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Recent years have seen a fast growth in the number of applications of Machine Learning

algorithms from Computer Science to Robotics. Nevertheless, while most such attempts were

successful in maximizing robot performance after a long learning phase, to our knowledge none

of them explicitly takes into account the budget in the algorithm evaluation: e.g. budget lim-
itation on the learning duration or on the maximum number of possible actions by the robot. In

this paper, we introduce an algorithm for robot spatial localization based on image classi¯cation

using a sequential budgeted learning framework. This aims to allow the learning of policies
under an explicit budget. In this case our model uses a constraint on the number of actions that

can be used by the robot. Our approach enables to reduce the problem to a classi¯cation task

under budget constraint. We apply this algorithm to a localization problem in a simulated

environment. We compare it ¯rst to simple neural networks for the classi¯cation part and
second to di®erent techniques of policy selection. The results show that the model can e®ectively

learn an e±cient active sensing policy (i.e. alternating between sensor measurement and

movement to get additional information in di®erent positions) in order to optimize its locali-

zation performance under each tested ¯xed budget. We also show that with this algorithm the
simulated robot can transfer the learned policy as well as knowledge about which budget gives

the best performance/budget ratio in a given environment to other environments with similar

properties. We ¯nally test the algorithm with real navigation data acquired in an indoor
environment with the PR2 robot. Altogether, these results suggest a promising framework for

enabling budgeted localization in robots and avoiding to make robots relearn everything from

scratch in each new environment.
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1. Introduction

Spatial localization is one of the most challenging problems in Robotics. The main

problem consists in taking a spatial decision in the environment in order to localize

itself on a map using the di®erent sensors that are available to the robot. The

processing of these data is generally di±cult because of their multimodality.

The problem is made even more di±cult by the mutual dependency of the locali-

zation and mapping steps: in order to localize itself, the robot needs to recognize

cues and features which characterize a particular place and which have previously

been perceived and stored. Conversely, to build a reliable map and correctly situate

features within it, the robot needs to be able to localize itself relative to these

features [1].

While several mapless robot navigation solutions exist [2], the problem of robotic

localization has been classically and widely studied using the Self Localization and

Mapping framework (SLAM, [3–5]), which proposes to simultaneously realize the

localization and mapping steps. While SLAM methods may have di±culties during

long navigation experiments ��� facing the loop closure problem where the robot

needs to reset its estimations when recognizing a previously visited place, or having

di±culties satisfying the hypothesis of a static world on which SLAM is anchored

(see [6] for discussion) ���, they can produce robust and e±cient localization when no

limit is set on the amount of data and sensors which can be processed by the robot.

However, while SLAM usually works with multiple sensors (lasers, RGB or RGBD

cameras, whiskers, etc.), to our knowledge no method currently exists to autono-

mously learn which sensor is su±cient to localize in tasks where a limited budget does

not permit to use all sensors ad libitum. Moreover, SLAM is not concerned with

action selection, and thus cannot tell how information gathering for the localization

process should be integrated within the global policy of the robot to maximize or

minimize a given objective function.

Machine Learning research has recently come up with formal solutions to take

into account an explicit budget for image recognition or data classi¯cation [7– 9].

In particular, speci¯c algorithms called Sequential Budgeted Learning algorithms are

used in order to learn sequences and representations from limited amounts of data,

which o®ers the possibility of adding an explicit budget to limit the model. One of the

goals of these approaches is to limit the number of costly accesses to data to the

minimum required for successful classi¯cation. One way to do that is to incorporate

the decision to access or not to access data in the policy of the agent, so that it learns

to timely access data among other possible actions.

The idea of data acquisition considered as an action is also at the core of the active

sensing ¯eld, mainly developed in the 2000s. However, these techniques are limited

by the fact that the systems learn action sequences after having already learned the

task speci¯cities, which leads to learn the task twice (task representation ¯rst and

actions as a second step). As shown in [10], the main technique used in the active

sensing ¯eld is based on maximizing a weighted sum of rewards associated to a
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sequence of actions executed by a robot and minimizing the cost of each choses

action. This approach is close to the one we describe in this paper in the way that we

try to minimize an error function associated to a learned action sequence by con-

straining the model with an explicit budget instead of punishing each chosen action.

Nevertheless, the sequential budgeted learning framework o®ers the advantage of

simultaneously learning task representations and action selection.

