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Despite major progress in Robotics and AI, robots are still basically “zombies” repeatedly

achieving actions and tasks without understanding what they are doing. Deep-Learning

AI programs classify tremendous amounts of data without grasping the meaning of their

inputs or outputs. We still lack a genuine theory of the underlying principles and methods

that would enable robots to understand their environment, to be cognizant of what they

do, to take appropriate and timely initiatives, to learn from their own experience and

to show that they know that they have learned and how. The rationale of this paper is

that the understanding of its environment by an agent (the agent itself and its effects on

the environment included) requires its self-awareness, which actually is itself emerging

as a result of this understanding and the distinction that the agent is capable to make

between its own mind-body and its environment. The paper develops along five issues:

agent perception and interaction with the environment; learning actions; agent interaction

with other agents—specifically humans; decision-making; and the cognitive architecture

integrating these capacities.

Keywords: self-awareness, affordance, human-robot interaction, cognitive architecture, learning, decision-

making, planning, Markovian processes

1. INTRODUCTION

We are interested here in robotic agents, i.e., physical machines with perceptual, computational
and action capabilities. We believe we still lack a genuine theory of the underlying principles and
methods that would explain how we can design robots that can understand their environment and
not just build representations lacking meaning, to be cognizant about what they do and about the
purpose of their actions, to take timely initiatives beyond goals set by human programmers or users,
and to learn from their own experience, knowing what they have learned and how they did so.

1.1. Context And Related Work
These questions are not new. Researchers in cognitive science, neurosciences, artificial intelligence
and robotics have addressed the issues of the organization and operation of a system (natural or
artificial) capable of performing perception, action, deliberation, learning and interaction, up to
different levels of development (Morin, 2006).

The term “cognitive architectures” is commonly used in the Cognitive Sciences, Neuroscience
andArtificial Intelligence (AI) communities to refer to propositions of systems organizationmodels
designed to model the human mind. Among the most renown long-term projects that propose
cognitive architectures with the purpose of generality, two are particularly relevant to mention in
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the present context: (1) The SOAR architecture, standing for
State, Operator And Result, proposed by Lehman et al. (2006);
(2) the ACT-R architecture, standing for Adaptive Control of
Thought-Rational proposed by Anderson et al. (2004). SOAR
aims at modeling human cognition and is based on Alan
Newell’s seminal work on theories of cognition (Newell, 1990).
Operational knowledge in SOAR is represented by production
rules. To achieve a goal, the rules conditions are matched to
a “working memory," of which the contents is encoded as
sets of attribute-values. Learning in SOAR is mainly based on
a mechanism called “chunking" (other mechanisms such as
reinforcement learning are being added). This process is similar
to identifying macro-operators, i.e., new rules that abstract the
succession of rules selected to achieve a goal.

The general concept in ACT-R is a classical rule-based
system. Knowledge about facts and events and their relationships
is organized in a declarative memory along with a set of
production rules and procedures. The memory component
contains data structures called “chunks” whose meaning is
nevertheless quite different from the chunks used in SOAR.
The rules associated to selecting particular chunks depend first
on the existence of matching elements in memory, and second
also depend on the estimated probability of success and cost
of their execution. Applying these rules can result in two
different operations: either trigger robot action in the world,
or change the corresponding elements in declarative memory.
Each chunk in memory is also associated to a “base level”
which increases proportionally to the number of times they
have been selected in the past. This results in using chunks
that have already been selected, i.e., that were used in more
successful activations of the rules. The costs and success rates
of the rules is modified according to the outcome of their
execution. This leads to an improvement of the global behavior
through time. Furthermore, there is a “compilation” process that
produces new rules from analyzing the chunks involved in goal
achievement.

These two major cognitive architectures present
numerous common points. First, they both employ symbolic
representations at high levels of abstractions. Second, they
both use production rules to represent operational knowledge.
Learning mechanisms in both architectures is mainly based on
a memory of the success associated to prior action execution.
Neither of these architectures really tackle the issue of operating
in real time, nor the issue of how to build novel internal
representations from sensory data. In practice, the authors
of both architectures say that these are important issues, but
no clear approach is put forward to overcome these issues.
Another important issue is how to link symbolic and sub-
symbolic representations, which goes beyond these proposals.
Nevertheless, for applications to robots operating in real-time
in the world, perceiving and manipulating unprepared sensory
data, this question is central.

Most previous research aiming at developing robot cognitive
architectures did not address the issue of self-awareness, an
expression of consciousness which is a notion that requires to
be clarified, whose foundations are not proven, and which is
even considered as an illusion by some neuroscientists (Hood,

2012), while others propose to ground it in the solid theoretical
framework of Integrated Information Theory (Koch et al., 2016).

We want to investigate if and how a machine can develop self-
awareness. By doing so, we aim at understanding the concept
itself and to propose computational models that can account
for it (Chella and Manzotti, 2007; Lewis et al., 2011). The paper
describes how the notion of self-awareness could be related to
the development and integration of perceptual abilities for self-
localization and environment interpretation, decision-making
and deliberation, learning and self-assessment, and interaction
with other agents. Such an integration appears to be key to
enable the robot to develop some sense of agency, or the
awareness of being in control of its own actions and responsible
for their outcome (Haggard and Tsakiris, 2009). Moreover,
such an integration of the results and characteristics of various
subconscious deliberative processes (such as perception, action
and learning) in a common global workspace (Dehaene and
Naccache, 2001) appears fundamental in humans to enable meta-
cognitive processes such as the ability to report to oneself and
to other agents about her internal state, her decisions and
the way these decisions were made (Shadlen and Kiani, 2011),
but also importantly to develop predictive models of agency
(Seth et al., 2012).

The processes implementing these capacities must operate
simultaneously for online performance in robots interacting
in real-time with their environment as well as with other
agents. Furthermore, central to this project is the design of an
architecture that constitutes a robotic model of an efficiency-
based performance testbed for the integration of these processes,
and which could in a second stage be used to qualitatively
(and even maybe quantitatively Oizumi et al., 2014) assess the
emergence of minimal degrees of awareness as a result of their
interaction for the resolution of a set of tasks. Our goal is to
explore this assertion and to demonstrate it with experimental
proofs of concepts.

The rationale of this paper is that the understanding of its
environment (including other agents) by an agent requires its
self-awareness, which actually is itself emerging as a result of
this understanding and the distinction that the agent is capable
to make between its own mind-body and its environment.
This constitutes a dynamical system in which some authors
have proposed that the awareness of self through stability
and distinctiveness can be built (Marks-Tarlow, 1999; Shoda
et al., 2002). We claim moreover that on the road toward a
better understanding of the integration mechanisms underlying
awareness, the successes and failures of robotics investigations
can be useful in identifying what is not awareness, for instance
when exemplifying some robotic zombies which can solve
without awareness tasks that are thought to involve awareness
(Oizumi et al., 2014).

1.2. What Is Self-Awareness?
We will not attempt a strong definition of self-awareness, but
we try in this paper to ground the concept. Our hypothesis
is that self-awareness must first rely on perception of self as
different from the environment and from other agents. This
necessitates that the robot interacts with the environment and
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build sensory-motor representations that express the affordance
of environment elements to it, and that it interacts with other
agents to distinguish itself from them. Affordance building is
presented in section 2 and distinction from and reasoning on
other agents is discussed in section 4. Building on environment
representations that integrate perception and action, two main
capacities are introduced that we believe are necessary enabler of
self-awareness:

• Self-evaluation. This is the capacity of “knowing that I know"
and deliberately using this knowledge in action selection. I n
other words, the robot builds a knowledge on what abilities it
has learned and when it can use them. It is able to transform
learnt behaviors into explicit skills and to characterize the
situations in which these skills are applicable, reverting to a
planned goal-directed behavior when they are not. This is
presented in section 3.

• Meta-reasoning. The other main capacity is deliberation on
one’s own reasoning. In section 5, we propose a system initially
driven by basic motivations, able to reason on the means for
satisfying them to determine its own goals. Eventually, new
motivations should be learned but this is not developed in the
paper.

