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A B S T R A C T

Accumulating evidence suggest that human behavior in trial-and-error learning tasks based on decisions be-
tween discrete actions may involve a combination of reinforcement learning (RL) and working-memory (WM).
While the understanding of brain activity at stake in this type of tasks often involve the comparison with non-
human primate neurophysiological results, it is not clear whether monkeys use similar combined RL and WM
processes to solve these tasks. Here we analyzed the behavior of five monkeys with computational models
combining RL and WM. Our model-based analysis approach enables to not only fit trial-by-trial choices but also
transient slowdowns in reaction times, indicative of WM use. We found that the behavior of the five monkeys
was better explained in terms of a combination of RL and WM despite inter-individual differences. The same
coordination dynamics we used in a previous study in humans best explained the behavior of some monkeys
while the behavior of others showed the opposite pattern, revealing a possible different dynamics of WM process.
We further analyzed different variants of the tested models to open a discussion on how the long pretraining in
these tasks may have favored particular coordination dynamics between RL and WM. This points towards either
inter-species differences or protocol differences which could be further tested in humans.

1. Introduction

The use of computational models relying on the reinforcement
learning (RL) theory [1] in decision-making tasks greatly contributed to
a better understanding of dopamine reward signals in the brain [2],
neural activities in other brain areas such as prefrontal cortex and basal
ganglia [3–6], as well as alterations of brain activity and behavior in
different pathologies [7,8]. The understanding of the brain mechanisms
at stake has been facilitated by the replication of central results in ro-
dents, humans and non-human primates, such as dopamine-related re-
ward prediction error signals [9–11], action value encoding in the
striatum [12,13,8], forgetting mechanisms of action values [13–16], or
even neural correlates of parallel model-based and model-free learning
processes [17–19]. This enabled a transfer of knowledge between spe-
cies and a more global understanding of possible neural architectures
for the coordination of learning and decision-making processes.

However, it is not clear whether human and non-human primates
always use similar learning and decision-making strategies in these
types of tasks. In particular, Collins and Frank [20] recently showed
that while most computational studies attempt to explain all aspects of

behavior in terms of RL, human behavior in these types of tasks involve
a combination of model-free reinforcement learning (MFRL) and
working-memory (WM) processes. The evolution of human subjects’
choices in their task was better explained as a weighted contribution of
MFRL and WM in the decision process. Does monkey behavior show
similar properties?

To answer this question, we propose to use the same model-based
analysis approach that we recently employed in a human instrumental
learning task [21]. In this study, we treated the WM component as a
deliberative model-based system and a q-learning algorithm [22] as the
MFRL system and tested different processes to dynamically determine
the contribution of each system in the decision of each trial of a task.
We moreover proposed a novel method to compare the ability of dif-
ferent models to not only fit subjects’ choices but also the trial-by-trial
evolution of their reaction times, hence providing a finer description of
behavior.

We previously found with this computational method that humans
adaptively combined MFRL and WM, spending more or less time
searching in working memory depending on the uncertainty of the
different trials [21]. Here we tested the same models, plus new
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variations of these models, on monkey behavioral data in a determi-
nistic four forced-choice problem-solving task [23,24,15]. As for hu-
mans, we found that the behavior of the five monkeys was better ex-
plained in terms of a combination of MFRL and WM, rather than by one
of these decision systems alone. We nevertheless found strong inter-
individual differences, some being better captured by the same co-
ordination dynamics than for humans, others showing the opposite
pattern. We further analyze different variants of the tested models to
open a discussion on how the long pretraining in these tasks may have
favored particular coordination dynamics between reinforcement
learning and working memory. This points towards either inter-species
differences or protocol differences which could be further tested in
humans.

2. Material and methods

2.1. Problem solving task

Five monkeys were trained to discover by trial and error the correct
target out of four possible targets as shown in Fig. 1 [24,15]. A typical
problem starts with a search phase during which the animal does in-
correct trials (INC) until he performs the first correct trial (CO1). Then,
a repetition phase starts for a various number of trials (from 3 to 11)
during which the animal should repeat the correct action. This varying
number of repetitions prevents the animal from anticipating the end of
the problem. In the following analysis, only the first three repetition
trials were compared with the models since they constitute the maximal
common denominator between all achieved problems. At the end of the
repetition phase, a signal indicates the beginning of a new problem. In
90% of new problems, the rewarding target is different from the pre-
vious one. The successive events of a trial and a problem are

represented in Fig. 1.

2.2. Theoretical models

Our hypothesis is that monkeys solve this task through a combina-
tion of working-memory (WM) and model-free reinforcement learning
(MFRL), as humans appear to do in similar tasks [20,21]. To test this
hypothesis, we compared two different models representing different
ways of coordinating WM and MFRL [20,21], as well as models using
either WM alone or MFRL alone to verify that they are not sufficient to
explain the experimental data. We thus tested four computational
models. Moreover, we tried different variations of these models to as-
sess which particular computational mechanisms appear critical to ex-
plain the data.

With the exception of the q-learning algorithm [22], the models
were first described in Viejo et al. [21] without the new variations
presented here. The task is modeled as one state (for each trial, we only
model the decision moment where the animal chooses between the four
targets, and gets a feedback for this choice), four actions (one per
target) and two possible values of rewards (1 for a correct trial, 0 for an
error). The four models and their relations are described in Fig. 2.

2.2.1. q-Learning (MFRL)
The q-learning model is a standard model-free algorithm in the re-

inforcement learning field [22]. It stores a table of q-values Q(s, a) from
which an action can quickly be drawn. After a transition to a new state
s′, the q-values are updated according to:

⟵ + + ′ ′ ′ −Q s a Q s a α r γ Q s a Q s a( , ) ( , ) [ max ( , ) ( , )]a (1)

The sampling of an action is made through a soft-max equation:

Fig. 1. Trial-and-error problem solving task. (Top) Successive events
within a trial: the animal has to press a central lever and fixate his gaze on
it until the trial starts; then targets appear, a go signal allows the animal to
saccade towards its chosen target, then to touch the chosen target on the
touch screen; finally, a reward is given or not, depending on the choice,
and an inter-trial interval (ITI) is imposed. (Bottom) Successive trials
within a problem. The animal performs a series of incorrect (INC) trials
until finding the correct target and getting rewarded (first correct trial,
CO1). Then the animal enters the repetition phase where it has to make at
least three correct trials by repeating the choice of the same target. Finally,
a signal-to-chance (SC) is presented indicating that the correct target is
likely (P= 0.9) to change location.

Fig. 2. For all trials, the agent chooses an action with only one model (out of four). The deliberative behavior is represented by the Bayesian working memory model and the habitual
behavior is represented by the q-learning. Between the two, the different models for interaction: entropy-based coordination [21] and weight-based mixture [21,20]. The right panel
shows the decision process of the working memory. In the first step, the probability distribution p(a, r|t0 →i) is computed. The second step evaluates action probabilities and the third step
compute the entropy H from the action probabilities. The goal of the cycle is to reduce iteratively the entropy H.
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At the initialization, the q-values are set to 0.0.

2.2.2. Bayesian working memory (BWM)
The working memory model that we used chronologically stores the

description (or memory item) of the events that occurred during past
trials (i.e. chosen target, outcome). The number of memory items that
can be stored is limited by a parameter N optimized for each monkey.
Each time a new item enters memory, the item older than N trials is
removed and memory decay is modeled by the convolution of the other
items with a uniform distribution.

