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Abstract—Humans can skilfully use tools  and  interact  

with the environment by adapting their movement trajectory,  
con- tact force, and impedance, as  was  described in [1].  
Motivated  by the human versatility, and  using  the  algorithm  
from  [1],  we develop here a robot controller that concurrently 
adapts feedforward force, impedance and reference trajectory 
when interacting with an unknown environment. In particular, the 
robot’s reference trajectory is adapted to limit the interaction 
force and maintain it at a desired level, while feedforward force 
and impedance adaptation compensates for the interaction with 
the environment. An analysis of the interaction dynamics using 
Lyapunov theory yields the conditions for convergence of the 
closed-loop interaction mediated by this controller. Simulations 
exhibit adaptive properties similar to human motor adaptation. 
The implementation of this controller for typical interaction tasks 
including drilling, cutting and haptic exploration shows that this 
controller can outperform conventional controllers in contact 
tooling. 

I. INTRODUCTION 

Contact tooling, such as drilling and carving, require deal- 
ing with the intrinsic instability resulting from the surface 
irregularities, unknown material properties, and motor noise. 
This control problem is exacerbated by the large forces often 
encountered during these tasks. Furthermore, contact tooling 
involves deformation or penetration of an object’s surface, 
such that visual feedback is of little help to controllers. All 
these issues requisite the development of a suitable control 
strategy for regulating the movement and interaction force 
during contact tooling tasks. 

Various interaction control techniques have been proposed 
by previous works. These include the hybrid force-position 
control [2], that decouples the force and position control in 
space, regulating position along the surface of an object and 
force normal to it. Good performance with  this  technique 
thus  requires  knowledge  or  good  estimation  of  the surface 
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geometry [3]. For instance, in [3], [4]  the surface geometry    
is estimated from the interaction force and position informa- 
tion. By regulating the relationship between the environment 
deformation and the force response, impedance control [5] can 
deal with environments that are not precisely known. However, 
controllers with fixed impedance do not a-priori consider the 
instability arising from tool use, nor can they adapt to unknown 
surface conditions [6], [7],  [8]. 

In contrast, humans can carry out unstable tooling tasks  
with ease,  such  as carving wooden pieces with  knots, using  
a screwdriver, cutting with a knife, etc. This is arguably due  
to their capability to automatically compensate for the forces 
and instability in their environment [9], [10], [11]. We recently 
developed a computational model of this learning, which 
enabled us to simulate the characteristics of human motor 
learning in various stable and unstable dynamic environments 
[12], [13]. 

The dynamic properties of this learning controller were 
analysed in [14], and used to demonstrate its capabilities for 
robot interaction control. This new robot behaviour can adapt 
its end-point force and impedance to compensate for environ- 
mental disturbances. This controller increases robot force with 
the signed error relative to a given planned trajectory, increases 
the impedance when the unsigned error magnitude is large, and 
decreases impedance when the magnitude is small. While our 
previous controller in [14] can adapt to various environments, 
an obstacle on the robot reference trajectory can lead the force 
to  increase and  become very large. 

How does the human sensorimotor control address this 
issue? Recent works that examined how humans interact with 
rigid objects [15], [16] found that the reference trajectory is 
deformed by the interaction with the object’s surface, which 
limits  and  regulates the  interaction  force.  We  introduced in 
[1] a model of the concurrent adaptation of impedance, force 
and trajectory characterising the human adaptive behaviour, 
and showed in simulation how it could predict human motor 
adaptation in various conditions. The extended nonlinear adap- 
tive controller implementing this model adapts impedance and 
force, and guarantees the interaction stability by compensating 
for the disturbance from the environment, as is analysed in the 
present paper. The interaction force is continuously estimated 
and used to adapt the reference trajectory so that the actual 
interaction force can be maintained at  a  desired level. 

The model of human motor adaptation in [1] can be 
analysed using Lyapunov theory, and used as a novel iter- 
ative learning controller (ILC) for robots. Specifically, we 
show  in  the  present  manuscript  how  the  coupling between 
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force/impedance adaptation and trajectory adaptation can be 
resolved. Simulations are used to study and exhibit the 
adaptation features. Implementations on DLR’s 7-degree-of- 
freedom light  weight  robot  (LWR)  [17],  [18]  explore  its 
use for representative tasks such as cutting,  drilling  and 
haptic exploration similar to polishing, and demonstrate its 
versatility. Initial results were reported in [19], [20] while 
extensive results are  presented  and  analysed  in  this  pa-  
per. A video illustrating the experiments can be found at 
https://www.youtube.com/watch?v=UZFL6oTHQBg or on last 
author’s website. 

While ICL has been investigated extensively [21], [22], [23], 
[24], the present paper analyzes for the first time the coupling 
between impedance and/or force adaptation and trajectory 
adaptation. This coupling is interesting, since the updated 
impedance and/or force is used to adapt the reference tra- 
jectory and conversely the updated reference trajectory is also 
used to adapt the impedance/force. Section II and Appendix A 
extend the algorithm of [14] with trajectory adaptation to yield 
force control and adaptation of the shape and  impedance of 
the environment. Section III  interprets the  theoretical results 
of Section II, Section IV illustrates the controller’s functions 
through simulations, and Section V demonstrates its efficiency 
in implementations. 

 
TABLE I 

NOMENCLATURE 

 
ness and damping, using Lyapunov theory. The nomenclatures 
that will  be used are summarised in Table  I. 

