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Abstract— Assist-as-needed control aims at maximizing
stroke survivors involvement during robotic-led therapies of
neurorehabilitation. Besides the specific characteristics of the
designed adaptive control strategy, a fundamental property
of this control architecture is the choice of the error signal
which will drive the adaptation process. This driving source
is a necessary control parameter to be chosen, although often
sidelined in the control design, and several solutions already
exist in the state-of-the-art. For this reason, we wanted to
compare three different strategies to guide the adaptation,
respectively based on the local joint performances, on the end-
effector only behaviour, or on the performance of one specific
joint in the kinematic chain of the robot. The resulting analysis
evaluates the possibilities offered by simply changing from one
source to another with respect to the specific stage of the motor
recovery of the patients, potentially extending the capabilities
of current exoskeleton controllers for neurorehabilitation.

I. Introduction

Stroke is one of the main causes of acquired neurological
impairments in adults worldwide. Stroke survivors are usu-
ally left with disability, mainly motor impairments on both
upper- and lower-limb movements and loss of hand dexterity,
which are partially recoverable by undergoing rehabilitation
[1]. Neurorehabilitation should provide intense and challeng-
ing physical training to the patients, progressing together
with their capabilities, and the therapy should engage patients
in active participations [2].

Rehabilitation robotics has been studied and developed for
about twenty-five years because of its interesting features
for clinical applications [3]. Robots are, in fact, capable
of ensuring repetitive and intense therapeutic sessions, they
can provide reliable quantitative measurements of the pa-
tient performance during the therapy, and thanks to virtual
environment, these devices can increase subject’s motivation
by producing up-to-date informations on the performance,
challenging the patients with involving games and providing
scores [4].

In the literature, the most common approach for con-
trolling exoskeletons for neurorehabilitation involves passive
control [5] modes: the subject is passive while the robot per-
forms the motion, mostly through a stiff impedance control.
However, the effectiveness of such passive motions for stimu-
lating motor recovery is limited [6]. Assistive control modes
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shall thus be used, to let the subject actively control the
motion. In this case, the robot provides assistance by virtually
constraining the motion and by supporting the impaired limb,
based on performance indexes, as for example in [7] or in [8].
Ultimately, it is essential for rehabilitation robots to allow
a shared control of the movements, as soon as the patient
has recovered a minimal amount of motor capacity [9],
[10]. Indeed, as neurorehabilitation addresses issues related
to motor control relearning, the devices must allow patients
to express whatever natural, healthy-like movement they can,
without suppressing any motor capability [11].

In this sense, techniques from adaptive control may lead
to improvements: adaptation can allow the robot to modulate
its assistance level based on the subject’s motor conditions.
Advantageously, adaptation can also tune the controller to
account the differences between patients.

Thus Assist-As-Needed (AAN) controllers have been de-
veloped in order to maximize patients involvement by min-
imizing robot necessary intervention. There exist different
implementations to produce AAN, but these usually involve
a feedforward assistance in addition to a feedback con-
troller, and the adaptation is generally run offline, trial-by-
trial. The adaptation occur either at the feedback level (PD
gains adaptation to modify the compliance of the robot,
with a fixed forgetting factor to reduce assistance [12], or
with an adaptive forgetting factor [13], or with sensorless
force estimation in order to model subject’s capabilities and
avoiding the forgetting term [14]) or at the feedforward level
(adaptation of the feedforward term to address repetitive
consistent errors [15], or with an additional neural network
to model the subject capabilities [16]).