An element in memory contains the probability p(a|t) of having
performed an action in a certain past trial t and the probability p(r|a, t)
of having observed a certain reward r given an action a in a past trial t.
During the decision process, those probability mass functions are first
combined with Bayes rule, then summed (see Viejo et al. [21] for a full
description of the equations). The sum of i memory items gives p(a,
r|t0 →i) which is then reduced to p(a|r, t0 →i). The index 0→ i indicates
the number of memory items processed sequentially from the most
recent one with an index of 0 to an oldest one with an index i. In this
task, there are only two possible outcomes r ∈ 0, 1 and only one action
is rewarding. At the beginning of a problem, when only incorrect trials
have yet been experienced, only non-rewarded actions have been stored
and untried actions should thus be favored. On the contrary, the
probability of choosing the only action associated with the reward
should be maximal if already observed. This reasoning has been sum-
marized in the following equation:

=
=

=
→

→
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p a r t
p a r t
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( | 0, )

i

i

0

0 (3)

A simple normalization process allows the calculation of p(a)BWM.
While previous working-memory models [20] process all items in

memory each time memory is screened, here the main novelty consists
in examining memory items one by one until the model is confident
enough about which action to perform. This is modeled as a dynamical
allocation of the number t0 →i of memory items retrieved. The decision
of evaluating the next memory item is dependent of the Shannon in-
formation entropy computed over the probability of action:

∑= − ×→ →( )H p a t p a t( | ) log ( | )
a

i i0 2 0
(4)

If H is above a parameterizable threshold θ, the agent considers that it
does not have enough information to decide and should thus evaluate
the next element. If H is below θ, the model considers that enough
information has been incorporated into the probability of actions in
order to make a decision. If all memory items within the list have been
screened, the model is forced to make a decision on which action to
perform.

The number of memory items that can be processed for a given trial
depends heavily on the history of past trials. If the correct action has
been made at the previous trial, the number of memory items retrieved
will be very likely one. If the correct action has not yet been found, the
number of memory items retrieved will most likely be large. This fea-
ture of the Bayesian working memory model ended up being the crucial
aspect by which human subjects’ reaction times (RT) could be explained
in Viejo et al. [21]. Similarly, here the equation that relates the number
of retrieved memory items with the simulated reaction times (sRT) is:

= + +i H p asRT(trial) (log ( 1)) ( ( ))σ
2 (5)

The free parameter σ controls the proportion of the first part of the
equation in sRT. This equation is used for all the other models (in the
case of the q-learning, log2(i+ 1) = 0, so that its reaction time only
depends on the contrast between learned action values).

In [21] as well as in this study, we assumed that slower RT

correspond to the use of working memory. The main justification comes
from the literature studying the effects of working memory as part of
cognitive control processes, which has emphasized that more cognitive
control is reflected by an increase in RTs [25]. Some studies have fur-
ther studied more specifically the link between RT variations and the
balance between working memory and model-free reinforcement
learning. For instance, in [26,27], the authors studied a task with
human subjects similar to the one presented in this draft. Subjects had
to associate by trial-and-error each stimulus with one correct action out
of 5. The authors showed that this deliberative process (i.e. re-
membering wrong actions to select untried actions in order to find the
right one) was associated with slower reaction times. When modeling
this task [21], we previously found that the working memory model
presented in this draft, fitted best the behavior (choices and reaction
times) during this deliberative process.

2.2.3. Weight-based mixture (MTB)
The weight-based mixture model [20] constitutes the first solution

we tested for combining the Bayesian working memory model with the
q-learning according to:

= − +p a w p a w p a( ) (1 ) ( ) ( )t t
QL MTB (6)

The weight wt evolves after each trial according to:

=
+ −

+w
p r a w

p r a w p r a w
( | )

( | ) ( | ) (1 )t
t t t

t t t t t t
1

MTB

MTB QL (7)

with p(rt|at)MTB and p(rt|at)QL being the relative likelihood that the
corresponding model brought the reward. Thus, the weight evolves
toward the most reliable strategy.

2.2.4. Entropy-based coordination
The entropy-based coordination, first proposed in [21], constitutes

the second coordination solution that we tested. It explores the possi-
bility of a closer interaction between the Bayesian working memory and
the q-learning algorithm by conditioning the retrieval by the quantity of
information contained in the working memory and the q-learning. The
first point is to differentiate the entropies HQL and HBWM that can be
computed for each strategy. The entropy HQL is computed with a soft-
max function. The second point is that HBWM (being equal to
Hmax = log2(|Actions|) with |Actions| the number of actions at the be-
ginning of a trial) evolves inside a trial (hence reflecting a long in-
ference process within the trial), while HQL evolves between trials
(hence reflecting a long learning process across trials). The two en-
tropies are used to control the retrieval probability of the working
memory with the following sigmoid equation:

= −
+ − − − −→

p H H
λ n i

(retrieval| , ) 1 1
1 ( )exp λ H H H

BWM QL

1
(2 )i2 max

0
BWM QL

(8)

with n the number of memory items present in the working memory list,
i the number of memory items already retrieved and λ1, λ2 gain para-
meters. This model thus discards the hard decision threshold θ, used
when the BWM operates in isolation. If the decision process is engaged,
the q-values of each strategies are simply summed:

= +→Q a Q a Q a( ) ( ) ( )i0
BWM QL (9)

2.2.5. Variations of the models
The second novelty of the present paper is that from the original

version of the four previously described models, we tested a number of
variations (see Table 1). The aim is to examine which particular com-
putational mechanisms of each model are critical to better capture the
monkeys’ behavior. The symbol ∅ indicates a model that is not con-
cerned by the variation.

In a first variation, the discount factor γ ∈ [0, 1[is optimized
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allowing the model to look in the future. In the original version of the q-
learning, γ = 0 to account for the fact that transitions between states
are randomized. Thus, there was no interest for the agent to learn the
structure of states transition. In this framework, the task loops onto one
state allowing the use of a discount factor.

Khamassi et al. [15] previously fitted various versions of the q-
learning algorithm to this task. The most successful version considered
that the information contained in the q-values were transmitted be-
tween problems i.e. the last rewarding action can bias the choice in a
new search phase. This indicates some learning of the task structure by
the monkeys: the rewarded target in the previous problem is very un-
likely to be again rewarded in the present one. Therefore, we tested a
second variation (¬ INIT(Q-L)) where the Q-learning values were not
reinitialized. Nevertheless, it is likely that this strategy of non-re-
initialization is more efficient if the values of q-learning are progres-
sively erased along the task, as found in [15]. Thus, we tested a third
variation of q-learning (DECAY(Q-L)) with a decay factor to mimic
progressive forgetting. The values are modified at each trial according
to:

⟵ + − −Q a Q a κ Q Q a( ) ( ) (1 )( ( ))0 (10)

with Q0 = 0 and 0≤ κ≤ 1 the decay parameter.
For some cases (monkeys m and p, see Fig. 5), the reaction times

show a specific pattern of diminishing during the search phase and re-
increasing during the repetition phase, in contrast to what we pre-
viously observed in humans in a similar task [21]. This observation
suggests that working memory is mostly involved during the repetition
phase for these monkeys, since the use of working memory increases
the reaction times. Given that the monkeys are trained for thousands of
trials, it is very likely that the decision process during the search phase
has been automatized. The first reason to hypothesize an automatiza-
tion of choices during the search phase is the high number of trials that

the monkeys did, leading the animals to learn an efficient search
strategy. Their performance in the search and repetition phases is a
good indicator of this fact. We hypothesize that the search strategy, as a
rule, is a cognitive structure that has been learned and automatized
such that it can be applied efficiently whatever the order of outcomes
received during the search process. We have shown in previous pub-
lications that although the search is highly efficient, there is no fixed
order in choices [28,23].The second reason is the dynamic of reaction
times during the search phase: for the monkeys p, s and g, the reactions
times are decreasing as the incorrect actions are revealed. Thus, we
supposed that this dynamics was best translated by an automatic pro-
cess. Yet, we did not found a fix individual idiosyncratic order of ac-
tions during the search phase. However, monkeys must operate a de-
liberative process in order to avoid doing repetitive errors which have a
high opportunity cost since making a correct response is very likely
during repetition. Thus, a possibility that we have explored is the an-
ticipation of the action by the working memory (ANT(BWM)). During
the update of the models by the reward and for the search phase only, a
simple heuristic lets the working memory retrieve all the memory items
(including the most recent one) in order to prepare the probability
distribution of actions for the next trial. Then, the entropy H(p(a)) of q-
values (being either working memory alone or the combination with q-
learning) will be lower at the onset of a trial without the cognitive load
that would normally come with the retrieval of previous incorrect ac-
tions. Since the animal cannot anticipate the end of a problem (and has
no interest in doing so), this heuristic is not applied to the repetition
phase.

