed with a simple cascade of C-elements, with stochastic bitstream inputs and outputs.

This system provides several orders of magnitude improvement in computational efficiency,

though bitstream autocorrelation limits the accuracy of the approximation.

2.1. Stochastic Computing

 Stochastic computing enables the efficient approximation of mathematical functions

performed on streams of random binary values [13], [14]. The value of a stochastic bitstream is

the percentage of binary bits that are ‘1’. For example, “010011010” encodes
4

9
. The random

5

nature of the bitstream prevents the encoding of exact values; the value is an approximation with

an accuracy that increases with the bitstream length.

 This bitstream encoding enables the efficient realization of various functions, notably

multiplication with a single AND gate [14]. For example, consider two input bitstreams to an

AND gate “0101010101” and “0000011111”, which both encode a value of 0.5. If the bit-pairs

are input sequentially into an AND gate, the resulting output is “0000010101”, which has a value

of 0.3. This is not the exact 0.25 result of the multiplication, but it is as precise as possible given

that only ten bits are employed.

 Correlations between bitstreams, and within a bitstream, can cause significant errors. For

the case of an AND gate with both input bitstreams being “0101010101”: the output is also

“0101010101”, which is equivalent to 0.5. As the bitstreams are correlated with each other, this

AND-gate stochastic multiplication does not perform the desired function. Additionally, in cases

of autocorrelation with bits interacting within a bitstream, this autocorrelation can impact the

output bitstream to produce undesired results. This autocorrelation is the primary challenge that

is addressed in this paper, and the resulting imprecision is considered as a tradeoff for decreased

power consumption, area, and latency.

2.2. C-Element Inference

 The small area of circuits developed for stochastic computing enables an especially

efficient Bayesian inference function. In particular, a Muller C-element is a simple circuit

composed of as few as eight transistors that performs the function described by Table I [15]. The

output Z maintains its state Zprev unless both inputs X and Y are opposite the current output state,

6

in which case the output switches to the shared input value. For C-element input signals with no

autocorrelation, the output probability is approximated by [12], [16]–[18]

𝑃(𝑍) =
𝑃(𝑋)𝑃(𝑌)

𝑃(𝑋)𝑃(𝑌) + (1 − 𝑃(𝑋))(1 − 𝑃(𝑌))
 . (1)

X Y Z

0 0 0

0 1 Zprev

1 0 Zprev

1 1 1

Table I: Muller C-element truth table

 Equation (1) can be shown to be equivalent to a Bayesian inference. Given prior 𝑃(𝑉)

and evidence input E1, the probability of an event can be calculated as

𝑃(𝑉|𝐸1) =
𝑃(𝐸1|𝑉)𝑃(𝑉)

𝑃(𝐸1|𝑉)𝑃(𝑉) + 𝑃(𝐸1|�̅�)𝑃(�̅�)
 . (2)

Defining a parameter 𝑃∗(𝐸1) by

𝑃∗(𝐸1) ≡
𝑃(𝐸1|𝑉)

𝑃(𝐸1|𝑉) + 𝑃(𝐸1|�̅�)
 , (3)

equation (2) can be rewritten as

𝑃(𝑉|𝐸1) =
𝑃∗(𝐸1)𝑃(𝑉)

𝑃∗(𝐸1)𝑃(𝑉) + (1 − 𝑃∗(𝐸1))(1 − 𝑃(𝑉))
 . (4)

Equation (4) can be seen as equivalent to equation (1), with P(X) as the prior, P(Y) as evidence,

and P(Z) as the posterior probability of an event. A simple C-element thus performs a complete

Bayesian inference with two sources of input information [12].

 Multiple C-elements can be cascaded to perform more complex Bayesian inferences with

multiple sources of evidence [12]. Incorporating a second evidence input E2, with E1 and E2

7

conditionally independent and 𝑃∗(𝐸2) defined similarly to 𝑃∗(𝐸1), the posterior probability

based on E1 and E2 can be determined as

𝑃(𝑉|𝐸1,𝐸2) =
𝑃(𝑉|𝐸1)𝑃∗(𝐸2)

𝑃(𝑉|𝐸1)𝑃∗(𝐸2) + (1 − 𝑃(𝑉|𝐸1))(1 − 𝑃∗(𝐸2))
 . (5)

This is equivalent to two cascaded C-elements, as shown in Figure 1, and this concept can be

extended to an arbitrarily large number of evidence inputs. The C-element tree shown in Figure 2

performs inference with a prior and seven independent sources of evidence, performing an

approximation of

𝑃(𝑉|{𝐸1, … , 𝐸𝑖}) =
𝑃(𝑉) ∏ 𝑃∗(𝐸𝑥)𝑖

𝑥=1

𝑃(𝑉) ∏ 𝑃∗(𝐸𝑥)𝑖
𝑥=1 + (1 − 𝑃(𝑉)) ∏ (1 − 𝑃∗(𝐸𝑥))𝑖

𝑥=1

 , (6)

with P* defined above. As a pedagogical example, this circuit can be used to perform spam

filtering on the five messages in Table II, with the presence or absence of eight key words

providing evidence to determine whether each message is spam. As shown in the simulation

results of Figure 3, the C-element inference circuit provides approximately correct results. As

expected from the discussion of section 2.1., the results become increasingly accurate with

longer bitstreams. However, as particularly noticeable for messages D and E, the spam

probability resulting from this approximate inference does not approach the correct value. This is

a result of the autocorrelation described in the next section.

Figure 1. Cascaded C-elements with one prior and two evidence inputs.

8

Figure 2. Cascaded C-element circuit with one prior and seven evidence inputs.

Message Message Text

A Do you want to get pizza for lunch?

B You should check out these stochastic simulations.

C
If you want to earn a fortune, send a $100 check to Nigeria and we

will transfer $10,000 to your account.

D
My commute to Nigeria includes a transfer in Morocco. I will check if

my flight is on schedule- if so, do you want to get pizza when I arrive?

E There is a $10 fee for all check transfers.

F You!

Table II: Sample messages for spam detection.

Figure 3. Symbols: Spam probability value for messages A-E of Table I obtained by cascaded C-elements for

several simulation runs as a function of observed bitstream length. Horizontal lines: exact inference.

9

2.3. Bitstream Autocorrelation

 Bitstream autocorrelation leads not only to slower convergence (i.e., an increased number

of bits are required for the output to reach the value produced by an infinite number of bits), but

also to convergence toward an incorrect value (i.e., the value to which the output converges is

not equivalent to the Bayesian inference expected from equation (6)). This is a result of the

expected C-element behavior: unless both inputs are opposite the current state of the output, the

next output bit is identical to the previous output bit. In a C-element tree, each C-element stage

leads to an increase in bitstream autocorrelation. Therefore, the output of each C-element has

longer “domains” of consecutive ‘1’s or ‘0’s than either input.

