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Abstract The study of social interactions has attracted increasing attentions.
The role recognition is one of its possible applications and the core of this
study. This article proposes some approaches to automatically recognize the
role of the participants of a meeting by modeling the synchrony of tempo-
ral nonverbal audio features. In our approache the Influence Model (IM), a
Hidden Markov Model (HMM)-like, is used to model this synchrony and to
extract from input data a feature vector that contains both information about
temporal transitions (intra-personal data) and interaction between partici-
pants (inter-personal data). This modeling of the meeting is used as input of
a Random Forests (RFs) for the role recognition task. The experiments are
performed on 138 meetings (approximately 45 hours of recordings) from Aug-
mented Multiparty Interaction (AMI) Corpus. Accuracy scores show that this
combination of generative (IM) and discriminative (RFs) approaches permits
to outperform state-of-the-art role recognition rates.

Keywords Role Recognition - Influence Model - Interaction Modelling -
Synchrony

1 Introduction

The study of social intelligence becomes more and more popular, because of
its importance for the analysis of social interactions. It was first defined by
Edward Thorndike as “the ability to understand and manage men and women,
boys and girls, to act wisely in human relations” [1]. The goal of social intelli-
gence is then to understand the interaction between people by analyzing their
exchanged social signals. One of the important tasks for the understanding
of social interactions is the recognition of the role of each participant during




the interaction, which has become an important application for social signal
processing.

The role recognition has been addressed in two main contexts: during
broadcast news and small scale meetings. Broadcast news involve strong inter-
action patterns and specific roles such as anchorman, journalist or interviewer.
Although the recognition of such roles has become an important task for the
understanding of global interactions, we are interested in this paper in the
role recognition during small group interactions, 4.e. on four-role based meet-
ing scenarios, by mainly using speech features. This has many applications,
for example for automatic indexing, retrieval and summarization of a meeting.
This task requires, first to extract some relevant features from signals and to
represent them in an appropriate way, then to learn some dominant patterns
useful for the role recognition.

The features exchanged during social interactions can be classified into
two main groups: verbal and nonverbal features. Verbal features contain lex-
ical information and are highly dependent on the context: they are not easy
to use for role recognition without any contextual information. A recent study
showed that nonverbal features play a major role in the perception of social
situations [2]. Moreover, there are two kinds of nonverbal features: global and
temporal features. Global features, such as the total talking time of a partici-
pant, model the whole interaction and are often used by discriminative models
like SVMs. On the opposite, temporal features capture temporal information,
for example, the speech activity (who speaks at what time). They are usually
used as input of generative models, like Hidden Markov Models or Influence
Models, for the recognition. In this paper, we focus on temporal nonverbal
features that appear during social interactions. To understand the underlying
mechanisms of interactions, we propose to model the synchrony of these tem-
poral features by using an Influence Model. Its output is used as the input of a
discriminative method to automatically recognize the role of each participant
of the meeting. To the best of our knowledge, this work is the first one to learn
information provided by a dynamic model (i.e the Influence Model) using a
static model (i.e. Random Forests).

The paper is organized as follows. Section 2 gives an overview of some works
dedicated to the role recognition task. Section 3 presents the AMI database
which is used in this paper to validate our approach, as well as the chosen
methodologies. Section 4 then details the different configurations used for role
recognition and presents our proposed approach. Comparative results are given
in Section 5. In particular, we give technical details for all tested methodolo-
gies, then provide our results and compare them with other approaches’ ones.
Finally, conclusions and perspectives are given in Section 6.

2 Role recognition: state of the art

Many works have been done on role recognition. Some of them use global
features, such as total talking time or total moving time, while others use
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Table 1: Review of approaches dedicated to the role recognition task working
on global or temporal features.