In this paper, we propose a model that makes a robot use as minimal data as

possible to learn representations from the environment and to learn an optimal policy

in order to accomplish a localization task. Hence, our problem is de¯ned within a

mapless navigation framework: the robot uses only the perceptions obtained via its

sensors to take a spatial decision and is not based on an explicit map. We moreover

show in simulation that this approach allows the robot to transfer the learned policy

as well as knowledge about which budget gives the best performance/budget ratio in

a given environment to other environments with similar properties. Hence the robot

can generalize learned active sensing policies to new but similar environments, and

is only required to learn the new classi¯cation task (i.e. localization) speci¯c to each

environment.

The paper is organized as following: the next section presents and discusses

related work. Then, we describe the model, the learning algorithm and the experi-

mental setup. Section 4 presents numerical experiments in simulation. Then Sec. 5

presents an application of the model to real navigation data collected within an

indoor environment with the PR2 robot. The paper ¯nishes by discussing the results

and concluding.

2. Related Work

The mapless navigation problem has been widely investigated since the late 90s.

Di®erent techniques are used and can be divided into three main subsets: optical

°ow, appearance or object recognition based navigation [11]. The ¯rst category

resumes the techniques that are based on the motion of all the surface elements from

the visual world. The robot navigates by using the velocity of the di®erent images

[12–16]. The second category describes the techniques that rely on memorizing the

working environment: the idea is that in a way or another the robot stores images of

the environment and then compares the received images in an online phase with the

stored memory. The last category is based on objects and landmarks recognition in

the environment ([17]).

Our approach belongs to the second category: appearance-based navigation,

usually consisting in two di®erent phases. First, a training phase where the robot

learns the places in the environment from the recorded images. Second, a navigation

phase where the robot has to recognize the places by comparing them to the images

stored during the training phase. In this context, [18] performs indoor route con-

struction by comparing the current image with the training data set, simply calcu-

lating a distance between them. In [19] the robot creates a sequence of images by
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storing the motion associated to each image. [20] uses a histogram representation

for the images encountered in a training phase and during the inference they

compare the new images to the training samples with a quadratic distance to

localize the robot in its environment. Our case is slightly di®erent from these previous

proposals since, in the training phase, we do not manually extract informations

that are speci¯cally describing the images, but directly use the image as is (in the

simulated case).

The machine learning ¯eld has developed new ways of analyzing data by building

models that learn autonomously how to interpret, describe and treat them. The

recent deep learning state-of-the-art has many promising results on how data can

be processed in order to make agents learn representations, policies or both.

More speci¯cally, algorithms in the budgeted learning ¯eld have been studied in

order to make agents learn from limited amounts of data. In [7], the authors have

proposed a sequential architecture, where the model learns representations at each

time step using sequentially provided data, but the available amount of data is

unlimited. A budgeted version of this model was recently proposed in [21]. It is

speci¯ed in both articles that data are given between each transformation step.

A similar architecture has been presented in [9], where the authors used an explicit

budget (that stops the data acquisition after a certain number of steps), however the

model does not acquire data at each time step but rather treats it as a classical

supervised classi¯cation task.

Our model proposes a version where we mix both approaches described

above. The model uses an explicit budget and observations are returned given the

action that the agent performs.

3. Model

3.1. Principles

We propose a model applied to a localization task, which aims at learning

which action to choose in a set of possible actions (movement or acquisition of new

information) at each time step. The model is restricted by a budget B that limits

the number of actions allowed in order to complete the task in a given environment.

We aim at learning to alternate between movements and data acquisition in order

to collect relevant information and thus to localize e±ciently. Our algorithm relies

on the Deep Reinforcement Learning paradigm, i.e. learning a neural network-based

policy by using reinforcement learning techniques, more precisely by using policy

gradient techniques [22], where the model will reinforce the sequence of actions that

allowed it to successfully complete the task. However, in our case, the policy

learning is not driven by a reward signal but by a de¯ned loss function � that

computes the quality of the system, resulting in a model di®erent than classical

RL approaches.
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3.2. Model description

Let us denote X the set of all the possible positions of the robot in a particular

given environment. At the beginning of each episode, when t ¼ 0, the robot will

be at a particular unknown position denoted x, Then, by sequentially choosing

actions at at each time step t in the set of all possible actions A, the robot will

either gather a new information by using one of its sensor, or move in the envi-

ronment. At the end of the process, the robot will predict its position y. The

quality of the prediction will be measured through a di®erentiable loss function

�ðx; yÞ 2 Rþ.
Let us denote ot the observation acquired by choosing action at such that

ot 2 R
nat , nat being the size of the observation space corresponding to action at i.e.

the size of the acquired information if at is a sensor acquisition action, or 0 if at
corresponds to a robot movement. Note that this assumption is di®erent from the

classical assumption of Reinforcement Learning, where an agent receives at each time

step an observation from the same observation space. The value of ot is de¯ned by

the unknown probability Pðot jat ; at�1; . . . ; a1; xÞ which depends on the environment.