 As mentioned in section 2.2, the expectation that a C-element performs Bayesian

inference is premised on the assumption that the input bitstreams of each C-element are

uncorrelated. However, as the input bitstreams to C-elements beyond the first stage come from

previous C-element output bitstreams, the C-element input bitstreams are autocorrelated in all C-

element stages after the first. The fact that the C-element outputs have autocorrelation prevents

the use of equation (1) in describing a C-element tree, as C-element output bitstreams with

significant autocorrelation are used as inputs to other C-elements. As a result, the cascaded C-

element output probabilities do not converge to the “correct” value expected from equation (6),

as seen for messages D and E in Figure 3. This convergence to incorrect values limits the

accuracy of the approximate inference, and therefore the utility of the proposed stochastic

Bayesian inference system. The remaining sections of this paper address this challenge,

providing techniques to mitigate autocorrelation by rerandomizing the bitstreams without

modifying the encoded probabilities.

10

2.4. Computing Improvements

 In comparison to conventional approaches, the primary benefits provided by this C-

element stochastic Bayesian inference system are an increase in fault tolerance and computing

efficiency [12]. Whereas a conventional system provides an exact solution after a specific period

of time unless a fault occurs, this stochastic inference system provides increasingly accurate

solutions as a function of time and is minimally affected by faults.

2.4.1. Fault Tolerance

 In conventional binary number representations, the unintentional flipping of a single bit

drastically alters its value. For example, if the unsigned binary number “11011111” is written as

“01011111”, this flipping of a single bit causes the value to change from 223 to 95. In contrast,

stochastic bitstreams are minimally affected by single bit-flips; in the example above, the value

represented by the stochastic bitstream becomes 0.75 rather than 0.875. While still a noticeable

error, this change is far less drastic than for the conventional binary number.

 This fault tolerance advantage inherent to stochastic bitstream number representations

extends to stochastic computation. In particular, when a C-element output does not switch when

expected due to insufficient current to overpower its latch, the effect on the output bitstream is

minimal. This “not switching” fault leads to an error in a single bit of the bitstream. As an

example, [12] considered a C-element with input bitstreams representing the values 0.1 and 0.7.

The Kullback-Leibler (KL) divergence, which can be used to measure error, was found to be

below 0.01 even for an extremely pessimistic “not switching” fault rate of 99% (realistic fault

11

rates are far less than 1%). This stochastic Bayesian inference system can thus tolerate faults at

levels that would cripple a conventional system.

2.4.2. Inference Efficiency

 This stochastic inference structure provides approximate Bayesian inferences in far less

time than required by conventional systems to produce its precise answer, and with significantly

less power and area overhead. The accuracy of the stochastic Bayesian inference increases as the

number of output bits increases, permitting decision-making based on a sufficiently accurate

approximation with minimal hardware costs. In particular, approximate inference with a KL

divergence of 0.01 (corresponding to a value of 0.5 being approximated as 0.57) can be achieved

with a roughly one billion-fold improvement over the area-energy-delay product of a

conventional system.

 This comparison was performed in a manner that enables the conclusion to be relevant to

most hardware systems [12]. Standard CMOS cells at the 90 nm node were used to determine the

area, energy, and delay of both the C-element structure and a conventional floating point

structure, thus providing an apples-to-apples comparison. Though the comparison will vary at

different CMOS technology nodes or with an FPGA, a several orders-of-magnitude computing

efficiency improvement will remain.

3. Proposed Approximation Enhancement Techniques

 To reduce bitstream autocorrelation and improve the accuracy of the approximate

inference, distinct additions and modifications of the C-element circuit are proposed. The goal of

these rerandomization techniques is to generate random bitstreams encoding the same value as a

12

reference bitstream, with shorter domains than the reference bitstream; if the bitstream are fully

rerandomized and the autocorrelations fully removed, all C-elements function according to

equation (1) and an accurate inference is achieved.

 In this section, six rerandomization techniques are presented at both a conceptual and

circuit level – two based on averaging, two based on counting, and two based on shifting access.

Three of these are novel; three are interpretations of the hysteretic filters presented by Sharifi

Tehrani et al. [19] for stochastic decoding, and the terminology in this section is consistent with

theirs. The effectiveness of these techniques for approximate Bayesian inference is evaluated in

section 4 for a variety of inference tasks, permitting a comparison of their rerandomization

behavior. Their hardware costs are described in section 5, enabling conclusions regarding the

preferences amongst the six rerandomization techniques.

3.1. Averaging Techniques

 An intuitive technique for stochastic bitstream rerandomization is to directly calculate the

mean value of a bitstream and to continuously generate a new bitstream with the same mean

value. Two averaging techniques are described below, respectively using a moving average and a

series of single-run averages.

3.1.1. Moving Average

 A first intuitive technique is to follow each C-element (instruction i) with a moving

average circuit that continually keeps track of the average value of the previous 2
x
 bits

𝐶𝑖
∗, 𝐶𝑖−1

∗ , … , 𝐶𝑖−2𝑥
∗ of the C-element output C*. The moving total MT is updated at each clock

cycle (instruction ii). This value can then be used in concert with a random number generator to

13

generate a new bit Ci at each clock cycle with the probability of a ‘1’ given by the moving

average
𝑀𝑇

2𝑥
 (instruction iii). This technique can be described by the following procedure:

(i) Normal C-element: 𝐶𝑖
∗ = (𝐴𝑖 ∧ 𝐵𝑖) ∨ (𝐶𝑖−1

∗ ∧ (𝐴𝑖 ∨ 𝐵𝑖))

(ii) Update moving total: If 𝐶𝑖
∗⨁𝐶𝑖−2𝑥

∗ = 1,

 Add 1 to MT if 𝐶𝑖
∗ = 1

 Subtract 1 from MT if 𝐶𝑖
∗ = 0

(iii) Generate output: 𝑃𝑟(𝐶𝑖 = 1) =
𝑀𝑇

2𝑥

As 2
x
 bits must enter the moving average circuit before the moving average can be calculated, 2

x

clock cycles must pass before a reliable output is provided. There must therefore be either 2
x

unreliable output bits or an initial delay of 2
x
 clock cycles; the latter approach is analyzed in this

work. As this 2
x
 value is small relative to the bitstream lengths analyzed in section 4, this latency

is not included in the hardware cost analysis.

From a hardware perspective, this rerandomization procedure requires a C-element, shift

register, bidirectional counter, and XOR gate, as shown in Figure 4. The conventional C-element

takes the two input bitstreams to generate 𝐶𝑖
∗, which is an input the 2

x
-bit shift register. At each

clock cycle, bits move from one flip-flop to the next through the shift register. The output of the

last flip-flop, 𝐶𝑖−2𝑥
∗ , is then XOR-ed with 𝐶𝑖

∗ to determine whether the bidirectional counter value

MT must be updated: if 𝐶𝑖
∗ ≠ 𝐶𝑖−2𝑥

∗ , the bidirectional counter is incremented if 𝐶𝑖
∗ = 1 and

decremented if 𝐶𝑖
∗ = 0. The value MT stored in the bidirectional counter is used in concert with a

random number generator to create the rerandomized output bitstream C.