FEATURES APPROACH DATABASE Acc.
REF.
[7] Total amount of | Decision Tree Meetings (2 record- | 53%
speech of a partic- ings, 5 roles)
ipant
1] Lexical and contex- | HMM and Max- | TDT4 Mandarin | 77%
tual features imum Entropy | broadcast news
method
7] Turn-taking and | Social — Networks | Radio news bul- | 85%
speaking time | Analysis and Bayes | letins (96 record-
duration classifier ings, 6 roles)
[0] Turn-taking  and | Social Affiliation | AMI Corpus 56%
2 speaking time | Network
8 duration
3 7] Lexical, Turn- | Social  Affiliation | AMI Corpus 78%
taking and speak- | Network
ing time duration
[¢] Multimodal non- | Social = Networks | AMI Corpus (one | 68%
verbal features Analysis role)
] Event features Time delay pattern | Music plays N/A
] Nonverbal — audio | Rule-based, Rank- | ELEA 85.7%
and video level fusion, SVM
and collective clas-
sification
[11] Nonverbal audio SCP and IM AMI Corpus 58%
[12] Speech activity and | SVM Mission  Survival | 65%
. fidgeting Corpus
% B3 Speech activity and | Influence Model Mission  Survival | 75%
& ] fidgeting Corpus
[15] Speech activity Maximum likeli- | AMI Corpus 53%
hood

temporal features such as speech activity (i.e. presence or absence of speech).
We can then classify the role recognition approaches depending on the kinds
of features (temporal and global) they work on. Note that, usually, temporal
features are used by generative models, such as HMMs, that model temporal
information, whereas global features are used by discriminative models, such as
SVMs and Random Forests. However, in discriminative models, the temporal
information, which is not taken into account during the classification step, can
also be introduced into the features. Some related works are summarized in
Table 1 and the two following subsections detail each family of approaches
mainly working on speech features.

2.1 Approaches working on global features
To the best of our knowledge, the work in [3] is the first one on role recognition.

It includes two main steps. First, the meeting is classified into two states:
“Discussion” and “Information flow”. Then, four global features (number of



times there is a change in speaker, total amount of speech of a participant,
number of speech overlaps and average length of these overlaps) are used to
recognize five roles (discussion participant, presenter, information provider,
information consumer and undefined) using a decision tree. This approach
was tested on recorded meetings based on the architecture proposed in [16]
and reached an accuracy of 53%.

The work in [!] addresses the problem of role recognition (anchor, reporter
and other) in broadcast news. The author uses two models for the classifica-
tion: an Hidden Markov Model (HMM) [17] and a Maximum Entropy Model
(MaxEnt), each one with different kinds of global features. Lexical and contex-
tual features are used as observations in the HMM whose states are roles. For
MaxEnt, three global features based on bigrams and trigrams are used for the
classification. This approach was applied on the TDT4 Mandarin broadcast
news database [!] and reached an accuracy of 81%.

The work in [7] aims at recognizing six roles (anchorman, second anchor-
man, guest, headline reader, weather man and interview participants) in broad-
cast news. Social Network Analysis (SNA) and Duration Distribution Mod-
eling are used to extract the features from audio data (speaker segmenta-
tion). Role recognition is given by the posterior probability estimated using
a Bayesian classifier. However, SNA requires a sufficient number of roles and
planned scenarios to generate a meaningful interaction pattern. Furthermore,
the role recognition is done independently for each person, without consider-
ing their interaction. This approach was tested on a database of radio news
bulletins and reached and accuracy about 85%.

Salamin et al. [0] proposed to use Social Affiliation Network (SAN) to
overcome the limitation of SNA used in [5]. Global features, extracted by
SAN, including the information of duration of talk segments, are then used
to estimate the posterior probability of each role. This approach was tested
on both the radio news bulletins data [5] and on AMI meeting corpus [13].
Performances on the first dataset were slightly better than those in [7]. On
the AMI meeting corpus, 56% of the total time was correctly labeled. Garg
et al. [7] performed similar experiments and obtained an overall accuracy of
50%. They improved the accuracy to 78% by using features including lexical
information.

Jayagopi et al. [3] have also tested their approach on AMI meetings. They
first extract global audio features (such as intervention length or number of
talk turn transitions between participants) and global video features (such as
the total quantity of movement). The role of project manager as well as the
most dominant participant are estimated. The project manager is recognized
using the centrality measure [19] and the accuracy reached 68.4%.

Varni et al. detect the leader over a small group of music players in [J].
First, they extract event features, i.e. when does an event begin or end. Then
they measure the relative time delay patterns between events for each pair of
participants in the whole group. Finally, they recognize from these patterns
the leader according to two metrics, leader rank and leader sum. There is no
precise classification accuracy mentioned in their paper, but their results have
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been validated by professional music players. Note that although this approach
uses global features, it also uses recurrence matrices to describe interactions
between temporal features.