To account for the over-training of monkeys, we tested the long-
range learning of meta-parameters that can bias a model. We in-
corporated this idea in a new version of the entropy-based coordination
model (META-L) with the addition of average entropy variables Ĥtype

BWM

and Ĥtype
QL for each type of trial. Types can be trials during the search

phase or trials during the repetition phase. Thus, the model learns a
table that maps for each trial type the corresponding average entropies
of the q-learning and the Bayesian working memory learned during
thousands of trials performing the same the task. To average the en-
tropies, the model is first tested in normal condition in order to store the
distinct entropies computed at each trial. Finally, the sigmoid Eq. (8)
becomes:

= −
+ − − − − + −→

p
λ n i

(retrieval) 1 1

1 ( )exp λ H H H H H
1

(2 ˆ ˆ )i2 max
0
BWM QL type

BWM
type
QL

(11)

The addition of Ĥ BWM will force trials with average high uncertainty of
the working memory to decide faster. If Ĥ BWM is high, the exponent

− − + −→H H H H H2 ˆ ˆi
max

0
BWM QL

type
BWM

type
QL will increase and gives a lower

p(retrieval). On the contrary, the average entropy ĤQL modifies the
sigmoid equation in the same direction as HQL. A low average un-
certainty on the q-learning favors fast decision of the model and con-
versely.

The last modification incorporates the update of the working
memory depending on the value δt of the temporal difference of the q-
learning. The relation between working memory and temporal differ-
ence has already been explored in various models of reinforcement
learning [29,30] to account for observations of the physiological effects
of dopamine on the circuitry of the prefrontal cortex [31–34]. Thus, we
tightened the relation between the Bayesian working memory model
and the q-learning algorithm (THR(δ)) for both models of interaction.
The action of adding a new element in the working memory list is
conditioned by:

⟵ < >p a p r a δ ξ δ ξ[BWM] [ ( ), ( | )] if ort t t t t1 2 (12)

For recall, the temporal difference is computed according to:

= + −δ r γ Q a Q amax ( ) ( )t t a (13)

Table 1
Variations of the Bayesian working memory (BWM) model, the q-learning model (Q-L),
the weighted mixture model and the entropy-based coordination model. The symbol ∅
designs the models that are not concerned by the tested variation. The variations with
γ ∈ [0, 1[allows the discounting factor γ to be optimized (set to 0 in the original version).
With ¬ INIT(Q-L), the q-learning is not reinitialized at the beginning of a new block. The
DECAY(QL) function allows the q-values to be forgotten given an optimized parameter of
decay κ. With ANT(BWM), the working memory model evaluates the probability of action
and the associated entropy during the outcome intervals in order to anticipate (thus
gaining time) the decision for the next trial. This heuristic of anticipation is made only for
the search phase. META-L is the meta-learning of average entropy value for each type of
trial in order to bias the sigmoid function of the coordination model (see Eq. (11)). THR
(δ) conditions the encoding of a past trial in the working memory based on the error
prediction δ calculated from q-learning (see Eq. (12)).

BWM Q-L Mixture Coordination

Variation 1 Original model Original model Original model Original model

Variation 2 ∅ γ ∈ [0, 1[ γ ∈ [0, 1[ γ ∈ [0, 1[

Variation 3 ∅ γ ∈ [0, 1[ γ ∈ [0, 1[ γ ∈ [0, 1[
¬ INIT(Q-L) ¬ INIT(Q-L) ¬ INIT(Q-L)

Variation 4 ∅ γ ∈ [0, 1[ γ ∈ [0, 1[ γ ∈ [0, 1[
¬ INIT(Q-L) ¬ INIT(Q-L) ¬ INIT(Q-L)
DECAY(Q-L) DECAY(Q-L) DECAY(Q-L)

Variation 5 ANT(BWM) ∅ γ ∈ [0, 1[ γ ∈ [0, 1[
¬ INIT(Q-L) ¬ INIT(Q-L)
DECAY(Q-L) DECAY(Q-L)
ANT(BWM) ANT(BWM)

Variation 6 ∅ ∅ ∅ γ ∈ [0, 1[
¬ INIT(Q-L)
DECAY(Q-L)
META-L

Variation 7 ∅ ∅ ∅ γ ∈ [0, 1[
¬ INIT(Q-L) ¬ INIT(Q-L)
DECAY(Q-L) DECAY(Q-L)
THR(δ) THR(δ)
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with rt the reward. In a nutshell, a large prediction error (being it po-
sitive or negative) induces an encoding of the last trial by the working
memory since the q-learning has not converged. On the contrary, a
small prediction error indicates a converging q-learning which can
avoid a costly working memory update.

2.2.6. Parameters optimization
As in [21,35,36], the parameters optimization was made using the

SFERES toolbox [37] that implements the standard NSGA-2 evolu-
tionary algorithm. Each variation of each model was optimized sepa-
rately for each monkey. The scores of a set of parameters are the ability
to maximize the likelihood on every step (correct and incorrect trials)

that the model do the same actions as the monkey and minimize the
mean-square error on representative steps between the average monkey
reaction times and the simulated reaction times. The representative
steps are defined as the trials inside the search phase and the following
three repetitive trials separated according to the length of the search
phase. Only the 0 to 4 errors blocks were considered in order to com-
pute the representative steps. The SFERES toolbox outputs the set of
parameters that maximizes both the fit to choice and the fit to reaction
times under the form of a Pareto front (see Fig. 6). For each considered
computational model, the Pareto front shows the solutions (i.e. the
parameter sets) which are either not dominated by any other solution
on at least one dimension, or not dominated by any other solution on at
least one weighted combination of dimensions. For instance, a solution
which gives the best fit on reaction times will be part of the Pareto front
for the considered model even if its fit to choices is not the best. Si-
milarly, a solution which gives the best mean fit on choices and reaction
times will be part of the Pareto front even if there exists other solutions
which are better at fitting either choice only or reaction times only.

The methodology for selecting the optimal solution in a multi-di-
mensional optimization then relies on the use of an aggregation func-
tion. Such a function allows for the combination of numerical values x1,
…, xm into one value to rank all possible solutions. We used the
Chebyshev distance in order to aggregate the normalized fitness func-
tions (i.e. fit to choices and fit to reaction time) in one single value [38].
The aggregation function for each x solution is defined as:

∑=
−

−
+

−

−
∈

=

t x λ α x
α β

λ α x
α β

( ) max ϵi M i
i i

i i i

m

i
i i

i i1 (14)

with ∈ +λ ℝM a weight vector in order to bias the ranking if one fitness
function is more important than the other (in our case λ = 0.5 for
both),



=
∈

α supi
x

the optimal point and


=
∈

β xinfi x
i the worst combination

of scores (although called the Nadir).

Fig. 3. Bayesian information criterion (BIC) score for each monkey and each model and
compared to a random decision model (white bar). Overall, the dual models (entropy-
based coordination or weight-based mixture) have a lower BIC score despite the fact that
they have more free parameters (3 for q-learning, 4 for Bayesian working memory, 7 for
weight-based mixture and 8 for entropy-based coordination).