14

Figure 4. Moving average rerandomization circuit.

3.1.2. Single-Run Average

 In order to reduce the hardware cost of the averaging, the shift registers can be eliminated

and the continuously-updated moving average replaced by a sequence of single-run averages.

The initial C-element remains unchanged (instruction i). At each clock cycle, the x-bit clocked

counter CC is incremented (instruction ii) and the C-element output is added to the single-run

total SRT (instruction iii). Whenever CC reaches 2
x
, CC resets to 0 and an overflow bit is sent to

SRT and AVE. This overflow bit instructs AVE take in the value stored by SRT, and for SRT to

reset to 0. This reset process repeats every 2
x
 clock cycles, with a randomly-generated output bit

with ‘1’ probability
𝐴𝑉𝐸

2𝑥 produced at each clock cycle.

(i) Normal C-element: 𝐶𝑖
∗ = (𝐴𝑖 ∧ 𝐵𝑖) ∨ (𝐶𝑖−1

∗ ∧ (𝐴𝑖 ∨ 𝐵𝑖))

(ii) Update clocked counter: Add 1 to CC

(iii) Update single-run total: Add 1 to SRT if 𝐶𝑖
∗ = 1

(iv) Reset after each run: If 𝐶𝐶 = 2𝑥,

 Set 𝐴𝑉𝐸 = 𝑆𝑅𝑇

 Set 𝐶𝐶 = 0

 Set SRT = 0

(v) Generate output: 𝑃𝑟(𝐶𝑖 = 1) =
𝐴𝑉𝐸

2𝑥

15

This circuit is far more compact than the moving average. As shown in Figure 5, this

circuit is composed of a C-element, two x-bit counters, and an x-bit register. The C-element

output is an input to SRT, which outputs a value to AVE on an x-bit bus. The clocked counter CC

continually increments its value, sending an overflow signal that causes the value in SRT to shift

to AVE and for SRT to reset to 0. A random number generator generates an output bitstream C

based on the value stored in AVE.

Figure 5. Single-run average rerandomization circuit.

3.2. Counting Techniques

 Rather than repeatedly averaging the input bitstream, an alternative strategy directly

outputs “regenerative” inputs and outputs a randomly generated bit when the inputs are “non-

regenerative”. For these techniques, “regenerative” inputs are defined as the case of 𝐴𝑖 = 𝐵𝑖;

otherwise, the inputs are referred to as “non-regenerative”. A counter keeps track of the

difference between the input and output bitstreams and is used to generate appropriate random

numbers when the inputs are non-regenerative. These counting techniques are interpretations of

the hysteric filters proposed in [19] for a different application.

3.2.1. Single-Ended Counter

16

 The simplest counting rerandomization circuit is the single-ended counter [19]. As

mentioned above, the inputs are determined to be regenerative if 𝐴𝑖 = 𝐵𝑖, in which case 𝛿𝑖 is set

to 1. If the inputs are non-regenerative, 𝛿𝑖 is set to 0 (instruction i). The “regenerative bit” g is set

to the value in Ai if 𝛿𝑖 = 1; otherwise, g retains its previous value (instruction ii). At each stage,

an x-bit random number r is generated and compared to the x-bit counter value S: if 𝑟 < 𝑆, the

“non-regenerative bit” rh is set to 0; otherwise, rh is set to 1 (instruction iv). If the inputs are

regenerative (that is, 𝛿𝑖 = 1), the output is set to the regenerative bit g; otherwise, the non-

regenerative bit rh is output as C (instruction v). At each clock cycle, the x-bit Sum counter S is

incremented if g = 1 and decremented if 𝑟ℎ = 1; neither, one, both can occur at any given clock

cycle (instruction vi). This Sum counter is used to provide a similar number of ‘1’ bits to the

generated output bitstream as in a reference C-element bitstream.

(i) Check for input equivalence: 𝛿𝑖 = 𝐴𝑖⨁𝐵𝑖
̅̅ ̅̅ ̅̅ ̅̅

(ii) Conditionally update regenerative bit: If 𝛿𝑖 = 1, 𝑔 = 𝐴𝑖

(iii) Generate x-bit random number r

(iv) Generate non-regenerative bit:

 𝑟ℎ = 1 if 𝑟 < 𝑆

 𝑟ℎ = 0 otherwise

(v) Generate output:

 𝐶𝑖 = 𝑔 if 𝛿𝑖 = 1

 𝐶𝑖 = 𝑟ℎ otherwise

(vi) Update Sum:

 Add 1 to S if 𝑔 = 1

 Subtract 1 from S if 𝑟ℎ = 1

Figure 6 depicts the circuit at a hardware level. A flip-flop stores the value of A, and its

output value g is updated only when 𝐴𝑖 = 𝐵𝑖 (when 𝛿𝑖 = 1 and the inputs are regenerative).

Simultaneously, a random number generator provides an x-bit number r at each clock cycle,

which is compared to the x-bit number S by a comparator. The comparator outputs rh. Depending

17

on the value of 𝛿, the multiplexer outputs either rh or g. At each clock cycle, the Sum S is also

updated if either rh or g is ‘1’.

Figure 6. Single-ended counter rerandomization circuit.

3.2.2. Differential Counter

 The differential counter is similar to the single-ended counter, but with a more complex

counting mechanism [19]. Here, rh and g values of ‘0’ also cause the Sum counter to be updated:

if 𝑔 = 1, S is incremented; if 𝑔 = 0, S is decremented; if 𝑟ℎ = 0, S is incremented; if 𝑟ℎ = 1, S is

decremented (instruction vi). The hardware design is also not significantly changed, the only

difference being the replacement of the double-input counter by a double-input up/down counter.

(i) Check for input equivalence: 𝛿𝑖 = 𝐴𝑖⨁𝐵𝑖
̅̅ ̅̅ ̅̅ ̅̅

(ii) Conditionally update regenerative bit: If 𝛿𝑖 = 1, 𝑔 = 𝐴𝑖

(iii) Generate x-bit random number r

(iv) Generate non-regenerative bit:

 𝑟ℎ = 1 if 𝑟 < 𝑆

 𝑟ℎ = 0 otherwise

(v) Generate output:

 𝐶𝑖 = 𝑔 if 𝛿𝑖 = 1

 𝐶𝑖 = 𝑟ℎ otherwise

(vi) Update Sum:

 Add 1 to S if 𝑔 = 1

 Subtract 1 from S if 𝑔 = 0

 Add 1 to S if 𝑟ℎ = 0

 Subtract 1 from S if 𝑟ℎ = 1

18

Figure 7. Differential counter rerandomization circuit.

