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Abstract— The growing interest in robust motion planning
under safety constraints for robotic systems, such as au-
tonomous vehicles or collaborative robots, lead to an increased
interest to prove the stability or stabilizability of dynamic
models of such systems. The proofs are usually based on
Lyapunov theory and often rely on “funnels”, tubes or similar
invariants that bound variations along reference trajectories.
Recent methods have shown how to compute such funnels via
sum-of-square (SoS) optimization. In this work we propose
a new approach to solve this problem relying on optimal
control based state-space partitioning and relaxation techniques
for polynomial programming. In contrast to SoS techniques,
our approach is inherently suitable to supply certificates of
local stability and deal with bounded control inputs without
increasing the complexity of the arising optimization problem.
We present how to use our approach to obtain a large inner
approximation of the true region of attraction around a given
trajectory for which it is ensured that all states inside the
funnel will reach goal states in a given time period. This
property makes it interesting to integrate our approach in
a general path or task planning algorithm. We compare our
results in simulation with the ones obtained using a state-of-art
method based on SoS techniques for a torque controlled simple
pendulum and an underactuated double pendulum (Acrobot).

I. INTRODUCTION

Executing robotic tasks in the presence of safety or timing
constraints in a robust fashion requires not only that the reference
trajectory satisfies these constraints but also that there exists
a region around this trajectory which will converge towards it
and also respects the constraints. With a dynamic model of the
robotic system, guaranteeing convergence on regions of the con-
figuration space is usually done with stability certificates, which
are computationally generated formal proofs based on Lyapunov
or contraction theory. However obtaining stability certificates
for nonlinear systems, such as walking or flying robots or even
simpler systems such as the Acrobot [1], that induce such regions
is notoriously difficult and remains a challenging problem de-
spite the enormous progress made in recent years using a variety
of different approaches. These approaches include, but are not
limited to, outer approximation via occupation measures [2],
counter-example guided synthesis [3] and sum-of-squares (SoS)
approaches [4], which are based on approximating the system
as polynomial using a truncated Taylor expansion and prove
the convergence of the approximated system with respect to a
quadratic Lyapunov function using SoS optimization. When the
system has control inputs, what is required is not certificates
of stability but certificates of stabilizabilty, proving that for
bounded control inputs there always exists inputs that bring the
system back to its reference. This is necessary to properly model
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robots, since its actuators can only provide a limited amount of
effort (e.g. joint actuators are usually limited in torque), which
makes obtaining certificates more difficult, especially for SoS
techniques. Moreover these certificates must be constructive and
yield ways to compute such control inputs.

We therefore propose an approach to prove exponential sta-
bilizability of a controlled polynomial system with input con-
straints with respect to polynomial Lyapunov function can-
didates based on two principles: state-space partitioning and
convexification. This leads to a formulation that inherently yields
local certificates of stabilizability and takes into account the
boundedness of the input in a very natural way.
In the remainder of this article we show how to partition the
state-space into subsets defined by the optimal control input
(Sec. III-B) and how this relates to proving stabilizability for a
given region and system (Sec. III-A). In section V we present our
approach to prove nonpositiveness of a polynomial based on an
extension of Reformulation and Linearisation Techniques (RLT)
and finally in section VI we present numerical results for two
common test cases, the Acrobot and a torque controlled simple
pendulum.

II. PROBLEM STATEMENT AND NOTATION

We propose a new method to find an inner approximation
of the true region of attraction (RoA) for polynomial control
affine systems1 by scaling a given quadratic Lyapunov function
candidate V (x) = xT.P.x, P ∈ Sn++, where Sn+/++ denotes
the cone of symmetric semi-definite/definite positive matrices of
size n× n over R. More precisely, we consider systems of the
form

ẋ = g(x) +B.u, u ∈ U (1)

where x ∈ Rn denotes a point in the state-space, g(.) represents
the polynomial (system) dynamics Rn 7→ Rn, B ∈ Rn×m is a
constant input matrix, u ∈ Rm denotes the control input and
U is the set of admissible control inputs. We suppose that B
has full column rank and that each control input u[i], where
[i] denotes the i-th element of the vector, is bounded, and
that the constraints are independent of the other control inputs,
u−[i] ≤ u[i] ≤ u+[i] so that U = {u|u− ≤ u ≤ u+}. This
type of input constraints is typical for torque controlled articu-
lated robots, which is our primary target as far as applications
are concerned. We adopt the notation that ≤<=>≥ represent
elementwise relations when applied to vectors or matrices, and
A � 0 means that the matrix A is positive semi-definite. The
problem treated in this article is to find an as large as possi-
ble sublevel-set of the quadratic Lyapunov function candidate

1In Sec. VI-B the class of treated dynamic systems will be enlarged to
polynomial systems with polynomial input dynamics. However, to introduce
the basic idea we will restrain ourselves to input affine systems for the
moment.



