
Prioritized Sweeping Neural DynaQ with
Multiple Predecessors, and Hippocampal

Replays

Lise Aubin, Mehdi Khamassi, and Benôıt Girard

Sorbonne Université, CNRS, Institut des Systèmes Intelligents
et de Robotique (ISIR), F-75005 Paris, France
benoit.girard@sorbonne-universite.fr

Abstract. During sleep and awake rest, the hippocampus replays se-
quences of place cells that have been activated during prior experiences.
These have been interpreted as a memory consolidation process, but re-
cent results suggest a possible interpretation in terms of reinforcement
learning. The Dyna reinforcement learning algorithms use off-line replays
to improve learning. Under limited replay budget, a prioritized sweeping
approach, which requires a model of the transitions to the predecessors,
can be used to improve performance. We investigate whether such al-
gorithms can explain the experimentally observed replays. We propose
a neural network version of prioritized sweeping Q-learning, for which
we developed a growing multiple expert algorithm, able to cope with
multiple predecessors. The resulting architecture is able to improve the
learning of simulated agents confronted to a navigation task. We pre-
dict that, in animals, learning the world model should occur during rest
periods, and that the corresponding replays should be shuffled.

Keywords: Reinforcement Learning, Replays, DynaQ, Prioritized Sweep-
ing, Neural Networks, Hippocampus, Navigation

1 Introduction

The hippocampus hosts a population of cells responsive for the current position
of the animal within the environment, the place cells (PCs), a key component of
the brain navigation system [1]. Since the seminal work of [2], it has been shown
that PCs are reactivated during sleep – obviously without any locomotion –
and that these reactivations are functionally linked with the improvement of the
learning performance of a navigation task [3]. Similar reactivations have been
observed in the awake state [4], while the animal is immobile, either consuming
food at a reward site, waiting at the departure site for the beginning of the
next trial or stopped at a decision point. These reactivations contain sequences
of PCs’ activations experienced in the awake state (forward reactivations) [5],
sequences played in the reverse order (backward reactivations) [4], and sometimes
never experienced sequences (resulting from the concatenation of experienced
sequences) [6]. These reactivations have been interpreted in the light of the

T1

T2

R1 R2

.

.

.
0

0.2
0.6
1

0.6
0.2
0
.
.
1

0.5

φ=
Location

Memory

act

dist

1

0

.6

.2

Fig. 1. Model of the rat experiment used in [6]. The maze is discretized into
32 positions (squares). The agent can use 4 discrete actions (N,E,S,W). The input
state φ is the concatenation of 32 location components and two reward memory com-
ponents. The location part of φ represents the activation of 32 place cells co-located
with the maze discrete positions, their activity act depends on the Manhattan dis-
tance of the agent to the cell. All figures by Aubin & Girard, 2018; available at
https://doi.org/10.6084/m9.figshare.5822112.v2 under a CC-BY4.0 license.

memory consolidation theory [7]: they would have the role of copying volatile
hippocampal memories into the cortex [8] for reorganization and longer-term
storage [9]. Some recent results have however shown that these reactivations
also have a causal effect on reinforcement learning processes [3, 10].

A number of reinforcement learning (RL) algorithms make use of reactiva-
tions of their inputs, reminiscent of hippocampal reactivations, that are thus
candidates to explain this phenomenon [11]. Among them, the Dyna family of
algorithms [12] is of special interest because it was specifically designed to make
the best possible use of alternation between on-line and off-line learning phases
(i.e. phases during which the agent acts in the real world or in simulation). We
concentrate here on the Q-learning version of Dyna (Dyna-Q). When operating
on-line, Dyna-Q is indistinguishable from the original model-free Q-learning al-
gorithm: it computes reward prediction error signals, and uses them to update
the estimated values of the (state, action) couples, Q(s, a). In its original version
[12], when off-line, the Dyna algorithm reactivates randomly chosen quadruplets
composed of an initial state, a chosen action, and the predicted resulting state
and reward (produced by a learned world-model, this phase being thus model-
based), in order to refine the on-line estimated values. However, when the number
of reactivations is under a strict budget constraint, it is more efficient to select
those that will provide more information: those that effectively generated a large
reward prediction error in the last on-line phase, and those that are predicted
to do so by the world model, a principle called prioritized sweeping [13, 14].