Fig. 4. Mean performances (mean ± SEM) during the first three repetition trials for each monkey (black circles) and each best fitted model according to the BIC criterion (squares).
Performances in repetition phase are averaged over problems with the same number of errors (from 0 to 4 errors). Each model is simulated 1000 times with the same chain of problems
(same correct actions) than the corresponding monkey. Along the accuracy, the density of problem types (number of errors) is represented with bars for the monkey (dashed bar) and the
model (full bar).
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3. Results

3.1. Simple models of the interaction between working memory and
reinforcement learning

3.1.1. Fit to choices only
We first evaluated the ability of each original model to replicate

only the choices made by the monkeys. In Fig. 3, we compared the
output of the optimization process using the Bayesian information cri-
terion (BIC). Models were penalized proportionally to the number of
free parameters. Nevertheless, the more complex dual models (entropy-
based coordination or weight-based mixture) show better fits compared
to simple models (Bayesian working memory or q-learning). Thus, this
first analysis confirms that dual models made of the interaction be-
tween working memory and reinforcement learning are better than
simple models at capturing the monkeys’ behavior in this task.

Palminteri et al. [39] convincingly argued that model comparison
without model simulation is not sufficient. In order to assess the validity
of the fit according to BIC, we thus simulated the best model for each

monkey. The set of best models is composed of the weight-based mix-
ture models for 4 monkeys and the entropy-based coordination model
for 1 monkey. During the simulation, only the list of problems (i.e. a list
of indexes of the correct action) made by the monkey was used for
transitioning between problems. The model was free to make its own
choices and we repeated the experiment 1000 times. To display the
performances, blocs (made of n trials of search phase plus 3 trials of
repetition phase) were grouped for averaging according to the number
of errors n − 1 made during the search phase. For each group of blocs
(defined by their number of errors n− 1 during the search phase), the
mean number of positive outcomes gained for each trial of the repeti-
tion phase (trials 1, 2 and 3 during which the animal should repeat the
correct action) are then averaged to give the performances in repetition
as shown in Fig. 4.

First, we found that the level of performance was roughly captured
by most models. The performances of the monkeys were really high in
repetition and all models reached this level of performance. Second, the
striking observation is the inverse relation between the performance of
the monkeys and the performance of the models. On average, monkeys

Fig. 5. For each monkey, the upper panel shows the mean performances (mean ± SEM) and the lower panel shows the centered reaction times for the same trials. Vertical gray lines
indicates the transition from search phase to repetition phase. Dotted lines shows the monkey's behavior and squared lines shows the best fitted model behavior. Similar to Fig. 4,
performances and reaction times are averaged over problems with the same number of errors (from 0 to 4 errors). Each model is simulated 1000 times with the same chain of problems
(same correct actions) than the corresponding monkey. Along the performance, the density of problem types (number of errors) is represented with bars for the monkey (dashed bar) and
the model (full bar).
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have a decreasing performance between the first repetition and the
third repetition trial. The models shows the opposite pattern with an
increase of performance mostly due to the fact that dual models keep
adding information about past trials in the working memory list. In

Fig. 4, the bar density of each problem type (number of errors) is re-
presented for each monkey and each best fitted model. We found that
the problems count is slightly different between monkeys and models.
When comparing the density of each type of problems, monkeys found

Fig. 6. Results of the optimization process for each monkey. The first column shows the pareto front for the weight-based mixture, the entropy-based coordination, the Bayesian working
memory and the q-learning. The second column shows the count for each variations within the weight-based mixture and entropy-based coordination model of parameter sets selected
within the pareto front. The third column displays the output of the Chebyshev aggregation function that converts the two dimension points of the Pareto fronts into a single value
allowing points to be ranked.
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the right action with less errors than the models (see density bars in
Fig. 4).

These analyses suggest that an optimization of the model para-
meters in order to fit more aspects of monkeys’ behavior, such as
choices and reaction times, would be appropriate here.

3.1.2. Simulation of choices and reaction times
In Fig. 5, we examined the fit of both choices and reaction times.

Once again, only dual models were selected by the method of multi-
criteria optimization tested in Viejo et al. [21]. In addition to choices,
we compared monkeys’ reaction times with models’ reaction times over
representative steps. Reaction times are averaged over all problems of
the same length (i.e. with the same number of errors). To the exception
of monkey g, we found that the fit of reaction times was poorly per-
formed by the original models (i.e. without the variations listed in
Table 1). Monkeys p and s showed progressively decreasing reaction
times during the search phase, which were better fitted with the en-
tropy-based coordination. Differently, monkey m showed constant re-
action times during the search phase and a net increase during the re-
petition phase. Best fitted by the weight-based mixture, the model did
not manage to reproduce the global dynamics.

Overall, the original models of weight-based mixture and entropy-
based coordination performed poorly in reproducing choices and re-
action times in this trial-and-error search task with monkeys. In fact,
the dynamics of the reaction times are much more diverse than the
possibility that was given to those models for human behavioral data in
[21]. In this original study, mean reaction times increased during the
search phase and it was modeled by increments into the number of
processed items within the working memory model in order to re-
member past incorrect actions (in order to avoid them). During the
repetition phase, reaction times decreased and this was explained by
the progressive shift to an habitual behavior (modeled using the q-
learning) and thus a decrease in reaction times (since working memory
was less used). In this task, the most common pattern is the opposite
with decreasing reaction times during the search phase (monkeys p, s
and g) and larger reaction times during repetition phase (monkeys m, p,
s and g). To conclude, none of the fitted models so far displayed the
ability to have first a decrease then an increase in reaction times. It is
thus this ability that we tried to capture by testing more complex var-
iations of the models.

3.2. Towards more complex models of interaction between working memory
and reinforcement learning

The results of the optimization process for the proposed variations
of the initial model is shown in Fig. 6 for each monkey. The Pareto
fronts (first column) show a domination of dual models once again
confirming our first hypothesis that monkey behavior in this task can be
better explained in terms of combination of working-memory and re-
inforcement learning processes rather than on each one alone. More-
over, for all monkeys we found that the Pareto fronts of weight-based
mixture and entropy-based coordination were overlapping: no model
took advantage over the other one. For the sake of clarity, the density of
model variations inside each Pareto front only is represented (column
2). The last column shows the output of the Chebyshev function i.e. the
aggregation of the fit to choice score and the fit to reaction times score
for both the weight-based mixture and entropy-based coordination so-
lutions. Since no dual models was definitively taking over, we decided
to select and test the best solution according to the Chebyshev ranking
(i.e. minimum value) for both models. For the entropy-based co-
ordination, the best trade-off between fit to choice and fit to reaction
times assigned the variation 5 (γ ∈ [0, 1[, ¬ INIT(Q − L), DECAY
(Q − L), ANT(BWM)) to monkeys p, s and g and the variation 7 (γ ∈ [0,
1[, ¬ INIT(Q − L), DECAY(Q − L), THR(δ)) to monkeys r and m. For
the weight-based mixture, the best trade-off assigned the variation 2
(γ ∈ [0, 1[) to monkey g, the variation 5 to monkeys p and r and the

variation 7 to monkeys m and s. As shown in Fig. 6, those variations are
effectively over-represented in the Pareto fronts of each monkey. The
overlaps between the two models suggest with higher confidence that
the following computational mechanisms are important to explain
monkeys’ behavior: a positive discount factor (γ ∈ [0, 1[) for all mon-
keys; forgetting without reset of action values (¬INIT(Q − L), DECAY
(Q − L)) for all monkeys except monkey g for which only the entropy-
based coordination was selected with this mechanism; anticipation of
the next trial during the search phase (ANT(BWM)) for monkey p (but
sometimes also selected for monkeys g, r and s); modulation of storage
in working-memory based on the sign and magnitude of reward pre-
diction errors (THR(δ)) for monkey m (but sometimes also selected for
monkeys r and s). This confirms our prior use of action value forgetting
mechanism for the subset of data associated with neurophysiological
recordings in monkeys m and p [15]. This nevertheless suggests a non-
null discount factor in contrast to our prior work in both monkeys and
humans in this type of tasks [15,21], which will be further discussed
later on.

3.2.1. Simulation of choices and reaction times
We tested each dual model's group of solutions as shown in Fig. 7 for

entropy-based coordination and Fig. 8 for weight-based mixture.
Overall, we found that the main caveat of the original models was
corrected: reaction times could increase or decrease along the re-
presentative steps thus improving the fit to monkeys’ reaction times.