V (x), denoted Ω = {x|V (x) ≤ α} ⊂ Rn for which exists an
admissible control input that makes this set exponentially stable,
or more formally

prove ∀x ∈ Ω : ∃u
subject to u− ≤ u ≤ u+

〈∇xV, g(x) +B.u〉 ≤ −β.V (x)

where 〈., .〉 denotes the usual scalar product, ∇x denotes the
gradient with repect to x and β ≥ 0 is called the convergence
rate. The limit case β = 0 is equivalent to the set Ω being
invariant. To avoid confusion with other approaches, note that
our approach does not modify the given Lyapunov function
candidate V (.) but seeks to enlarge the subset Ω by enlarging
α. This approach is reasonable for dynamical systems for which
a ”good” Lyapunov function candidate can be found by other
means as we show in section V-C.
To avoid ambiguity with other definitions, we call a function
V (x) a Lyapunov function candidate if it is differentiable,
radially unbounded and everywhere strictly positive, except at
the origin where it evaluates to zero. A function V (x) is called
a Lyapunov function for the dynamical system ẋ = f(x) if it
is a Lyapunov function candidate and its derivative along any
trajectory of the system is everywhere strictly negative except
at the origin where it is zero. Moreover, a Lyapunov function
proves exponential stability if its derivative along any trajectory
is everywhere smaller than its current value multiplied with a
negative factor except at the origin where it is zero. Due to
their outstanding practical importance stemming from the ease
of inclusion and intersection testing as well as their inherent
suitability for second order systems, we restrain ourselves to
quadratic Lyapunov functions of the form V (x) = xT.P.x. The
conditions for V (x) being a Lyapunov function candidate are
met if P ∈ Sn++. Finally we write x |= C to indicate that the
variable/vector of variables x has to satisfy all constraints in the
constraint set C.

III. DERIVING POLYNOMIAL FUNCTIONS TO PROVE
CONVERGENCE FOR A SUBSET OF THE STATE-SPACE

In this section we detail how to prove stabilizability for a
region of the state-space based on Lyapunov theory for con-
trolled systems. First we show how SoS techniques deal with
the arising problems, and in the second part we detail our state-
space partitioning approach.

A. Local stability of polynomial systems
Given a Lyapunov function candidate V (x) and a subset

of the state-space Ω, proving exponential convergence for a
dynamical system ẋ = f(x) amounts to finding a certificate of
negativeness for V̇ (x) plus a convergence term valid within Ω.
So one has to prove that

∀x ∈ Ω \ 0, V̇ (x) = 〈∇V (x), f(x)〉 < −β.V (x) (2)

or equivalently

max
x∈Ω\0

〈∇xV (x), f(x)〉+ β.V (x) < 0 . (3)

However there is no generic way to find such certificates for
general nonlinear systems and Lyapunov function candidates.
Therefore one has to restrain the class of functions considered.

In recent years enormous progress has been made2 by restraining
both, the dynamics and the Lyapunov function candidate to be
polynomial in x. By doing so V̇ (x) is polynomial too and
one can use SoS-decomposition techniques to prove nonposi-
tiveness. However SoS-decomposition naturally implies global
stability of the system. If one wants/can only prove local stabil-
ity, additional multipliers need to be added, so (2) becomes ∀x ∈
Ω, V̇ (x) = 〈∇xV (x), g(x)〉−L(x)(V (x)−α) ≤ −β.V (x)
where L(x) is a SoS-polynomial3. This, due to the multiplica-
tion of decision variables, causes the problem to be nonconvex
and an alternating solution scheme has been proposed in [4] to
solve this problem.
For controlled dynamical systems, the arising question is even
more difficult: Given a controlled dynamical system of the form
ẋ = g(x) + b(x,u), does a control input u exist which satis-
fies simultaneously some input constraints so that u ∈ U and
ensures convergence 〈∇xV (x), g(x) + b(x,u)〉 ≤ −β.V (x).
So the arising problem asks whether for each point in the consid-
ered subset there exists an admissible control input that causes
the derivative to be smaller than the demanded convergence rate,

max
x∈Ω\0

min
u∈U
〈∇xV (x), g(x) + b(x,u)〉 ≤ −β.V (x) . (4)

This is an even more difficult problem due to the interweaving
of optimizations and cannot be efficiently solved even if V , g
and b are polynomials. The approach taken by [4] is to search
for a polynomial control law, denoted c(x), that replaces u
in the previous optimization problem, simplifying its structure.
However this solution comes at the price of introducing new
variables to represent the polynomial control law. Moreover, for
each element of the control vector new multipliers need to be
added in order to ensure that the output of the polynomial control
law locally satisfies the constraints on u and the highest order
of the polynomial system grows since b and c are composed,
which is a new source of complexity and nonconvexity. This
results in a necessary additional step in the alternating solution
scheme proposed in [4]. In this article we propose a different
approach to this problem. Instead of searching for a polynomial
control law we derive conditions that partition the state-space
into subsets for which the optimal control input satisfying the
input constraints can be determined. This optimal control law
is then viewed as proof that an exponentially stabilising control
input exists and we will derive more practical control laws based
on this proof in Sec. IV-B

B. State-space partitioning based on optimal input
In this section we explain how to partition the state-space

such that in each region the optimal control input, with respect
to convergence, is independent of the actual point considered.
We moreover show that this optimal control input inevitably
consists only of elements of u+ and u−.