Whatever the solution adopted to provide AAN, limited
attention has been yet given to the source of the adaptation,
that is the error signal reflecting the performance of the
operator and driving the adaptation process. In a tracking
task, for example, adapting the behaviour of the robotic
exoskeleton only based on the end-effector performance,
rather than utilizing multiple different joint-based indexes,
can imply sufficient different adaptations and thus robot
performances. End-effector based adaptation can be the
solution when functional recovery is needed (regaining of
independence and functionality for performing activities of
daily living), but for impairment recovery, thus addressing
regaining of strength and muscle tone, range of motion, as
well as joints arm coordination, for example to avoid negative
trunk compensation while extending the arm, a joint-level



adaptation could be more effective. It is then clear that, in
order to correctly use AAN in rehabilitation therapy, with
neurological disease survivors, a specific analysis should be
done to determine what possible sources of adaptation exist
and which potentiality each of them could exhibit.

In this paper, we study three different error signals driving
the adaptation process in an AAN controller, in order to
better determine which one should be used with respect
to the specific aspect of the rehabilitation process that is
targeted during the recovery of the patient. To this aim we
utilize the above-mentioned controller we developed for a
former research on AAN [12], even if we believe our results
could be directly applied to most of the existing control
architectures for rehabilitation robotics, for example with
impedance controllers which are one of the most common
solutions [5].

II. Assist-As-Needed Control

An AAN controller aims at maximizing subject participa-
tion, by finding the minimum necessary level of assistance
to complete the desired task. Our AAN control strategy
produces an output w ∈ Rn, where n is the number of joints
of the robotic exoskeleton, which is composed of two terms

w = u + v (1)

where u ∈ Rn is a feedforward term, and v ∈ Rn is a feedback
control. In particular, the feedforward torque is a model-
based gravity compensation, which helps the subject not to
feel the weight of the robot while inside the exoskeleton. The
feedback v, instead, is an adaptive proportional-derivative
(PD) control, thus similar to an impedance control without
the inertial term:

v = Kpe + Kd ė, e = qr(t) − q(t) (2)

where q(t) is the joint position vector, and error signals
e and ė are calculated with respect to the reference joint
trajectory qr(t) and the reference joint velocity q̇r(t). Kp,
the stiffness term, and Kd, the damping term, are positive
diagonal matrices of gains.

Through this simple control scheme, the robot imposes
the reference trajectory qr(t) to the subject’s joints when
the stiffness is high (large values of Kp and Kd), which
is suited for early rehabilitation exercises, when the subject
cannot provide large forces. In this case, the robot torques
are large and the subject is mostly passive in the exoskeleton.
During the recovery, as soon as relearning is occurring, the
subject is expected to be able to provide more energy, in
order to complete the task more autonomously, and thus the
robot needs to decrease its assistance. In our control, this
is achieved by decreasing the stiffness of the robotic arm
(small values of Kp and Kd). At the lowest limit, i.e. when
null Kp and Kd are reached, the robot is only compensated
for the gravity by the u feedforward term, thus leaving the
exoskeleton in a transparent mode (no assistance/resistance
to the free motion of the subject), and the subject completely
active and free to perform any movement.

Adaptation law

To achieve this adaptive behaviour, the gains of the PD
controller are adapted trial-by-trial, based on the former
performance of the subject, similarly to what is proposed by
Ganesh et al [17] for achieving adaptive haptic exploration.
If the subject is correctly performing the requested task, the
robot should try to reduce its assistance, and vice versa if
the performance is not satisfying, the robot should rather in-
crease its assistance. Namely, at a given trial k, the controller
proportional gain Kp,i for the i-th joint of the exoskeleton is
computed by:

Kk
p,i = Kk−1

p,i + βizk−1
i − γi (3)

where the learning parameter βi and the decay γi are positive
scalars, and zi represents the reference parameter at trial k−1
to evaluate the performance of the i-th joint. In addition,
to avoid large increasing of the robotic stiffness and thus
awkward feelings on the arm of the human operator, the
∆Kp,i = βizk−1

i −γi is upper-saturated such that max(∆Kp,i) =

γi. At the same time the damping Kd,i varies with the
proportional gain

Kk
d,i = αiKk

p,i.