As usual when working on a multi-dimensional problem, the im-
provements on one dimension can lead to a degradation of the fit in
another dimension. An instance of this issue is shown for the fit to
choice translated into the performance of the simulated model in re-
petition. For all dual models (Figs. 7 and 8) to the exception of the
monkey g with weight-based mixture, the performances in repetition
were lower. For the reaction times, we observed improvements with our
innovations. Contrary to the original models, our new models displayed
various reaction times dynamics such as a decrease during the search
phase and an increase during the repetition phase, in contrast to the
pattern of reaction times that we previously found in humans [21].

3.2.2. Contribution of models
We then examined the internal dynamics of each best model in

Fig. 9 for entropy-based coordination and Fig. 10 for weight-based
mixture. While the relative contribution of Bayesian working memory
and q-learning in weight-based mixture is easily measurable through
the weight wt , the relative contribution is less identifiable in entropy-
based coordination. Thus, we decided to plot only the most relevant
variable for each variation in order to decipher the dynamics of the
model.

For variation 5, the most relevant innovation is the anticipation of
the next trial during the search phase. The whole content of working
memory is recalled during the update phase after the agent receives a
negative outcome during the search phase. This pre-retrieval modifies
the probability of action for the Bayesian working memory (and by
extension HBWM) at the onset of a trial in the search phase which allows
shorter reaction times. Thus, we looked at the number of retrieved
memory items (star lines in Figs. 9 and 10). For weight-based mixture,
the relation was binary (monkeys r and p, Fig. 10): no memory items
were retrieved right before the decision in the search phase and exactly
one memory item (representing the last trial) was retrieved during the
repetition phase. Besides, the mean weight wt for each representative
step (normal lines in Fig. 10) indicated the domination of the Bayesian
working memory probability of action for the final decision. For the
entropy-based coordination with the same variation, we found an in-
termediate level between no retrieval and constant retrieval. For
monkeys p and s best explained by this model (Fig. 9), the average
number of retrieved items is 0.5 for the third to fifth trials within the
search phase meaning that the model is more uncertain when antici-
pating the future trial. When items accumulate in the working memory
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list after 2 incorrect trials, the model has 50% chance of retrieving the
last item. Nevertheless, the entropy-based coordination is also able to
produce the same pattern of binary retrieval during the search phase as
shown by monkey g's fitted model. During the repetition phase, the
model had the same behavior than the weight-based mixture with
around 100% chance of retrieving the last item. To summarize, we
found here a possible explanation for the fast reaction times during the
search phase (compared to the repetition phase) for monkeys p, s and
m: the specific use of working-memory during repetition in order to
ensure correct performance by anticipating the next trial. This con-
stitutes an important prediction by the model whose neural correlates
could be explored experimentally.

The second most used variation through dual models is variation 7
with the conditioning of the update of working memory by the reward
prediction error δt computed from the q-learning. Within each panel
with this variation in Figs. 9 and 10, we computed the probability of
update by averaging the number of times an item was integrated into
the working memory list (dotted lines). For all fitted models using this

new rule, we found that the probability of update was maximal at the
end of the search phase i.e. when the first correct response is delivered
to the agent. Thus, the fitted models of weight-based mixture (monkeys
r and m) and entropy-based coordination (monkeys s and m) encoded
positive outcomes inside the working memory only when the prediction
errors were positive. In fact, the parameter ξ2 that controls the upper
bound was set between 0 and 0.5 for all fitted models (the parameter ξ2
can take value in the range [0, 20] during the optimization process) and
the reward prediction error δ= 1 at the first positive outcome. Strik-
ingly, none of the fitted models had a lower bound ξ1 that allowed the
encoding of a trial leading to a negative outcome. This makes sense
since the retrieval of a memory item about a negative outcome brings
less information and thus reduces less uncertainty than memory items
about a positive outcome, as we previously explained in [21], making
the storage of memory items about negative outcomes less beneficial
than positive ones. Because of this blocking of negative outcomes to
enter working memory, the number of retrieved memory items is null
during the search phase and only increases during the repetition phase

Fig. 7. Best simulated behavior for entropy-based coordination models. For each monkey, the upper panel shows the mean performances (mean ± SEM) and the lower panel shows the
centered reaction times (mean ± SEM) for the same trials. Vertical gray lines indicates the transition from search phase to repetition phase. Dotted lines shows the monkey's behavior
and squared lines shows the best fitted entropy-based coordination behavior. Versions were selected with a trade-off amongst solutions composing the Pareto front of this model as shown
in Fig. 6. The version for each model is displayed next to the monkey name. Each model is simulated 1000 times with the same chain of problems (same correct actions) than the
corresponding monkey. Along the performance, the density of problem types (number of errors) is represented with bars for the monkey (dashed bar) and the model (full bar).
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for all models. Similarly to the previously described variation 5, this
selectivity of encoding in working memory is what allowed the reaction
times to be lower in the search phase compared to the repetition phase.
Lastly, the mean weight ≈w 1.0t in Fig. 10 for monkeys m and s in-
dicates a reduction of the role of the q-learning to a simple prediction
error signaler.

Finally, monkey g was best fitted by the second variation of the
weight-based mixture. The behavior, especially the reaction times, was
already very well fitted with the original model. Here we found that the
optimization of the q-learning with γ ∈ [0, 1[is the best fitted model
according to the optimization process but the improvement of fit is
minimal. Besides, the dynamic of the model shows a preference for the
q-learning with a low wt. Still, the working memory contributes to the
final decision by constantly remembering the last trial.

4. Discussion

In this paper, we expanded and tested new models of coordination
between working memory and reinforcement learning that were

originally proposed in Viejo et al. [21] in order to explain monkeys’
behavior (choices and reaction times). During a succession of problems
(defined by the correct action), monkeys had to find one correct target
amongst four. When the correct target was found, animals repeated the
correct action for a various number of trials (to prevent anticipation of
the end of a problem). The first round of optimization with the original
models [21] proved that a combination of working memory and re-
inforcement learning were better at explaining choices and reaction
times than just working memory or reinforcement learning alone,
which was the main hypothesis developed in this paper.

The hypothesis that distinct memory modules co-exist in the brain is
supported by a range of lesion data in human [40–43], in monkeys
[44,45] and in rodents [46–48]. Instrumental conditioning studies
brought light on the interaction between distinct memory modules by
deciphering the transfer of control that occurs between the early stage
of learning (i.e. when behavior is considered goal-directed) and late
stage of learning (i.e. when behavior is considered habitual). Lesion
studies showed that different sets of brain areas supported those two
stages of learning [49–52]. Thus, modeling studies used two different

Fig. 8. Best simulated behavior for weight-based mixture models. For each monkey, the upper panel shows the mean performances (mean ± SEM) and the lower panel shows the
centered reaction times (mean ± SEM) for the same trials. Vertical gray lines indicate the transition from search phase to repetition phase. Dotted lines shows the monkey's behavior and
squared lines shows the best fitted weight-based mixture behavior. Versions were selected with a trade-off amongst solutions composing the Pareto front of this model as shown in Fig. 6.
The version for each model is displayed next to the monkey name. Each model is simulated 1000 times with the same chain of problems (same correct actions) than the corresponding
monkey. Along the performance, the density of problem types (number of errors) is represented with bars for the monkey (dashed bar) and the model (full bar).
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algorithms (respectively model-based learning algorithm and model-
free reinforcement learning algorithm) for the two stage of learning
with a transfer of control from model-based to model-free [53,54].
Overall, the mapping between the reinforcement learning algorithm
and brain activity during habitual behavior has been well described
(see [55]). Evidences for the mapping between model-based learning

algorithm and brain activity during goal-directed behavior are scarcer.
But evidence concerning specific neural substrates and properties for
working-memory processes are supported by a vast literature (e.g.
[31,56,57]). Here we do not assume a correspondence between
working-memory processes and model-based learning. We simply con-
sider that (1) WM belongs to a wider prefrontal cortex system dedicated

Fig. 9. Variables of entropy-based coordination model for each best fitted model. The star lines show the mean number of retrieved memory items. For monkeys best fitted with the
version 7, the dotted lines show the probability of update of the working memory depending of the reward prediction error δ of the q-learning.