 
A.  Controller design 

The dynamics of a n-DOF robot in the operational space  
are given by 

M (q) ẍ + C(q, q̇) ẋ + G(q) = u + f (1) 

where x is the position of the robot and q the vector of joint 
angle. u is the control input and f the interaction force applied 
by the environment. M (q) denotes the inertia matrix, C(q, q̇)ẋ 
the Coriolis and centrifugal forces, and G(q) the gravitational 
force, which can be identified using e.g. nonlinear adaptive 
control [25]. 

The control input u is separated in  two  parts: 

u = v + w . (2) 

In this equation, v is designed using a feedback linearisation 
approach to track the reference trajectory xr by compensating 
for the robot’s dynamics, i.e. 

v = M (q) ẍe  + C(q, q̇) ẋe  + G(q) − Γε (3) 

where 

ẋe  = ẋr  − αe , e ≡ x − xr , α > 0 , (4) 

ẋe  is  an auxiliary variable and e is  the tracking error. Γ is a 
symmetric positive-definite matrix having minimal eigenvalue 
λmin(Γ) ): λΓ  > 0 and  ε is  the  sliding error 

o ≡ ė  + α e (5) 

w, the second part of the control input u, is to adapt 
impedance and force in order to compensate for the unknown 
interaction dynamics with the environment, as will be de- 
scribed in this paragraph. Assuming that the environment can 
be characterized (locally) by its visco-elasticity, the interaction 
force can  be expanded as 

f = F ∗ + K∗ (x − x∗) + K∗ ẋ , (6) 
0 S 0 D 

∗ ∗ ∗ 
where F0 (t), KS (t) and KD(t) are force, stiffness and damp- 
ing experienced during interaction with the environment, re- 
spectively, x∗(t) is the rest position of the environment visco- 
elasticity. We use Eq.(6) to describe a general environment, 
which can be either passive with the force component F ∗ = 0 
or active, such as a human arm or another robot. In this paper, 
we consider that the environment parameters are unknown but 
periodic with T : 

F ∗(t + T ) ≡ F ∗(t) , K∗ (t + T ) ≡ K∗ (t) , 
0 0 S S 

K∗ (t + T ) ≡ K∗ (t) , x∗(t + T ) ≡ x∗(t) . (7) 
D D 0 0 

 
 

II. ADAPTATION OF FORCE, IMPEDANCE AND PLANNED 
TRAJECTORY 

In the following we derive a general ILC for the interaction 
of a robot with an environment solely characterized by its stiff- 

The periodicity of the environment parameters is a realistic 
assumption for a repeatable interaction task, e.g., the surface 
exploration presented in the simulation of  Section  IV.  In  
this example, the properties of the  environment surface  are 
the same for every session, so they  are  periodic along  the 
time axis. In many applications, the environment parameters 
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T 
•̃ 
△• 

actual trajectory vector 
joint angle vector 
inertia, Coriolis and centrifugal, gravitational 
matrices 
control input 
interaction force from the environment 
control component for compensation of robot’s 
dynamics in free movements 
control component for adaptation of force, stiff- 
ness and damping to interact with a novel 
environment 
reference trajectory 
tracking error 
auxiliary trajectory 
auxiliary tracking error 
linear control gain for free movements 
positive-definite gain matrices 
parameters of linear expansion of the environ- 
ment mechanics: force, stiffness, damping and 
rest position 
feedforward force, stiffness and damping of 
controller 
learning rates for force, stiffness, damping and 
trajectory 
decay rate of force, stiffness and damping 
desired interaction force 
costs of: impedance residual errors, tracking 
error, contact force error, and overall cost 
movement trial or period 
•∗ − •: difference of 
•(t + T ) − •(t): change of a factor during one 
period 

http://www.youtube.com/watch?v=UZFL6oTHQBg
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are constant thus also periodic. To simplify the analysis, we 
rewrite the  interaction force of  Eq.(6) as 

∗ ∗ ∗ 

 
C.  Trajectory adaptation 

The investigation of adaptation to stiff and compliant en- 
vironments of [15] has shown that humans tend to apply a 

f ≡ F + KS x + KD ẋ (8) constant force on the surface, resulting in a different trajectory 

with F ∗ ≡ F ∗ − K∗ x∗ the feedforward force component of 
the environment. w in Eq.(2) is then defined as 

adaptation strategy depending on the surface stiffness. To 
model this observation, we assume that the trajectory is 
adapted  to  maintain  a  desired  contact  force  Fd    with   the 

w = −F − KS x − KDẋ (9) environment’s surface. In particular, assuming that there exists 
a desired trajectory xd  yielding Fd, i.e. from Eq.(6) 

where F ,  KS   and KD  are feedforward force, stiffness  and 
damping components in the control input. As explained in next Fd = F ∗ + K∗ (xd  − x∗) + K∗  ẋd 

= F ∗ + K∗ x  + K∗  ẋ (15) 
paragraph, the  contact  stability  is  ensured  through adapting F, KS , KD  to match the environment’s values F ∗, K∗ , K∗ . S   d D   d 

S D we propose to  adapt the  reference xr  in  order to track  xd. 
However, xd  is unknown, because the parameters F ∗, K∗ and 

∗ 
S 

B.  Force  and impedance adaptation KD   in  the  interaction  force  are  unknown.  Nevertheless, we 
know  that  xd   is  periodic  with  T ,  as  F ∗, K∗  and  K∗ are 

By substituting the control input u into Eq.(1), the closed- 
loop system dynamics are described  by 

M (q) ε̇ + C(q, q̇) ε + Γε = F  + K S x + K D ẋ , (10) 
 

   

periodic with  T  and we also set  Fd  to be periodic with  T . 
In the following, we develop an update law to learn the 

desired  trajectory xd. First,  we define 

ξ  ≡ K∗ x  + K∗  ẋ  , ξ  ≡ K  x  + K   ẋ  . (16) 

F ≡ F − F , KS  ≡ KS − KS , KD ≡ KD − KD . 