Emergent leaders are identified in [10)] on the Emergent LEAder corpus [2(].
Global features, such as total speaking time length, head activity time length
or body activity time length are extracted from audio and video signals. Then
four approaches are evaluated and compared for the recognition. The first
one, a rule-based approach, considers that the participant with the longest
total speaking time is the emergent leader. The second approach, a rank-level
approach, determines who is the emergent leader by ranking features. The
third approach combines all features into a single vector given as input of a
SVM to detect the emergent leader. The last one, a collective classification
approach, uses an Iterative Classification Algorithm [2!] for the classification.
Finally, this last approach reached the best accuracy of 85.7%.

Finally, Cristani et al. use a coding method named Steady Conversational
Period (SCP) and IM to recognize the role of each participant in AMI corpus
[I1]. SCPs are used to segment the whole meeting into steady periods. A
Gausian Mixture Model is then used to cluster these periods into long silence,
short silence, long speech or short speech. After the clustering, IM is used with
the SCP for the recognition. This approach gets an overall accuracy of 58%.

2.2 Approaches working on temporal features

Temporal features, also called local features, contain some dynamical informa-
tion. Because of the huge number of temporal features that can be extracted
from data, the classification process suffers from the curse of dimension and
over-fitting problems, that some approaches have tried to solve.

The approach in [I?] recognizes the roles on the database Mission Sur-
vival Corpus [22]. It uses a SVM to process two local features. Original audio
and video data sequences are divided into small time-windows (i.e. 10 sec-
onds/window), from which local features (speech activity and fidgeting) are
extracted. These extracted features are concatenated into a vector which is the
input of a SVM. Two experiments are conducted: task role recognition (fol-
lower, orienter, giver, seeker and recorder) and socio-emotional role recognition
(neutral, gate-keeper, supporter, protagonist and attacker). This approach got
an accuracy of 65% for the first experiment and of 70% for the second one.
However, although SVMs are robust to the over-fitting problem, they still
suffer from the curse of dimension.

The approaches in [1, 13] solve the problems of the curse of dimension and
over-fitting by using the Influence Model (IM) [23]. This model significantly
reduces the number of needed parameters and considers the influence between
participants of the meeting (see Section 3.2 for more details). Temporal fea-
tures speech activity and fidgeting are used directly as input of the IM. The
likelihood given by IM is used for the role recognition. The performance of this



approach on the Mission Survival Corpus database got an overall accuracy of
63% on Task Area and Socio-Emotional Area systems.

Similarly to the approaches in [I1,13], the work in [I7] extracts speech
activities, named talk-spurts, whose interval pause length is lower than 0.3
seconds. Then four probabilities are computed according to these talk-spurts:
the probability that a participant starts speaking at time t when no-one else
was speaking at t-1, the probability that a participant continues speaking at
time t when no-one else was speaking at t-1, the probability that a participant
starts speaking at time t when another participant was speaking at t-1 and
the probability that a participant continues speaking at time t when another
participant was speaking at t-1. According to these probabilities, a maximum
likelihood criteria is used to recognize the roles. This approach was tested on
the AMI database for a four-role recognition task and reached an accuracy of
53%.

3 Data and methodologies

This paper proposes a formalism to model several signals with temporal de-
pendencies and to use this model of synchrony in a role recognition task.
Before introducing our approach, we present the database AMI and the main
methodologies that have been proposed in the literature to model interdepen-
dent signals.

3.1 Extracted data: nonverbal audio features of AMI Corpus

The database AMI Corpus has been created by the European-funded AMI
project and is online available (http://groups.inf.ed.ac.uk/ami/corpus/). It in-
cludes about 100 hours of recorded meetings. Each recording contains several
signals which are synchronized to a common time-line. These signals include
close-talking and far-field microphones, individual and room-view video cam-
eras, output from a slide projector and from an electronic white-board. During
the meetings, the participants also use unsynchronized pens to record their
writing. There are two kinds of meetings, scenario meetings and non-scenario
meetings. All the approaches presented below have been tested on the 138
scenario meetings in which participants play the roles of employees in an elec-
tronics company that decide to develop a new type of television remote control.
Each participant has a specific role to play: the project manager (PM), the
marketing expert (ME), the user interface designer (UI) and the industrial
designer (ID).