Both gains are saturated between Kmax and Kmin > 0, with

αi =
Kmax

d,i − Kmin
d,i

Kmax
p,i − Kmin

p,i

(
Kp,i − Kmin

p,i

)
+ Kmin

d,i .

Error signals choice

We defined three different error signals capable of driving
the adaptation process of equation 3: end-effector perfor-
mance based error signal, joint-by-joint performance based
error signal, and single-joint performance based error signal.

1) End-Effector Based adaptation (EEB): One intuitive
solution to drive the adaptation is by comparing, trial-by-
trial, the performance of the end-effector and the desired
behaviour. The error computed at the end-effector (either
position, velocity or both position and velocity error1) is
then globally modifying the behaviour of the robot, that is,
all the robotic joints are adapting their control laws with the
same ratio. With our controller, the EEB solution is given
by defining the zi as

zi , z =
∑T

t=0(||ex|| + ξ||ėx||) i ∈ [1 . . . n] (4)

where ξ is a scaling factor between the position
and the velocity error, ||ex|| = ||pdes − pee|| =√

(xdes − xee)2 + (ydes − yee)2 + (zdes − zee)2 is the end-effector
position error, where we removed the dependence of time
(e.g. xdes(t)) for a matter of readability, and similarly for the
end-effector velocity error ||ėx|| = ||ṗee − ṗdes||.

1Since AAN controllers usually address early post-stroke therapies, faster
correct movements than the desired one are unlikely to happen. The robot
should thus take care of the speed of the motion, stopping too fast or too
slow, probably unnatural, movements. When considering more advanced
therapies, on the other side, the constraint on the velocity could decrease
the healthy freedom of the patients, and thus should be removed.



2) Joint-By-Joint based adaptation (JBJ): In JBJ, the er-
ror signal in equation 3 is locally computed for each joint. In
fact, the error takes into account the single joint performance
to adapt its stiffness. Therefore, with this strategy, each joint
may evolve differently. The JBJ performance index zi, for
the i-th joint, is given by

zi =
∑T

t=0(|ei| + ξ|ėi|) i ∈ [1 . . . n] (5)

where |ei| = |θdes
i (t) − θi(t)| is the joint position error norm

and |ėi| = |θ̇
des
i (t)− θ̇i(t)| is the joint velocity error norm, both

for the i-th joint.
3) Single-Joint Based adaptation (SJB): In SJB, the

performance of one specific joint drives the adaptation of
the whole exoskeleton. Therefore, similarly to EEB, the
SJB globally modifies the compliance of the robotic arm
by considering the same error for the different joints. We
defined the driving variable as the flexion/extension of the
elbow angle αHF , described by the International Society of
Biomechanics [18], that is the angle between the upper-arm
and the forearm. The coordination between these shoulder
and elbow is often impaired in post-stroke survivors [19],
and thus focusing on the resulting angle at the elbow could
be interesting for the therapy. The error on this angle is
computed as

zi , z =
∑T

t=0(|eα| + ξ|ėα|) i ∈ [1 . . . n] (6)

where |eα| = |αdes
HF(t)−αHF(t)| is the the αHF angle error, and

|ėα| = |α̇des
HF(t) − α̇HF(t)| is the αHF angular velocity error.

III. Materials and methods

A. The ABLE exoskeleton

The adaptive algorithms were coded on the real time
controller (RTLinux, running control loop at 1kHz) of an
ABLE exoskeleton designed by the CEA-LIST [20], a four
active degrees of freedom (DOF) robot, with 3-DOF for the
shoulder (for abduction/adduction, internal/external rotation,
and flexion/extension) and one for the elbow (for flex-
ion/extension), see figure 1. ABLE has interesting features
for robotics rehabilitation, that are a large workspace (it
allows 110◦ of rotation at the first three axes, and about 130◦

at the elbow), a force/torque range compatible with human
ones (18Nm available on the first two joints, 13Nm on the
last two, producing an equivalent maximum force at the hand
of 50N), and above all high backdriveability, thanks to a
patented screw-cable mechanical transmission together with
a model-based gravity compensation, providing a transparent
behaviour, with the robot that can be easily moved without
detecting any motion intention of the human operator.