3.3. Shifting Access Techniques

 A third strategy for reducing autocorrelation and rerandomizing a bitstream is to store

regenerative bits in a controlled shift register and access the bits in an order different from a

reference C-element bitstream. In these techniques, the output is never a randomly-generated bit

– rather, the output is a bit chosen from the shift register in a manner particular to the specifics of

the technique.

3.3.1. Edge Memory

 An edge memory outputs a bit selected randomly from a shift register at each non-

regenerative clock cycle [19], [20]. As previously, the inputs are determined to be regenerative if

𝐴𝑖 = 𝐵𝑖, in which case 𝛿𝑖 = 1 (instruction i). If the inputs bits are regenerative, the shift register data

is shifted by one bit, with the current input Ai stored in E0 (instruction ii) and output as Ci (instruction

iv). For cases where the input bits are non-regenerative (𝛿𝑖 = 0), a randomly chosen bit stored in shift

register is sent to the output (instructions iii-iv).

(i) Check for input equivalence:𝛿𝑖 = 𝐴𝑖⨁𝐵𝑖
̅̅ ̅̅ ̅̅ ̅̅

(ii) Conditionally shift 2
x
-bit shift register: If 𝛿𝑖 = 1,

 Set each bit 𝐸𝑗 to the value stored in 𝐸𝑗−1

19

 Set bit 𝐸0 = 𝐴𝑖

(iii) Generate non-regenerative bit:

 Choose a bit Er randomly from E

(iv) Generate output:

 𝐶𝑖 = 𝐸0 if 𝛿𝑖 = 1

 𝐶𝑖 = 𝐸𝑟 if 𝛿𝑖 = 0

The central hardware component of the edge memory is a 2
x
-bit shift register E. The bits

are shifted to the right whenever 𝐴𝑖 = 𝐵𝑖, and 𝐴𝑖 is stored in the leftmost flip-flop of the shift

register. For use with non-regenerative inputs, a random number with x bits is generated that

refers to a randomly chosen bit Er in E. The final multiplexer then chooses whether to output the

regenerative bit E0 or the non-regenerative bit Er.

Figure 8. Edge memory rerandomization circuit.

3.3.2. Circular Buffer

 The final rerandomization technique explored in this paper is the circular buffer, which

functions similarly to the edge memory without random number generation. Similar to the edge

memory, the bits in the shift register E are shifted to the right and the current input Ai is stored in

E0 (the left-most flip-flop of E) if 𝛿𝑖 = 1 (instructions i-ii). If 𝛿𝑖 = 0, a circular motion is made

with the bits shifted to the left and the bit in the left-most flip-flop is shifted to the right-most

20

flip-flop (instruction ii). The output multiplexer then chooses between E0 and E2
x
-1 depending on

the value of 𝛿.

(i) Check for input equivalence: 𝛿𝑖 = 𝐴𝑖⨁𝐵𝑖
̅̅ ̅̅ ̅̅ ̅̅

(ii) Shift x-bit shift register:

• If 𝛿𝑖 = 1:

– Set each bit 𝐸𝑗 to the value stored in 𝐸𝑗−1

– Set bit 𝐸0 = 𝐴𝑖

• If 𝛿𝑖 = 0:

– Set each bit 𝐸𝑗 to the value stored in 𝐸𝑗+1 and 𝐸2𝑥−1 = 𝐸0

(iii) Generate output:

• 𝐶𝑖 = 𝐸0 if 𝛿𝑖 = 1

• 𝐶𝑖 = 𝐸2𝑥−1 if 𝛿𝑖 = 0

Figure 9. Circular buffer rerandomization circuit.

4. Rerandomization Circuit Effectiveness

 To demonstrate the effectiveness of these rerandomization circuits for reducing

autocorrelation and enhancing the accuracy of the Bayesian inference approximation, the

performance is analyzed for several sample tasks. These tasks were performed with C-elements

discussed in [12] replaced by the rerandomization circuits, collectively labeled “ECE” for

“extended C-element”. In all of these tasks, eight input bitstreams are randomly generated with

particular probabilities. The results are all based on ten simulation runs with one million bits and

a 200,000 bit initialization period not included in the statistical analysis; this bitstream length

was found to be appropriate for all rerandomization circuits and analyses, but is not optimized

for minimal delay and energy. The input pseudorandomly-generated bitstreams have negligible

21

autocorrelation and cross-correlation. The error bars in the graphs denote the standard deviation.

Varying numbers of bits x were considered for the various rerandomization circuits and inference

tasks in order to thoroughly explore the behavior while minimizing the excessive simulation

times required by large rerandomization circuits.

When evaluating the simulation results, it is crucial to consider that the hardware

component count is exponentially related to the number of bits x that characterizes the

rerandomization circuit for the circuits with a shift register (moving average, edge memory,

circular buffer). In contrast, the other three circuits (single run average, single counter,

differential counter) exhibit a linear relationship between x and the hardware component count.

Therefore, the inference accuracy observed for the edge memory, moving average, and circular

buffer must outweigh this hardware cost to be deemed superior to the simpler rerandomization

circuits.

4.1. Control Task Autocorrelation

 We first consider a simple situation where all inputs to the circuit of Figure 2 represent

50% (0.5), and the C-elements have been replaced by ECEs. In this case, all signals in the

circuits should also represent 50%. Due to the symmetry in the problem, all ECEs provide this

output value, but with varying degrees of autocorrelation. Figure 10 presents the autocorrelation

of the output of the circuit as a function the bit numbers x in the various ECEs, after one stage of

ECE, while Figure 11 presents the autocorrelation of the output after the three ECE stages. A

horizontal line depicts the autocorrelation obtained using simple C-elements. As all circuits

provide the same output value, comparing the autocorrelation provides a fair assessment of the

ECE effectiveness.

22

Figure 10. Autocorrelation of rerandomization circuits after one stage.

Figure 11. Autocorrelation of rerandomization circuits after three stages.

23

 Under these uniform conditions, the ECEs behave differently from each other, in a

relatively counterintuitive fashion. First, although they are based on a mathematically similar

concept, the moving average and single run average provide remarkably different results. Both

converge to a zero autocorrelation as x is increased, but the single run converges notably faster.

This can be interpreted as follows. Autocorrelated signals are prone to presenting long sequences

of ‘0’s and ‘1’s. The moving average, by computing an average continuously, tends to be

influenced by such sequences and to reproduce them, while the single average more naturally

cuts such sequences. As the moving average requires 2
x
 bits of memory and the single average

requires only x bits of memory, this suggests the vast superiority of the single run average over

the moving average.

 Despite the fact that the differential counter is a more complicated version of the single

counter, the differential counter converges similarly to single run average, while the single

counter converges faster. Although it relies on a complex concept and requires 2
x
 bits of

memory, the edge memory converges similarly to the single counter.