Fig. 10. Variables of weight-based mixture model for each best fitted model. The star lines show the mean number of retrieved memory items. The straight lines show the mean weight wt .
For monkeys best fitted with the version 7, the dotted lines show the probability of update of the working memory depending of the reward prediction error δ of the q-learning.
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to cognitive control, dedicated to inhibiting routine behaviors in re-
sponse to environmental changes, and that (2) coordination mechan-
isms between model-based and model-free RL may be similar to co-
ordination mechanisms between WM and model-free RL. In support of
this, model-based and WM involve common prefrontal cortex regions
[58,59], regions such as the OFC being considered to encode the out-
come of action and goal-directed action-outcome contingencies in
working-memory [60]. Model-based processes actually do require
working-memory when sequentially inferring the outcome of multiple
actions within a cognitive graph [61]. Thus, there is a lot of possibilities
in the combination and process of interaction of memory modules. The
particular approach that we used to systematically compare different
models of interaction between working memory and reinforcement
learning using both choices and reaction times for each subject, is, in
our sense, the best way to explore all the possibilities within the field of
memory systems modeling.

Originally developed to fit the behavior of humans in a visuo-motor
association task [26,27], the models proved to be transferable to non-
human primates. We then proceeded to improve the original models
with different versions guided by the particular pattern of reaction
times that we observed in monkeys: reaction times were lower for some
trials during the search phase compared to the repetition phase. This
observation opposes human's behavior for which the models were ori-
ginally developed. The general hypothesis of the interaction process in
humans was stated as followed: working memory is used during the
search phase by remembering previous trials in order to avoid the se-
lection of incorrect actions inducing an increase of reaction times as
errors accumulate, and the q-learning gradually suppresses the use of
working memory during the repetition phase as it converges toward the
optimal decision with the accumulation of positive outcomes inducing
faster reaction times. In sharp contrast, the general tendency of mon-
keys’ reaction times was to accelerate during the search phase and to
slightly slow down during the repetition phase. Thus, we made the
hypothesis that working memory retrieval was not the main strategy
that was used during the search phase or that it was used differently in
combination with the reinforcement learning strategy. Oddly, the re-
quirement of both strategies goes again the simplicity of the task:
monkeys need to remember only the last correct action in order to
succeed. While the task calls only for a working memory strategy, we
found that a model-free reinforcement learning strategy was required.
This result suggest that model-free might operate as a default strategy
in the brain as previously proposed in [15]. In [6], the authors reported
a similar dual model of working memory and model-free reinforcement
learning strategies in order to explain the choices of monkeys con-
fronted to a biased matching pennies game against a computer oppo-
nent. Similarly, monkeys complemented the model-free reinforcement
learning algorithm with a more flexible strategies that was best re-
produced with a working memory model. Nevertheless, they did not
explored the various combinations that a dual-strategy offers as in this
study.

In order to easily bias the use of working memory within a dual-
strategy model, we first tested variations of q-learning with small
changes: optimization of the discount factor, no initialization of q-va-
lues between problems and decay of q-values. In a second round of
innovations, we tested more complex variations of working memory:
(1) anticipation of the next trial during the search phase by preparing
the probability of action, (2) meta-learning of mean entropies for sup-
pressing the use of working memory when uncertainty is high on
average, (3) encoding of past trials inside working memory conditioned
by the reward prediction error from q-learning. Overall, we found that
the anticipation of the next trial during the search phase and limiting
the encoding of past trials were the best innovations to improve the fit
to monkeys’ behavior.

By analyzing the dynamics generated by simulating the best fitted
models, we found that the anticipation of the next trial prevented in
most dual models the retrieval process during the search phase and

favored the retrieval of exactly one memory item (describing the last
trial) during the repetition phase. The same process is at play when
limiting the encoding of memory items (only the correct outcomes were
included in the working memory list). Thus, it is very likely that the
best theoretical model would incorporate the fact that working memory
is somehow inhibited during the search phase and replaced by a more
automatic behavior that can be different from the q-learning such as
meta-learning of average uncertainty. We tested this approach by
computing a table of mean entropies for each trial type and used this
average uncertainties to bias the probability of retrieval of the entropy-
based coordination models. Yet, this approach did not produce the best
fit for explaining choices and reaction times.

This problem solving task has been studied in a series of articles
using monkeys [15,24,62,63] but also with humans in functional
magnetic resonance imaging (fMRI) [64] and in electro-
encephalography (EEG) with 5 actions instead of 4 [65]. In both cases,
the authors tried to correlate a reward prediction error
RPE= robtained − pcorrect. rexpected with the cerebral activity recorded
during the search phase. In fMRI, activations in the dorsal anterior
cingulate cortex (midcingulate cortex), the frontal insular cortex, the
striatum, the retrosplenial cortex and the middle dorsolateral prefrontal
cortex correlated with a positive RPE. In other words: a high RPE means
a lower expectation of reward and this is associated with a high cerebral
activity. More interestingly, this correlation disappears for the negative
RPE. In EEG, the authors analyzed the event-related potentials (ERP)
when the subjects receive the outcome. Contrary to the results in fMRI,
ERPs correlated with positive and negative RPE within the frontal re-
gions. Besides, an ERP also appeared for the start signal of a new pro-
blem indicating a possible process of monitoring the structure of the
task and not only positive and negative outcomes. Those experimental
results tend to validate our second best fitted models, that condition the
update of working memory by the reward prediction error δ. Similar to
the results in EEG, positive and negative reward prediction errors are
used during the encoding phase of the task. Then, we found that only
the positive outcomes were to be encoded within the working memory
list which would resurged through neural activity (detected by fMRI)
during the decision phase as a post-marker of the filtering during the
update phase by the reward prediction error.

The opposite reaction times patterns that we observed here for the
monkey behavioral data [15] compared to the human data [27] could
be seen as an indication of inter-species differences in learning and
decision-making strategies. When fitting our dual models to human
data we previously found that working-memory was important to pre-
vent the repetition of errors during search [21]. Here the model-based
analyses suggest that working-memory in the five studied monkeys is
important to ensure the repetition of correct response once the correct
target has been discovered, while working-memory processes may
present a cost-benefit ratio too low during search (retrieving a memory
item about a negative outcome is less informative because it only tells
which target not to select, while a positive outcome directly tells which
target to select). An alternative explanation to the inter-species differ-
ences may be that the long pretraining phase that monkeys underwent
for this task may have enabled them to learn more aspects of the task
structure and hence to restrict their use of working-memory. We have
tried to capture this phenomenon in two different ways here: (1) using
meta-learning where the model learns the average uncertainty that
results from deliberative processes at experienced type of trials (this
enables the model to automatically learn that using working-memory
during the search phase does not reduce much the uncertainty), and (2)
using trial anticipation where the model retrieves a memory item in
preparation of the decision at the next trial to ensure correct response
repetition. The meta-learning variation of the tested models was never
selected as best model. Nevertheless, the trial anticipation variation was
consistently selected as best model for monkey p, and sometimes also
for monkeys g, r and s. An important experimental prediction of these
model variations is that humans undergoing the same long pretraining
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phase for this task would be able to decipher the task structure and thus
to show the same opposite reaction times patterns than those observed
in humans without pretraining in the task of Brovelli et al. [27]. Si-
milarly, humans being given detailed instructions about the task could
also extract sufficient information about task structure to display the
same opposite reaction time patterns. A perspective of this work would
be to apply the same model-based analysis to the human data gathered
in the same problem-solving task by Sallet et al. [65]. The specific
design of this task may have favored particular coordination dynamics
between reinforcement learning and working memory.