Lemma 3.1: Optimal input partition
For polynomial control affine systems and quadratic Lyapunov
candidate functions, the state-space can be partitioned into 2m

subsets Hi∈[1,2m] and an associated optimal control input with
respect to convergence u∗i can be defined.

2See [4] and references therein.
3For details see [4]



In order to prove this claim, reconsider the quadratic Lyapunov
function candidate V (x) = xT.P.x and the polynomial control
affine system ẋ = g(x) +B.u. Then the time derivative of V
is given as

V̇ (x) = 〈∇xV (x), ẋ〉
= 2xT.P.(g(x) +B.u) . (5)

This indicates that the derivative can be separated into two
parts: An uncontrollable part resulting from the system dy-
namics 2xT.P.g(x) denoted V̇g and an input dependent part
2xT.P.B.u denoted V̇u. In order to obtain the desired partition-
ing of the state-space, V̇u is explicitly written as sum

V̇u =
∑
j

xT.P.B[:, j].u[j] (6)

where we denote B[:, j] the j-th column of the matrix B treated
as a column vector.
So the input dependent part of the derivative can be written
as the sum of each control input element u[j] multiplied by
the scalar xT.P.B[:, j]. By denoting nj = P.B[:, j] one gets
xT.nj which is simply the minimal directed distance4 be-
tween the point considered and a separating hyperplane passing
through the origin with normal vector nj denoted Pj .
Demanding the system to converge as fast as possible with
respect to the given Lyapunov function is therefore equal to
minimizing V̇u which in turn is equal to minimizing each term
in the sum in (6) since u[i] is independent of u[j] if i 6= j. To
achieve this, the j-th control input has to be chosen as small as
possible if xT.nj > 0 (x lies in the upper half-space of Pj) and
as large as possible if xT.nj < 0 (x lies in the lower half-space
of Pj) to obtain the minimal value of V̇u. The corresponding
optimal control input in the sense of instantaneous convergence
for the system is

u∗(x)[j] =


u+[j] if xT.nj < 0

u−[j] if xT.nj > 0

a else
(7)

where, in order to remove the ambiguity, any input a, satisfying
u−[j] ≤ a ≤ u+[j], can be chosen if the current state belongs
to the hyperplane. The undefined character of a does not pose
a problem for proving stability since its contribution to V̇u is 0
independently of the value of a. This control law partitions the
state-space into two closed half-spaces for each of them control
inputs. Denoting Hi the unbounded convex polytope defined as
the intersection of m upper or lower half-spaces generated by
the hyperplanes Pj∈[1,m] we get

Hi =
{
x|∀j ∈ [1,m] cijx

T.nj ≤ 0
}

(8)

where cij ∈ {−1, 1} is a switch to determine whether the
upper or lower half-space of the j-th hyperplane is used. One
can easily see that for each such polytope Hi the optimal
control input u, denoted u∗i , is independent of x. Since there
exist m such hyperplanes, the state-space is partitioned into
2m polytopes with different optimal inputs. Note that each
of these polytopes has nonempty interior if the matrix P is

4Up to a scaling factor

positive definite and B has full column rank (i.e. rank m). The
definiteness of P is always given because V (x) = xT.P.x
is a Lyapunov function candidate and in general, for dynamic
systems, B is of rank5 m. This approach is based on the ideas
developed in [5] for bilinear systems.
This approach allows us to obtain 2m subsets of
the state-space Hi, the dynamics induced by the
optimal control input ẋ = g(x) +B.u∗i and the best
obtainable derivative of the Lyapunov function candidate
V̇ ∗i (x) = 〈∇xV (x), ẋ∗〉 = 2.xT.P.(g(x) +B.u∗i ).
Now the min-max problem (4) for proving stability can be
reformulated. Since we determined the optimal input with
respect to instantaneous convergence for each Hi we can drop
the inner minimization by checking each intersection of the
partition with the sublevel-set of V considered. So the inner
minimization

min
u∈U
〈∇xV (x), g(x) + b(x).u〉 (9)

becomes
x ∈ Hi : 2.xT.P.(g(x) +B.u∗i ) (10)

and therefore

∀i : max
x∈(Ω∩Hi)\0

V̇ ∗i (x) = 2.xT.P.(g(x) +B.u∗i )

+ β.xT.P.x ≤ 0 (11)

is equivalent to the initial problem (4) and therefore represents a
proof of exponential convergence. It also proves, constructively,
that Ω is a region of exponential stabilizability. What we want is
to maximize the size of Ω, which depends only on one parameter,
α. In section VI, we use a dichotomic search to quickly find a
large value forα. This requires us to efficiently check the validity
of 11. In section V we show how this can be done by using
relaxations to deal with the nonconvex polynomial expressions
in 11.