The circular buffer behaves differently from all other circuits: although for x = 2 it is one

of the best circuits, it is the only circuit that does not converge to zero autocorrelation as x is

increased. The fact that this circuit is not capable of removing autocorrelation is due to the fact

that it is the only circuit that does not feature a random number generator.

However, we see in the following subsections that these autocorrelation results do not

necessarily translate to practical inference tasks.

4.2. Bayesian Inference Task #1: Spam Filter

24

 As discussed in section 2.2 and shown in Figure 3, the spam filter output converges

toward an incorrect value for messages D and E in Table II. These spam filtering inference tasks

are therefore used to evaluate the ability of these rerandomization circuits to improve the

accuracy of the inference approximation.

4.2.1. Task Description

 In the spam filter tasks described thoroughly in [12], stochastic bitstreams are input to the

Bayesian inference circuit that represent the presence of various words in a message and their

“spamicity”. According to the errorless mathematical calculation of the inference using equation

(6) and the contrived spamicity data, message E is determined to be spam with a 77.7%

probability and message D is given a 2.4% probability of being spam. However, the simple C-

element circuit converges to probabilities of 70.1% and 7.8%, respectively. The approximate

inference is enhanced by replacing the simple C-elements with the rerandomization (ECE)

circuits in Figure 12.

Figure 12. Spam filter inference task with extended C-element rerandomization circuits.

4.2.2. Results for Message E

25

 As shown in the simulation results of Figure 13, the various rerandomization circuits

successfully mitigate the autocorrelation and enable an accurate approximation of the inference.

As the number of bits in the rerandomization circuits increases, the output spam probability

approaches the mathematically computed probability. However, surprisingly, the results are very

different than what would have been expected from Figures 10 and 11. For this task, the circular

buffer, one of the worst circuits according to Figures 10 and 11, performs far better than the

other rerandomization circuits, providing increased accuracy with fewer bits in its shift register.

However, this accuracy comes at the cost of a greater number of hardware components. Whereas

the edge memory also performs quite well, it is notable that the hardware-expensive moving

average performs quite poorly, consistently with our interpretation of Figures 10 and 11. The rest

of the curves are consistent, but do not map perfectly to Figures 10 and 11.

Figure 13. Spam filter results for message E with all rerandomization circuits (moving average, edge memory, and

circular buffer require 2
x
 bits of memory).

26

4.2.3. Results for Message D

 Figure 14 shows that rerandomization circuits also provide enhanced approximations for

the Bayesian spam filter for message D. The behavior is qualitatively different from Figures 10

and 11, as it is clearly differentiated between the circular buffer and edge memory, which

produce a nearly correct result with only two bits (four-bit shift register), and the other four

circuits which require ten bits. As with message E, the moving average does not perform

sufficiently well to make up for its large hardware cost.

Figure 14. Spam filter results for message D with all rerandomization circuits (moving average, edge memory, and

circular buffer require 2
x
 bits of memory).

4.3. Bayesian Inference Task #2: Uniform Tree

 Whereas the spam filter simulations demonstrate the ability of the rerandomization

circuits to enable accurate inference approximations, it is also enlightening to consider the

27

behavior more systematically. This task involves a uniform tree having inputs with equal

probabilities.

4.3.1. Task Description

 This task uses the same circuit structure as the spam filter, with all inputs having a value

0.4. Therefore, by Bayes’ rule in equations (1) and (2), the expected output probability after the

first stage is 30.7%, after the second stage is 16.5%, and after the third stage is 3.8%. The simple

C-element consistently overestimates the output probability, producing a final result of 9.2%.

This inference task thus provides a good opportunity to compare the capabilities of the various

rerandomization circuits in a systematic manner.

4.3.2. Results

 As shown in Figure 15, the edge memory and single counter perform particularly well.

The single run average and differential counter perform nearly as well, and the moving average

lags far behind. Most interestingly, the circular buffer provides excellent results with two bits

(four-bit register), but does not converge to the mathematically correct value, as in the uniform

case of Figures 10 and 11.

28

Figure 15. Inference tree output with all rerandomization circuits for all inputs having a value 0.4 (moving average,

edge memory, and circular buffer require 2
x
 bits of memory).

4.4. Inference Task #3: Symmetric Chain

 A third set of inference tasks involves a chain of extended C-elements. This technique,

though not ideal for performing complex inferences [12], provides insight for evaluating the

behavior of the rerandomization circuits. In particular, the symmetry of the inputs implies that a

correct output is precisely 50%, and the approximation accuracy can be easily judged by the

distance from this expected value.

4.4.1. Task Description

 This inference task uses the chain of extended C-elements shown in Figure 16. The first

four inputs have a probability of α, and the final four inputs have a probability 1 – α. As a result

of this symmetry, equation (2) suggests an expected output of 50%. However, due to the fact that

29

the inputs are sequential, there is an internal node with an extreme probability. For α = 40%, the

most extreme internal node has an expected probability of 16.5%; for α = 10%, the most extreme

internal node has an expected probability of 0.015%. These extreme probabilities imply that

there is minimal switching in the bitstream, leading to long domains and large autocorrelation.

Therefore, a simple C-element provides output probabilities of 32.9% and 0.5%, respectively,

demonstrating the need for bitstream rerandomization.

Figure 16. Symmetric chain inference task with extended C-element rerandomization circuits.

4.4.2. Results for Moderate Inputs

 The large autocorrelation in the inference chain is shown in Figure 17 to be overcome by

the rerandomization circuits for or α = 40%. The circular buffer provides by far the best results,

reaching 49.4% with just two bits (four-bit register). The edge memory performs barely better

than the single counter, with the single-run average and differential counter slightly behind.

Similar to the other tasks, the moving average circuit performs quite poorly.

30

Figure 17. Symmetric chain results for α = 40% with all rerandomization circuits (moving average, edge memory,

and circular buffer require 2
x
 bits of memory).

4.4.3. Results for Extreme Inputs

 The more extreme case of α = 10% requires larger circuits with more rerandomization

bits to provide an accurate approximate inference. As can be observed in Figure 18, all of the

rerandomization circuits successfully converge to the correct output probability, albeit with

greater than 10 bits (1,024 bit-shift register). Comparing amongst the various circuits, the results

are similar to the previous case, the primary difference being improved performance of the

single-run average relative to the single counter. These results also highlight the challenge of

performing inferences with extreme probabilities.

31

Figure 18. Symmetric chain results for α = 10% with all rerandomization circuits (moving average, edge memory,

and circular buffer require 2
x
 bits of memory) .

5. Hardware Cost Considerations

 The primary benefits of this stochastic approximate Bayesian inference paradigm are the

hardware efficiency and fault tolerance [12], [21]. As discussed previously, these benefits require

an approximation of the inference rather than a direct computation. To proceed towards a

practical system, the utility of these approaches can be quantified through a comparison of the

inference accuracy and hardware costs.