In this equation, we see that the feedforward force F , stiffness 
KS and damping KD ensure contact stability by compensating 
for the interaction dynamics. Therefore, the objective of force 
and impedance adaptation is to minimise these residual errors. 
This can be carried out through minimising the cost function 

Then, we  develop the following update law 

∆ξr (t) ≡ ξr (t) − ξr (t − T ) ≡ L−T Qr[Fd(t) − F (t) − ξr (t)] 
(17) 

where Qr and L are positive-definite constant gain matrices. 
This update law is developed to minimise the error between 
the desired force Fd and control force −w = F +ξr  as detailed in  Appendix  A.  To   consider  the  coupling  of  adaptation of 

1
   t 

 
 

 

 
T    −1 T −1 force and impedance and trajectory adaptation, we modify the 

 
  

+vec   (KD)QD  vec(KD) dτ (11) 

where QF , QS and QD are symmetric positive-definite matri- 
ces, and vec(·) stands for the column vectorization operation. 
This objective is achieved through the  following update laws: 

∆F (t)   ≡  F (t) − F (t − T ) = QF [ε(t) − β(t)F (t)] (12) 
T 

∆F (t) = QF [ε(t) − β(t)F (t) + QT ∆ξr (t)] . (18) 
Then, we  obtain  the update law for  trajectory adaptation 

∆xr ≡ xr (t) − xr (t − T ) (19) 
by solving 

∆KS (t)   ≡   KS (t) − KS (t − T ) = QS [ε(t)x(t) 
T 

∆KD (t)    ≡   KD(t) − KD(t − T ) = QD[ε ẋ(t) 
− β(t)KS (t)] 

− β(t)KD(t)] 
∆ξr  = KS ∆xr  + KD ∆ẋr  + ∆KS xr  + ∆KD ẋr (20) 

using ∆ξr (t) from Eq.(17), and ∆KS , ∆KD from Eq.(12). 
where F , KS and KD are initialised as zero matrices/vectors 

with proper dimensions  when  their  arguments  are  within  
[0, T ), and β is a decay factor. Concurrent adaptation of force 
and impedance in Eq.(12) corresponds to the computational 
model of human motor adaptation of [12], [13], [14]. 

With Eqs.(12), (17) and (18) we now have an algorithm able 
to adapt force, impedance and trajectory in various dynamic 
environments. This is carried out by minimising the overall 
cost  J ≡ Jc  + Je  + Jr where 

1
   t 

 
 

 

Now that we have dealt with the interaction dynamics, 
trajectory tracking control can be obtained by minimising the 

Jr  ≡ 
2
  

t−T 
(ξr − ξd)T QT (ξr − ξd) dτ . (21) 

cost function  
Je(t) ≡ ε(t)T M (q) ε(t) . (13) 

 
 

The result of this minimisation is summarised in the following 
theorem: 

Theorem  1: Considering the robot  dynamics (1) and the   
in t 2 teraction force model (8), he controller (2) with the  update 

Consequently, we use a combined cost  function 
J ≡ Jc  + Je (14) 

laws for stiffness and damping (12), feedforward force (18) 
and reference trajectory (17) will guarantee that the trajectory 
error  ∆ξr   and tracking error  ε are  bounded and satisfy 

2 λΓIε + λLI∆ξr 2 β ∗ ≤ IF 
 

 

+ Ivec(K  ) + Ivec(K  ) 

I 
that yields concurrent minimisation of tracking error and resid- 

I I S  I 
2 D I 

(22) 
ual impedance errors to adapt force and mechanical impedance during movement. 

r 

adaptation of  feedforward force Eq.(12) to 2 
adaptation of  feedforward force Eq.(12) to 2 

∗ ∗ ∗ 

Jc(t) ≡ 



4  
for t → ∞, where λΓ and λL are the minimal eigenvalues 

of Γ and L, respectively. It follows that ∆ξr  and ε can 
be 
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made arbitrarily  small  by  choosing sufficiently large λΓ  and 
λL. Moreover,  ∆ξr   and ε will converge to zero  for β ≡  0. 

A  proof of  Theorem 1  is  given in  Appendix A  based  on 
Lyapunov theory and the structure of the novel controller is 
illustrated in Fig.1. 

 
condition of persistent excitation (PE) as in traditional adaptive 
control [26]. This will be illustrated in Section IV. 

In summary, the proposed controller ensures that the in- 
teraction force f follows the desired force Fd and that the 
reference trajectory xr follows xd, the trajectory which yields 
Fd   due  to  the  physical  properties  of  the  environment. The 
controller parameters F , KS  and KD  can track F ∗, K∗ and 

∗ 
S 

KD  respectively if the signals x and ẋ are persistently exciting. 

 
B.  Important special cases 

If no force is exerted on the environment: f = 0, the 
controller component w =  0  from  Eq.(24).  According  to 
the definitions  of w in  Eq.(9)  and  ξr  in  Eq.(16),  we  have 
F + ξr = −w = 0. Therefore, if we choose Fd = 0, according 
to  the  update  law  Eq.(17), the  reference  trajectory  will not 
adapt, as expected. 

Another important case is when the feedforward force F ∗ = 
0, damping K∗  = 0 and stiffness K∗  /= 0, then Eq.(8) yields 

∗ 
D S 

 
 

Fig. 1.  Block  diagram  of  proposed  controller  for  dynamic  interaction 
with and adaptation to unknown environments. The controller has three 
components: the dotted block represents the component to learn feedforward 
force and impedance  in order to compensate for the interaction  force from  
the environment; the trajectory adaptation component is to maintain a desired 
interaction force; and the compensation component compensates for the robot 
dynamics. 