In section 6 the cognitive architecture for integrating all robot
capacities is presented, but a validation of this global architecture
still remains to be done. Finally we conclude in section 7.

2. PERCEPTION AND LEARNING
AFFORDANCES

Traditionally, in robotics perception (excluding visual servoing
and similar closed-loop control) is considered only as an
isolated observation process. We believe that this approach
undermines the capacity of current agents (i.e., robots) for scene
understanding. Simultaneously perceiving and acting requires to
interpret the scene with respect to the agent’s own perceptual
capacity and its potential activities. What an agent can do (or
afford) with an object partly circumscribes the meaning that this
object can have for her: a mug on a table is something that can
be filled with liquid and then brought to the mouth in order to
drink for a human; the same object is a place on which to land
(and possibly eat) for a fly, behind which to hide for a mouse, or
something that can be pushed to the ground producing a fancy
noise for a child. This interpretation fits with Gibson’s notion of
affordance (Gibson, 1977; Sahin et al., 2007).

Reasoning jointly on perception and action requires self-
localization with respect to the environment. Hence developing
sensorimotor representations and not just exteroceptive
representations puts the robot in the center of the perceptual
process, and provides a link between self-awareness and
situation-awareness. Robot localization with respect to its
environment provides a differentiation between the robot’s body
and the external world, and includes a necessary distinction
between its parts and surrounding objects. In addition, robot’s
actual components link robot’s body-environment’s state before
and after actions are applied.

In this section we propose sensory-motor representations
and scene interpretation processes that integrate four inputs:
perceptual (perceiving the external scene), proprioceptive (input
from the agent’s own configuration), contextual (previous
knowledge) and the agent’s action capabilities.

We propose a methodology to build models of objects based
on perceptual clues and effects of robot’s actions on them.
Our methodology employs a Bayesian Network for representing
the robot’s actions, the objects in the environment, as well as
changes in the observable environment triggered by the robot’s
actions. We then perform structure learning on continuous
and discrete variables representing these informations in
order to identify the most probable Bayesian network that
best fits the observed data. Analyzing the structure of the
obtained Bayesian network permits the robot to discover
correlations between itself and the environment using statistical
data.

The proposed affordance learning architecture is depicted in
Figure 1. Measurements from the Environment Interaction are
the main inputs of our approach, it includes visual perception
from camera and proprioception values from joints. A set of
clusters are extracted from clouds of points through Visual
perception. Clusters are then tracked to generate hypotheses
about the objects the robot interacts with. Proprioceptive
feedback is retrieved under the form of measurements of
joint and force. Then the input from perception and action
tasks is analyzed by Effect detectors to extract salient changes
from the interaction process. At the intersection between the
two input processes is Sensory-motor learning which represents
the fusion between the perception and action components.
Affordances learning process relates objects, actions and induced
changes considered as effects to build the final sensory-
motor representation. A Motivational system orchestrates the
process of selecting objects and actions that will be applied
on them. The final representation is saved in a long-term
storage which also provides feedback to the motivational
system.

While interacting with the environment, the robot infers
dependencies between the affordance elements (objects, actions,
and effects) thus combining perceptual and proprioceptual data.
The robot’s motivational system relies on the learned sensory-
motor representations and the Beyesian framework to make
predictions about a set of affordance elements. This inferred
information can be used for learning decisions, for future
planning tasks, or to add sensor and motor capabilities to the
innate repertoire.

2.1. Exteroceptive Perception
To our knowledge, most existing segmentation algorithms
mainly focus on raw to low level information from the 2D
image or 3D point cloud. However, some recent methods
for semantic segmentation have been proposed which can
disambiguate object borders by taking advantage of high-level
object knowledge (Silberman et al., 2012; van Hoof et al.,
2014). However, the computational cost of inference on these
methods rises considerably with the increasing number of
objects. Moreover, the relations between nodes come from a
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FIGURE 1 | Architecture of the proposed sensorimotor approach for scene affordance learning.

priori information from the objects class, which limits their use
in self-discovered scenarios.

2.1.1. Over-Segmentation
Over-segmenting a color cloud of points into small regions based
on local low-level features of geometry and color enables to
form supervoxels. We implemented a 3D version of the Voxel
Cloud Connectivity Segmentation (VCCS) (Papon et al., 2013),
which generates evenly distributed supervoxels. VCCS employs
a flow-constrained local iterative clustering process which uses
geometric features and color, and a seeding methodology based
on 3D space. The seeding of supervoxel clusters is done by
partitioning 3D space to ensure that supervoxels are evenly
distributed according to the geometry of the scene. Strict
spatial connectivity of occupied voxels can be enforced by the
iterative clustering algorithm. This algorithm guarantees that
supervoxels cannot flow across boundaries which are disjoint
in 3D space even if they are connected in the projected
plane.

Supervoxels are represented by a 39-dimension feature vector
composed of 33 elements from an extension of the Fast
Point Feature Histogram (FPFH) (Papon et al., 2013), color
information (Lab color space) and spatial coordinates (x, y, z).
This permits to exploit a pose-invariant multi-dimensional
representation based on the combination of neighboring points.
Figure 2 (middle) depicts an over-segmented cloud where each
supervoxel (representing a segment) cannot cross over object
boundaries that are not spatially adjacent in 3D space.

Supervoxels in Figure 2 (middle) only represent individual
patches. A clustering process is needed to group the supervoxels
that possibly correspond to the same object. The non-parametric
technique described in Comaniciu et al. (2002) was implemented

to find the shape of object hypotheses based on the set of clustered
supervoxels.

Figure 2 (right) shows the result of the clustering method as a
set of labels Lhyp(t) for a cluster of supervoxels that may represent
objects in the current scenario.

The set of generated segments (section 2.1.1) are built only
using the sensory data. This means that segmentation issues can
appear in the form of incomplete, divided and false segments
of real objects in the scenario. We overcome this issue by
performing a tracking-by-detection approach which reduces the
number of false positive segmentations (Chavez-Garcia et al.,
2016b). In this approach, each object is represented by its
centroid, which additionally offers a point of interaction in
further interaction tasks.

2.2. Sensory-Motor Learning
Manipulating objects enables the robot to not only perceive
information, but also and most importantly to learn sensory-
motor correlations between the robot’s basic actions A, the
sensory inputs contained in the objects’ descriptions O, and the
salient changes represented by the effects E. The objective here
is to learn from regularities in the occurrences of elements in O
and E when an action ai ∈ A is triggered. While the robot is
starting the learning from built-in actions, this process permits
to progressively develop a representation of the environment
captured by perception through object movement detection and
proprioceptive feedback.

2.2.1. Objects
We make the assumption that the robot has prior perceptual
capabilities that enable it to discretize the environment. These
capabilities are related to the segmentation approach. The robot
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FIGURE 2 | Results from the perception process. Appearance and spatial information from the RGB-D point cloud of the real scene (Left); supervoxels from

over-segmentation of the point cloud (Middle); and results from intrinsic clustering (Right).

has prior geometrical notions of position, continuity of segments
and normal extraction for surfaces, can recognize different color
values, and using these perceptual capabilities can extract higher
level features (e.g., as combinations) for describing confirmed
objects. The cloud of points representing a object can provide
relevant features, such as color, size and shape. Our architecture
permits to incrementally learn the set of perceptual features
which are relevant in the robot’s surrounding environment.

2.2.2. Actions
We assume that the robot is built with a set of basic motor
capabilities, or actions, described relative to the actor and its
morphology. These basic actions A = {a1, ..., an} are defined with
respect to their control variables in joint space:

a : {Q, Q̇, Q̈}τ (1)

where Q are the joint parameters of the robot used in action
a, and τ the duration of this action. This implies that, by
definition, two actors with completely differentmotor capabilities
and morphologies cannot execute the same actions (but their
effect might be identical).