 Using reconfigurable logic devices (FPGAs) we were able to have working prototypes

and analyze resource usage and performance. We have synthesized all of the rerandomization

circuits for various numbers of bits to provide an analysis of their relative hardware costs in

terms of area, speed, and power consumption. In order to enable a fair comparison as in section

2.4, all circuits have been synthesized and tested in the same way: logic synthesis using Altera

32

Quartus II 14.0 IDE targeting a board with a Cyclone IV FPGA (EP4CE115F29C7, and Mentor

Graphics Modelsim with PowerPlay Power Analyzer from the Quartus IDE to provide power

consumption estimates. The synthesis is restricted to only use generic LEs (FPGA basic internal

blocks, or logic elements) so that the resource usage resulting from the synthesis can be used as a

relative measure for circuit area. For the power analysis ModelSim test vectors, a VHDL test

bench was used to generate pseudo-random numbers with uniform distribution, and inputs with a

50% toggle rate, providing a worst-case estimation of the power dissipation. While in some

applications FPGAs might be used as the end target device for their flexibility, the relative

hardware costs can also provide guidelines for their expected behavior in other environments, in

particular application-specific integrated circuits (ASICs), which would constitute the optimal

implementation of our scheme. The results in this section do not include the cost of the random

number generators, which are discussed in the Discussion section instead.

5.1. Area Utilization

 The relative area utilization of the rerandomization circuits is shown in Figure 19.

Computed as the total number of logic elements (LEs) in the circuit, a zero-bit rerandomization

circuit refers to a simple C-element. The area number includes both combinational elements and

registers. The relative proportion varies considerably depending on the ECEs. For x = 16, the

relative proportion of combinational to register elements is 0.04 for moving average, 1.4 for

single run average, 3.3 for single counter, 2.3 for differential counter, 0.7 for edge memory, and

1.0 for circular buffer. Notice that a single LE can be used for some logic and a register, so using

this total there is in fact an overlap. Our area metric does not double count in case of overlap.

33

For both counter circuits and the single-run average, the area is shown to increase

linearly; the area increases exponentially for the moving average, edge memory, and circular

buffer circuits. This exponential relationship is a result of the 2
x
-bit shift registers that comprise

the bulk of the circuit area. As can be readily discerned, these circuits are not efficiently

implemented in hardware with more than six bits (64-bit shift register).

Figure 19. Area overhead of rerandomization circuits relative to a single C-element.

5.2. Computation Speed

 In stochastic computing, the precision of a signal increases with each bit in a bitstream.

Therefore, the clock speed at which a stochastic computing system outputs bits is critical for

enabling high-speed information processing. As shown in Figure 20, the counters produce bits

fairly slowly, whereas the single-run average suffers a gentler decline in speed. The maximum

frequency plotted in the graph is the smallest clock period at which the circuit can operate

34

without inducing errors, producing an output bit at each clock cycle. For the simple C-element

circuit, the maximum FPGA frequency is 727 MHz.

Figure 20. Maximum operating frequency of rerandomization circuits relative to a single C-element.

5.3. Power Dissipation

 Power dissipation is a primary consideration in the development of efficient computing

technologies, and is particularly relevant for battery-limited autonomous systems. As shown in

Figure 21, the power dissipation grows exceptionally large for the shifting access techniques

with a large number of bits. These power data consider the FPGA dynamic power at a frequency

of 50 MHz, as the static power is primarily consumed by inactive components of the

reconfigurable circuit. The moving average, edge memory, and circular buffer circuits requires

significantly more power than the other three circuits, which all require ~20x more power than a

simple C-element.

35

Figure 21. Power dissipation of each rerandomization circuit with a clock frequency of 50 MHz, relative to a single

C-element.

5.4. Total Efficiency

 The area-energy-delay product (AEDP) is an effective means of evaluating the total

efficiency of a computing system for general-purpose applications. The energy is computed by

multiplying the maximum frequency by the power dissipation at this maximum circuit

frequency. As can be observed on the logarithmic scale of Figure 22, the AEDP of the counters

and single-run average is roughly one thousand times larger than a simple C-element. The

relative AEDP of the edge memory is similar up to four bits (sixteen-bit shift register), and

increases dramatically for larger circuits. The circular buffer has a consistently larger hardware

cost, though its ability to function without a random number generator provides a significant

36

advantage. For all these circuits, an analysis of the total efficiency in concert with the

rerandomization effectiveness enables comparisons of overall utility.

Figure 22. Area-energy-delay product (AEDP) of each rerandomization circuit relative to a single C-element.

6. Discussion

This paper has proposed several rerandomization circuits for stochastic approximate

Bayesian inference, and demonstrated their capability of improving the approximation accuracy.

All the circuits have been shown to provide the desired results without inducing an excessive

hardware cost, and the choice of rerandomization circuit is determined by the specific inference

task and hardware specifications. Depending on the cost of the random number generator, and

the potential availability of an analog random number generator, all the rerandomization circuits

should be considered besides the moving average. Though the diversity of results for the various

37

inference tasks prevents a strong claim regarding the absolute superiority of one of the circuits

on all criteria, important conclusions can be drawn:

 Average Techniques: The single-run average provides more accurate inference

approximations than the moving average, despite the exponential difference in hardware

resources of the two techniques. This counterintuitive improved capability for autocorrelation

reduction is a result of differences in the averaging mechanism. For the moving average, the

shift registers cause the average to be gradually and continuously updated, following the

behavior of the input signal and retaining its correlations. In contrast, the single-run average

provides abrupt shifts in the averages, enabling longer-range decorrelation within the

bitstream. As the hardware cost of the moving average rerandomization circuit is

exponentially larger, the single-run average is superior to the moving average in all aspects.

 Counting Techniques: The inference approximations with the single counter are more accurate

than with the differential counter, despite contrary findings in [19] where they were used for

stochastic decoding. However, the accuracy difference between the two circuits is relatively

small. As the differential counter is found to have a smaller hardware cost, neither circuit can

immediately be considered superior.

 Shifting Access Techniques: The edge memory and circular buffer both provide excellent

autocorrelation mitigation. Given to the high effectiveness with a small number of bits, the

high hardware cost may acceptable for some systems. In particular, the four-bit (sixteen-bit

shift register) edge memory provides highly accurate approximate inferences with a relatively

small hardware cost. The circular buffer is in general also highly effective, and the lack of a

random number generator is a significant strength. However in situations with uniform or

relatively uniform probabilities, the circular buffer is the only solution that is incapable of

38

eliminating autocorrelation entirely. Therefore, the edge memory appears to be a more

reasonable choice in general.