We only consider the speech activities of participants as features and, more
specifically, the binary representation of speaking activities, i.e. 1: speak, 0: do
not speak. This information was manually extracted from speech transcriptions
provided by AMI Corpus Database, but this step could also be easily automa-
tized by thresholding speech energy. Except explicitly specified, the input data
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is a binary signal for each participant with a sampling rate of 4 Hz.The signal
is represented by a series of values for each participant (see Section 4). These
signals and their dependencies (synchrony or interaction) can be modelded
using Hidden Markov Models, Coupled Hidden Markov Models or Influence
Models.

3.2 Hidden Markov Model and Influence Model

Suppose the behavior of one person is modeled by a Markov chain with Q
distinct state values {sl, ey SQ}. In such a case, the transition matrix of size
Q x Q is composed of elements P(S¢|S;_1), where S; is the hidden state at time
t taking value in {s',...,sQ}.

The problem now is to model the interaction between C interacting people.
A first solution is to consider a single chain with QC state values, that leads
to a transition matrix with Q€ x QC elements. The problem quickly becomes
intractable when C increases. Another solution is to use the Coupled Hidden
Markov Models (CHMM), first introduced by Brand et al. [21]. The structure
of a CHMM with C chains leads to C x Q state values s"¥, withi=1,...,Q
and k = 1,...,C. Here, S};, the hidden state of chain k at time t, depends
on the previous state of all the chains at time t — 1. Transition probabilities
are then given by P(SHSLI, S2 ..., S‘?—l)v with k = 1,...,C. The transition
matrix now contains C x Q1 elements, which also becomes intractable when
C increases.

The Influence Model (IM) [27] keeps the same graphical model as CHMM,
but introduces the following simplification:

C
P(SEISE 1,87 1,....8F 1) = >t P(SfISi ) (1)
1=1

where 5% denotes the influence of chain 1 on chain k. Thus, the transition
probabilities are now expressed as a linear combination of pairwise conditional
probabilities. We have now (C x Q)? elements P(S{|SL ;) and C? parameters
thk. This gives a total number of (C x Q)% + C? parameters, that is lower than
those of the two previous models. Another advantage of IM is that parameters
thk have a direct interpretation in the context of interaction. In Figure 1, we
give an example of interactions between three participants k, 1 and m, where
each one is modeled by a Markov chain.

Formally, an IM for C chains is represented by the set of parameters
A = {S,n,A,T}. S is a vector containing the states which can be hidden
or observed, T is a vector containing the initial probabilities of each state of S,
A is the matrix containing conditional probabilities P(SF|SL ;) and T is the
matrix containing influence coefficients t'* between participants 1 and k, with
k,1=1,...,C.
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Fig. 1: The Influence Model of an interaction between three participants k, 1
and m.

Matrix A contains C x C sub-matrices AbK of size is Q x Q. Sub-matrices
ALK represent the conditional probabilities of states in chain k during its in-
teraction with chain 1. More generally, if each chain i has n; state values,
then the dimension of each AM¥ is n; x ny and the total dimension of A is
Ziczl chzl njnj.

Influence matrix T contains the influence coefficients t“¥, which represent
the influence of chain 1 on chain k. The dimension of T is then C x C. A
new matrix H is derived from matrices A and T and is composed of C x C
sub-matrices H"* such as:

HUk — ALk o Lk

This new matrix contains both the information of transition probability of
matrix A and of influence of matrix T. In our context of interaction modeling,
H characterizes the interaction and is used as feature vector.

4 Role recognition

As specified in Table 1, the synchrony can be modeled using global or tem-
poral features and the role recognition can be done using either generative
or discriminative models. HMMs and IMs are well known to model temporal
and interdependent signals. But as said by Bishop et al. [20] and confirmed
by Ng et al. [27], “the generalization performance of generative models is of-
ten found to be poorer than that of discriminative models due to differences
between the model and the true distribution of the data”. It is the reason why
several authors [25,20,30,31] combine the strengths of both models.