B. Experimental protocol

In this paper we want to compare the effect of different
error signals which can drive the adaptation law in AAN con-
trollers for neurorehabilitation. To determine the capabilities
of each adaptive paradigm developed in section II, we used
the following protocol: we asked five healthy subjects (aged
24.4 ± 0.4) to perform once the tracking of the outline of a
25x25x4cm3 foam-made parallelepiped, while seating on a

Fig. 1. Experimental setup and ABLE close-up. The subject was told to
track the outline of a foam-made parallelepiped with a plastic rod.

Fig. 2. An example of self-motion: for a same end-effector position, the
intra-joint coordination can be voluntary modified thanks to the system
redundancy w.r.t. specific tracking task. This different coordination can be
achieved and performed during the whole task, producing distinct joint
trajectories.

stool. The exoskeleton was connected to the right arm of the
subjects through three velcro cuffs, one on the upper-arm and
two on the forearm. Besides, the subjects wore a commercial
wrist splint to limit wrist motion and prono-supination, not
controlled and not measured by the robot, see figure 1.

To compute the reference trajectories to control the robot,
we recorded the joint positions when the subject was pointing
at the corners of the squared foam with the exoskeleton
in transparency, and then we interpolated straight lines in
between them to reproduce the exact contour of the tracked
object.

During the experiment, we performed 40 repetitions of the
task for each protocol, thus a total of 120 motions, and each
motion lasted 10 seconds. By triggering a push-button with
the left hand, the subject voluntarily started the motion and
the trial recording.

Similarly to the preliminary experiment in [12], we asked
the subjects for specific behaviours. In particular we can
describe four different phases of the experiment:
• Trial 1 to 25 the subjects were asked to perform the

task with the support of the AAN control,



• Trial 26 to 30 the subjects were asked to relax and let
the robot perform the task,

• Trial 31 to 35 the subjects were asked again to perform
the task with the support of the AAN control,

• Trial 36 to 40 the subjects were asked to perform the
task with the support of the AAN control, but producing
a different inter-joint motion coordination.

In the first three phases we expected to see similar behaviours
for the three cases of section II, with the robot adapting
to the activity of the operator (the simple task should be
easily achieved, thus the robot should decrease its assistance
in phase 1 and 3, while it increases the stiffness in phase
2). We expected small differences in the adaptation strate-
gies, apart from the structural distinction comparing global
(EEB and SJB) and local adaptation processes (JBJ). In the
fourth phase, instead, when asking to change voluntarily
the motion coordination, while keeping the end-effector task
achievement, we expected to obtain slightly different gains
evolutions due to the variation on the driving error signals.

It is important to underline that we were able to perform
the fourth phase exercise thanks to the redundancy of the
ABLE exoskeleton (a 4-DOF robot) with respect to the
specific task (pointing in the space requires only 3-DOF).
In this scenario, in fact, similarly to any pointing task with
healthy human arm, there are more available DOF than the
required ones and we can achieve the same task (following
the squared outline) by performing different strategies at the
joint level (usually named as self-motions, see figure 2).

For this experiment, the initial gains were set to Kt0
p,i = 200

and Kt0
d,i = 6.6 ∀i, and the gain saturations were Kmax

p,i = 300,
Kmin

p,i = 0, Kmax
d,i = 10, and Kmin

d,i = 0 for all the joints. In
addition, at the end of trial 35, we set Kp,i = Kd,i = 0 at each
joint, in order to compare the behaviour of the controllers
with the same starting gain configuration (full transparency).
ξ = 0.1 was also set to give more importance to the path
tracking, more than to the exact speed profile reproduction.