We will denote �ðat jat�1; ot�1; . . . ; a1; o1Þ the policy of the robot, i.e. the probability

of choosing action at knowing the previously acquired information ot�1; . . . ; o1 and

the previously chosen actions at�1; . . . ; a1. The ¯nal decision function which will

predict the robot position w.r.t acquired information will be denoted f ðat ; ot ; at�1;

ot�1; . . . ; a1; o1; xÞ (Fig. 1).

3.3. Learning algorithm

Let us denote ðx1; . . . ; xmÞ the set of training positions, i.e. the m robot positions that

will be used during training. Let us denote B the maximum number of actions

. . . zt−1 zt zt+1

at−1

ot−1

at

ot

at+1

ot+1

. . . zB ŷ

Fig. 1. Scheme of the model architecture. zt is a latent state of the model. From zt an action at is sampled.

The sampled action returns an observation ot that is used to compute the next ztþ1 that is an aggregation

of zt and ot . At the end of the given budget B and after computing the last zB the model predicts the
equivalent ŷ.

Sequential Action Selection and Active Sensing for Budgeted Localization in Robot Navigation 113



allowed to the robot.a The learning objective is to ¯nd both the policy �� and the

prediction function f � that minimize the prediction error:

��; f � ¼ argmin
�;f

Lð�; f Þ; ð1Þ

where

Lð�; f Þ ¼ E�½�ðf ðaB ; oB; . . . ; a1; o1; xÞ; yÞ�; ð2Þ

where the trajectories aB ; oB; . . . ; a1; o1 are sampled following �. The minimization

of this objective will be made by using policy gradient techniques proposed in [9].

Let us denote T a trajectory, where T ¼ aB; oB ; . . . ; a1; o1, the previous objective

function can be rewritten as:

Lð�; f Þ ¼
Z

ðPðT jxÞ�ðf ðx;TÞ; yÞdTdxdy; ð3Þ

and its gradient can be written as

r�;f Lð�; f Þ ¼
Z

r�;f ðPðT jxÞ�ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy: ð4Þ

We can expand this gradient such as

r�;�Lð�; �Þ ¼
Z

r�;�ðPðT jxÞÞ�ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy ð5Þ

þ
Z

PðT jxÞr�;��ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy ð6Þ

¼
Z

PðT jxÞ
PðT jxÞ r�;�ðPðT jxÞÞ�ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy ð7Þ

þ
Z

PðT jxÞr�;��ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy ð8Þ

¼
Z

PðT jxÞr�;�ðlogPðT jxÞÞ�ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy ð9Þ

þ
Z

PðT jxÞr�;��ðf ðx;TÞ; yÞÞPðx; yÞdTdxdy: ð10Þ

This gradient can be estimated by using Monte Carlo sampling techniques over

the set of training positions where M is the number of trajectories (total of

action sequences):

r�;f Lð�; f Þ �
1

n

Xn
i¼1

1

M

XM
k¼1

r�ðlogPðT jxiÞÞ�ðf ðxi;TÞ; yiÞ þ rf�ðf ðxi;TÞ; yiÞ
" #

:

ð11Þ
aWe consider that B is ¯xed, the extension of this model to variable number of steps being the object of a

future research.
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The gradient is then composed by two terms. The ¯rst one aims at correcting

trajectories by penalizing the trajectories with high loss and the second one is the

gradient for the prediction part. Note that

r logPðT jxiÞ ¼ r
XB
t¼1

logPðat jat�1; ot�1; . . . ; a1; o1Þ: ð12Þ

This estimation of the gradient can have a high variance that has been corrected

by replacing �ðf ðxi;TÞ; yiÞ with �ðf ðxi;TÞ; yiÞ � b, where b ¼ Ex;T ;y½�ðf ðx;TÞ; yÞ�
that can be estimated from the training set.