In this section we detail how to recognize role by using generative ap-
proaches (HMMs and IMs). We also present our proposed approach consisting
in combining a generative and a discriminative approach for the role recogni-
tion task.
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Fig. 2: Classification approaches based on HMM and IM: (a) One HMM for
each role (HMM4R), (b) one HMM for all the participants (HMM4M) and (c)
an IM for the whole meeting (IM)

4.1 Role recognition using one HMM for each role (HMM4R)

In the first method, named HMM4R, and illustrated in Figure 2(a), one HMM,
with 2 observed states, has been trained by the binary representation of
speaking activity of only one participant. We then have the set HMMs =
{HMMpp;, HMMp, HMM\g, HMMy} and corresponding parameter sets
{9pn, 91D, YMmE, Qut} (each parameter set only contains parameters S, n and
A from the set )\ previously defined for IM). For the role recognition, the input
data XP provided by the speech activity of participant p is evaluated by each
of the four HMMs (for each one, © and A have been randomly initialized). By
applying Forward-Backward algorithm, we get P(XP|V;), where P(XP|9;) is
the likelihood generated by XP and HMM,, r € {PM, ID, ME, UI}. Then, par-
ticipant p is associated to the role f;, whose HMM gave the highest likelihood,
i.e. such that:

fp = argmax P(XP|0;) (2)
T
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4.2 Role recognition using one HMM (HMM4M) for the whole meeting

The second method, called HMM4M, models the whole interaction between
the four people with one conventional HMM. At each time step, a decimal
number, converted from four binary numbers, is used to represent the meeting
states (for example, 0=0000 means nobody speaks, 8=1000 means only the
first participant speaks, 12=1100 means participants 1 and 2 are speaking,
etc.). We have now 16 possible observed values (from 0 to 15). The input data
is now a series X of these observed values.

For the AMI meeting with 4 roles, there are A} = 24 possible configura-
tion orders for the 4 roles, as shown in Table 2 (one configuration per col-
umn). A HMM (whose states correspond to the 16 observed values) is trained
for each one of the 24 configurations (see Figure 2(b)) to get parameter sets
¥1,09,...,024. Note that, during the training process, some “artificial” data
are generated by re-ordering original data according to the 24 different con-
figurations for each meeting. As for previous approaches, 1 and A have been
randomly initialized for each HMM.

By applying Forward-Backward algorithm, we get P(X|Y,), where P(X|9;)
is the likelihood generated by X and HMM,, r € {1,...,24}. The role classi-
fication is made by selecting the HMM (among the 24 possible), which gives
the highest likelihood for the input data, to get the role configuration

I = arg max P(X|0,) (3)
T

Table 2: 24 order configurations (one per column) for 4 roles

PM | PM | PM | PM | PM | ID
ID ID | ME | ME | ID PM

ME | Ul Ul ID Ul ME
Ul | ME | ID Ul ME | UI

4.3 Role recognition using Influence model (IM)

In the third method, called IM, an Influence Model is used to model the whole
meeting. The training and classification processes are the same as for the
approach HMM4M, described in Section 4.2. However, the input data X of IM
are the four observed binary chains, one for each participant (series of 0 and 1
as in Section 4.1). We then have a total number of 8 observed values. Similarly
to the previous approach, 24 IM are learned, one for each role configuration
(see Figure 2(c)), that gives parameters sets {A1, A, ..., hag}. We get P(X|A;),
where P(X]|);) is the likelihood generated X and IM,, r € {1,...,24}. The IM
getting the highest likelihood gives the role configuration:

F = argmax P(X|A;) (4)
r
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Fig. 3: The approach using IM and discriminative classifier with 24 classes

It is difficult to improve the performance of generative approaches, because
they suffer from their low power in discrimination. One solution is to extract
global features from sequences and then to use discriminative classification

methods, such as the approach proposed in [I0]. But in this case, we face
the problem of choosing relevant global features. Moreover, it is difficult to
introduce concepts such as synchrony [37] into these global features. Thus,

we propose to, first use a generative model to describe the data, then to use
a discriminative method for the classification as presented in the following
subsection.

4.4 Proposed approach: role recognition by mixing generative and
discriminative methods

As in the previous subsection, each meeting is modeled by an IM with 4
chains, one chain per participant and 2 state values per chain. This modeling
generates a matrix H that contains 4 x 4 sub-matrices of size 2 x 2. H includes
both information about transition probability and influence between chains.
We transform H into a feature vector of size 64 for the classification. Then two
solutions are used to recognize the four roles.