The extraction of points of interest in the image representing
a particular object is done by raising perceptual hypotheses about
possible identifications of this objects. These points are used to
reduce the set of possible actions that permit to approach the
object through perceptual servoing. In that sense, the focus of
our work is really on sensorimotor representation through object
manipulation.

2.2.3. Effects
An effect is a correlation between an action and a change in
the state of the environment, which includes the agent itself.
Effect learning can be crucial to build internal world models used
for learning and decision-making, consisting in actions’ effect in
terms of possible rewards and possible transitions to different
states of the environment (see section 3 for examples of how the
robot can use such world models).

When a robot interacts with an object it can perceive (via
its exteroceptive capabilities) changes related to the position or

FIGURE 3 | Representation of the grasp-ability affordance relation.

appearance of the object, proprioceptive values from actuators
and feedback from end-effectors. Effect detection (or lack
thereof) represents the common ground for perception and
action frames. Robot’s capabilities to detect effects are divided
into two groups: perceptual-based (e.g., changes in perceptual
representations of objects); and proprioceptive-based (e.g.,
changes in robot’s internal representations).

2.2.4. Affordance Learning
We follow the definition of an affordance employed in Andries
et al. (2018), where we consider O the set of objects, A the set
of actions, and E the set of observable effects. When an actor
gm applies an action al on object ok, generating the effect ej, the
corresponding affordance α is defined as:

α = ((ok, al), ej), for ok ∈ O, al ∈ A and ej ∈ E, (2)

This definition shows an affordance as an acquired relation
between the elements inO,A, and E (Chavez-Garcia et al., 2016a).

An example of an affordance relation between the object toy
and the robot is shown in Figure 3. It illustrates the application
of the robot’s capability grasp, implying that there is a potential of
generating an effect grasped that can be detected by the robot’s
exteroceptive and proprioceptive capabilities (e.g., grip force
change). Using the semantic value of this relation, we can label
it as grasp− ability.
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When the robot interacts with the environment, we record the
values of each element in the affordances’ sets. By considering
each element as a random variable in a Bayesian network B,
the problem of discovering the relations between E, O and A
can then be translated into finding dependencies between the
variables in B, i.e., P(B|D), which means learning the structure
of the corresponding Bayesian network B from interaction data
D. In this way, affordances are described by the conditional
dependencies between variables in B.

The score of a structure is defined as the posterior probability
given the data D. We implemented an information-compression

score that applies a penalization defined as s(N) =
log(N)

2 to
represent the number of bits needed to encode B (Chavez-Garcia
et al., 2016b). This score penalizes structures with larger number
of parameters.

We implemented a search-based structure learning algorithm
based on the hill-climbing technique (Chavez-Garcia et al.,
2016b). The algorithm receives as input the values of variables in
E,O, andA recorded during robot’s interactions. It attempts every
possible single-edge addition, removal, or reversal, selecting
as current top-candidate the network with the highest score,
and iterating. For each tested structure the algorithm estimates
the parameters of the corresponding local probability density
functions. The process stops when the score can not be increased
anymore by a single-edge change. Although this algorithm does
not guarantee that it will settle on a global maximum, a simulated
annealing technique was implemented to avoid getting stuck in
local minima.

Such a robotic implementation of the Bayesian Network
framework for perception allows the robot to display
relationships between affordance elements. The directed nature
of its structure approximates cause-effects relationships and
includes uncertainty from the interaction process. Moreover, in
addition to direct dependencies, the model can represent indirect
causation. These elements are key to enable a first minimal
level of self-awareness of the robot by being able to monitor the
effects of its actions on the environment, differentiate itself, other
agents, movable objects and fixed elements of the environment.
The uncertainty about the learned effect can moreover enable
the robot to display some degree of confidence about the things
it learned and to explicitly require more interactive experience
with the objects and actions for which it is less confident. Finally,
the estimated transitions between states of the environment
that can be learned within world models enable some degree
of anticipation, permitting the robot to predict future states of
the world depending on its actions and on the actions of the
others (as we illustrate in the joint action framework presented
in section 4). These capacities will be crucial for planning
and model-based learning abilities developed in the next
section.

3. LEARNING ACTIONS AND PLANS

One of the main points presented in this section is that the
ability to coordinate different strategies for decision-making and
reinforcement learning (here considered as the main adaptation

process of decision-making) can constitute a first step toward
(i) more robotic autonomy and adaptation, but also toward
(ii) the capacity for the robot to analyse the efficiency of
its decision-making processes and use this analysis to change
not only its behavior but the way it generates its behavior.
Moreover, performing efficient online dynamic coordination
of multiple learning and decision-making systems requires the
implementation of a meta-controller within the robot cognitive
architecture, which observes what each system does, and predicts
and monitors their effect on the robot’s internal state and
environment. This can thus participate further to the emergence
of self-awareness as integration of deliberative and reporting
processes.

Here we consider that the motivational system of the robot
(see section 5) provides reward to the latter when it fulfills
certain tasks (e.g., recharging its batteries in a particular
location, or answering a human request). We further make the
assumption that for the duration we consider, this motivation
will remain stable. In order to accomplish the task and satisfy
its motivation, the robot needs to act in its environment. Its
action selection mechanisms are then in charge of producing
the relevant behavior to reach the task’s goal. These action
selection mechanisms have been traditionally modeled by the
robotic community by action planners (see Khamassi et al.,
2016; Ingrand and Ghallab, 2017 for recent reviews). Planners
produce a sequence of actions to bring the robot from its
current state to the goal state. Initially based on first-order
logic (Fikes and Nilsson, 1971), these planners have been
extended with probabilistic methods to take into account
uncertainty by modeling the problem as a Markov Decision
Process (sometimes Partially Observable if the uncertainty is
on states). This also allows to use reinforcement learning
(RL) algorithms (Sutton and Barto, 1998) to find relevant
policies.

In RL, two main categories of methods can be used: model-
based methods learn and use the transition and reward models of
the problem (respectively the structure of the state-action-state
space and the reward signals in the state-action space); model-
free methods locally learn the reward-predictive value associated
with each state-action pair without explicitly taking into account
the effects of the action predicted by a world model of the task.
The former are comparable to planning, as they find the optimal
policy (i.e., the best action plan) through a costly computation
using a model of the task, and hence completely update the
policy between two interactions with the environment. The latter
are reactive methods allowing fast action selection but are slow
to learn, requiring multiple interactions with the environment
to locally update each state-action value. Each type of action
selection process has its advantages and has been used in a
variety of applications (Kober et al., 2013). However, research
in robotics have only recently started to consider the possibility
of combining these two different learning methods as parallel
alternative strategies to solve the same task (Caluwaerts et al.,
2012; Renaudo et al., 2014).

These multiple action selection systems architectures for
robotics are inspired by biological evidence of a comparable
systems-combination process in mammals. Neurobiological
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studies have highlighted the existence of a goal-directed behavior
when mammals are moderately trained on an instrumental
task (Yin and Knowlton, 2006; Dayan, 2009). This behavior
is characterized by a decision-making process oriented toward
an explicit goal representation. It is moreover hypothesized to
rely on the progressive learning of an internal model of the
task structure, the use of this model for prospective inference
and planning being experimentally observable through transient
increases in subjects’ deliberation time (Viejo et al., 2015). This
enables a high flexibility in response to sudden changes in the
task (e.g., the source of reward is moved), because behaviors
that the internal model do not estimate as leading to the
goal anymore can be inhibited. On the other hand, extensive
training in a familiar task makes the behavior habitual, which
is illustrated by an increase in subjects’ action rate and an
insensitivity to task changes (Balleine and O’Doherty, 2010),
in the same manner as one could persist with the sequence
of finger presses corresponding to an old pin code after this
code has been recently changed. Interestingly, while healthy
mammals can switch back to goal-directed behavior after a short
persistence time following a task change, lesions to different
brain regions can either prolong or reduce this persistence
period, thus suggesting that both types of behaviors might coexist
and compete for control within a modular brain architecture
(Yin and Knowlton, 2006).