We are here interested in mimicking the process by which the basal ganglia,
which is central for RL processes [15], can use the state representations of the
world that are provided by the hippocampus. The manipulated state descriptor

will thus be a population activity vector, and we will represent the Q-values and
the world model with neural network approximators [16].

In the following, we describe the rat experimental setup proposed in [6],
and how we simulated it. In this task, a state can have multiple predecessor
states resulting from the execution of a single action, we thus present a modified
Dyna-Q learning algorithm, with a special stress on the neural-network algo-
rithm we designed to learn to approximate binary relations (not restricted to
functions) with a growing approach: GALMO for Growing Algorithm to Learn
Multiple Outputs. Our results successively illustrate three main points. First,
because of interferences between consecutively observed states during maze ex-
perience, themselves due to the use of a neural-network function approximator,
the world model had to be learned with shuffled states during off-line replay.
Second, GALMO allows to efficiently solve the multiple predecessor problem.
Third, the resulting system, when faced with a training schedule similar to [6],
generates a lot of disordered state replays, but also a non-negligible set of varied
backward and forward replay sequences, without explicitly storing and replaying
sequences.

2 Methods

2.1 Experimental task

We aim at modeling the navigation task used in [6]: two successive T-mazes (T1
and T2 on Fig. 1), with lateral return corridors. The left and right rewarding
sites deliver food pellets with different flavors. The training involves daily chang-
ing contingencies, forcing rats to adapt their choice to turn either left or right at
the final choice (T2) based on the recent history of reward. These contingencies
are: 1) always turn right, while the left side of the maze is blocked; 2) always
turn left, while the right side of the maze is blocked; 3) always turn right; 4)
always turn left; 5) alternate between left and right on a lap-by-lap basis.

Rats attempting to run backward on the maze were physically prevented to
do so by the experimenter. They had forty trials the first day to learn task 1, and
forty trials the second day to learn task 2. Then, depending on their individual
learning speed, rats had between seventeen and twenty days to learn task 3, 4
and 5 (a single condition being presented each day). Once they reached at least
80% success rate on all tasks, rats were implanted with electrodes; after recovery,
recording sessions during task performance lasted for six days.

During the six recording sessions, the reward contingency was changed ap-
proximately midway through the session and hippocampal replays were analyzed
when rats paused at reward locations. Original analyses of replayed sequences
[6] revealed that: during same-side replays (i.e., replays representing sequences
of previously visited locations on the same arm of the maze as the current rat
position) forward and backward replays started from the current position; dur-
ing opposite-side replays (i.e., representing locations on the opposite arm of the
maze) forward replays occurred mainly on the segment leading up to reward

sites, and backward replays covered trajectories ending near reward sites. In
general, the replay content did not seem to only reflect recently experienced tra-
jectories, since trajectories experienced 10 to 15 minutes before were replayed
as well. Indeed, there were more opposite-side replays during task 3 and 4 than
during the alternation task. Finally, among all replays, a few were shortcuts
never experienced before which crossed a straight path on the top or bottom of
the maze between the reward sites.

2.2 Simulation

We have reproduced the T-maze configuration with a discrete environment
composed of 32 squares (Fig. 1, left), each of them represents a 10 × 10 cm
area. States are represented by a vector φ, concatenating place cells activity and
a memory of past rewards (Fig. 1, right). The modeled place cells are centered
on the discrete positions, their activity (color-coded on Fig. 1) decreases with
the Manhattan distance between the simulated rat position to the position they
encode (top of Fig. 1). When a path is blocked (contingencies 1 and 2), the
activity field does not expand beyond walls and will thus shrink, as is the case
of real place cells [17]. To represent the temporal dimension, which is essential
during the alternation task, we have added two more components in the state’s
vector representation (Fig. 1, right): the left side reward memory (L) and the
right side reward memory (R). They take a value of 1 if the last reward was
obtained on that side, 0.5 if the penultimate reward was on that side, and 0 if
that side has not been rewarded during the last two reward events. Therefore,
after two successful laps, the task at hand can be identified by the agent based
on the value of this memory (Tab. 1). This ability to remember the side of the
rewards is supposed to be anchored both on the different position and flavor cues
that characterize each side. Since it has been shown that, beyond purely spatial
information, the hippocampus contains contextual information important for the
task at hand [18], we hypothesize that this memory is also encoded within the
hippocampus, along with the estimation of the agent’s current position.