In the first solution, illustrated in Figure 3, a single classification is made
with 24 labels corresponding to the 24 role configurations of a meeting as
presented in Table 2. The second solution, illustrated in Figure 4, consists in
4 independent classifications (one for each role) with 4 labels (the position
of the role in the meeting). In this work, the classification is made by RFs,
while SVM could also be used. This leads to two methods called IMRF4 and
IMRF24.

5 Comparative results

We present in this section the different methods that have been studied for
role recognition and detailed in Section 4. As specified in Section 3.1, only the
speech activity of participants is considered and more specifically, the binary
representation of speaking activities (i.e. 1: speak, 0: do not speak). The global
features have been extracted on the whole meetings. Using these data, we recall
we compare five role-classification methods (see Section 4 for details):
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Fig. 4: The approach using IM and discriminative classifier with 4 classes

Table 3: Accuracies of tested and existing methods for the role recognition
task on AMI database

Method PM ID ME Ul Overall
HMMA4P 0.7 0.05 0.1 0.85 0.42
HMM4M 0.85 0.3 0.4 0.55 0.52
M 0.75 0.25 046 0.49 0.49

IMRF24 CV 0.8 04 054 044  0.55
IMRF24 VS 0.76 042 052 045  0.54
IMRF4CV 071 056 0.56 049  0.58
IMRF4VS 075 047 053 047  0.56
] 0.76 041 038 041 0.6
[7] 0.79 025 020 045  0.50
%] 0.65  / / / /

[17] 06 04 04 07 053
[11] 085 04 06 05 058

— One HMM for each role (HMMA4R).

— One global HMM (HMM4M).

Influence model (IM).

Influence Model and RF with 24 classes (IMRF24).
— Influence Model and RF with 4 classes (IMRF4).

Furthermore, AMI database has been divided into three subsets by the authors:
98 meetings for training, 20 meetings for validation and 20 meetings for testing.
We kept this protocol for all approaches, except when explicitly specified.
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5.1 One HMM for each role (HMMA4R)

The accuracy scores obtained with this method are given in the first row of
Table 3. One can see that some roles are well recognized (PM, UI), while others
have a very low recognition rate. The main drawback of this approach is that
the decisions are made individually without considering all the participants.
Several participants can then be associated to the same role during the meet-
ing. That is why some roles (ID and ME) have a very low accuracy. Thus, no
interacting information is considered in this model. A first improvement is to
consider simultaneously all participants and to model the whole meeting with
one HMM.

5.2 One global HMM (HMM4M)

Role recognition accuracies are given in the second row of Table 3. The global
role recognition accuracy (0.52) is higher than for the previous approach
HMMA4R (0.42). This proves the interest of considering all participants of the
meetings rather than only the participant whose role is to be predicted. How-
ever, even if there are only 16 state values, for this case with 4 participants,
a model that could describe the behavior of each participant as well as the
dependences between them should be more suitable.

5.3 Influence model (IM)

The role recognition accuracies are given in the third row of Table 3. The
accuracies are slightly lower than those for approach HMM4M. In this appli-
cation, the small number of state values required by IM does not justify the
interest of the influence model even if it introduces some simplifications in the
formalism as explained in subsection 3.2. Actually, with only 16 state values in
the HMM4M approach, the problem remains tractable with a single chain. As
IM is a simplified version of HMM4M, it gives an approximation of the exact
accuracies provided by HMM4M, that explains why it gets lower accuracies.
Nevertheless, a solution using IM can deal with scenarios of meetings involv-
ing more participants. For example, for C = 16 interacting participants and
Q = 2 states per participant, the number of elements of the transition matrix
is (C x Q)2 = 1024 for IM and Q%€ ~ 4.3 x 10° for HMMA4M.

5.4 Generative modeling and discriminative classification (IMRF24 and
IMRF4)

The parameters of RFs have been optimized either with the validation set
proposed by AMI (VS) or using a K-folder cross-validation (CV): the training
set is divided into K parts, K — 1 are used for training and the last one for
validation. Among the K parameter sets (K = 5 in this application), the one
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with the best average performance is used in the testing set. All these results
are given in rows 4-7 of Table 3. As can be seen, these two new approaches
outperform the previous ones.