While goal-directed and habitual behaviors have been
modeled respectively as model-based and model-free RL
algorithms (Daw et al., 2005), the question of the mechanisms
underlying their coordination is still an active area of research
in computational neuroscience (e.g., Viejo et al., 2015; Dollé

et al., 2018). Nevertheless, here we do not investigate how to
operationalize this coordination and to adaptively switch from
model-based to model-free control with such a bio-inspired
multiple action selection system architecture, because this has
been the subject of our prior work (Renaudo et al., 2014,
2015b,c). Instead, we focus here on how such an architecture
enables the robot to self-monitor these action selection systems,
when they are advantageous and what advantage they bring
(e.g., efficiency vs. rapidity), and thus how the robot can get
the ability to self-report about the way it makes decisions
while learning a particular task. This ability to self-monitor
can be related to the notion of self-awareness and is stated
as important to allow flexible and adaptive control of a being
(Van Gulick, 2017).

3.1. Multiple Action Selection Systems
Architecture
3.1.1. Overall Architecture
The architecture is presented in Figure 4. Each module (or
expert) is a decision-making system that implements one way
of producing actions: the goal-directed expert in a model-based
RL manner and the habitual expert in a model-free RL manner.
These experts learn either a model of the task or only the
local state-action values based on the reward received from
the motivational system and the experienced states and actions.
States are received from robot sensor data processing and a set of
discrete actions is made available to the action selection systems.

Whereas only one decision-making system (expert here) is
sufficient for a robot to act autonomously, our architecture also
integrates an additional component in charge of monitoring

FIGURE 4 | Global action selection architecture composed of two decision systems implementing corresponding behaviors: the goal-directed expert is a

model-based RL algorithm whereas the habitual expert is a model-free RL algorithm. The meta-controller is in charge of monitoring different expert information, giving

control to one of the two. The reward information comes from the motivational system and represents the goal of the task.
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the decision-making process. The meta-controller analyses each
expert and selects which one is actually controlling the robot at
a given time step. It implements the arbitration method studied
hereafter. We argue that this component is necessary to allow the
robot not only to act according to the task to be fulfilled, but also
to criticize and report on its own decision process.

3.1.2. Possible Coordination Methods
In previous work (e.g., Renaudo et al., 2015b,c) we have studied
and compared arbitration methods that can be separated in
two categories: (i) fusion methods merging action selection
probability distributions from each expert into a given state, and
select an action from the final distribution and (ii) selection
methods evaluating which expert is the most relevant in the
current situation and let it decide about the final action. We have
also defined a reference coordination method where each expert
E among N experts (N = 2 here) has a constant and uniform
probability P(E) of being selected: P(E) = 1/N = 0.5 in this case.
This random selection has been used as a proof-of-concept in
earlier work and defines the bottom performance to evaluate the
interest of each particular coordination method (Renaudo et al.,
2014).

Comparison of these different tested coordination methods
suggests that the arbitration method should take into account
multiple signals rather than only one that will miss some of
the required information (Renaudo et al., 2014, 2015c). It also
suggests that arbitration and expert selection should rely on
information available before the experts actually compute the
action to perform in the current state: this allows to save
computation time of the overall decision process.

Moreover, in previous similar works (Dollé et al., 2010;
Caluwaerts et al., 2012; Dollé et al., 2018), the coordination
is mostly performance-based: the meta-controller in these
algorithms learns which expert to recruit in each state of the task
in order to maximize reward, but does not consider each expert’s
specific properties. Here, the habitual expert is computationally
less expensive than the goal-directed expert. Thus, in case of
equal performance of the experts, self-monitoring these processes
should allow the meta-controller to prefer the less costly expert.
On the other hand, the goal-directed expert is more efficient
to update the whole policy between two interactions with
the environment. When the meta-controller observes that the
habitual expert proposes irrelevant actions, it can decide to select
the goal-directed expert despite its high computational and time
costs.

Thus, to illustrate the interest of the self-monitoring capability
provided by the meta-controller, we propose a new Learning and
Cost arbitration method described hereafter.

3.1.3. A Coordination Method Based on Learning and

Cost Signals
Building on these previous conclusions, we propose a new signal-
based method that uses two measures of expert’s status. Only the
selected expert estimates the action values, which allows to save
computation time and to be more reactive. One signal is directly
related to this goal: the intrinsic computation cost incurred by
each expert to evaluate action values. The other signal measures

the experts’ knowledge about the task, which can be evaluated by
their learning progress.

We define THab,TGD as the mean computation times for the
two experts, evaluated with exponential moving averages (see
Equation 3; λ = 0.02 which is equivalent of averaging over 50
decision steps). These means are updated only when their expert
has been selected to make a decision, as no cost can be measured
otherwise.

s̄t = (1− λ) · s̄t−1 + λ · st (3)

We define δQ as the mean variation of Q-values reflecting the
progress of learning in the habitual expert, and δP as the mean
variation of the transition model probabilities reflecting the
progress of learning in the goal-directed expert. In model-based
RL, learning is about estimating the task’s transition and reward
functions. Thus a measure of learning progress should refer to
the model’s estimation rather than the computed Q-values. The
mean variations are updated after each actionwith an exponential
moving average (λ = 0.2 or 5 decision steps).

In order to combine cost and learning information, we define
VE, the value of selecting expert E as the weighted sums in
Equation (4). We seek to preferentially select the expert that
computes at the lowest cost, and that does not need to update
much its knowledge because it already has enough information
about how to solve the task:

VHab = −(αHab · δQ+ βHab ·THab)

VGD = −(αGD · δP + βGD ·TGD)

(4)

The αi and βi parameters are the positive weights of each signal
in the selection. As δP and δQ have different amplitude ranges,
we set αGD = 1 and αHab = 12, so the transition from goal-
directed expert to habitual expert needs a strong convergence
of Q-values in the model-free algorithm. βHab = βGD =

5 in order not to bias the selection and to keep the natural
difference in expert costs. Since the GD expert is computationally
more costly than the Hab one, this method makes the meta-
controller preferentially select the latter more often when the
learning progress is equivalent between experts. These values
are converted into selection probabilities P(E) using a softmax
function (5) from which the selected expert is drawn. As expert
E pays the cost of estimating actions only if it is selected, its
corresponding TE is only updated in the latter case.

P(E) =
exp(VE/τ )

∑
b∈A exp(VE/τ )

(5)

In this method, τ is set to 1.

3.1.4. Evaluation in a Navigation Task
We evaluated the approach of combining multiple action
selection systems in simulation in previous work. Especially,
preliminary analyses of the reference method in a simulated
human-robot interaction task (see Figure 5, left) have been
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FIGURE 5 | (Left) Setup for the Human-Robot Interaction (HRI) task from Renaudo et al. (2015a): the human and the robot collaborate to put all boxes in a trashbin .

(Right) Arena for the navigation task. A mapping of the states produced by the robot has been manually added. The red area indicates the goal location whereas the

green areas indicate starting locations of the robot. Red numbers are starting location indexes; blue numbers are some states indexes referred to later.

reported in Renaudo et al. (2015a) and are further discussed in
the next section on human-robot interaction. Here, we present
novel results with the Learning and Cost method applied to a real
robot in a navigation task.

In this task, a Kobuki Turtlebot robot has to navigate from
starting locations (see Figure 5, right, green areas numbered
1–4) to the center of a 7.5 m × 3.5 m arena. Two obstacles
split the arena in three corridors, the goal being located in
the middle one (red area). The reward (1 unit) is given when
the robot enters the goal area. It is then driven back to
one of the starting locations (randomly selected). The robot
localizes itself thanks to a standard particular filter based SLAM
algorithm (Grisetti et al., 2007). The occupancy map built
by exploring the environment is discretized into about 30
states following a regular paving. In each state, the robot can
select between the 8 directions around it in the world frame.
The robot controller takes care of driving the robot in the
chosen direction and avoiding obstacles. We evaluate again three
configurations: (i) goal-directed expert alone, (ii) habitual expert
alone, (iii) both experts operate (Combo) and are coordinated
by the meta-controller with the Learning and Cost method.
Each configuration is evaluated 10 times, the habitual expert
alone is given 2 h per repetition to learn from scratch, the
goal-directed expert alone and the combination are given 1h
but benefit from 1h of latent exploration (without reward in
the environment) to allow the goal-directed expert to build its
transition model.