3.4. Recurrent neural network-based policy

From these de¯nitions we have: (i) to model �ðat ; at�1; ot�1; a1; o1Þ and (ii) to model

f ðat ; ot ; at�1; ot�1; a1; o1Þ. In these two cases, we have to aggregate the information

gathered by the robot, i.e. the ots. This will be handled by using a classical recurrent

neural network mechanism: at each time step, the current trajectory will be captured

through a latent vector zt in a latent space RN where N is the dimension of this space.

We denote haðz; oÞ : RN � Rna ! RN the aggregation function associated with

action a and which computes the latent vector ztþ1 from zt using the information ot
collected at time t by choosing action a. Moreover, we denote gða; ztÞ the function

that computes the probability of each possible action from zt . Given these two

functions, the inference algorithm can be written as Algorithm 1. In this algorithm,

at each time step t, gðajztÞ is computed from the latent state zt and the action at is

sampled from gðajztÞ. An observation ot associated to at is then returned that will be

used to compute the next latent state ztþ1 such that

haðzt ; otÞ ¼ tanhðWzzt þWaotÞ; ð13Þ
where Wz and Wa are matrices associated to z and o.

The resulting gradient can be computed by using back-propagation techniques.b

bThe source code in Torch7 can be found at: https://github.com/nassim5/torch ws/tree/master/recur-

rentSequentialActionSelection.

Algorithm 1 Inference
1: for t ← 1, B do
2: p = g(a/zt) Compute the action distribution
3: Apply action at

4: Acquire observation ot

5: zt+1 ← hat(zt, ot) Compute next latent vector
6: end for
7: ŷ ← f(zB) Prediction
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4. Numerical Experiments

We tested the capacity of this model in two di®erent setups: the ¯rst in a simpli¯ed

simulated environment, and the second on data recorded with a PR2 robot navi-

gating indoor within a local experimental room. We ran three di®erent experiments

in total: (1) the ¯rst experiment in simulation serves as proof-of-concept that the

algorithm enables an agent to autonomously learn a policy (e.g. turn, check camera

information, check laser information) within a ¯xed budget (that limits the number

of allowed actions) while providing the agent with su±cient information to localize

itself within the environment. Preliminary results of this ¯rst experiment have been

presented at the IEEE Robotic Computing 2017 Conference [23]. The second ex-

periment is performed again in simulation in order to test the ability of the algorithm

to transfer acquired knowledge from an environment to another. The idea is that the

algorithm can learn a general active sensing policy for di®erent families of environ-

ments (e.g. large versus narrow environment, or environments with a small versus

large number of obstacles) and then reuse this policy for other environments from the

same family while only learning the classi¯cation (i.e. localization) task speci¯cally in

each new environment. Finally, the third experiment is performed with real data

collected with the PR2 robot in order to test o®line the ability of the algorithm to

autonomously learn to neglect unreliable sensors and to exploit reliable ones in a

given environment.

4.1. Simulated case

We ¯rst validate the algorithm in a set of experiments using a simulated 2D envi-

ronment. This environment corresponds to a 50� 50 grid where each position can be

empty or occupied by a colored wall. We consider an agent moving within this

environment with 2 possible move actions (turn left, turn right), and one acquisition

action where the robot can acquire a 1D image through a virtual camera. This image

corresponds to a partial observation of what is in front of the robot. The goal of the

agent is to predict its position (i.e. to localize itself within the environment) using a

limited number B of actions. Hence, this corresponds to an active sensing task where

an explicit budget is taken into account for the classi¯cation.

An example of such a maze is given in Fig. 2. Note that the position prediction

problem has been casted in a 4� 4 classi¯cation problem as it is illustrated on the

¯gure. When at is a movement action, the agent receives an empty observation ot
while when at is an image acquisition action, the agent receives a vector of values

corresponding to the RGB-pixels in front of the robot. Note that when choosing to

turn right or left, the robot changes its angle by �=4. For the training phase, we have

sampled 5000 training positions (and 2500 validation positions to tune the para-

meters of the model) and the quality of the model has been evaluated in term of

accuracy on 2500 di®erent testing positions. A position is characterized by the

coordinates of the robot in the maze and its orientation, sampled in the set of

f0; �=2; �; 3�=2g.
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We have compared our approach with two di®erent baselines, and for di®erent

values of B:

. The image classi¯cation baseline corresponds to a classical classi¯cation model

(i.e. multilayer perceptron) where 1; 2; 3 or 4 images are acquired by turning the

agent on the left at each time step. The collected images are then concatenated and

given to the classi¯cation model

. The Forced policy model is a model where � has been manually chosen in order to

alternate between image acquisition and turn left action. The resulting trajectory

for B ¼ 5 is thus (image,turn,image,turn,image).