The tuning of the adaptive parameters β and γ was a
crucial definition. We wanted the robot to be transparent
towards the end of the first phase (within 25 movements).
For this reason, given Kt0

p,i = 200, we selected γi = 8,∀i.
At the same time, we needed the robot to be able to react
sufficiently quick (within 5 trials) to increases of the tracking
error. To determine a useful β to reproduce this phenomenon,
we recorded the error range (joint error for JBJ, αHF error for
SJB, and end-effector error for EEB, as defined in section II)
when the robot was performing the task alone, without any
operator, respectively in rigid mode (∀Kp = 300 and ∀Kd =

10) and in transparency (∀Kp = Kd = 0). Trivially the rigid
mode gave us the minimum error for each protocol, while
the transparency the maximum one (indeed the robot did not
move during this test). Based on these error ranges and the
selected γ, we computed the values of β for each protocol,
which were: βi,JBJ =

[
0.1 0.1 0.05 0.05

]
, βi,S JB = 0.01,

and βi,EEB = 0.01 for any i ∈ [1, . . . 4]. The different β for
the JBJ case were due to different error ranges at the joint 3
and 4 compared to the other joints, for this specific task.

IV. Results

Trials 1-35: adaptation to the subjects performance

Figure 3 shows the average evolution of the proportional
gain Kp,i over the 40 movements and the five subjects, when
using the three different error signals. At the same time,
figure 4 shows the average errors at the joints and at the end-
effector at each trial, for the five subjects. The Kp value can
be considered proportional to the stiffness of the robotic arm.
As expected, all the AAN controllers adapted correctly to the
behaviour of the exoskeleton operators. During the first phase
(trials 1-25), while the subjects were actively performing
the task and consequently the errors were low, the robotic
exoskeleton generally became more compliant (decreasing
Kp). It is important to see the difference between JBJ local
adaptation, in which the four joints adapted differently based
on local performances, and the other protocols, in which the
performance index was one for all the joints and therefore
the gains evolved exactly the same for the whole robotic
device. This different behaviour reflected into a larger mean
error at each joint, during this interval.

Once the subjects relaxed (trials 26-30), the three con-
trollers correctly increased the stiffness of the robotic arm
producing better assistance to the movements (increasing
Kp). In this interval, both joint error and end-effector error
increased because of the voluntary relaxation of the subject.
As soon as relaxation was over, the subjects were again
contributing to the performance, the errors were drastically
decreasing, and thus the robot compliance increased again.

Trials 36-40: correcting a different coordination

For the second part of the experiment, in the interval
of trials 36-40, we asked the subjects to try to perform
the same end-effector task while adopting a different inter-
joint coordination. The task was performed by increasing
both the abduction and the internal rotation of the shoulder
with respect to the desired joint trajectories, exploiting the
ABLE/human system redundancy (figure 2). Figure 5 shows
the resulting behaviour of the robot, for a typical subject. In
particular, the joint trajectory of trial 36 (dashed line) and
40 (solid line) are shown for each choice of error signal.

As we can see, the different inter-joint coordination was
“allowed” by the EEB adaptation, in which clearly the
performance index (the end-effector error, which remained
small) was not influenced by joint level performances. In
fact, in this case, Kp did not increase (it remained almost
null, providing transparency to the exoskeleton), and different
joint trajectories with respect to the desired ones were
performed. On the contrary, JBJ adaptation quickly brought
the operator back to the desired coordination. Kp, with this
strategy, increased fast to decrease joints errors. Finally,
an in-between solution was provided by SJB adaptation, in
which the Kp increased but larger differences in the joint
coordination were allowed. Figure 4 shows clearly that all
the controllers allowed for similar end-effector error scores,
thus the different inter-joint coordination did not affect the
tracking task.
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error), for the five subjects and the three adaptive processes. For each condition, the shaded coloured area represents the standard error.

V. Discussion

We determined three different adaptation strategies for our
AAN controller, respectively based on the local error of each
joint of the exoskeleton (JBJ), on the error of the end-effector
(EEB), and on the error of a single joint (SJB), in particular
the αHF usually impaired in post-stroke survivors.