3.2. Results
The first result of this experiment confirms the results from
previous work. Figure 6 shows the final weights (which are
direct images of the Q-values) of the habitual expert in states
near the goal. When the latter is controlling the robot alone,
learning is long and the Q-values are weakly discriminating
which action will give the highest reward. When control is shared
with the goal-directed expert according to the Learning and Cost
method, the habitual expert learns faster (mostly bootstrapped

through observation of the behavior produced by the GD expert),
which is represented by more contrasted final values in these
states.

Figure 7 shows the monitored signals during the navigation
task. Time 0 represents the initialization of a new goal location.
Not surprisingly, the cost of using the goal-directed expert is
one order of magnitude higher than the habitual expert cost.
Interestingly, during the first minutes the habitual expert is more
often selected than the GD expert until the new goal location is
discovered and the GD expert starts making less error so that
it gets more selected by the meta-controller. Then starts a long
habit learning phase where the Hab expert slowly learns the
new appropriate state-action values, which penalizes its selection
(due to the high value of aHab in the criterion). As the two
experts are in different states of knowledge on how to perform
the task, the meta-controller mostly selects the goal-directed
expert, certainlymore costly but more reliable to produce the best
behavior.

Here, given the real robotic setup and the natural slow
learning speed of the habitual expert, the control goes mainly to
the goal-directed expert. In different conditions or with longer
time, the Q-values of the habitual expert can stabilize and this
method favors its selection. Nevertheless, the important message
here relative to the issue addressed in this paper is that these
monitoring signals can be used by the robot to analyse its own
decision-making processes and evaluate which decision-making
strategies (GD or Hab) were the most efficient at different phases
of the task. These capacities to monitor and report about its
own performance can be integrated with representations of other
agents’ own abilities for efficient joint action.

4. HUMAN-ROBOT INTERACTION: AGENT
AWARE TASK PLANNING

For more than a decade, the field of human-robot interaction
has generated many valuable contributions of interest to the
Robotics community at large. We will here give some insights
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FIGURE 6 | Weights of each action (direct image of Q-values) for the habitual expert when alone (Top) or combined with the goal-directed expert (Bottom) at the end

of the navigation task. Each light green dot is the final learned value of each action. The red bar indicates the best action to take from the human perspective. These

measures are shown in the states next to the goal (s27, s28, s29).

concerning a particular type of interaction which is joint action,
and the associated required levels of awareness. To do so, we will
first explain which processes are involved in human-human joint
action and then in human-robot joint action, in order to argue
that minimal levels of self-awareness are required for the robot
to efficiently integrate information about the effects of its actions
and the effects of other agents’ actions into feasible joint action
plans.

4.1. Human-Human Joint Action
In order to establish successful joint action, interacting agents
need to be able to efficiently share and coordinate their
intentions, plans, goals and actions with other participants.
Put it differently, it is not enough to share a common goal
between interacting agents to establish efficient joint action if
each agent then individually chooses his/her own sub-goals, and
simply devise his/her own individual action plan and executes
it. There is a need to share a coherent joint action plan
but also to coordinate actions and sub-plans between agents.
This coordination is particularly crucial during the execution
phase in order to ensure the successful completion of the joint
action (Clark, 1996; Grosz and Kraus, 1996; Bratman, 2014;
Clodic et al., 2017). One possible way to do that is from
the point of view of each agent to monitor both his/her own
actions and intentions as well as those of his/her partner’s.
Such a monitoring process can facilitate the representation

and understanding of the combined impact of agents’ actions
on their shared goal, and the adjustment of what they do
accordingly.

An important ingredient of this agent coordination process
which goes in complementarity with the co-representation
of tasks and actions is joint attention. It is an ability
that has been found in apes to provide a key mechanism
for establishing common ground in joint action by sharing
perceptual representations of the surrounding environment and
task such as the available objects and the occurring events
(Tomasello and Carpenter, 2007). As an example, Brennan
et al. (2008) had participants engage in a joint visual search
task and showed that they were able to most of the time
focus on a common space between them by directing their
attention toward portions of the environment where the other
was looking. Moreover, they found that their performance during
such a joint search task was improved compared to the one
obtained in an individual version of the task. Besides, Vesper
(2014) have shown that co-agents not only engage in joint
attention but also repeatedly perform transient modulations
of their own movements that “reliably [have] the effect of
simplifying coordination." These are known as coordination
smoothers and are part of a more general process called signaling
which constitutes another phenomenon that contributes to
better on-the-fly coordination. A particularly striking example is
when someone exaggerates his/her own movements or reduces
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FIGURE 7 | Evolution of monitored signals when both experts are controlling

the robot during the navigation task. (Top row) shows the sliding mean cost

spent by both experts for decision-making. (Middle row) shows the measures

of learning scaled by their coefficient. (Bottom row) shows the evolution of

the probability of selection of each expert. In these experiments, the strong

parameter of the habitual expert learning measure combined with its slow

convergence favors the goal-directed selection in order to reach the goal more

easily (however at a high computational cost).

his/her movement variability in order to make them more
easily understandable and interpretable by the other participant
(Pezzulo et al., 2013).

It is important in contrast to take into account any form
of joint action that may not require awareness. For instance,
perception-action couplings and emerging synchronies can occur
during joint action, thus making multiple individuals act in
similar ways without any intention to do so, which could be
viewed as a case of emergent coordination. Other processes such
as interpersonal entrainment mechanisms can lead to emergent
coordination without requiring awareness: A famous example
is the one of two people sitting in rocking chairs in the same
room, who sometimes unconsciously synchronize their rocking
frequency (Richardson et al., 2007); Another striking example is
when two people walk side by side and sometimes unconsciously
synchronize their steps (vanUlzen et al., 2008). Another source of
unconscious emergent coordination which is worth mentioning
here is the case of perception-action matching (Prinz, 1997;
Jeannerod, 1999; Rizzolatti and Sinigaglia, 2010). It is a situation
where actions performed by a first agent and observed by a
second one are considered to be mentally matched onto the

second agent’s own action repertoire, through the involvement
of mirror neurons and other mental processes that enable the
induction of the same action tendencies in the two agents.
All these processes are thought to make agents’ behavior more
similar and thus more predictable, which may facilitate joint
action and coordination during action execution.

Humans thus have at their disposal a vast array of processes
that they can use to promote interpersonal coordination. These
processes range from automatic and unintentional on-the-
fly alignments and synchronizations, to sophisticated forms
of reasoning and advanced representational, conceptual and
communicational skills. These processes are complementary
and can be combined together to enable efficient joint action.
Nevertheless, for human-robot interaction, this suggests that not
all joint action situations may require some degree of awareness.

4.2. Human-Robot Joint Action
Human-robot joint action faces similar coordination challenges.
We will explain now a way they can be translated to this case and
quote some related implementation.

The robot needs to have the ability to represent itself and
the human it interacts with. Doing so, it must be able to infer
how each of these representations evolves along the joint action
unfolding. The robot has to be able to consider perspective taking
ability, knowing that representations evolve differently given each
one point of view. Among others, Milliez et al. (2014) and Hiatt
and Trafton (2010) endow a robot with the ability to construct
a representation of other agents’ mental states concerning the
environment allowing it to pass the Sally and Anne test (Wimmer
and Perner, 1983). Then, these mental states are used in Hiatt
et al. (2011) to interpret and explain humans’ behavior.

But the robot also needs to understand and take into account
the effects of its own actions into the mental states of its partners,
which involves a second-degree of awareness. This is done in
Gray and Breazeal (2014) where the robot plays a competitive
game with a human and chooses its action in order to manipulate
the mental state of the human relative to the state of the world.