. The Learned policy corresponds to the case where the agent can freely choose

which action to apply, and where our model learns the optimal active sensing

policy in parallel to learning the classi¯cation task for the tested environment.

We explored the values of the di®erent parameters with a grid search paradigm:

. The learning rate for both the policy learning and the representation learning:

f0:0001; 0:001; 0:01; 0:1g
. Size of latent space z: f10; 50; 100g
. The sensor resolution: f10; 30; 50g
For the Forced policy and the Learned policy, we have explored two variants, i.e.

recurrent and nonrecurrent. In the ¯rst case, the ha function is reused at every time

step while in the second case, one uses an h t
a function at each time step resulting in a

model with more parameters to learn. the parameters (size of the latent space,

learning rate, etc.) have been chosen by cross-validation. The results presented in

Table 1 have been averaged over 5 di®erent runs.

First, the quality of the classi¯cation model improves when the number of ac-

quired images increases. This con¯rms that providing more information to the agent

helps him to compute a better localization. Moreover, when using the Forced policy,

the model is able to achieve 75:2% when collecting 3 images (B ¼ 5) and thus to

increase its performance by 16.4 points (corresponding to a 28% increase) with

Fig. 2. Simulated data. The black square represents the robot. The dotted lines represent the range of the

camera. The plain colored lines represent randomly placed walls. The horizontal and vertical lines

represents the spatial discretization.
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respect to using only 1 image. The Learned policy model is able to achieve a 75:2%

accuracy on the same task showing that the agent has learned a relevant policy and

has been able to discover how to move and when to acquire information. We also

note that the model improves by 31:6 points (a 72% increase) between B ¼ 1 and

B ¼ 5 and only improves it by 4 points from B ¼ 5 to B ¼ 7 (a 5% increase). Note

that the recurrent versions of the two models give a better performance since they

need to estimate a smaller number of parameters than the nonrecurrent versions,

allowing a better generalization. In Table 2, we see that for B ¼ 1 and B ¼ 3 the

model reaches the best policy 5 times out of 5 simulated runs. In the case of B ¼ 1,

the model always asks for an image in order to examine the surroundings. In the case

Table 1. Results for simulated experiment. The results represent the

performance on test set (in percentage).

Budget

Data acquisition 1 3 5 7

Image classi¯cation 44.4 52.8 56.7 58.1

Forced policy
Recurrent 58.8 70.2 75.2 76.1

Nonrecurrent 55.8 60.8 61.2 65.3

Free policy
Recurrent 43.6 71.6 75.2 79.2

Nonrecurrent 46.8 69.4 70.4 73.2

Table 2. Individual performances in a Learned Policy case (in percentage) with the recurrent

model. The table is classi¯ed from best performance to worst in respect to each budget with the

equivalent learned policy.

Budget Run Policy Performance

1 1 Image 46.4
2 Image 45.3

3 Image 43.3

4 Image 42.1

5 Image 41.3

3 1 Image-Right Turn-Image 75.2

2 Image-Right Turn-Image 73.8

3 Image-Right Turn-Image 70.5
4 Image-Left Turn-Image 69.8

5 Image-Right Turn-Image 68.8

5 1 Image-Left Turn-Image-Left Turn-Image 78.8

2 Image-Left Turn-Image-Left Turn-Image 77.2

3 Left Turn-Image-Right Turn-Right Turn-Image 74.8

4 Image-Right Turn-Image-Image-Image 73.7
5 Image-Image-Image-Right Turn- Image 71.6

7 1 Right Turn-Image-Right Turn-Image-Right Turn-Image-Image 80.7

2 Image-Image-Left Turn-Left Turn-Image-Left Turn-Image 80.6
3 Image-Image-Right Turn-Image-Image-Right Turn-Image 79.7

4 Image-Image-Left Turn-Image-Left Turn-Image-Image 79.4

5 Image-Image-Left Turn-Image-Left Turn-Image-Image 75.5
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of B ¼ 3, the agent learns to alternate between the data acquisition and the explo-

ration actions. However, in the case of B ¼ 5 and B ¼ 7, we see that the agent tends

to take redundant actions by repeating the data acquisition step (without moving,

thus acquiring twice the same image) and/or actions related to exploration (not

acquiring images after movements).