 
 

III. INTERPRETATION OF  THEOREM 1 
A.  Parameters convergence 

To  simplify the  interpretation of Theorem 1, let  us loosely 
state that for t → ∞, ∆ξr  = ε = 0 (thus ε̇   = 0 if limt→∞ ε̇  

x = x0 if we choose Fd = 0 since f = Fd. This indicates that 
the actual position follows the rest position of the environment, 
i.e. its surface. 

If we neglect the damping component in the interaction 
force f of Eq.(8), the trajectory adaptation described by 
Eqs.(17) and (20) can be simplified to 

∆xr  = L−T Qr(Fd − F − KS xr ). (26) 

Correspondingly, the update laws for force and impedance in 
Eq.(12) need to  be modified as 

∆F ≡ QF (ε − βF + QT ∆xr ) , 
∆KS ≡ QS (ε xT  − βKS + xT QT ∆xr ) (27) 

r r 
exists).  With  Eq.(17),  we  obtain  Fd   =  F  + ξr . According 
to the definitions of w in Eq.(9) and ξr  in Eq.(16), we have 
F + ξr = −w thus 

Fd = −w. (23) 

On the other hand, the right hand side of Eq. (10) is zero. 
According to the definitions of f in Eq.(8) and w in Eq.(9), 
we have 

−w = f. (24) 

It follows f = Fd, which indicates that the desired interaction 
force Fd is maintained between the robot and the environment. 
According to the definitions of f and Fd in Eqs.(8) and (15) 
respectively, we thus have 

in order to obtain results similar to those described in Theorem 
1. The interaction dynamics analysis, similar to the case with 
damping, is  detailed in Appendix B. 

 
 

C.  Implicit and explicit force sensing 

In contrast to traditional methods for surface following 
where the force feedback is used to regulate the interaction 
force e.g. [27], force sensing is not required in the above 
framework. In particular, force and impedance adaptation 
(Eqs.(12) and (18)) is used to compensate for the interaction 
force from the environment. During this process, the unknown 
actual interaction force is estimated when the tracking error ε 

K∗ xd  + K∗  ẋd  = K∗ x + K∗  ẋ (25) goes  to  zero,  i.e.,  Eq.(24).  Using  this  estimated interaction 
S D S D force,  a  desired  force  in  Eq.(15)  can  then  be  rendered by 

which  leads  to  x  →  xd   if K∗ 
definite. 

and K∗ are  both positive adaptation of  the reference trajectory xr  (Eqs.(17) and  (20)). 
If the  robot system  is  equipped with  a  force sensor, force 

However, note that the analysis of Appendix A does not 
show that F , KS  and KD  converge to the respective  values 
F ∗, K∗  and K∗  of the  environment. This  can  be seen from 

feedback can replace  the  force  and  impedance  adaptation. 
In  this  way,   trajectory  adaptation  will  not  depend  on   the 
force estimation process and can in principle happen faster. 

S D 
Eq.(10): F +KS x+KD ẋ  = 0 does not imply that F , KS  and 
KD become negligible. In order to achieve the convergence of F 
, K S  and K D  to zero, the signals x and ẋ need to satisfy the 

However, the potential advantages of a force sensor depend   
on the quality of its signal, its cost and the difficulty of its 
installation and use. 
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Fig. 2. Concurrent adaption of force, impedance and trajectory without noise (A) and with noise satisfying persistent excitation (B). From top to bottom: 
interaction force, actual trajectory (solid) and updated reference trajectory (dotted), updated stiffness, and updated feedforward force. From left to right: after 
learning in a rigid environment, in a compliant environment  (plotted from blue to red in every  16 trials), and exposition to a rigid environment after learning   
in the compliant environment. 

 
IV. SIMULATIONS 

 
We   will   now  illustrate   how  the   learning  controller  of 

previous section functions, by simulating the human motor 
adaptation in a representative interaction task [16]. This study 

The interaction force of Eq.(8) is computed as 

f = F ∗ + K∗ y (29) 

corresponding to the rest position 0. The rigid environment is 
characterised by F ∗  = −4N and K∗ = −1000N/m and the 

observed  the  adaptation  of  force  and  trajectory  in humans compliant environment by F ∗ 
S 

= −3N and K∗ = −300N/m. 
during contact with a rigid or compliant environment. Sim- 
ilarly, we simulated the adaptation of the reference trajectory 
occurring when one is required to push against environments 
of various stiffnesses. In this simulation, the desired force in 
forward direction is  specified as 

The environment is rigid for the first 200 trials j = 1 . . . 200 
and compliant for another 200 trials j = 201 . . . 400. The 
control and learning parameters used for simulation are α = 
10, Γ = 200, β = 0, QS = 6 × 104, QF  = 3.6, Qr = 0.02. 

Simulation  results are  shown  in  Fig.2A.  The left column/ 
panels exhibit that the desired force is achieved in the case of a 

−5[1 − cos(πt)]N, 0 ≤ t ≤ 1s; 
Fd −10N, otherwise. 