IV. RESULTING CLOSED-LOOP DYNAMICS AND LINKS TO
SLIDING-MODE AND QP CONTROL

In this section we point out links between the optimal control
law and first order sliding mode control. Since this control mode
can induce chattering and premature wear out due to the high,
possibly infinite, switching frequency on the sliding surface it
is not suitable in real applications. We therefore introduce a
quadratic programming (QP) control law that results in con-
tinuous control trajectories and provides the same certificates.
To illustrate the approach and the resulting dynamics, a torque
controlled simple pendulum is used as a showcase,

ẋ =

(
θ̇

θ̈

)
= g(x) +B.u =

(
θ̇

ω2 sin(θ)

)
+

[
0
k

]
.u . (12)

The reference θ = 0 corresponds to the upright position.

A. From sliding mode control to a continuous control law
To showcase the resulting partition we impose the Lyapunov

function candidate V (x) = xT.Id.x. Since the pendulum is a
single input system, there exists only one separating hyperplane
defined by the normal vector n = Id.B = keθ̇ as shown in
Fig. 1. We therefore obtain optimal control inputs associated to

5If not, this means that there exist at least two inputs which are linearly
dependent. One can replace these two or more inputs by fewer and linearly
independent inputs and return to the general case.
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Fig. 1. On the left the partitioning of the state-space based on V is shown.
u−/u+ is the optimal input for the upper/lower half-space. On the right,
the resulting dynamics for the original system dynamics imposing u∗ is
shown. The black circle marks the largest exponentially converging subset
Ω.

the partitioning of the state-space formed by two subsets H0

and H1. From both half-spaces the system states converge to
the hyperplane (or diverge) for the optimal control input. Once
this surface obtained, switching between the u− and u+ occurs,
at possibly infinite frequency, in order to maintain the state on
the hyperplane. This corresponds to first order sliding mode
control and the separating hyperplane is the sliding surface for
this system.
In [6] a generic way to obtain stable sliding-mode control laws
for a class of underactuated second-order systems, including the
Acrobot, is proposed. Even though this approach also yields a
hyperplane (not equivalent to ours) used to switch the sign of (a
part of) the input, the resulting behaviour and properties are very
distinct. The proof of convergence of the sliding mode control
is performed in two steps: I) Prove that the system converges to
the sliding surface (the hyperplane) II) Prove that all points on
the hyperplane converge to the origin. Using such an approach,
it is not obvious how to deal with bounded inputs or specify an
invariant region. Since trajectories are allowed to stray very far
from the origin while converging towards the sliding surface, it
increases the risk of leaving the true RoA that takes into account
the boundedness of the input.

B. QP-control for a continuous control law
As pointed out above, first order sliding control raises con-

cerns from both theoretical and practical point of view: the
high switching frequency once the hyperplane reached causes
problems for real robotic applications, and from a theoretical
point of view, the solution of the dynamical system is actually
undefined. To remedy these problems we propose a QP-based
control and prove, using Berge’s Maximum Theorem [7], that
it guarantees exponential convergence on Ω \ 0 and continuous
control trajectories if (11) holds.
The proposed QP-control is

minimize
u

h(x,u) = uT.Q.u + 2xT.P.B.u

subject to u− ≤ u ≤ u+

2xT.P.B.u ≤ −2xT.P.g(x)− β.xT.P.x

where 2xT.P.B.u is the input dependent part of the derivative
of the Lyapunov function, Q ∈ S++ is user chosen, typically
diagonal, and reflects the cost of the control effort. The first

constraint represents the boundedness of the control input and
the second constraint ensures the demanded exponential conver-
gence.
Note that this optimization problem is guaranteed to have a
solution for all x ∈ Ω\0 if (11) holds. Moreover, the form of the
objective function (with Q ∈ S++), together with the convexity
of the constraints, ensures uniqueness of solutions and makes the
problem amenable to convex quadratic programming.
In order to prove continuity of the resulting control trajectory,
we employ Berge’s Maximum Theorem, which, combined with
the uniqueness of solutions, guarantees continuous control tra-
jectories. Berge’s Maximum Theorem provides conditions to
ensure the continuity (properly speaking the upper hemicon-
tinuity) of the set of control inputs respecting the constraints
and minimizing the objective function. Since this set collapses
to a singleton u∗ (the unique solution) in our case, it ensures
continuity. The fulfilled conditions are that the objective function
h(x,u) is jointly continuous inx andu and that the set of inputs
respecting the constraints is compact and hemicontinuous (upper
and lower) with respect to x.
The influence of the regularization matrixQ on the control effort
and dynamics is shown in Fig. 2.

Fig. 2. In these figures the resulting dynamics for the inverse pendulum
using the proposed QP-control are shown. The convergence rate β = 0.5 is
the same for both figures. The regularization term Q is equal to 2 for the left
and 0.5 for the right figure. As one can see, a high regularization induces
a smoother control law (illustrated by a smoother transition in the colours).
As the regularization term diminishes, to resulting control law approaches
more and more the optimal control law u∗, which maximizes instantaneous
convergence. For points outside the ellipsoid (Ω) the QP-problem is not
always feasible in which case we use u∗.