This ¯rst set of results shows that the model can learn an e±cient policy for

localization provided that a su±cient budget is available. Moreover, tests with in-

creasing budgets show that the model tends to converge to a maximum performance

of classi¯cation in a given environment, as increasing from B ¼ 5 to B ¼ 7 does not

improve it much. This suggests that ¯nding a compromise between the performance

and the budget may be useful in order to ¯nd an optimal budget by environment.

Furthermore, the model could be useful for real-world robotics if it could learn a

policy and an optimal budget transferable to other environments with similar

properties (e.g. similar size, similar number of obstacles), rather than having to

exhaustively relearn a policy under di®erent budgets in each new environment

xperienced by a robot. This is what we explore in the next section.

4.2. Transfer learning in the simulated case

In the previous experiments, a virtual agent controlled with our algorithm had to

learn both an e±cient active sensing policy (e.g. acquire image with camera, then

turn left, then acquire another image with camera, etc.) and a classi¯cation task (i.e.

localize itself) in a simulated environment with obstacles. Moreover, we have tested

this process exhaustively for di®erent budgets. However, a more e±cient and gen-

eralizable process would consist in having the agent learn a single general active

sensing policy for a whole family of environments with similar properties (i.e. similar

sizes, similar number of obstacles), and only learn the speci¯c classi¯cation task for

each environment. Moreover, our approach could be promising for robotics if we

could automatically learn the optimal budget ��� optimal in the sense of maximizing

a certain cost-bene¯t function ��� for a family of environments without having to

exhaustively explore all possible budgets when experiencing a new environment from

the same family.

In order to test the ability of the model to learn an e®ective and general

active sensing policy, we developed here an experimental protocol where an agent

learns a policy in an environment A, then transfers the learned policy in an envi-

ronment A 0 of same family, i.e. same size than A and same number of obstacles

however rearranged. The model learns the policy and the classi¯cation task in the

environment A but only the classi¯cation task in the environment A 0, while re-using
the policy learned in A.

We created four di®erent mazes in order to test this protocol: A and A 0 of size
50� 50 px, B and B 0 of size 20� 20 px (see Fig. 3). A and B are the `̀ Learning

environments", A 0 and B 0 are the `̀ Testing environments". The actual protocol is

equivalent to applying a `̀ free policy" learning in the learning environments and a
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`̀ forced policy" learning in the testing environments, with the best policy learned in

the previous environments.

Environment A is more di±cult to learn than B (compare the ¯rst two rows of

Table 3), the policies learned in the learning environments give good results,

when applied in the testing ones (Table 3, third and ¯fth rows). This suggests

that the model learns policies that are very e±cient and can be transferred to

other environments without re-learning the policies all over again at each environ-

ment. Moreover, we tested the ability of the learned policy to be validated in

Table 3. Transfer learning performances (in percentages)

between environments of same or di®erent nature.

Budget

Type env 1 3 5 7

Train env (A) 46.4 75.2 78.8 80.7

Train env (B) 81.5 89.5 93.6 96.3

Train env (A) ! Test env (A 0) 51.6 56 69.1 75

Train env (B) ! Test env (A 0) 56.4 57.5 61.7 66.6
Train env (B) ! Test env (B 0) 72.2 75.7 90.7 96.4

Train env (A) ! Test env (B 0) 74.6 81.4 89.2 95.2

Fig. 3. Example of di®erent mazes used for the transfer learning task. Maze A and Maze B are the

learning environments and Maze A′ and Maze B′ are the testing environments.
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cross-environments, i.e. that the policies achieved in the learning environment A and

B have been respectively transferred to the testing environments B 0 and A 0. When

the policy learned from the environment A (50� 50 px) is transferred to B 0

(20� 20px), the performances are similar to those obtained after training in B,

which is not the case in the reverse situation, where performance at high budgets

(5 or 7) are clearly lower (Table 3, fourth and sixth rows). This is due to the fact that

in environments more di±cult to learn, like A, the model is forced to learn more

e±cient policies, which is not the case in simpler environments B, where the model

learns redundant policies that are e±cient enough. This suggests that having a

high budget in a simple environment may lead to policies that do not bring

signi¯cantly more information than policies corresponding to smaller budgets.