Each agent must also be able to asses the situation in terms of
links with possible action: the objects that can be manipulated
or moved, their location, the presence or absence of obstacles
that could restrain some possibilities of movements. All these
relate to the learned effects of actions presented in section 2 on
affordances. In Sisbot et al. (2011) the robot uses the geometric
information about the humans and the objects to construct
symbolic knowledge as humans capabilities (an object is visible
or reachable by someone), or relations between objects (an object
is on/in another one). In Lemaignan et al. (2012) we have used
this knowledge to anchor situated discourse during human-
robot interaction. For example, if a human points at a mug
saying “Give me that mug," the robot can understand that the
human wants this mug and not another one. As a corollary, joint
attention appears to be also key during human-robot joint action.
This is because detecting a case of joint attention permits the
robot to know that whatever information it can acquire within
the joint attention space can be considered as also accessible
to its interactor and thus as shared knowledge. Staudte and
Crocker (2011) show that people interpret robot gaze in the
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same way as human gaze and that a congruent use of the robot
gaze helps its human partner to understand spoken references.
Mutlu et al. (2013) also show that the use of speech references
in congruence with robot gaze enables to disambiguate spatial
references in speech, and thus to improve task performance in
joint action. They also put forward that robots in general might
improve task performance and the quality of user experience
during human-robot collaborative interaction by using action
observation.

Another capacity needed by the robot, emphasized, among
others, by Tomasello et al. (2005) as a prerequisite to joint action,
is to be able to read its partner’s actions. Gray et al. (2005)
use the concept of mirror neurons, introduced by Gallese and
Goldman (1998), to infer human action goals by matching the
human movement to one of its own movements (even if the
robot’s morphology differs from that of the human). Hawkins
et al. (2014) endow a robot with the capability to probabilistically
infer what the human is doing andwhat he will do next in order to
anticipate and prepare collaborative action. This capacity relates
to probabilistic transitions learned within the type of world
models used for robot decision-making in section 3. Again, this
suggests that duplicating world models for each agent involved
in the task (Lemaignan et al., 2012) can be a good strategy
for human-robot joint action. This is in line with neuroscience
proposals that a substantial component of awareness resides in
the development of predictive models of agency for self and
others (Seth et al., 2012), and in the ability to report about these
states, predictions and decisions to self and to others (Shadlen
and Kiani, 2011).

Complementarily, shared task representations are important.
It means, if we paraphrase Knoblich et al. (2011)’s definition, that
the robot should have access to some model of what each co-
agents’ respective task consist in and some abilities to monitor
and predict each co-agent’s actions with respect to the shared
goal. (Nikolaidis and Shah, 2012) present a method allowing
the robot to build a shared mental model of how to perform a
collaborative task by looking at human performing the task and
then use it when performing the task with a human.

We have seen that both in human-human and human-
robot joint attention there are similar coordination constraints
that apply. However, it appears that these constraints do not
necessarily apply with the same strength. For instance, when
two humans interact, they both know that they share some
background knowledge such as cultural information, cultural
knowledge, conventions, etc. Thus they can make assumptions
from both sides on what the other knows or not. In contrast, it
seems much more complicated to make similar assumptions in
the human-robot interaction case.

Nevertheless, we have seen that human-human joint
action sometimes involves planned joint action with explicit
shared goals, action plans and attentions, and sometimes
involve automatic synchronization or alignment processes
between partners at a more sensory-motor level. Thus one
might reasonably postulate that the integration of different
types of learning and decision-making within robot cognitive
architectures which has previously been applied to individual
robotic tasks—such as the navigation task presented in section 3

or sequential decision-making tasks in Renaudo et al. (2014)—
may be relevant in the context of human-robot interaction.
This could enable the robot to automatically switch between
automatic/habitual behavior and planned action depending on
the requirement of the task, and thus display more behavioral
flexibility and efficiency during joint action with humans.

Section 3 has put forward the hypothesis that the same
coordination mechanisms for model-based and model-free
reinforcement learning within robot architecture could be
relevant both for non-social and social tasks in the context of
the human-robot interaction task proposed by Alami (2013) and
Lemaignan et al. (2017). Nevertheless, in this previous section
the robot only achieved individual action plans, not joint action
plans.

A more general illustration of awareness of each agent’s
actions’ task-dependent effects and abilities that is required for
joint action plans is shown in Figure 8. Again here, human
and robot have to cooperate by putting some objects in certain
placements where some are accessible only to the human or the
robot. The robot has to elaborate a representation of different
sub-spaces on the table so that it understands that some objects
or places are accessible to the human. The robot tries to estimate
visibility and reachability of the human and of itself (Pandey et al.,
2013; Pandey and Alami, 2014) in order to determine the right
places to use and where they can exchange objects. Also, the robot
here has the capability to estimate the effort of the human in order
to select the most pertinent places.

However, there is still a gap between such representations and
those are required for the execution of an effective shared action
plan. Indeed the robot should be able not only to compute the
perspective of its human partner and use it to estimate how he
can assess the current situation but also to estimate his current
knowledge of the state of the task and the corresponding shared
plan.

In Devin and Alami (2016) and Devin et al. (2017) we have
developed, within the architecture described in Lemaignan et al.
(2017), a framework that permits a robot to estimate the mental
state of its human partner with respect to a given collaborative
task achievement. We have moreover proposed a form of mental
states which contains several task-relevant informations such as
the states of the world, of the goals, actions and plans. To do
so, the robot has to estimate and to permanently update the
spatial perspective of its partners. It moreover has to constantly
track their activity. Once these mental states representations are
constructed and handled by the robot, it can use them to perform
joint actions with humans. In the context of the present project,
we have mostly investigated this in cases of collaborative objects
manipulation. An advantage of the approach is to permit the
robot to adapt online to the human’s behavior and intention
changes, while at the same time informing the human when
needed in a non-intrusive manner, for instance by avoiding to
give unnecessary information that the human could infer himself
through observation or through deduction from past events.

As an illustration, let us consider a PR2 robot sharing with
a human the goal of cleaning a table, that is, to first remove all
objects on the table, then to sweep it, and afterwards to replace all
objects back on the table. Figure 9 shows the initial state of the
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FIGURE 8 | Task of making an object accessible by the human to the robot (Pandey et al., 2013): (a) Places on the support planes where the human can put

something with least effort. (b) Weighted points where the robot can support the human by taking the object. (c) The planner found a possible placement of the object

on the box from where it is feasible for the robot to take. Note that, because of the object-closeness based weight assignment, this placement also reduces the

human’s effort to carry the object.

FIGURE 9 | Initial state of the world in the Clean the table scenario. In this

task, the robot and the human share the goal of cleaning the table together.

world. On the table there is a blue book which is only reachable
by the human, a gray book accessible only by the robot, and a
white book reachable by both. Two actions are available to the
robot: pick-and-place and sweep. The former can be executed by
the robot only when the considered object and support on which
to place the object are reachable by the robot. The latter can be
executed on a surface only when it is again reachable by the robot
and when there are not any objects on it. Figure 10 illustrates the
initial plan produced by the robot to achieve the goal.

The robot, equipped with such enlarged awareness ability,
is not able to perform joint tasks more fluently. to reduce
unnecessary communication and to choose the most pertinent
way to inform about the state of the plan, to produce a
less intrusive behavior of the robot but also potentially detect
situations where human lacks an information allowing him to act
and also the robot can in certain cases prevent human mistakes
due to a wrong evaluation of the current state of the task.