Remark 1: We will see in sec. V-C that V (x) (thus P ) can be
chosen such that the control inputs are not only continuous but
also the slopes have reasonable absolute values.

Remark 2: The optimization objective is arbitrary (as long as
Berge’s Maximum Theorem hypotheses hold) and the decisive
constraint assuring convergence is a simple linear constraint
on the control input, which can be easily added to existing
optimization based controllers.

V. RLT BASED CONVEXIFICATION

Up to now it was detailed how to partition the state-space
into input optimal subsets and derive an associated nonconvex
polynomial expression (11), whose negativity on the respective
subset is a partial proof of exponential stabilizability. In this
section we show how to efficiently treat this problem using a
modified version of the well-known Reformulation and Lin-
earisation Technique (RLT) first introduced in [8] for zero-one
programming problems, extended to continuous variables in [9]
and further enhanced with semi-definite constraints in [10].



A. RLT based convex underapproximation

In order to informally introduce the basic idea behind RLT
consider the general quadratic objective subjected to a set of
linear constraints C1

minimize
x

xT.Q.x + L.x (13)

subject to x |= C1

This problem is nonconvex and NP-hard if Q /∈ S+ and there-
fore can not be efficiently solved. The Relaxation and Lineari-
sation Technique copes with this problem by replacing the i-th
nonlinear term in the optimization problem with a corresponding
new variable Xi. This gives rise to a set of new variables X
and the objective function becomes linear in the set x ∪ X ,
but is unbounded due to the lack of constraints on X . In the
running example, one can replace xT.Q.x with tr(X.Q), where
the matrix variable X is introduced to linearise all quadratic
terms xixj by the single variable Xij .

We denote by 7→Lin the operator replacing all nonlinear terms
by the corresponding variables in the set of new variables, so for
instance axixj + bxkxl 7→Lin aXij + bXkl.
In order to ensure that the gap between the solution of the
original and the linearised problem is small, one has to construct
valid constraints on X . This can be done by taking products
of constraints on x. For instance, reconsider the set of linear
constraints C1 = ∪k∈[1,K]C

k
1 . By multiplying two constraints

Cm1 , Cn1 one obtains a valid constraint with terms up to order
2 in x, then again one can replace the nonlinear (quadratic
in this case) terms by the corresponding variable in X and
thereby a linear constraint in x ∪X is obtained. For short,
Cm1 ⊗ Cn1 = Cm,n2 7→Lin

∼
C
m,n

X , where ⊗ denotes the product
of constraints. E.g. if Cm1 = axi + bxj ≥ 0 and Cn1 = xi ≥ c
then product becomes Cm1 ⊗ Cn1 = Cm,n2 = ax2

i + bxixj −
acxi − bcxj ≥ 0 and can be linearised to Cm,n2 7→Lin

∼
C
m,n

X =
aXii + bXij − acxi − bcxj ≥ 0 which is linear in x ∪ X .
By an abuse of notation, we will denote by ⊗ also the prod-
uct of constraint sets, enumerating all possible combinations,
so C1 ⊗ C1 = ∪i∈[1,K] ∪j∈[i,K] C

i
1 ⊗ C

j
1 . We denote by Ci a

constraint set were all appearing monomials are of degree i or
less and

∼
CX denotes the corresponding linearised version, a set

of linear constraints with variables in x ∪ X . Forming such
product constraints ensures that the new variables are bounded
while guaranteeing that the linearised objective function remains
an underestimator of the original objective function, since the set
of admissible values in x ∪X is strictly larger than the set of
admissible values of the original problem6. This corresponds to
the standard RLT and was originally proposed in [9].
In [10] an improvement to the standard approach is given by
adding semidefinite constraints, reducing significantly the gap
between the solution of the relaxed and original problem. To
introduce these constraints reconsider the nonconvex part of the
objective function xT.Q.x and its linearisation tr(X.Q). It is
clear that the minimum of the original objective is obtained if
X = x.xT holds. However this condition cannot be imposed
as a constraint to the optimization since it is nonconvex. But

6For more details see [9].

X � x.xT can be imposed7 as linear matrix inequality (LMI)
constraint via the Schur-complement to the optimization by
adding [

1 xT

x X

]
� 0

which makes the problem amenable to semidefinite program-
ming. The optimisation resulting from applying the enhanced
RLT on (13) is given as

minimize
x,X

tr(X.Q) + L.x

subject to x |= C1
x, X |=

∼
CX[

1 xT

x X

]
� 0

where
∼
CX denotes the linearisation of the set of constraints

C1 ⊗ C1 = C2 7→Lin
∼
CX . This approach was successfully ap-

plied to nonconvex quadratic optimisation problems [11] or
within branch and bound algorithms for general nonlinear pro-
gramming [12].