 
(28) 

rigid environment. The middle panels illustrate that when the 
environment suddenly  becomes  compliant,  the  desired force 
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Fig. 3. Simulation of haptic exploration  of a surface of unknown shape and mechanical properties  along x-axis with the controller  of [14] (A) and with the  
new controller (B). The top panels show the robot’s trajectory and the bottom panels the contact force. The new controller avoids large interaction force and 
enables to regulate  the force, while identifying  the interaction  surface geometry. 

 
cannot be reached because of the trajectory control compo- 
nent. However, the trajectory iteratively moves forward and 
the interaction force increases. After learning, the reference 
trajectory has adapted to penetrate the environment surface and 
the desired interaction force is achieved again. Note that while 
the same desired force is achieved in the rigid environment, the 
reference trajectory changes with the different environments. 
The right panels illustrate the “after-effects” of the learning: 
when the environment becomes rigid again, the interaction 
force surpasses the  desired force. 

These results correspond to the behaviour observed in hu- 
man experiments [16]. Note the adaptation of force, impedance 
and trajectory involved in the evolution: the reference trajec- 
tory adapts to achieve the desired force, while feedforward 
force and impedance adapt to track the updated reference 
trajectory. However, in Fig.2A the updated feedforward force 
and impedance do not converge to the values of the environ- 
ment. This is due to the redundancy between the feedforward 
force and impedance as explained  in  Section  III-A.  While 
the combination of the feedforward force and impedance 
guarantees compensation for the interaction dynamics, it  is 
not set to  identify each  component’s contribution. 

The identification of the environment’s parameters can be 
addressed by introducing a persistent excitation (PE) signal 
yielding sufficiently rich information of the system. We illus- 
trate this by adding a random binary excitation to the system  
as exhibited in Fig. 2B. It can be seen that the identified 
interaction force and position values are similar to those in 
Fig.2A, but in this case the updated feedforward force and 
impedance converge to the environment’s values. The results 
in Figs.2A and 2B also illustrate the meaning of redundancy 
between the feedforward force and impedance, as different 
values of feedforward force and impedance lead to the same 
interaction force and position. In practice, noise leading to the 
environment identification could stem from a rough surface 
along which the robot is moving (see Fig.2B), while  sliding 
on a smooth surface would lead to results similar to that in 
Fig.2A. 

These results, together with the results of [1], show that the 
model of Section II predicts the adaptation of force, impedance 

and trajectory observed when humans interact with various 
stable, unstable, stiff and compliant environments [28], [9], 
[29],  [13], [15], [16]. 

To illustrate the  difference of  the  new controller relative  
to adaptive controller of [14], Fig.3 presents a simulation of 
polishing along (the x-axis of) a curved surface with both of 
these  controllers. As  shown  in  Fig.3A, as  the  controller  of 
[14] tries to track the original reference trajectory (which is  
set as a straight line along the x-axis), this leads to a large 
contact force of around 20N, which is undesirable. In contrast, 
Fig.3B shows that with the new controller the robot’s trajectory 
comes close to the surface with learning (see “150th trial”),  
by tracking the updated reference trajectory while the contact 
force tends to the desired force of about 1N. Therefore, the 
new adaptive controller is extending the controller of [14]. It 
is able to successfully perform tasks requiring contact with 
rigid surfaces of unknown shape, and to identify the geometry 
and impedance properties of the surface it is interacting with. 

 
V. ROBOTIC VALIDATION 

The proposed controller was implemented on the DLR 
lightweight robot shown in Fig.4 [17], [18] and tested in 
various experiments. Four tasks were carried out: adaptation to 
a rigid surface, cutting, drilling and haptic exploration, which 
are described in  this section. 

 
A. Adaptive interaction with a rigid  surface 

To illustrate the trajectory adaptation to a rigid environment, 
one axis of the robot was programmed to repeat  a  move- 
ments of 0.7 radian amplitude following a smooth fifth order 
polynomial reference, with zero start and end velocity and 
acceleration as shown in Fig.5. After the robot converged on 
the reference trajectory (dashed blue trace), it was presented 
with a virtual obstacle in velocity space (blue trace) that 
prevented it from following the reference. This obstacle was 
generated by disconnecting the proposed controller output to 
the motor, and instead moving the robot along the obstacle 
using a high gain PD controller while the proposed controller 
was still  active in  the  background. This simulated a situation 

desired force 

fo
rc

e 
[N

] 
y 

[c
m

] 



8 
 

 
 

 
 

Fig. 4. Setup of experiments described in Section V with the DLR lightweight 
robot (LWR), the Dremel driller attached to the robot end-effector in the 
zoomed end-effector  and the scalpel in the main panel. 

 
 

where the controller was unable to generate sufficient motor 
output to  overcome the obstacle. 

When the obstacle was suddenly removed in the fifth 
adaptation trial, the robot movement was found to mirror the 
obstacle (red trace), as the  robot  initially  tried  to  increase 
the torque to counter the obstacle. The obstacle was then re- 
introduced from the sixth trial onwards. When the obstacle was 
removed again in the 25th trial, the actual trajectory (black 
trace) and reference trajectory (dashed black trace) can be 
clearly seen to have adapted to the shape of the obstacle. The 
robot movement no longer mirrored the obstacle, i.e. it has 
learnt not to apply a too large force in order to counter the 
obstacle, but instead has adapted its reference trajectory. The 
actual trajectory (black trace) can be seen to lie to the right    
of the plan (dashed black trace), indicating that the robot still 
did apply some contact force onto the obstacle after 25 trials. 
This behaviour is similar to the adaptation observed in humans 
[15] as was analysed in  [1]. 