Thus under strong budget constraint, one may want to ¯nd the smallest possible

budget bringing enough information for classi¯cation. We will de¯ne this as an

optimal budget hereafter, in the sense that such a budget maximizes a certain cost-

bene¯t function.

In order to quantify how much each tested increase in budget contributed to a

more or less important improvement of the classi¯cation performance, we de¯ne a

function RG which computes the relative gain in performance from using a budget

B ¼ i compared to the preceding one (B ¼ i � 2) according to

RGðiÞ ¼ ðPer f ðB ¼ iÞ � Per f ðB ¼ i � 2ÞÞ
ð1� Per f ðB ¼ i � 2ÞÞ : ð14Þ

While the RG function provides us with a quantitative evaluation of the relative

e±ciency of learning under di®erent tested budgets, it does not explicitly penalize

high budgets. Alternatively, one may prefer to divide the performance by a certain

function of the budget, so that high budgets are evaluated as relatively less advan-

tageous than low budgets, unless they really lead to a strong improvement in clas-

si¯cation performance.

The choice of a function which penalizes the model as a function of the budget is

somehow arbitrary. Ideally, we would like a function as general as possible, so that

the human experimenter remains free to either accept high budgets for a given

performance x if the priority is put on maximizing performance, or to reject high

budgets for the same performance x if the priority is put on limiting the budget. As

proof-of-concept, we thus de¯ne the following simple cost-bene¯t function CB which

computes a compromise between the performance and the budget:

CBðiÞ ¼ Per f ðB ¼ iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB ¼ iÞn
p ; ð15Þ

where n is a parameter (n 2 Nþ) determining the budget pressure. The higher n, the

more one is ready to accept a higher budget for a small improvement of performance.

Figure 4 illustrates the results obtained when applying these two criteria with a

budget pressure parameter n ¼ 3 on the data simulated in the training environments
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A and B: the best cost-bene¯t ratio and relative gain both correspond to a policy

with a budget of 3 in large environments (A) and with a budget of 1 in smaller (B).

This can be used as a criterion to decide a priori which budget is the most useful in

environments of same nature without re-learning the task from the beginning.

To summarize, in the second simulation experiment we have studied how

di®erent types of information could be transferred from one environment to another.

We have found that an active sensing policy learned in an environment from a

size family (A or B) could be transferred to another environment from the same size

family (here A 0 and B 0, respectively). Moreover, we found that a policy learned in a

large environment could be successfully transferred to a smaller one. Finally, we

found that di®erent families of environments have a di®erent optimal budget which

maximizes some cost-bene¯t function. These properties would enable a navigating

robot to save time by re-using previously learned active policies and optimal budgets

when experiencing new environments recognized as belonging to the same family.

4.3. Real data case

The experiment to test the model described above has been extended to a real world

data case, where the robot tries to localize itself within a real environment.

The protocol is very similar to the one described in the simulated case.

A PR2 robot (Fig. 5) has been used for data acquisition. We used the wide

stereo camera available in order to extract the images that will feed the model with

information about the environment.

Fig. 4. Cost-Bene¯t/Relative performance gain: blue lines show the cost-bene¯t/relative performance

gain in maze A and green lines in maze B. Thick lines are the Cost-bene¯t (15) and dotted lines are the

relative performance gain (14).
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The problem being kept as a classi¯cation one, we needed to create classes for

the model to learn from. For that purpose, the environment has been divided into a

¯xed number of 16 `̀ cells". Each cell is a square of 4m2 of surface (2m � 2m).

Within each cell we randomly selected 40 coordinates, from which data was

acquired. At each coordinate, we acquired a whole panorama of images with the

camera (an image every 45� for a 360� panorama). This leads us to a database of

16� 40� 8 images which makes a total of 5120 images where each image is associ-

ated to a given cell (i.e. class), a set of coordinates and an orientation (example

images on Fig. 6).

We ran a grid search algorithm on the same parameters that have been listed in

Sec. 4.1 for the learning rates and the size of the latent space z.

The extracted images have been preprocessed with an already learned Convolu-

tional Neural Network (CNN) developed in [24] called OverFeat, which provides

image representations as vectors of 4096 dimensions. This preprocessing is used to

generate meaningful representations that will be used as inputs for the model.

We compared the three di®erent data acquisition methods as done in the simu-

lated case (Sec. 4.1), i.e. concatenation of images, forced policy and free policy.