 Comparison to Conventional Systems: As already mentioned, the final efficiency of a

Bayesian inference circuit based on stochastic computing depends on the expected precision

of the output. When exact results are required, conventional deterministic processing

techniques are more appropriate than the stochastic C-element inference due to the inability of

stochastic computing systems to provide exact results. For approximate inference, the

required precision determines the relative efficiency of the C-element structures relative to

conventional deterministic circuits, thus dictating which is more suitable to that problem. In

general, when high precision is required (low KL divergence to exact inference), deterministic

circuits are more efficient than stochastic circuits. By contrast, for approximate inference

sufficient for real time decision (i.e., KL divergence to exact inference <0.01), stochastic

inference can be considerably more efficient than conventional circuits: we find that our

autocorrelation mitigation circuits enable stochastic approximate Bayesian inference circuits

with several orders of magnitude hardware efficiency improvements as compared to

conventional systems with exact floating point computation. As demonstrated through

simulation, eight-bit rerandomization circuits without shift registers (and four-bit edge

memories and circular buffers) can produce accurate approximate inferences for relatively

difficult tasks: for very long bitstreams, the KL divergence from an exact inference is

generally much smaller than 0.01. In practical situations, with shorter bitstreams, the

dominant error source will therefore be the input bitstream length, and inference accuracy can

therefore be chosen based on input bit length. As shown in Figure 19, the hardware cost of

such circuits is about one thousand times larger than that of a simple C-element. However,

39

following the approach introduced in [12], for the examples studied in the present paper, we

find that the AEDP of stochastic approximate Bayesian inferences with rerandomization can

be approximately 100,000 times smaller than a conventional exact Bayesian inference

computation while maintaining KL divergence to exact inference < 0.01. In other terms: the

ECEs allow reaching inference with KL divergence <0.01 in situations where simple C

elements cannot, while retaining considerable benefits in AEDP compared with floating

point-based systems. In terms of energy alone, our circuits are ~50x more efficient than

floating point operation, and in terms of area are ~700x more efficient (also based on the

analysis of [12] and our current results).

As a strategy for low precision inference, it is also worthwhile to consider conventional

circuit structures with less precision than the double-precision floating point format; for example,

fixed point or single-precision floating-point provides an intermediate level of precision with an

intermediate hardware cost. Based on the literature, such strategies can increase energy

efficiency by factors between two and ten [22]–[24]. Stochastic circuits remain beneficial, but

less so when compared with full precision floating point computation. Additionally, low

precision deterministic circuits lack the fault tolerance of stochastic systems as well as the ability

of stochastic computation to adjust precision through control of the bitstream length.

Naïve Bayesian inference can thus be efficiently approximated by this stochastic

computing system. Though the moving average technique is inferior, the other rerandomization

circuits exhibit promising characteristics for enabling accurate approximations. The range of

probabilities that may be input to the circuit should determine the choice between a shift register-

based technique with a small number of bits and a counter or single-run average with additional

40

bits. Further, it is worth considering the possibility of introducing rerandomization only at select

nodes of the system where particularly large autocorrelations are expected.

The choice of x value is a critical design choice. A reasonable design rule is to choose the

smallest value such that for long bitstreams, the KL divergence from an exact inference is

smaller than the targeted threshold for an application (e.g., 0.01). Therefore, in practical

situations, the dominant error source is the input bitstream length, and accuracy can be chosen

based on the input bitstream length, consistent with the basic principles of stochastic computing.

 We should remark that the discussion of hardware overhead has heretofore considered

only the rerandomization logic and memory; excluding the circular buffer, each rerandomization

circuit requires an additional random number generator. For the counters and edge memory, the

random number generator must randomly generate an x-bit binary number. This task is

conventionally achieved with x unbiased single-bit random number generators. For the moving

average and single run average circuits, the random number generator must provide a one-bit

number with a particular probability with x-bit precision. This can be achieved with x unbiased

single-bit digital random number generators and a small combinational logic circuit, or perhaps

with a single analog random number generator.

 The development of low energy random number generators is current a highly active area

of research in the field of nanotechnology [25]–[30]. Novel devices and materials enable new

types of random number generation that may be highly energy efficient. With continually

reduced device dimensions, the energy barriers for switching between binary states can be

reduced significantly [31], [32]. Particularly exciting technologies include memristors [29], [30],

magnetic tunnel junctions [26]–[28], and single-electron transistors [25]. As these approaches

41

continue to develop and improve, it is expected that the hardware costs will be small and have

therefore not been included in the hardware analysis.

 We have also assumed that the input bitstreams are neither biased nor autocorrelated. Our

system is not resilient to input bias; any bias of the input bitstreams leads to bias in the output

bitstreams. To remove bias, input bitstreams can be whitened through the use of XOR gates on

several independent randomly generated bitstreams at the cost of additional area and energy

consumption in bitstream generation. Input autocorrelation, on the other hand would be naturally

improved by the ECEs, as shown during our analysis. In case of strong input autocorrelation,

additional stages between the input and an input of probability 0.5 can also naturally suppress

autocorrelation.

 Given the disparate mechanisms underlying each of the rerandomization circuits, it is

natural to consider the use of multiple different types of ECEs within a single Bayesian inference

circuit. While numerous combinations can be conceived, a particularly compelling combination

is the edge memory in concert with the single run average. As shown in Figures 23 and 24, spam

filter simulations were performed on the three-stage ECE tree for message E of Table II, as in

section 4.2.2. In Figure 23, the four ECEs in the first stage are single run average circuits, the

two ECEs in the second stage are edge memories, and the one ECE in the third stage is a single

run average circuit. This organization is switched in Figure 24, with four edge memories in the

first stage, two single run average circuits in the second stage, and an edge memory in the third

and final stage. For both mixed simulations, various bit length combinations are evaluated for

both the single run average and edge memory – all single run average circuits have one particular

bit length, and all edge memories have another bit length. The number of bits is noted in terms of

the size of the memory; therefore, the edge memory sizes are written in terms of 2
x
 rather than x

42

(e.g., 64 edge memory bits corresponds to six edge memory bits in the notation of the

simulations of section 4). In both graphs, the result from Figure 13 for an ECE inference tree

composed solely of single run average circuits is shown as a reference.

 Figures 23 and 24 interestingly show that the autocorrelation mitigation provided by a

large edge memory can be traded off for that provided by a large single run average circuit. For

example, the 256-bit edge memory in concert with a two-bit single average is seen in Figure 23

to produce a result similar to the case of a 64-bit edge memory in concert with a four-bit single

run average. The insertion of an edge memory generally provides superior behavior to a tree

composed solely of single run average circuits. It is particularly noteworthy from Figure 24 that

with a sufficiently large edge memory (e.g., 256 bits), the impact of the single run average

circuits are negligible. This inspires further consideration of a tree in which some of the C-

elements are simple C-elements rather than ECEs; however, it is likely that the performance and

energy efficiency can be maximized with a balanced circuit composed of ECEs with similar

hardware costs.

43

Figure 23. Mixed simulation for spam message E with edge memories at stage two and single run average

rerandomization circuits at stages one and three.

Figure 24. Mixed simulation for spam message E with single run average rerandomization circuits at stage two and

edge memories at stages one and three.