5.5 Influence of the temporal scale

In this section, we study the influence of the temporal scale on method IMRF4.
Actually, this scale is important since IM is based on the study of the transition
between consecutive state values. As stated before, the frequency of audio data
is 4 Hz (a sampling period of 0.25 seconds). Data are rescaled at frequencies
10 Hz (0.1 s.), 1 Hz (1 s.), 0.2 Hz (5 s.) and 0.1 Hz (10 s.). Table 4 gives the
accuracies obtained by IMRF4 for each of these scales.

Table 4: Accuracies for the role recognition task given by method IMRF4
depending on the temporal scale in Hz.

Scale Data Set PM 1D ME Ul Overall

10 Hz Ccv 0.63 0.21 038 0.22 0.36
4 Hz Ccv 0.71 0.56 0.56 0.49 0.58
1 Hz Ccv 0.76 0.36 043 045 0.50
0.5 Hz CV 0.74 045 0.27 0.35 0.45
0.1 Hz CV 0.84 0.33 0.18 0.32 0.42

The frequency of data influences the value of the elements in matrix H.
As can be seen in Table 4, the optimum sampling period, to not consider
silences between words for example, is 4 Hz (0.25 s.). A smaller period would
introduce silences between words that are not informative, while a higher one
would delete small words. The confusion matrix obtained with this frequency
is given in Table 5. In order to get stable results, we have generated 480
testing samples from the 20 testing meetings by rearranging the 4 roles into
24 different orders, as introduced in Section 5.2, while the experiments in [1 ]
only consider 20 testing samples. While the project manager is well recognized,
there is a confusion between the other roles.

Table 5: Confusion matrix for IMRF4 with a 4Hz sampling rate.

PM | ID | ME | UI
PM | 342 58 48 32
ID 28 267 68 117
ME 14 81 269 | 116
Ul 50 109 84 237
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5.6 Comparative study

The lower part of Table 3 gives accuracies for the four-role recognition problem
obtained by other works on AMI database.

Our accuracies are higher than the best of the first four approaches in
lower part. However, we must be careful on this comparison because the role
prediction results are not estimated in the same way. We estimate the role of
each participant by studying the whole meeting, while in [0] the role of the
speaker is only estimated on a short temporal window. Works in [! |] get the
same overall recognition accuracy as our. However, there are some differences
between the two approaches and experiments. Our approach focusses on tem-
poral features extracted at each time step, while they use steady periods as
time steps with attribute “long” or “short”, (i.e. long speech, short silence).
Thus, this coding makes a strong hypothesis concerning conversations, as it
only considers two possible durations for steady conversations. On the con-
trary, our approach does not require any coding as pre-processing step: this
coding is implicitly done by the IM. Actually, the duration is estimated by the
transition probability.

Back to the comparison of the five models introduced in this paper, several
conclusions can be made. First, even if the goal is to estimate the role of each
person, it is better to consider all the participants (HMM4M - 0.52) rather than
just the one we want to estimate the role (HMMA4P - 0.42). For this modeling
of the four participants, two generative methods were tested: HMM4M and
IM. The results are roughly comparable (0.52 and 0.49 respectively), however,
the influence model remains tractable when the number of participants or the
number of state values per chain increases, while it is not the case for HMM
as explained in Section 5.3. Finally, the two last approaches, IMRF24 and
IMRF4, that combine the strengths of generative and discriminative models,
lead to the best recognition rates, respectively 0.55 and 0.58.

6 Conclusion

In this article, we have presented a new approach for role recognition in small
scale meetings that has been validated on AMI database. Our approach mod-
els the synchrony of nonverbal audio features of all participants by using an
Influence Model. The output of this model is then used as input feature of a
Random Forests classifier for the role recognition task. This has three main
advantages. First, the complexity is greatly decreased by using IM compared
to using HMM or coupled HMM, particularly when the number of participants
becomes high, or when the number of state values increases. Secondly, the ma-
trix generated by an Influence Model encodes both intra and inter personnel
information, so it is a good descriptor of the interaction between a group of
people. Finally, compared to using a single IM scheme for role classification,
applying a combination of generative (IM) and discriminative (RFs) models
greatly improves the recognition rates (from 0.49 to 0.58 on AMI database).
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Our results outperform those obtained with the SAN approach [(], the best
up-to-date performances on database AMI. Our current works focus on inte-
grating multi-modal information into our recognition model. Indeed, adding
information such as quantity of movement or gaze should improve the classi-
fication rates.
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