These contributions involved pre-defined world, task and
human models so that the robot can plan complex action
plans involving collaborative human-robot task achievement
with a human-aware task planner (HATP) (Alami et al., 2011;
Lallement et al., 2014) and the associated high-level robot

controller (Devin and Alami, 2016; Devin et al., 2017). This
however did not involve a learning process. We have proposed
in section 3 an extension of this work by considering that the
subparts of the action sequence that are repeatedly performed
by the robot in the same manner in this condition can
be learned by the model-free habit learning system of their
architecture. This is similar to habits learned by humans in
conditions where repetitive behaviors are always occurring in
the same context and in the same manner. This could enable
the robot to autonomously detect and thus be aware of which
situations are stable enough and repetitive enough to avoid
systematically using the slow and costly action planning system.
In addition, this framework should also enable the robot to
automatically detect when environmental changes require to
break the habit and switch back to the planning of new action
sequences. Nevertheless, an extension of this work which is still
under investigation consist in extending this framework by also
enabling the robot to represent a world model associated to
the human’s actions’ effects. This should permit to use model-
based reinforcement learning to refine the world, the task and
the human models used by HATP and the robot supervision
system in order to find other action plans that could not
be anticipated by the human experimenter. This could also
lead to further awareness by the robot of which joint action
plans are predictable by the human, and which should appear
as new.

5. SELF-AWARE DECISION MAKING

5.1. General Approach
Planning in the field of AI is usually considered as the problem
of building a sequence of actions selected from a predefined set
in order to achieve a goal specified by a user or an external
system (see Khamassi et al., 2016; Ingrand and Ghallab, 2017 for
recent reviews). Classical planning is mostly based on First-order
Predicate Logic or extensions thereof. If there are uncertainties
on states, or on action outcomes, a probabilistic formulation is
used and MDPs/POMDPs are the main tools.

The question addressed here is how can a system decide for
its own goals, without being requested by an external agent?
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FIGURE 10 | Shared plan computed by the robot to solve the joint goal: first removing the three objects (books) that are located on the table, then sweeping the table

in order to clean it and finally placing the objects back on the table. While cooperatively achieving the task, the robot will be able to detect and assess correctly why

the human partner stays idle, for instance in cases where, due to a momentary absence, the human may have missed the fact that robot has swept the table.

How can it decide to change goals dynamically? These questions
are important because their answers determine if the agent
is capable of a form of volition. Addressing them has lead
to design a system capable of meta-reasoning to reflect on
its objectives and on the way it is accomplishing them. In
other words, the system described next is reasoning on its own
motivations and actions, a feature we believe is related to self-
awareness.

We want to build a system able to reach potentially concurrent
goals and to manage resources such as energy and time, in an
uncertain dynamic world. We aim for autonomous initiative
and decision-making, so that the agent does not only react
to particular stimuli or direct external requests, but most
importantly selects by itself goals to achieve.

We consider the notion of motivation as the basis for
bootstrapping the system’s behavior, the trigger for a capacity
of taking initiatives. The question of internal motivations has
often been overlooked in the autonomous robotics literature:
motivations are usually identified as simple drives emerging from
external stimuli, whose dynamics are entirely dictated by the
metabolism (e.g., decreasing energy level) and the occasional
unconditional rewarding signals issued from the environment
(such as locations for energy charging). The resulting systems
are thus not purely reactive, but they can neither be considered
as deliberative and motivationally autonomous because they lack
an evaluation and selection among motivations. The selection
is rather usually based on inhibitory signals resulting from
external stimuli, such as in the multiple implementations of the
subsumption architecture (Brooks, 1986).

Here, we want to investigate the potential advantage that an
artificial system could have in developing its own preferences,
i.e., to associate virtual rewards (to be distinguished from reward
predictions used in actor-critic models, for example) to specific
states which seem to have a key role in obtaining long-term
rewards and should thus become intrinsically rewarding. These
virtual rewards would be created by the motivational system,
while the learning systems would remain unaware of the real or
virtual aspect of the rewards they are manipulating. A possible
advantage could be to set key-points where a reset of the reward
discount mechanisms would be made, thus avoiding the problem

of the discounted reward vanishing when trying to learn to reach
very long-term goals.

This could account for example for the behavior of rats in the
task studied in , where the stimulus seems to become a reward in
itself, even when the food is not consumed. These virtual rewards
could then be used for learning by model-based and model-free
systems, as has been proposed by Lesaint et al. (2014) to account
for these rats’ behavior in a similar manner to the one presented
in section 3. Virtual rewards could also explain how getting more
money, a normally intermediate step which can indirectly lead to
unconditional rewards like food, can become a reward in itself.

We focus here on the higher level of the robot cognitive
architecture and propose to transform it into a deliberation
system involving a self-awareness capacity. For this we
hypothesize two layers of decision-making: (i) a higher level one
called deliberation layer for solving multiple goal situations given
motivations (using an “intentional module," context and long-
term objectives, producing a “goal agenda" as input to (ii) a lower
level goal-oriented planning system called the operational layer

which will decide of the more precise course of actions to achieve
the goals. This planning system is associated with a supervisory

control system, which enables to control action execution as in

classical systems.
The notion ofmotivation proposed in this paper, is a structure

consisting of (individual or chained) goals, which may be
permanently active or not, and to which we associate rewards.

We aim to predict the precise effects of the resolution of a goal on

the world and on other motivations, in order to compute a high-
level plan, employing goal-reaching policies in the same way that

we usually use actions in an MDP.
We hence develop an architecture that:

1. handles motivations,
2. computes possible policies for each motivation,
3. predicts the behavior of each policy and its effect on

motivations,
4. predicts the effects of a chain of policies,
5. finds an optimal arrangement of these policies, maximizing

the sum of the rewards obtained by the related motivations
for a given time-horizon.
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5.2. Motivations
Motivations are modeled as finite state machines corresponding
to specific objectives, which can be permanent and basic, such as
“maintain a high battery level," or complex and chained, such as
“activate device A and then device B," etc.

The state of a motivation changes when there is a relevant
change in the state of the world. To check if the conditions are
met for changing the motivation state, an observation of world
state transitions (ws, a,ws′) is required, where ws is the initial
world state, a is the executed action, and ws′ is the resulting
world state. World state transitions provide information that can
trigger motivation transitions, i.e., changes in motivation states
from ms to ms′. A motivation transition can be defined as an
expression: (ms, (ws, a,ws′)) → ms′. We associate a positive or
negative reward r to each motivation transition, reflecting its
importance.

A rewarded motivation transition rmt starting from ms1
and leading to ms2 is called an available-rmt when the current
motivation state is ms1. It becomes activated (or triggered)
when the corresponding world transition (ws, a,ws′) happens,
changing the motivation state to ms2 and obtaining the
corresponding positive or negative reward (r). The maximization
of the sum of these rewards will be sought by the deliberation
system.

5.3. Decision System
The architecture of the decision-making system is organized into
the following modules (Figure 11):

• An intentional module, which manages the agent’s objectives
in the form of motivations. It is embedded in the deliberation
modules (see next). It creates a list of motivations msv,
containing the current states of all motivations. Consequently,
given a msv, it is possible to know all the active rewarded
motivation transitions originating from those current states,
called available-rmts. This module is also responsible for
keeping motivations up-to-date, depending on the world state
evolution.

• An operational module, which computes policies based on the
motivations automata, and computes predictions on resulting
policies. It’s based on an MDP.

• A deliberation module. Its role is to provide to the operational
module rewarded word transitions rwt to reach, to enable it to
build predictable solutions that will trigger the corresponding
rewardedmotivation transitions rmt. The deliberationmodule
then computes the effects of these policies on the world
state and on all motivations. These policies are used as
macro-actions to compute a conditional high-level plan for
maximizing the sum of the motivation rewards. This plan
is called policy agenda handed to the supervisory system for
execution. Thus, this module actually reasons on the active
motivations, and on the best way to satisfy them using the
policies the operation module can offer to achieve them. In
other words, this is a meta-reasoning capacity, which we
believe a core feature of self-awareness. The robot is not simply
driven by its motivations, neither by a classical planning ability
which determines a course of actions to achieve a goal. The

robot determines its own goals by pondering how to satisfy its
motivations and based on its planning results.