The agent can choose between four actions: North, South, East and West.
As in the real experiment, the agent cannot run backward.

Table 1. State of the L and R memory components of φ and corresponding meaning
in terms of task at hand, after two successful laps.

L R Task identification (after 2 laps)

1 0 Always turn right (Tasks 1 & 3)
0 1 Always turn left (Tasks 2 & 4)

0.5 1 Alternation (Task 5), go left next time
1 0.5 Alternation (Task 5), go right next time

2.3 Neural DynaQ with a prioritized sweeping algorithm

Our algorithm is based on a Dyna architecture [12] which means that, as in
model-based architectures, we need to learn a world model composed of a reward
and a transition model [19]. In order to implement prioritized sweeping [13,
14], the transition model must be designed so as to allow the prediction of the
predecessors of a state s given an action a, because it will be needed to back-
propagate the reward prediction computed in state s to its predecessors. Hence,
our architecture is composed of two distinct parts: one dedicated to learning the
world model, and the other one to learning the Q-values.

Algorithm 1 LearnWM: learn the world model

collect S // a set of (φt, φt−1, a, r) quadruplets
for k ∈ {N,S,E,W} do
Sk
P ← {(φt, φt−1) : (φt, φt−1, a, r) ∈ S and a = k}
Sk
R ← {(φt, r) : (φt, φt−1, a, r) ∈ S and a = k}

for f ∈ {P,R} do
// P,R: Predecessor and Reward types of networks
N k

f ← null // list of networks (outputs)

Gkf ← null // list of networks (gates)

create Nk
new ; append Nk

new to N k
f

create Gk
new ; append Gk

new to Gkf
GALMO(Sk

f , N k
f , Gkf) // refer to Algo 2 for this specific training procedure

end for
end for

Learning the world model. Two sets of neural networks compose the world
model. Four reward networks Na

R, one for each action a, learn the association
between (state, action) couples and rewards (Na

R : s → r(s, a)). Four other
networks Na

P learn the states for which a transition to a given state s is produced
after execution of action a, i.e., the predecessors of s (Na

P : s→ {s′}).
Owing to the nature of the task (navigation constrained by corridors) and

the states’ representation, the data that must be learned are not independent.
Indeed, successive state vectors are very similar due to the overlap between
place-fields, and are always encountered in the same order during tasks execu-
tion (because the agent always performs the same stereotyped trajectories along
the different corridors). However, it is well known that the training of a neural
network is guaranteed to converge only if there is no correlation in the sequence
of samples submitted during learning, a condition that is often not respected
when performing on-line reinforcement learning [20]. We indeed observed that
in the task at hand, despite its simplicity, it was necessary to store the successive
observations and to train the world model off-line with a shuffled presentation of
the training samples (for the general scheme of the off-line training, see Algo. 1).
For that reason, we created a dataset S compiling all transitions, i.e (φt, φt−1,
a, r) quadruplets from all tasks. When there is no predecessor of φt by action

a (as can be the case when this action would require to come through a wall),
the transition is represented as (φt, 0, a, r): those ”null” transitions allow Na

P

networks to represent the fact that the transition does not exist.

T1

T2

R

T2

R T1

T2

RT1

Correct alternation from left to right Followed by a wrong choice at T2

Memory part of Φ: R=0.5L=1

R=1L=0.5 R=0.5L=1

R=1L=0.5

R=0.5L=1

R=0.5L=1same action
different

predecessors

Fig. 2. Example of multiple predecessors in the alternation task. The agent
first correctly goes to the right (left). It then goes to the left (middle) where, at the
reward site, its predecessor state has a (L = 0.5, R = 1) memory component. It then
makes a wrong decision and goes to the left again (right), but is not rewarded: at this
last position, the location component of the predecessor state (white mouse) is identical
but the memory component is different (L = 1, R = 0.5) from the previous lap. Violet
gradient: past trajectory; white mouse: previous position; gray mouse: current position;
white R: agent rewarded; black R: current position of the reward.