These three adaptation paradigms performed as expected
in a typical tracking task, with variable voluntary behaviour
of the human operators. All the protocols were able to react
either to increased (trials 1-25, and 31-35) or to decreased
activity (trials 25-30) by the subjects, showing the overall
efficiency of the AAN control. Nonetheless it seems possible
to suggest that a local adaptation strategy, as in JBJ, could
better fit for early rehabilitation, when mostly targeting
motor recovery. For example in this phase, as said, stroke
survivors show decreased capacities to extend their elbow
[19], having difficulties in achieving most of the motion
tasks; a JBJ solution could provide better control along a
desired reference coordination, performing better tracking of
desired joint trajectories, while a global adaptation strategy
(lke in EEB or SJB) could determine larger joint errors.

When considering instead the second part of the experi-
ment (from trial 36), we targeted stroke survivors who are
more capable of acting alone (late rehabilitation), a situation
in which the controller should allow the patients to train
intensively, with a minimal assistance to avoid negative
behaviour.

EEB, due to its architecture, allowed any motion the
subject wanted to perform (control gains remained almost
null, keeping the robot in transparency, figure 3), as long
as the end-effector task was achieved (small end-effector
error in figure 4), and indeed it did not assist anymore the
patient along the desired motion coordinations (large joint
error in figure 4). Unfortunately it is clear that perfect perfor-
mance at the end-effector may happen together with negative
compensation at the shoulder level, producing potentially
inadapt therapy [21]. We believe that adapting and basing
the rehabilitation performance on a single parameter, as the
end-effector score, could therefore in some case mislead the
therapy and the robotic assistance.

Joint-by-joint assistance, on the contrary, once determined
the desired joint trajectory, almost did not allow any differ-
ent coordination. This paradigm, for later stages of stroke
recovery, could be too strict. In fact, thanks to human arm
redundancy, there may be slightly different coordination to
complete the same task, without involving unnatural and
pathological behaviour at the joint level or at the shoulder.
Therefore the JBJ approach would also necessitate of highly
customized references, since different patients may require
different coordinations. One possible solution to use JBJ,
even with chronic patients, would be to develop a simul-
taneous adaptation of the desired trajectories, in order to
allow feasible and safe multiple strategies. But obviously
these would increase the complexity of the controller and



Fig. 5. Joint trajectories for the three strategies. Each column is one of
the four joints of the ABLE exoskeleton. For each plot, three trajectories
are shown: in red, the desired joint trajectory, dashed line the 36th motion
(the first with a different inter-joint coordination), and in solid line the last
motion (always with a different coordination, trial 40). First row is the JBJ
adaptation, second EEB adaptation, third SJB adaptation.

would require a difficult online evaluation of the feasability
of a coordination strategy.

Finally, the SJB adaptation seems to be promising. It better
performed during the last trials, showing capabilities to assist
the subject while leaving some freedom in slightly changing
of the arm coordination. A weakness of this strategy is
the global adaptation of the joint stiffness which generally
produced larger joint errors during trials 1-25 w.r.t. local
adaptation. A possible solution could be obtained by tuning
the values of the adaptive parameters (β and γ) differently for
each joint, thus creating distinct joint adaptations to the same
error signal. Of course, a drawback would be to determine
the metrics to perform the mentioned tuning.

Therefore it seems clear that there is no a single optimal
strategy to drive the adaptation in AAN controllers, above all
without considering the specificity of the involved patients.
However, this not trivial parameter must be carefully kept in
consideration and tuned for improving the efficiency of any
robot-led therapy.

In the future, more experiments will need to be conducted
in order to validate these preliminary results, obtained by
simulating unnatural behaviours by healthy participants, to
evaluate the performances in a real scenario, with adaptation
of the robotic behaviour to the less regular impaired motor
capabilities of real stroke patients.
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