The study of this problem solving task with non-human primates
[15,24,62,63] and human subjects [64,65] clearly shows cerebral ac-
tivity associated with the evaluation, encoding and monitoring of un-
certainty associated with decisions. Simple models of coordination be-
tween working memory and reinforcement learning or working
memory alone do not have this ability as they just encode the de-
scription of a trial. Meta-learning or anticipation as tested in this paper
could thus bridge the gap between dual strategies models and high-level
cognitive models as the fitted models indicate. To conclude, those
models would be perfect to look for new computational variables that
can be used for correlation with neuronal activity and to elucidate the
processes taking place in the underlying brain structures.

References

[1] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction vol. 1, MIT Press,
Cambridge, 1998.

[2] K.M. Diederen, H. Ziauddeen, M.D. Vestergaard, T. Spencer, W. Schultz,
P.C. Fletcher, Dopamine modulates adaptive prediction error coding in the human
midbrain and striatum, J. Neurosci. 37 (2017) 1708–1720.

[3] J.P. ODoherty, Reward representations and reward-related learning in the human
brain: insights from neuroimaging, Curr. Opin. Neurobiol. 14 (2004) 769–776.

[4] P. Dayan, N.D. Daw, Decision theory, reinforcement learning, and the brain, Cogn.
Affect. Behav. Neurosci. 8 (2008) 429–453.

[5] M. Ito, K. Doya, Multiple representations and algorithms for reinforcement learning
in the cortico-basal ganglia circuit, Curr. Opin. Neurobiol. 21 (2011) 368–373.

[6] H. Seo, X. Cai, C.H. Donahue, D. Lee, Neural correlates of strategic reasoning during
competitive games, Science 346 (2014) 340–343.

[7] Q.J. Huys, T.V. Maia, M.J. Frank, Computational psychiatry as a bridge from
neuroscience to clinical applications, Nat. Neurosci. 19 (2016) 404–413.

[8] S. Palminteri, M. Pessiglione, Opponent brain systems for reward and punishment
learning: causal evidence from drug and lesion studies in humans, Decision
Neuroscience, Academic Press, London, UK, 2017.

[9] O. Hikosaka, E. Bromberg-Martin, S. Hong, M. Matsumoto, New insights on the
subcortical representation of reward, Curr. Opin. Neurobiol. 18 (2008) 203–208.

[10] J.O. Gan, M.E. Walton, P.E. Phillips, Dissociable cost and benefit encoding of future
rewards by mesolimbic dopamine, Nat. Neurosci. 13 (2010) 25–27.

[11] S. Palminteri, M. Khamassi, M. Joffily, G. Coricelli, Contextual modulation of value
signals in reward and punishment learning, Nat. Commun. 6 (2015).

[12] K. Samejima, Y. Ueda, K. Doya, M. Kimura, Representation of action specific reward
values in the striatum, Science 310 (2005) 1337–1340.

[13] M. Ito, K. Doya, Validation of decision-making models and analysis of decision
variables in the rat basal ganglia, J. Neurosci. 29 (2009) 9861–9874.

[14] D.J. Barraclough, M.L. Conroy, D. Lee, Prefrontal cortex and decision making in a
mixed-strategy game, Nat. Neurosci. 7 (2004) 404–410.

[15] M. Khamassi, R. Quilodran, P. Enel, P. Dominey, E. Procyk, Behavioral regulation
and the modulation of information coding in the lateral prefrontal and cingulate
cortex, Cereb. Cortex (2015).

[16] Y. Niv, R. Daniel, A. Geana, S.J. Gershman, Y.C. Leong, A. Radulescu, R.C. Wilson,
Reinforcement learning in multidimensional environments relies on attention me-
chanisms, J. Neurosci. 35 (2015) 8145–8157.

[17] A. Johnson, A.D. Redish, Neural ensembles in CA3 transiently encode paths forward
of the animal at a decision point, J. Neurosci. 27 (2007) 12176–12189.

[18] J. Gläscher, N. Daw, P. Dayan, J. O’Doherty, States versus rewards: dissociable
neural prediction error signals underlying model-based and model-free reinforce-
ment learning, Neuron 66 (2010) 585–595.

[19] S.W. Kennerley, T.E. Behrens, J.D. Wallis, Double dissociation of value computa-
tions in orbitofrontal and anterior cingulate neurons, Nat. Neurosci. 14 (2011)
1581–1589.

[20] A.G. Collins, M.J. Frank, How much of reinforcement learning is working memory,
not reinforcement learning? A behavioral, computational, and neurogenetic ana-
lysis, Eur. J. Neurosci. 35 (2012) 1024–1035.

[21] G. Viejo, M. Khamassi, A. Brovelli, B. Girard, Modeling choice and reaction time
during arbitrary visuomotor learning through the coordination of adaptive working
memory and reinforcement learning, Front. Behav. Neurosci. 9 (2015).

[22] C.J.C.H. Watkins, Learning from Delayed Rewards (Ph.D. thesis), University of
Cambridge, England, 1989.

[23] E. Procyk, P.S. Goldman-Rakic, Modulation of dorsolateral prefrontal delay activity

during self-organized behavior, J. Neurosci. 26 (2006) 11313–11323.
[24] R. Quilodran, M. Rothe, E. Procyk, Behavioral shifts and action valuation in the

anterior cingulate cortex, Neuron 57 (2008) 314–325.
[25] J.D. Cohen, G. Aston-Jones, M.S. Gilzenrat, A Systems-Level Perspective on

Attention and Cognitive Control: Guided Activation, Adaptive Gating, Conflict
Monitoring, and Exploitation Versus Exploration, (2004).

[26] A. Brovelli, N. Laksiri, B. Nazarian, M. Meunier, D. Boussaoud, Understanding the
neural computations of arbitrary visuomotor learning through fMRI and associative
learning theory, Cereb. Cortex 18 (2008) 1485–1495.

[27] A. Brovelli, B. Nazarian, M. Meunier, D. Boussaoud, Differential roles of caudate
nucleus and putamen during instrumental learning, NeuroImage 57 (2011)
1580–1590.

[28] P. Enel, E. Procyk, R. Quilodran, P.F. Dominey, Reservoir computing properties of
neural dynamics in prefrontal cortex, PLOS Comput. Biol. 12 (2016) e1004967.

[29] M.T. Todd, Y. Niv, J.D. Cohen, Learning to use working memory in partially ob-
servable environments through dopaminergic reinforcement, Advances in Neural
Information Processing Systems, (2009), pp. 1689–1696.

[30] N.P. Rougier, D.C. Noelle, T.S. Braver, J.D. Cohen, R.C. O’Reilly, Prefrontal cortex
and flexible cognitive control: rules without symbols, Proc. Natl. Acad. Sci. U. S. A.
102 (2005) 7338–7343.

[31] P.S. Goldman-Rakic, Cellular basis of working memory, Neuron 14 (1995) 477–485.
[32] M. Pessiglione, V. Czernecki, B. Pillon, B. Dubois, M. Schüpbach, Y. Agid,

L. Tremblay, An effect of dopamine depletion on decision making: the temporal
coupling of deliberation and execution, J. Cogn. Neurosci. 17 (2005) 1886–1896.

[33] R. Cools, M. D’Esposito, Inverted-U shaped dopamine actions on human working
memory and cognitive control, Biol. Psychiatry 69 (2011) e113–e125.

[34] S.B. Floresco, A.G. Phillips, Delay-dependent modulation of memory retrieval by
infusion of a dopamine D1 agonist into the rat medial prefrontal cortex, Behav.
Neurosci. 115 (2001) 934.

[35] F. Lesaint, O. Sigaud, S. Flagel, T. Robinson, M. Khamassi, Modelling individual
differences in the form of Pavlovian conditioned approach responses: a dual
learning systems approach with factored representations, PLOS Comput. Biol. 10
(2014) e1003466.

[36] J. Liénard, B. Girard, A biologically constrained model of the whole basal ganglia
addressing the paradoxes of connections and selection, J. Comput. Neurosci. 36
(2014) 445–468.