44

7. Conclusions

Circuits with simple C-elements can perform stochastic approximate Bayesian inference

with exceptional efficiency benefits for inference tasks that do not require exact results. In this

paper, we have shown that this approximate Bayesian inference scheme can be extended to

provide a much higher degree of accuracy while retaining a five orders of magnitude efficiency

advantage over conventional computing systems. In particular, the hardware analysis and

inference simulation results indicate that the preferred solutions are counters or single-run

average circuits with six-to-eight bits or circular buffers or edge memories with up to four bits.

These stochastic approximate Bayesian inference concepts are therefore promising

techniques for the next generation of efficient and accurate autonomous robotic systems.

Extending this stochastic approximate inference task further, our current work investigates the

use of these extended C-elements in more sophisticated stochastic circuits for non-naïve

Bayesian inferences.

Acknowledgment

The authors would like to acknowledge the contribution of Awais Aslam in the FPGA

implementation.

References

[1] P. Bessière, C. Laugier, and R. Siegwart, Probabilistic Reasoning and Decision Making in

Sensory-Motor Systems. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.

[2] W. J. Ma, J. M. Beck, P. E. Latham, and A. Pouget, “Bayesian inference with probabilistic

population codes,” Nat. Neurosci., vol. 9, pp. 1432–1438, Nov. 2006.

45

[3] J. Laurens and J. Droulez, “Bayesian processing of vestibular information,” Biol. Cybern.,

vol. 96, pp. 389–404, Apr. 2007.

[4] A. Houillon, P. Bessière, and J. Droulez, “The probabilistic cell: implementation of a

probabilistic inference by the biochemical mechanisms of phototransduction,” Acta

Biotheor., vol. 58, pp. 103–120, Sep. 2010.

[5] O. Lebeltel, P. Bessière, J. Diard, and E. Mazer, “Bayesian robot programming,” Auton.

Robots, vol. 16, pp. 49–79, 2004.

[6] P. Bessière, J.-M. Ahuactzin, K. Mekhnacha, and E. Mazer, Bayesian Programming. .

[7] B. Vigoda, “Analog logic: Continuous-time analog circuits for statistical signal

processing,” 2003.

[8] I. Pournara, C.-S. Bouganis, and G. A. Constantinides, “FPGA-accelerated Bayesian

learning for reconstruction of gene regulatory networks,” in FPL, 2005, pp. 323–328.

[9] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput Bayesian computing machine

with reconfigurable hardware,” in FPGA, 2010.

[10] P. Mroszczyk and P. Dudek, “The accuracy and scalability of continuous-time Bayesian

inference in analogue CMOS circuits,” in ISCAS, 2014, pp. 1576–1579.

[11] D. Querlioz, O. Bichler, A. F. Vincent, and C. Gamrat, “Bioinspired programming of

memory devices for implementing an inference engine,” Proc. IEEE, vol. 103, no. 8, pp.

1398–1416, 2015.

[12] J. S. Friedman, L. E. Calvet, P. Bessière, J. Droulez, and D. Querlioz, “Bayesian inference

with Muller C-elements,” IEEE Trans. Circuits Syst. I, vol. 63, no. 6, pp. 895–904, 2016.

[13] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from

unreliable components,” Autom. Stud., 1956.

46

[14] B. Gaines, “Stochastic computing systems,” in Advances in Information Systems Science,

J. T. Tou, Ed. 1969, pp. 37–172.

[15] D. E. Muller, “Theory of asynchronous circuits,” 1955.

[16] V. Gaudet and A. Rapley, “Iterative decoding using stochastic computation,” Electron.

Lett., vol. 39, no. 3, 2003.

[17] C. Winstead and S. Howard, “A probabilistic LDPC-coded fault compensation technique

for reliable nanoscale computing,” IEEE Trans. Circuits Syst. II, vol. 56, no. 6, pp. 484–

488, Jun. 2009.

[18] C. Winstead, “C-element multiplexing for fault-tolerant logic circuits,” Electron. Lett.,

vol. 45, no. 19, pp. 969–970, 2009.

[19] S. Sharifi Tehrani, C. Winstead, W. J. Gross, S. Mannor, S. L. Howard, and V. C. Gaudet,

“Relaxation dynamics in stochastic iterative decoders,” IEEE Trans. Signal Process., vol.

58, no. 11, pp. 5955–5961, 2010.

[20] S. Sharifi Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of LDPC codes,”

IEEE Commun. Lett., vol. 10, no. 10, pp. 716–718, 2006.

[21] G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Memik, and S.

Parthasarathy, “b-HiVE: A bit-level history-based error model with value correlation for

voltage-scaled integer and floating point units,” in DAC, 2015, p. 105.

[22] J. Y. F. Tong, D. Nagle, and R. a Rutenbar, “Reducing power by optimizing the necessary

precision/range of floating-point arithmetic,” IEEE Trans. VLSI, vol. 8, no. 3, pp. 273–

286, 2000.

[23] G. Govindu, L. Zhuo, S. Choi, P. Gundala, and V. K. Prasanna, “Area and Power

Performance Analysis of a Floating-point based Application on FPGAs,” Annu. High

47

Perform. Embed. Comput. Work. (HPEC), MIT Lincoln Lab, 2003.

[24] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited

numerical precision,” ICML, vol. 37, 2015.

[25] K. Uchida, T. Tanamoto, and S. Fujita, “Single-electron random-number generator (RNG)

for highly secure ubiquitous computing applications,” Solid. State. Electron., vol. 51, pp.

1552–1557, 2007.

[26] W. H. Choi, Y. Lv, J. Kim, A. Deshpande, G. Kang, J. Wang, and C. H. Kim, “A

magnetic tunnel junction based true random number generator with conditional perturb

and real-time output probability tracking,” in IEDM, 2014, pp. 315–318.

[27] X. Fong, M. Chen, and K. Roy, “Generating true random numbers using on-chip

complementary polarizer spin-transfer torque magnetic tunnel junctions,” in DRC, 2014,

pp. 103–104.

[28] A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura, S. Yuasa, and K. Ando,

“Spin dice: A scalable truly random number generator based on spintronics,” Appl. Phys.

Express, vol. 7, p. 83001, 2014.

[29] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memristive devices for

computing and neuromorphic applications,” Nanoscale, vol. 5, no. 13, pp. 5872–5878, Jul.

2013.

[30] S. Balatti, S. Ambrogio, Z. Wang, and D. Ielmini, “True random number generation by

variability of resistive switching in oxide-based devices,” IEEE J. Emerg. Sel. Top.

Circuits Syst., vol. 5, no. 2, pp. 214–221, 2015.

[31] R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res.

Dev., vol. 5, no. 3, pp. 261–269, 1961.

48

[32] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, “Thermodynamics of information,”

Nat. Phys., vol. 11, no. 2, pp. 131–139, 2015.