B. Enhanced RLT for polynomials
Below, we apply our method to polynomial dynamics of

degree 3, which gives a degree 4 to the polynomial expressions
in (11): V̇ ∗i (x) = 2.xT.P.(g(x) + B.u∗i ) ≤ −β.xT.P.x.
So, the above presented enhanced RLT has to be modified in
order to treat such polynomials. As seen above, a new set of
variables, denoted X , is created to linearise quadratic terms in
x which we write as x.xT 7→Lin X . We denote z the column
vector composed of all quadratic terms in x and vec(X) the
column vector where the upper triangle of X is stored. So we
have z 7→Lin vec(X) and one can construct the following matrix(
x
z

)
.

(
x
z

)T

7→Lin

(
x

vec(X)

)
.

(
x

vec(X)

)T

7→Lin

[
X Y
Y T Z

]
where the symmetric matrix X linearises all quadratic
terms, x.vec(X)T 7→Lin Y linearises all cubic terms8 and
vec(X).vec(X)T 7→Lin Z linearises all quadratic terms in X
and therefore corresponds to quartic terms in x8. By applying
the Schur-complement a valid LMI-constraint is generated for
the linearisation of all monomials of degree up to 4 1 xT vec(X)T

x X Y
vec(X) Y T Z

 � 0 . (14)

In order to ensure that the linearised objective gives tight
bounds, valid constraints on X , Y and Z have to be con-
structed based on the original constraint sets C1, C2, C3 and
C4. Valid constraints can in this case be obtained if the degree
of the resulting constraint is less or equal to 4. Some exam-
ples of valid constraint sets are C1 ⊗ C1 ⊗ C1 = C3 7→Lin

∼
CY ,

C1 ⊗ C1 ⊗ C2 = C4 7→Lin
∼
CZ , where

∼
CY /
∼
CZ is a set of lin-

ear constraints in x ∪X ∪ Y /x ∪X ∪ Y ∪ Z. Using this ap-
proach, which is inspired by the ideas developed in [13], we can

7This relaxation also conserves the property that the linearised objective
function is an underestimator for the original problem as the set of
admissible values is strictly enlarged.

8 Note that not all elements in Y or Z are unique.



underestimate the original objective function of degree 4

minimize
x

(
xT zT

)
.Q.

(
x
z

)
+ L.x (15)

subject to x |= C1, C2, C3, C4

with

minimize
x,X,Y,Z

tr
([

X Y
Y T Z

]
.Q

)
+ L.x

subject to x |= C1
x, X, Y, Z |=

∼
CX ,

∼
CY ,

∼
CZ 1 xT vec(X)T

x X Y
vec(X) Y T Z

 � 0

where
∼
CX ,

∼
CY and

∼
CZ are the sets of all obtainable constraints

constructed via multiplication of C1, C2 and C3 plus the lineari-
sation of C2, C3, C4, the naturally arising constraints on the new
variables and their respective products.

Remark 3: The number of variables is this optimisation prob-
lem is equal to the number of monomials of degree up to 4
in x. The approach presented in [4] needs a similar number
of variables to represent just one component of the polynomial
control law (depending on the degree of the control law) plus the
variables necessary to represent the multiplier functions which
have to be of superior degree in general.

Remark 4: The number of linear constraints in the sets
C1/2/3/4 and (even more so)

∼
CX/Y/Z grows rapidly with the size

of x. However linear constraints are computationally cheap and
additionally there exist methods to limit number of constraints.
These methods are based on the redundancy often occurring,
when taking all products possible between the constraint sets.

Remark 5: The above presented approach to construct en-
hanced RLT representation of nonconvex polynomial problems
is by no means confined to polynomials of degree 4. By reap-
plying the method above k times one can linearise optimisation
problems containing monomials of degree up to 2k.

Remark 6: The decision variables in the resulting semidefi-
nite program are associated with remarkably sparse matrices in
the LMI constraints. This structure can probably be exploited to
solve the problem even faster with a tailored solver.

C. Application

Above it was shown how to construct a linear underestimator
in a higher dimensional space (x ∪X ∪ Y ∪ Z) for a (noncon-
vex) polynomial function of order 4 in x and how to construct
constraint sets for the new variables (X ∪ Y ∪ Z) such that the
underestimation usually results in reasonably tight bounds. Now
we will shortly discuss how to apply this approach to prove
stabilizability of a controlled system.
According to (11) we can prove the stabilizability of a polyno-
mial control affine system on a sublevel-set Ω of a quadratic
Lyapunov function candidate V (x) = xT.P.x by assur-
ing the negativity of each of the 2m (nonconvex) terms
2xT.P.(g(x) +B.u∗i ) on Ω ∩Hi \ 0. For each i ∈ [1, 2m],

this can be written as

minimize
x

(
x
z

)T

.Q.

(
x
z

)
+ Li.

(
x
z

)
(16)

subject to C1 =
{
∪j∈[1,m]c

i
jx

T.nj ≤ 0
}

C2 =
{
xT.P.x ≤ α

}
with

Q = −
[
P
0

]
.Ã− ÃT.