 
B. Cutting experiment 

Several experiments were then carried out to test adaptation 
of impedance and force during the interaction with unknown 
environments. In this purpose, a cutter or a drill was mounted 
on the LWR as shown in Fig.4. Different from above simula- 
tion and the first experiment, in the next experiments iteration 
was in time rather than by repeating a trajectory. In this case 
the LWR moved at low speed so that adaptation could catch the 
environment characteristics along the trajectory. The controller 
was programmed to tune the adaptation gains differently along 
each axis of the end-effector frame {ex, ey , ez}. A fixed high 
stiffness (2000N/m) was maintained at the robot end effector 
in the {y ≡ 0} plane while the adaptive controller was  used  
in the x and z directions. Stiffness saturation was set at 
2000N/m in all directions during the experiments. The same 
set of adaptation  gains  of  β  = 0.01,  QF  = 5,  QS  = 120, 
Qr = 0.01 was used during all the  experiments in  order  to 
test the versatility of the adaptive controller in dealing with 

 
different tasks and environments without any manual tuning  
of the learning parameters. Qr was set as zero in the cutting 
and drilling experiments. 

We performed two cutting experiments using a scalpel that 
was fixed on the LWR end effector using a customized tool 
holder. The  scalpel  blade  was  maintained  at  a  65◦  angle  
to the surface. We used a  heterogeneous test  object  in  the 
first experiment that was made of a 2mm balsa wood layer 
covered by a 2mm layer of materials with different mechanical 
properties: balsa wood, plastic honeycomb panel and brown 
corrugated cardboard. As can be seen in Fig.6B, the stiffness 
and feedforward force were automatically adapted during the 
task to the specific material: stiffness increased due to the 
vibrations generated during the crossing of the carton and 
honeycomb sections and decreased during  the  crossing  of  
the balsa wood section. On the other hand, the feedforward 
force increased during the crossing of the balsa wood section, 
because the wood is dense and generates a constant resistance 
to cutting. 

The  second  cutting  experiment was  performed on  a 3cm 
thick expanded styrofoam board (made of 4mm polystyrene 
balls agglomerated together, but with a smooth surface). The 
top surface of  the board was  painted in  black to  illustrate  
the damage done to the surface by the scalpel. Due to the 
material properties of styrofoam, it tends to stick to the blade 
and tear when the depth is too large for a given speed. We first 
determined a constant “depth/velocity” pair for our blade that 
leads to material tear (due to stick-slip) during cutting. Cutting 
was then carried out with this “depth/velocity” pair, first using 
a fixed high impedance (1500N/m) then with the proposed 
adaptive controller starting from the same 1500N/m stiffness 
value. As it can be seen in Fig.6C, our adaptive controller 
avoided the tearing phenomenon generated by the specific set 
of parameters (e.g., blade angle, velocity and depth) though 
lowering the robot stiffness. 

 
C. Drilling 

We then compared drilling of a heterogeneous material 
using a fixed impedance (1500N/m), and with adaptation 
using the proposed controller. Drilling was tested using a 
Dremel hand driller attached to the end-effector (through the 
force/torque sensor) at approximately 18cm from the end- 
effector main axis. The force/torque sensor was used for the 
purpose of recording but not used in the proposed controller. 
The 3.2mm diameter drill had to penetrate an heterogeneous 
block of material made of balsa wood layers (easy to drill) and 
some dense carton layers (requiring larger forces for drilling). 
As can be seen in Fig.7, our controller was able to  perform  
the task with results similar to the rigid impedance con-  
troller. However, at certain drilling speeds, the rigid impedance 
controller exhibited a “resonance” phenomenon (see Fig.7B) 
that generated large vibrations in the horizontal plane (whose 
amplitude was proportional to the penetration of the drill bit), 
and consequently poorer quality of the drilled hole (larger 
variations in the diameter of the hole, as seen in the bottom of 
Fig.7C). The proposed controller attenuated these vibrations, 
resulting in a hole with a diameter closer to the real drill bit 
diameter. 
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D. Haptic identification 

To test concurrent adaptation of force, impedance and tra- 
jectory, we implemented a haptic exploration experiment. The 
robot was required to traverse various surface profiles on a test 
surface while maintaining a constant contact force, a task  that 

 
 
 

0 

-5 
-10 

fixed rigid stiffness 
proposed control 

is similar to the polishing of an unknown surface. However, 
we designed the task to  test the ability of the new controller  
to “skim” a surface with minimum force. We  purposely used  
a very low desired interaction force level of 0.05N and a soft 
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position (m) 

 
Fig. 6. Cutting through different materials. A: View of the surface assembled 
with different materials (balsa wood, cardboard and honeycomb plastic). B: 
From top to bottom: blade trajectory across the section of the surface in the 
vertical plane; variations of the forces Fx and Fz along x and z directions, 
recorded by the 6-DOF force/torque sensor mounted between the robot and 
the scalpel; stiffness (Kx and Kz ) and feedforward force (F Fx and F Fz ) 
adaptation during the cutting task. C: Visual results of cutting expanded 
styrofoam with/out biomimetic adaptation and associated force profile (along 
the cutting direction x). 

foam surface so as to be able to visually check whether the 
robot would push and deform this surface (see the video in 
https://www.youtube.com/watch?v=UZFL6oTHQBg). 

The test surface was developed on a  wooden plank sized  
85 × 95cm. Various profiles, including convex bumps, concave 
troughs and cylindrical obstacles were created on this surface 
by fixing metal and plastic objects (Fig.8A). A  3cm thick 
layer of packing foam was then overlaid on the surface. The 
test surface included a high friction pad created using twisted 
nylon ropes and a hole in the surface. The test surface was 
placed on  a  table  under the  robot which  was equipped with 
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Fig. 8. Haptic exploration of a surface with unknown geometry and mechanics. From left to right: A: Photo of the test surface that was used for the pilot 
experiment. B: 3D scan of the test surface. C: Volume identified by the robot while scanning the surface along the line superimposed on top and two lateral 
views. D: End point stiffness  during exploration.  E: Nearly constant  interaction  force of about 0.05N  maintained  on the surface. 

 
a 12cm long aluminium finger at the end-effector. The robot 
reference was set to scan the plane of the  table over a  range  
of 120cm and with a constant speed of 0.1m/s (except for 
the accelerations and de-accelerations in the movement limits). 
The reference was set in the task space and the trajectory was 
developed using the interpolator of the  manipulator. 