The conclusions that have been drawn from the simulated protocol are still valid

in this case (Table 4). The bigger the budget, the better the performance. However,

Fig. 5. The PR2 robot, used for data extraction in a real-world indoor environment.
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the average performance is not as satisfying as the performances observed in the

simulated case: this is due to the fact that the model takes time to converge to the

policies that alternate between data acquisition and exploration actions. This is due

to several factors: the ¯rst one is the high dimensionality of the data, where an image

is represented with a vector of 4096 features. This problem of dimensionality a®ects

the convergence of the model. For example, in the case of B ¼ 3, the model converges

sometimes to a policy of f Image, Image, Image g, which is due to the reach of a local

minimum that is hard to overcome with data of such large dimensions and a sample

of data as small as 2560 training positions. Second, we faced a problem of over ¯tting,

where in the training phase we observe high scores that can reach 99%. This is either

due to the lack of data or to the fact that the image representations obtained with the

OverFeat CNN are not accurate enough for these data. However, in Table 4 the

performances in the free policy protocol are as high as the ones obtained in the forced

policy case which re°ects that the model tends to learn e±cient policies, alternating

between data acquisition and exploratory actions, equivalent to the ones forced by

Table 4. Results for real case experiment. The

results represent the performance on test set (in

percentage).

Budget

Data acquisition 1 3 5

Image classi¯cation 49 52.2 53

Forced policy Recurrent 42 43 44.2

Free policy Recurrent 43 46 47

Fig. 6. Examples of data extracted with the wide stereo camera of the PR2 robot.
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the experimenter. The obtained results re°ects the noncapacity of the model to

generalize on these speci¯c data, not its capacity at learning e±cient policies.

In the following discussion, we will sketch a series of possible extensions of the

model that could be attempted in future work to improve its performance with real

data.

5. Conclusion and Discussion

We have introduced in this paper a new learning model, where an agent can decide

when to acquire information for a given localization task. It corresponds to an

original problem where the information acquisition has a cost, which is di®erent to

the classical paradigm used in the machine learning ¯eld, where information is

gathered at each time step and in the robotic ¯eld, where the data are acquired

without limitations. We have proposed a set of experiments in a simulated case

showing the interest of this approach, and preliminary results in a real case, that

require further investigation.

We also developed an experimental protocol that shows in simulation the capacity

of the model to learn active sensing policies that can be generalized to environments

with similar properties (e.g. size, number of obstacles). One particular interest of this

approach for robotics is that it could enable robots to avoid relearning everything

from scratch in each new encountered environment. Instead, the robot can re-use

previously learned active sensing policies for localization which turned out to be

e±cient in environments with similar properties than the new environment.

Moreover we have tested explicit cost/bene¯t functions that can be used a priori

as criteria to choose which budget is the most adequate to which environment in

order to balance between the used budget and the gain in performance that each

budget brings to the model. These functions constitute a simple way for the robot to

generalize knowledge about which budget is su±cient in each type or family of

environments, so that it does not need to re-explore exhaustively all possible budgets

in each new environment. Although these functions are somehow arbitrarily de¯ned,

we have tried to make them as general as possible so that the human experimenter

can parametrize the cost-bene¯t function depending on whether he is short on budget

or not. Besides, both functions casted a di®erent optimal budget for the two tested

families of environments A and B, which suggests that these di®erent environments

can be robustly distinguished by di®erent budget functions.

Future research for this model aims at testing the capacity of the transfer protocol

to di®erent navigation environments to which human experimenters classically as-

sign di®erent labels (e.g. open space, corridor, junction, indoor versus outdoor).

Another future investigation would be the improvement of the real dataset: as seen

here, the performances of the real data case are less conclusive than the simulated

one. As discussed in Sec. 4.3, this is either due to the lack of data or to the fact that

OverFeat does not return meaningful representations of the images. It would be

useful to train a new CNN that learns new representations only on the images
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extracted from the robot by de¯ning di®erent sizes of the representation vector and

to augment the dataset by dividing the images into patches. Another possible way of

improving the performance with the real data could be to dynamically allocate the

budget, so that the robot starts learning with a high budget and progressively tries to

reduce the budget and see whether a smaller budget is acceptable or whether it

dramatically impairs the performance. This somehow would be equivalent to having

the robot learn when to stop acquiring new data and provide a classi¯cation. One

potential advantage of this would be that an initialized high budget could allow a

richer policy that the robot would later reduce, avoiding the robot from being stuck

in local optima when starting from a small budget and trying to extend the policy,

as we found in some cases.
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