[
P 0

]
− β

[
P 0
0 0

]
and

Li =
[
−u∗i .BT.P 0

]
,

with g(x) = Ã.z being the truncated Taylor expansion9 of
the true nonlinear system dynamics. C2 represents the quadratic
constraint confining x to the sublevel-set Ω and C1 is the set of
linear constraints restricting x to the i-th polytope of the optimal
input partitioning. This shows how to bring the resulting optimal
convergence for each of the 2m input optimal subsets into the
form of (15). If the minimal objective value of the optimization
problem (16) is larger than 0 for each subset Hi ∩ Ω, then Ω is
exponentially stabilisable.

VI. NUMERICAL RESULTS

The above presented approach was implemented in python
using cvxopt [14]10 and compared to the results obtained using
the drake toolbox [15] for matlabTM relying on a very similar
approach than the one presented in [4]. The largest region of
attraction for the unstable position of a torque controlled simple
pendulum and the Acrobot, a 2 DoF underactuated robotic arm,
are presented and compared. Additionally, a time varying region
of attraction (“Funnel”) is presented for a swing-up trajectory
of the Acrobot using a reference trajectory generated with
OMPL [16] and KPIECE1 [17].
Up to now it was shown how our approach can be used to
prove that the optimal control law according to (7) ensures that
the system converges exponentially with respect to a quadratic
Lyapunov function candidate V (x) on a given sublevel-set
Ω = {x|V (x) ≤ α} and why this is a certificate that Ω is
exponentially stabilisable with continuous control inputs. How-
ever neither how to obtain the candidate function nor how to
maximize the certified inner approximation of the real region
of attraction has been discussed. In contrast to the approach
taken in [4] we do not seek to modify the Lyapunov function
candidate, but rely on the similarity between the behaviour of
the original system and the behaviour of its linearisation in the
neighbourhood of an equilibrium point. Using the linearised
system, suitable Lyapunov function candidates can be found
using a Linear Quadratic Regulator (LQR) in its finite or infinite
horizon version. It provides a positive definite matrix P and
a cost optimal linear control such that V (x) = xT.P.x is a
Lyapunov function for the closed-loop system in its linearised
form. Then, in order to find a large inner approximation of the
RoA for sublevel-sets of V , we perform a dichotomic search to
quickly find a large α for which the exponential stabilizability
can be proven for every point in Ω = {x|V (x) ≤ α}.

9Without loss of generality it is assumed that the function is linearised
at the origin.

10The code used for the examples in this article can be downloaded at
https://github.com/schlepil/RoA



A. Simple Pendulum

The first example provided is a torque controlled simple pen-
dulum for which we want to approximate the region of attraction
of the upright position. The numerical values of the system are
taken from the drake toolbox and we present the results obtained
using the drake toolbox and our approach in Fig. 3.

Our approach provides in this example significantly larger

Fig. 3. Figure top left: Green ellipsoid: Region of attraction obtained
with the drake toolbox for a cubic controller denoted RoASoS ; Purple
ellipsoid obtained with our approach (denoted RoArelax) initialised with
the Lyapunov function of RoASoS . Green line: Separating hyperplane and
defining normal vector; red, black and blue line: Set of points where the
cubic control law (from drake toolbox) attains u+, 0 and u−. Figure top
right: Region of attraction obtained with our approach when initialised
with the result of LQR with Q = Idn and R = 5. ∗ Idm. Bottom
row: Streamlines obtained when applying the generated control law. Left:
Regularized QP-control with β = 0.001 and Q = [0.5] based on
our approach. Right: Cubic feedback control law saturated to meet input
constraints. For both plots the Taylor expansion up to degree 3 of the simple
pendulum is used as system dynamics.

regions of attractions, even-though it does not modify the shape
of the region. It is worth noting that in [4] the ellipsoids are
normalized by the condition V (e) = 1, where e is the vector
of all ones. Even though this normalization does not introduce
any conservativeness in the sense that a class of functions is
excluded from the optimization, it introduces a bias since it is
not equivalent to normalizing the ellipsoids by their volume.
The ellipsoids on the top right of Fig. 3 have almost identical
cost values for e, but the blue ellipsoid has a seven times larger
surface. One can see that the resulting closed-loop dynamics
are relatively similar for the chosen regularization value Q. As
one can see, the generated RoASoS could be scaled without
changing the control law and still be an invariant set, however
the conservativeness introduced by the multiplier terms seems
to inhibit this. A last remark on a qualitative difference between
the two generated sets: while the set RoASoS is an invariant
set according to [4], RoArelax is an exponentially converging
set. This is worth noting since this change does not impact the
runtime of our approach but has a significant impact on SoS
approachses due to the additional SoS constraint necessary on
the multiplier terms.