[37] J.-B. Mouret, S. Doncieux, Sferes v2: evolvin’ in the multi-core world, WCCI 2010
IEEE World Congress on Computational Intelligence, Congress on Evolutionary
Computation (CEC), IEEE (2010) 4079–4086.

[38] A. Wierzbicki, On the completeness and constructiveness of parametric character-
izations to vector optimization problems, OR Spektrum 8 (1986) 73–87.

[39] S. Palminteri, V. Wyart, E. Koechlin, Computational Cognitive Neuroscience: Model
Fitting Should Not Replace Model Simulation, bioRxiv, 2016, p. 079798.

[40] W.B. Scoville, B. Milner, Loss of recent memory after bilateral hippocampal lesions,
J. Neurol. Neurosurg. Psychiatry 20 (1957) 11.

[41] S. Corkin, Acquisition of motor skill after bilateral medial temporal-lobe excision,
Neuropsychologia 6 (1968) 255–265.

[42] S. Corkin, Lasting consequences of bilateral medial temporal lobectomy: clinical
course and experimental findings in H.M. Seminars in Neurology vol. 4, Thieme
Medical Publishers, Inc., 1984, pp. 249–259.

[43] B.J. Knowlton, J.A. Mangels, L.R. Squire, A neostriatal habit learning system in
humans, Science 273 (1996) 1399.

[44] M. Mishkin, Memory in monkeys severely impaired by combined but not by sepa-
rate removal of amygdala and hippocampus, Nature 273 (1978) 297–298.

[45] L.R. Squire, S. Zola-Morgan, The medial temporal lobe memory system, Science 253
(1991) 1380.

[46] R. Sutherland, R. McDonald, Hippocampus, amygdala, and memory deficits in rats,
Behav. Brain Res. 37 (1990) 57–79.

[47] R.J. McDonald, N.M. White, A triple dissociation of memory systems: hippocampus,
amygdala, and dorsal striatum, Behav. Neurosci. 107 (1993) 3.

[48] M.G. Packard, R. Hirsh, N.M. White, Differential effects of fornix and caudate nu-
cleus lesions on two radial maze tasks: evidence for multiple memory systems, J.
Neurosci. 9 (1989) 1465–1472.

[49] M.G. Packard, J.L. McGaugh, Inactivation of hippocampus or caudate nucleus with
lidocaine differentially affects expression of place and response learning, Neurobiol.
Learn. Mem. 65 (1996) 65–72.

[50] E. Coutureau, S. Killcross, Inactivation of the infralimbic prefrontal cortex reinstates
goal-directed responding in overtrained rats, Behav. Brain Res. 146 (2003)
167–174.

[51] S. Killcross, E. Coutureau, Coordination of actions and habits in the medial pre-
frontal cortex of rats, Cereb. Cortex 13 (2003) 400–408.

[52] H.H. Yin, B.J. Knowlton, The role of the basal ganglia in habit formation, Nat. Rev.
Neurosci. 7 (2006) 464.

[53] N.D. Daw, Y. Niv, P. Dayan, Uncertainty-based competition between prefrontal and
dorsolateral striatal systems for behavioral control, Nat. Neurosci. 8 (2005)
1704–1711.

[54] M. Keramati, A. Dezfouli, P. Piray, Speed/accuracy trade-off between the habitual
and the goal-directed processes, PLOS Comput. Biol. 7 (2011) e1002055.

[55] Y. Niv, Reinforcement learning in the brain, J. Math. Psychol. 53 (2009) 139–154.
[56] M.D. Esposito, J.A. Detre, D.C. Alsop, R.K. Shin, et al., The neural basis of the

central executive system of working memory, Nature 378 (1995) 279.
[57] C. Ranganath, M.X. Cohen, C. Dam, M. D’Esposito, Inferior temporal, prefrontal,

and hippocampal contributions to visual working memory maintenance and asso-
ciative memory retrieval, J. Neurosci. 24 (2004) 3917–3925.

[58] M.G. Stokes, M. Kusunoki, N. Sigala, H. Nili, D. Gaffan, J. Duncan, Dynamic coding
for cognitive control in prefrontal cortex, Neuron 78 (2013) 364–375.

G. Viejo et al. Behavioural Brain Research xxx (xxxx) xxx–xxx

13

http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0005
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0005
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0010
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0010
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0010
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0015
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0015
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0020
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0020
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0025
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0025
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0030
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0030
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0035
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0035
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0040
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0040
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0040
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0045
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0045
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0050
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0050
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0055
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0055
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0060
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0060
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0065
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0065
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0070
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0070
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0075
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0075
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0075
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0080
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0080
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0080
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0085
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0085
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0090
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0090
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0090
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0095
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0095
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0095
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0100
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0100
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0100
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0105
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0105
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0105
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0110
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0110
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0115
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0115
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0120
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0120
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0125
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0125
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0125
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0130
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0130
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0130
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0135
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0135
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0135
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0140
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0140
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0145
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0145
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0145
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0150
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0150
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0150
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0155
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0160
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0160
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0160
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0165
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0165
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0170
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0170
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0170
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0175
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0175
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0175
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0175
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0180
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0180
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0180
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0185
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0185
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0185
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0190
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0190
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0195
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0195
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0200
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0200
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0205
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0205
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0210
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0210
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0210
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0215
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0215
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0220
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0220
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0225
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0225
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0230
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0230
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0235
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0235
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0240
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0240
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0240
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0245
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0245
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0245
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0250
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0250
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0250
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0255
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0255
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0260
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0260
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0265
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0265
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0265
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0270
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0270
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0275
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0280
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0280
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0285
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0285
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0285
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0290
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0290


[59] B.W. Balleine, J.P. O’Doherty, Human and rodent homologies in action control:
corticostriatal determinants of goal-directed and habitual action,
Neuropsychopharmacology 35 (2010) 48.

[60] M.J. Frank, E.D. Claus, Anatomy of a decision: striato-orbitofrontal interactions in
reinforcement learning, decision making, and reversal, Psychol. Rev. 113 (2006)
300.

[61] R.C. Wilson, Y.K. Takahashi, G. Schoenbaum, Y. Niv, Orbitofrontal cortex as a
cognitive map of task space, Neuron 81 (2014) 267–279.

[62] E. Procyk, Y. Tanaka, J.-P. Joseph, Anterior cingulate activity during routine and
non-routine sequential behaviors in macaques, Nat. Neurosci. 3 (2000) 502–508.

[63] M. Rothé, R. Quilodran, J. Sallet, E. Procyk, Coordination of high gamma activity in
anterior cingulate and lateral prefrontal cortical areas during adaptation, J.
Neurosci. 31 (2011) 11110–11117.

[64] C. Amiez, J. Sallet, E. Procyk, M. Petrides, Modulation of feedback related activity
in the rostral anterior cingulate cortex during trial and error exploration,
NeuroImage 63 (2012) 1078–1090.

[65] J. Sallet, N. Camille, E. Procyk, Modulation of feedback-related negativity during
trial-and-error exploration and encoding of behavioral shifts, Front. Neurosci. 7
(2013) 209.

G. Viejo et al. Behavioural Brain Research xxx (xxxx) xxx–xxx

14

http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0295
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0295
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0295
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0300
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0300
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0300
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0305
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0305
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0310
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0310
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0315
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0315
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0315
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0320
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0320
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0320
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0325
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0325
http://refhub.elsevier.com/S0166-4328(17)30650-2/sbref0325

	Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task
	Introduction
	Material and methods
	Problem solving task
	Theoretical models
	q-Learning (MFRL)
	Bayesian working memory (BWM)
	Weight-based mixture (MTB)
	Entropy-based coordination
	Variations of the models
	Parameters optimization


	Results
	Simple models of the interaction between working memory and reinforcement learning
	Fit to choices only
	Simulation of choices and reaction times

	Towards more complex models of interaction between working memory and reinforcement learning
	Simulation of choices and reaction times
	Contribution of models


	Discussion
	References