In summary, the actions are based onmotivations that are driving
the system’s decisions. Motivations trigger the computation of
policies to achieve them. Deliberation evaluates the policies to
select themore rewarding actions. This achieves ameta reasoning
capacity.

6. COGNITIVE ARCHITECTURE

The RoboErgoSum project employs a cognitive architecture
designed for providing a robot with the necessary skills for
autonomous activity in an unknown environment. The software
architecture of the project is shown in Figure 12. Although we
present an architecture unifying the modules detailed in the
previous sections, a validation of the global architecture is yet to
be done. Nevertheless, parts of this architecture were validated
separately, as detailed at the end of this section.

The architecture contains modules for:

• sensing and acting in the environment (Sensorial perception
and Motor modules),

• sensorimotor learning (sensorimotor learning module),
• symbolic knowledge generation and management (blue

modules: Spatial reasoning and knowledge, Knowledge base)
• decision and action planning (green modules: Human-aware

task planning, Reinforcement Learning model-free decision
making system, Human-aware motion and manipulation
planning),

• controlling the modules (Supervision system),
• goal management (Motivation module),
• dialogue management.

The interconnections between the modules are structured as
follows.

The Sensorial perception module contains the innate set
of perceptual abilities for perceiving the environment (visual
perception and proprioception). TheMotormodule contains the
innate set of action primitives available to the robot, which allow
it to interact with the environment.

The Sensorimotor learning module processes the available
pre-processed inputs (i.e., objects detected, actions performed,
measured effects) to discover and learn which interactions are
available to the robot in the current environment (i.e., affordance
learning). It also generates the set of available actions that were
learned after the interaction with the environment, together with
their pre-conditions and post-conditions.

The Spatial reasoning and knowledge and the Knowledge

base modules (Lemaignan et al., 2017) generate and store
symbolic data about the perceived environment. This data is then
used in the action planning phase by the corresponding modules:
Human-aware task planning module (Lallement et al., 2014),
and the Human-aware motion and manipulation planning

module (Sisbot et al., 2007; Sisbot and Alami, 2012). Knowledge
about the current state and the available actions is used by the
Reinforcement Learning model-free decision making system.
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FIGURE 11 | Decision-making architecture including operational, intentional and deliberation modules. The deliberation module implements a meta-reasoning

capability.

The Supervision system communicates with the
aforementioned modules to decide which action planning
system to employ, to perform on-line plan correction, and to
monitor the activity of humans with which it interacts.

The Motivation module manages the set of goals that have
to be achieved by the robot. Together with the action planning
modules, it computes the optimal set of actions to perform, so as
to obtain the highest reward in the given time horizon.

We validated several pieces of this architecture, using different
sets of modules. We employed in an affordance-learning context
the combination of modules responsible for Sensorial perception,
Motor action execution, and Sensorimotor learning (the 3 yellow
modules on the top of the Figure 12), previously described
in section 2 (Chavez-Garcia et al., 2016b,a). Similarly, in a
human-robot collaboration setting, we employed themodules for
Sensorial perception, Motor action execution, Spatial reasoning
and knowledge, Knowledge base, Supervision system, Human-
aware task planning, Human-aware motion and manipulation
planning, Motivation, and Dialogue Manager (Alami, 2013;
Devin and Alami, 2016; Lemaignan et al., 2017). We also
linked these modules with a Reinforcement-Learning model-free
decision making system (Renaudo et al., 2015a), as described in
section 3.

In spite of these advancements, a validation of the global
architecture remains to be done. This would require a
considerable engineering effort for integrating the presented
modules, as not all the interfaces between them are present today.

7. LESSONS LEARNED AND CONCLUSION

Affordance learning mechanisms presented in section 2 to learn
effects of actions constitute a first level of awareness of the
distinction between self, other agents, movable objects and fixed
elements of the environment. The learned action effects can
moreover be used as transition estimates between states of the
environment which can be used as world models for other
learning and decision-making components of the robot cognitive
architecture.

A second level of awareness can be permitted by having the
agent monitor various dynamic signals about the environment
and its performance to decide which learning strategy is
relevant at any given moment, between the model-based and
model-free strategies presented in section 3. This not only
provides more behavioral flexibility and decisional autonomy,
as we have previously argued (Renaudo et al., 2014; Khamassi
et al., 2016), but as we proposed here can constitute a way
for the robot to further evaluate and report about how it
learned a task, which strategies were efficient in particular
circumstances. Further investigations in this direction should
study whether this enable more generalization for the robot
when it can recognize similar circumstances (measured through
the same performance and task monitoring signals) in which
it could attempt similar learning strategies successfully. A
further progress in integration could permit these monitoring
mechanisms to inform in return the affordance learning module
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FIGURE 12 | The global cognitive architecture employed in the RoboErgoSum project. Blue modules are responsible for generating and managing the symbolic

knowledge. Decision-making modules are shown in green. Solid and dashed lines are used only to improve diagram readability where lines cross, and are otherwise

identical in meaning.

to enrich the list of effects associated to actions with long-term
effects in terms of different task resolutions. While this is still
an ongoing part of the present project and requires further
exploration, we argue here that such an integration of robot
cognitive abilities should permit wider and long-term-oriented
awareness of the agent to mentally represent what the tasks it
can and cannot do with regards to its current capacities and past
experience.

Besides, a particularly interesting lesson that we have
learned from studying robot learning mechanisms in social
and non-social tasks (section 4) is the observation that similar
coordinations mechanisms of model-based and model-free
learning strategies with a meta-controller can be relevant
in both contexts. As the review of the human-human joint
action literature suggests, joint action also involves both
conscious model-based joint intention and unconscious action
synchronization. Both are nevertheless important to enable

intentional and unconscious signaling which enable each agent
to be more predictable (and thus readable) by her coactor
for efficient joint action. Application of the coordination of
model-based and model-free learning mechanisms to human-
robot interaction that we have initiated suggests that it could
also permit the robot to become aware of which tasks
performed in interaction with the human can be performed
habitually, and which require a constant monitoring and
reevaluation of possible action consequences through learned
world models. This can further promote the development
of internal models of what the human can and cannot
do, which objects it can or cannot reach, as well as
models of what the respective tasks of each of the co-
agents.

Interestingly, some of the previous human-robot joint action
experiments that we have previously done and summarized
here suggest that a simple duplication of the robot’s individual

Frontiers in Robotics and AI | www.frontiersin.org 17 August 2018 | Volume 5 | Article 88

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Chatila et al. Toward Self-Aware Robots

learning mechanisms presented here could be done within
the robot’s internal representations for each agent involved in
the task. In other words, world models can be learned and
generalized for each agent involved in the task (Lemaignan
et al., 2012) in order to endow a robot with the capability to
probabilistically infer what the human is doing and what he
will do next in order to anticipate and prepare collaborative
action. This is in line with neuroscience proposals that a
substantial component of awareness resides in the development
of predictive models of agency for self and others (Seth
et al., 2012), and in the ability to report about these states,
predictions and decisions to self and to others (Shadlen and
Kiani, 2011).

Section 5 presented progress in the development of further
awareness abilities, this time about the agent’s decisions on
its goals and motivations represented by finite state machines.
We presented a system for managing multiple concurrent
and permanent objectives, performing probabilistic reasoning
with MDPs and capable of reasoning its plans to decide for
the most rewarding actions. The deliberative system has a
modular architecture, which separates the planning from the
goal-managing entity, allowing for an easy integration into an
existing robotic cognitive architecture.

Finally, we presented a global cognitive architecture designed
to permit the integration of these different cognitive functions.

The whole work reported in this paper provides insights about
how to achieve a self-aware system and to decipher what is
awareness and what it is not, by monitoring the processes of
the robot and recognizing when they solved a task with explicit
deliberation and model-based strategies, or through unconscious
model-free learning. It would be interesting to be able to measure

the amount of integrated information in the robot cognitive
architecture during these different processes, and see whether we
can differentiate the two quantitatively, in agreement with the

integrated information theory of Oizumi et al. (2014). This would
need to be the subject of future research projects.
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