B. Acrobot
The underactuated two link robot called Acrobot does not

belong to the class of polynomial control affine systems since its
mass matrix is state-dependent and we therefore obtain nonlinear
system and input dynamics ẋ = g̃(x) + b̃(x).u. We can nev-
ertheless use the above detailed approach by first constructing
the state-space partition based on the value of b̃ at the origin,
so B = b̃(0). Then, we use the truncated Taylor expansion
up to degree 3 to approximate the dynamics, g(x) ≈ g̃(x),
b(x) ≈ b̃(x) and the expression for the best obtainable conver-
gence (11) becomes V̇ ∗i (x) = 2.xT.P.(g(x) + b(x).u∗i ). Note
that due to the nonlinearity of b(x) it is no longer guaranteed that
u∗i is indeed optimal for each point in the subset Hi. However,
since the nonlinear part of the input dynamics is usually small
compared to the linear part and the points for which u∗ is not
optimal are usually close to the separating hyperplane and have
therefore little influence on V̇u, u∗i is a good guess as it can be
seen in the top left in Fig. 4.

Fig. 4. Figure top left: Difference between separating hyperplane P
(red line) and separating hypersurface for polynomial input dynamics (blue
line). Bottom left: Projection of RoASoS (green) and RoArelax (blue)
when imposing RoASoS as initial condition for our approach. Right: Two
projections of RoASoS (green) and RoArelax (blue) when our approach
is initialised with the result of LQR with Q = diag([10, 10, 1, 1]) and
R = 0.01 ∗ Idm.

1) Stabilising the upright position: Again we compare
the region of attraction found for the upright position under
input constraints. Due to numerical issues solving the resulting
semi-definite optimization problem when searching for a cubic
controller using the drake toolbox, only a linear feedback
controller is used. In Fig. 4 the projections of the two regions
of attraction on different planes (the θ0/θ1-plane and the
θ1/θ̇1-plane) are shown, except for the top right figure, where
the intersection between the ellipsoid and the θ0/θ1-plane is
drawn. Here again, the volume of RoArelax is significantly
larger (about 27 times) than the volume of RoASoS , but the
value of the Lyapunov functions for e are very similar (20. 10−3

to 22. 10−3).

2) Funnel around a swing-up trajectory: As final example
we seek to construct “the largest” time-varying exponentially
converging region, called a funnel, around a given reference



trajectory. The reference trajectory describes a swing up motion,
i.e. a motion taking the Acrobot from the stable ”hanging” posi-
tion to the unstable upright position. We want to compute a fun-
nel that takes as many states as possible, measured by the volume
of the ellipsoids defining the funnel, to a small ellipsoid centred
on the upright position. To achieve this, we first distribute N
sample points along the trajectory, for which we will actually
prove convergence as done in [4]. Then our algorithm retro-
propagates the goal set ΩN along the reference trajectory, seek-
ing at each step to maximize the size of Ωi−1. A suitable initial
guess for the Lyapunov function candidate Vi(x) = xT.Pi.x

11

can be computed using a slightly modified time-dependent LQR
controller. Attention has to be paid to properly account for the
time-dependence of the funnel since the derivative of V be-
comes V̇ (x, t) = 2xT.P.(g(x) + b(x).u) + xT.Ṗ .x, where
xT.Ṗ .x is the additional term required by the time-dependence.
The projection of the resulting funnel onto different planes is
shown in Fig. 4. For this example we prove convergence on 95
points and each retro-propagation step takes about 12 seconds,
so the entire funnel is computed in about 20 minutes on a
desktop pc with i7-3770 processor.

Fig. 5. Figure left: Projection of the time-dependent invariant set onto
the θ0/θ1-plane. Figure right: Projection of the time-dependent invari-
ant set onto the θ0/θ̇1-plane. Due to the under-actuation of the sys-
tem, a small neighbourhood around the origin has to be excluded to
prove exponential convergence, so we have V̇ (x, t) ≤ −βV (x, t) on
Ω′ = {x|γα(t) ≤ V (x, t) ≤ α(t)} with β, γ > 0. The reference input
is confined between −10 and 10 and we set the minimal/maximal input
to −20/20, other numerical values defining the system are taken from the
drake toolbox.

VII. CONCLUSION AND FUTURE WORK

We have presented an alternative approach to prove local
exponential stabilizability of nonlinear control systems with
input constraints based on ideas of sliding-mode control and
relaxation methods for polynomial programming. The ability
of our approach to find large inner approximations of the true
region of attraction is shown for two common examples, a
simple pendulum and the Acrobot. We obtain promising results
in comparison to state-of art methods relying on SoS-techniques.
In order to make our approach more computationally efficient
and allow for systems with more degrees of freedom (n > 8)
we seek to replace the computationally heavy LMI-constraints
with second-order cone constraints based on ideas in [18] or
using semi-definite cuts based on [13]. Another line of work is to
exchange interior point based optimization with ones relying on
first order optimization methods, which are more suitable in case

11Note that i here indicates the current time-point considered i ∈ [1, N ]
and is not to be confused with indexing the different input optimal polytopes
Hi.

of large optimization problems [19]. Also there exists a huge
potential speed-up using (warm-up) heuristics when computing
funnels around reference trajectories since the polytope Hi
having the worst convergence rarely changes from one time-
point to its predecessor.
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