Fig.8B shows the surface traced by the robot. Fig.8C shows 
the tool-tip coordinates of the robot in the x-y plane of the 
table with the colour gradient representing the z-coordinate 
(height above the table). Fig.8D plots the endpoint stiffness of 
the robot as it performed the surface exploration while Fig.8E 
shows the contact force along the vertical z-axis as measured 
from the end-point force/torque sensor (not used for control). 
We conducted an analysis of the force sensor inside the surface 
boundaries which exhibits a force of 0.0338N in average with 
a standard deviation of 0.0088N. To show that this is not an 
offset on the force sensor, or  noise, we  compared this value  
to the one from outside the surface in the same experiment. 
The value from outside the surface (when there is no contact) 
is 0.0151N in average with a standard deviation of 0.0109N, 
which is statistically smaller than the one inside the surface 
boundaries (p < 0.001). Stiffness is maintained at a low value 
throughout the exploration and increases only in the edges of 
the surface and in the region with irregularities. The stiffness 
change thus  indicates the texture properties of  the surface. 

 
VI. DISCUSSION 

Many tasks with end-effector held tools are inherently unsta- 
ble, require large contact forces and are subject to disturbances 
due to the irregularities on the tooled surface. While robots 
have been conceived to address these challenges in specific 
and well defined situations, humans routinely use tools in 
different tasks such as drilling, cutting and polishing, adapting 

to various environments, despite  large  sensorimotor  noise. 
In fact, human intelligence has been characterised by the 

skilful use of tools [30], and specific neural structures could 
be identified in humans [31] that correspond to force and 

impedance adaptations. While we do not pretend to match such 
manipulation intelligence, the controller analysed in this paper 
exhibited a versatile interaction behaviour, and was also shown 
to model human interaction properties in typical situations [1]. 
Our controller for contact tooling  and haptic  identifi- cation 

automatically adapts feedforward force, mechanical 
impedance and trajectory to the environment dynamics in order 
to minimise trajectory error and effort while applying a desired 
force. It compensates for the interaction force and instability 
to track the planned reference trajectory. During this process, 
the controller is able to estimate the interaction force with the 

unknown environment through adaptation of feedforward force 
and impedance. It extends the functionality of the controller 

introduced in [14], by automatically adapting its reference 
trajectory to comply with rigid environments, and to  maintain 
a  desired interaction force. 

The proposed controller, developed based on the assumption 
of a linearised interaction force (Eq.(6)), can interact with a 
rigid environment or a compliant force field, or with humans. 
It  can  be  used  to  automatically  tune  physical  assistance in 
e.g. a rehabilitation robot [32]. It does not require a force 
sensor as the force is estimated by the algorithm. Using a force 
sensor will however speed up the adaptation of feedforward 
force, stiffness and trajectory, although this may depend on  
the quality of the force signal and on its noise. 

The stability and convergence of this novel nonlinear adap- 
tive controller have been rigorously analysed using Lyapunov 
theory. An implementation on the DLR 7-DOF LWR demon- 
strated its effectiveness and versatility in  representative inter- 
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action tasks including cutting, drilling and haptic exploration. 
With this controller the robot constantly adapts its  behaviour 
to the environment, rather than rigidly trying to go through. 

 
Considering the definition of Jr  in Eq. (21), we have 

∆Jr (t) ≡ Jr (t) − Jr (t − T ) 
Feedforward force  adaptation is  essential  for tasks  like  cut- 

t 1 T = [ξr(τ ) − ξd(τ )] 
 

T Qr [ξr (τ ) − ξd(τ )] dτ 
ting, where the material irregularities continuously modify the 
required  cutting  force.  Impedance  adaptation  helps counter 

2  t−T 
1 
{ t 

T   T 
 

 

these variations while maintaining minimum stiffness of the 
cutting tool. Trajectory adaptation enables maintenance of 
contact force during tasks like polishing and prevents the robot 

− 
2 t−T 

1 t 
+ 

2 t−T 

[ξr (τ ) − ξd(τ )] 
 

T 
[ξr (τ ) − ξd(τ )] 

Qr [ξr (τ − T ) − ξd(τ − T )] dτ 
 

T 
Qr [ξr (τ − T ) − ξd(τ − T )] dτ 

from applying very high forces in the presence of unforeseen 
obstacles. 