Despite its simplicity, the navigation task modeled here has some specificities:
during task 5 (alternation), some states have more than one predecessor for a
given action (see an example on Fig. 2), the algorithm must thus be capable
of producing more than one output for the same input. To do that, we have
created a growing type of algorithm inspired by mixture of expert algorithms
[21] (which we call here the GALMO algorithm, see Algo. 2), based on the
following principles:

– The algorithm should allow the creation of multiple Ni networks (if needed)
so that a single input can generate multiple outputs. Each of these network is
coupled with a gating network Gi, used after training to know if the output
of Ni has to be taken into account when a given sample is presented.

– When a sample is presented, the algorithm should only train the Ni network
that generates the minimal error (to enforce network specialization), and
remember this training event by training Gi to produce 1 and the other
Gk 6=i to produce 0.

– The algorithm should track the statistics of the minimal training errors of
each sample during an epoch, so as to detect outliers (samples whose error
is much higher than the others’). GALMO assumes that these outliers are
caused by inputs who should predict multiple outputs and are stuck in pre-
dicting the barycenter of the expected outputs. A sample is considered an
outlier when its error is larger than a threshold θ, equal to the median of the
current error distribution, plus w times the amplitude of the third quartile

(Q3−median). When such a detection occurs, a new network is created on
the fly, based on a copy of the network that produced the minimal error for
the sample. The new network is then trained once on the sample at hand.

Algorithm 2 GALMO: Growing algorithm to learn multiple outputs

INPUT: S, N , G
OUTPUT: N , G
// S = 〈(in0, out0), ..., (inn, outn)〉 : list of samples
// N = 〈N0〉 : lists of neural networks (outputs)
// G = 〈G0〉 : lists of neural networks (gates)
θ ← +∞
for nbepoch ∈ {1,maxepoch} do
M ← null // M is a list of the minimal error per sample
for each (in,out)∈ S do
E ← null // E is a list of errors for a sample
for each N ∈ N do

append ‖N(in)− out‖L1 to E
end for
if min(E) < θ then

backprop(Nargmin(E), in, out)
backprop(Gargmin(E), in, 1)
for each G ∈ G with G 6= Gargmin(E) do

backprop(G, in, 0)
end for

else
create Nnew; append Nnew to N
Nnew ← copy(Nargmin(E))
backprop(Nnew, input =in, target =out)
create Gnew; append Gnew to G
backprop(Gnew, in, 1)

end if
end for
θ ← median(M) + w ∗ (Q3(M)−median(M))

end for

In principle, the algorithm could be modified to limit the maximal number
of created networks, or to remove the networks that are not used anymore, but
these additions were not necessary here.

Neural Dyna-Q. The second part of the algorithm works as a classical
neural network-based Dyna-Q [16] with prioritized sweeping [13, 14]. As in [16],
the Q-values are represented by four 2-layer feedforward neural networks Na

Q

(one per action). During on-line phases, the agent makes decisions that drive its
movements within the maze, and stores the samples in a priority queue, their
priority is the absolute value of the reward prediction error, i.e., |δ|. Every time
the agent receives a reward, similarly to rats, it stops and replays are simulated
with a budget B (Algo. 3): the samples with the highest priority are replayed

Algorithm 3 Neural Dyna-Q with prioritized sweeping & multiple predecessors

INPUT: φt=0, NP , GP , NR, GR
OUTPUT: N

a∈{N,S,E,W}
Q

PQueue ← {} // PQueue: empty priority queue
nbTrials ← 0
repeat

a ← softmax(NQ(φt))
take action a, receive r, φt+1

backprop(Na
Q, input = φt, target = r + γmaxa(NQ(φt+1))