1 t 
− 

2 t−T 

 
T 

[ξr (τ − T ) − ξd(τ − T )] 
 

T 
Qr × 

Experimental results demonstrated superior performance of [ξr(τ − T ) − ξd(τ − T )] dτ 
the novel adaptive controller relative to a fixed impedance 
controller:  smoother  interaction,  reduced  control  effort and 

1 t 
= 

2 t−T 

 
T 

[ξr(τ ) − ξd(τ )] 
 

T 
Qr ∆ξr (τ ) dτ 

automatic adaptation (avoiding tedious trial-and-error and fine 
tuning). Moreover, the properties of the unknown environment 

1 t 
+ 

2 t−T 

 
T 

[ξr (τ − T ) − ξd(τ − T )] 
 

T 
Qr ∆ξr(τ ) dτ 

could be identified through adaptation during slow interaction 
movements yielding haptic exploration. As in any tooling task, 
our  algorithm does  require some  basic  parameter  definition for each tooling operation such as cutting speed and depth of 

t 
= 

t−T 
{ t 

 
[ξr  − ξd  − 

1 T ∆ξr] 
2 

 
Qr ∆ξr dτ  (as ξd(t) = ξd(t − T )) 
 
T 

cut  prescribed by  tool  manufacturer for  a  given tool-surface 
 

t−T 
[Qr(ξr(τ ) − ξd(τ ))] ∆ξr(τ ) dτ . (30) 

combination. However, it does not require any information or 
model of the surface irregularities, material and shape of the According to Eqs.(15) to (17), we rewrite this inequality as 

tooled surface. 
The proposed controller can be applied to interact with 

environments that can be described by Eq.(6), characterised by 
periodic or constant parameters. If the environment parameters 
keep changing and the periodicity condition is not satisfied, 

t 
∆Jr   

t−T 
t 

= 
t−T 

[Qr(ξr − Fd + F + F )]T ∆ξr dτ 

(−LT ∆ξr + Qr F )T ∆ξr dτ. (31) 

e.g. when interacting with a human arm, the controller can  
still successfully adapt as long as the environment parameter 
changes are slow, but may fail otherwise. Larger controller 
learning rates (QF , QK , QD, Qr) may enable it to adapt to fast changing environments, although too large learning rates may 

Step  2: Residual  impedance error 
Consider the difference between Jc  of two consecutive periods 

∆Jc ≡   Jc − Jc(t − T ) (32) 

reduce the system robustness. On the other hand, improper 
 

1
   t 

 
 

 

 
T    −1 T −1 

   
For instance, during a surface polishing task, a controller with 
high initial stiffness can make the robot get stuck in rough  
stiff surface. The interesting meta learning issue of choosing 
the appropriate learning rates and initial  parameters need  to 
be investigated in further studies. 

+tr(K  T     −1K    − K  T (τ − T )Q−1K   (τ − T ) 
+(K DQD  K D  − K D(τ − T )QD  K D(τ − T ))] dτ 

where tr(·) stands for the trace of a matrix. We compute 

F T (τ )Q−1 
 

 

F (τ ) − F T (τ − T )Q−1 
 

 

F (τ − T ) 

−1 
=   [F T (τ )Q 

−1 
F (τ ) − F T (τ )Q F (τ − T )] 

 

APPENDIX 
−1 T 

+[F T (τ )Q F (τ − T ) − F  
 

 
(τ − T )Q−1F (τ − T )] 
 

−1 T −1 
=   −F T (τ )Q ∆F (τ ) − F   (τ − T )Q ∆F (τ ) 

 

A. Proof  of Theorem 1 −1 
=   −(2F T (τ ) + ∆F (τ ))Q ∆F (τ ) 

 

−1 
     −2F T (τ )Q ∆F (τ ) 

 

A Lyapunov-like analysis of the closed-loop learning con- 
trol is carried out here in four steps. The first three steps 
consider the difference between two consecutive periods of  

the  Lyapunov function candidates Jr   (error of contact force), 
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F F 

t−T 2 choice of initial controller parameters may lead to task failure. 
2 choice of initial controller parameters may lead to task failure. 
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T −1 T −1 
  

=   −2F T (τ )[ε(τ ) − β(τ )F (τ ) + QT ∆ξr (τ )] . (33) Similarly we have 
J  (residual impedance errors) and J   (tracking error), respec- T −1 T −1 

c e t  ely. Step 4 then uses the results   f the first three steps to tr[K S (τ )QS   K S (τ ) − K S (τ )(τ − T )QS 
 

  
K S (τ − T )] 

examine the difference between two consecutive periods of the 
overall cost  J ≡ Jr  + Jc  + Je. 

 

  −2tr{KS (τ )[ε(τ )x  (τ ) − β(τ )KS (τ )]} 
tr[K D(τ )Qd    K D(τ ) − K D(τ − T )QD  K D(τ − T )] 

 

 

  −2tr[K  T (τ )(ε(τ )ẋT (τ ) − β(τ )KD (τ ))] . (34) 
D Step  1: Contact force error 

Step  1: Contact force error 

T T 
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Substituting Ineqs. (33) and (34) into Eq.(32) and considering 
Ineq. (31),  we obtain 

B. Stability analysis when neglecting damping 
Consider  the cost function 

   t 
T T 

 

 
1
   t 

 
− tr[K  T (εxT  − βKS )] − tr[K  T (εẋT  − βKD)] dτ . Following similar  procedures to  Ineqs. (30), (31), we obtain 

S D 
 

Step  3: Tracking error 
′ 

t 
T T 

 

 
 

 
 

we outline this in the following. In particular, we consider  the Considering further the cost  function 
time  derivative of Je 

1 
 

 

 
J ′ ≡ 

1
   t 

 
 

 
F T Q−1 F  + vecT (K   )Q−1vec(K   ) dτ (45) 

 

 
as [33] 

 
zT Ṁ z ≡ 2zT Cz ∀z . (37) 

and following similar procedures from Ineqs.(32) to (35), we 
obtain 

′ ′ 
t 

T T 
 

 
 

J̇ (t) ≡ εT (F T  + KT  x + KT  ẋ − Γε) . (38) −tr[K S (ε x   − βKS )] dτ . (46) 
e S D 

Integrating J̇e  from t − T  to t and considering Ineq. (35), we 
obtain 

The rest is similar to the case with damping and thus omitted. 
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