Put φt in PQueue with priority |Na
Q(φt)− (r + γmaxa(NQ(φt+1)))|

if r> 0 then
nbReplays ← 0
Pr = 〈〉 // empty list of predecessors
repeat
φ← pop(PQueue)
for each GP ∈ GP do

if GP (φ) > 0 then
k ← index(GP)
append Nk

P (φ) to Pr
end if

end for
for each p ∈ Pr s.t norm(p) > ε do

for each a ∈ {N,S,E,W} do
backprop(Na

Q, input = p, target = Na
R(p) + γmaxa(Na

Q(φ)))
Put p in PQueue with priority |Na

Q(p)− (Na
R(p) + γmaxa(Na

Q(φ)))|
nbReplays ← nbReplays + 1

end for
end for

until PQueue empty OR nbReplays ≥ B
end if
φt ← φt+1

nbTrials ← nbTrials +1
until nbTrials = maxNbTrials

first, their potential predecessors are then estimated and placed in the queue
with their respective priorities, and so on until the replay budget is exhausted.

The various parameters used in the simulations are summarized in Tab. 2.

3 Results

3.1 Learning the world model

Because of correlations in sample sequences, the world model is learned off-line:
the samples are presented in random order, so as to break temporal correlations.
We illustrate this necessity with the learning of the reward networks NR: when
trained on-line (Fig. 3, left), the reward networks make a lot of erroneous pre-

Table 2. Parameter values.

value parameter

4000 maxepch: number of epoch replays to train the world model
3 w: gain of the outlier detector threshold in GALMO

20 B: replay budget per stop at reward sites
2 number of layers in NP , NR and NQ

10, 16, 26 size of the hidden layers in NQ, NR and NP (respectively)
±0.05, ±0.0045, ±0.1 weight initialization bound in NQ, NR and NP (resp.)

0.5, 0.1, 0.1 learning rate in NQ, NR and NP (resp.)
0.9, 1, 1 sigmoid slope in NP , NR and NQ (resp.) (hidden layer)

0.5, 0.4, 0.4 sigmoid slope in NP , NR and NQ (resp.) (output layer)

Fig. 3. Reward predictions are inaccurate when the model is trained on-line (Left
panel) and accurate when it is trained off-line (Right panel). L, R: memory configura-
tion. Note the use of a logarithmic scale, so as to make visible errors of small amplitude.

dictions for each possible task, while when trained off-line with samples presented
in randomized order, the predictions are correct (Fig. 3, right).

With a single set of NP networks, the error of the whole set of states decreases
steadily with learning, except for four states which have multiple predecessors
(Fig. 4, top left). With the GALMO algorithm, when the error of these states
reaches the threshold θ (in red on Fig. 4, top right), networks are duplicated
and specialized for each of the possible predecessors. We repeated the experi-
ment 10 times. It always converged, with a number of final networks comprised
between 2 and 5 (3 times 2 networks, 1 time 3, 5 times 4, and 1 time 5).

3.2 Reinforcement learning with multiple predecessors

We compare the efficiency of the Dyna-Q model we developed with the corre-
sponding Q-learning (i.e. the same architecture without replays with the world
model). As expected, Q-learning is able to learn the task, measured here with
the proportion of erroneous choices at the decision point T2 (Fig. 4, bottom
left). On average it does not fully converge before 1000 epochs of training, the
Dyna-Q learns much faster, thanks to the replay mechanism (Fig. 4, bottom
right), converging on average after 200 trials.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
#episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr
o
rs

Error evolution at state T2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
#episodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr
o
rs

Error evolution at state T2

Fig. 4. Top: Learning error dynamics without (left) and with (right)
GALMO. Errors of all samples (gray) during epochs of training. GALMO allows
for the creation of multiple prediction networks to handle the states where multiple
outputs have to be generated. Bottom: Learning without (left) and with (right)
replays. Evolution of the proportion of decision errors at point T2 during the alter-
nation task. Blue: 10 run average, light blue: standard deviation.

3.3 Preliminary analysis of generated replays

B RND

Same Opposite

B RND

Same Opposite

Always Right Always Left

Central O

B

Same OppositeCentral

F

Alternate

Central

RND

Opposite

Fig. 5. Type of replays. B: backward, F: forward, RND: random.

We analyze a posteriori the state reactivations caused by the prioritized
sweeping DynaQ algorithm in always turn right, always turn left and alternate
tasks. Prioritized sweeping does not rely on explicit replay of sequences, but it
however favors them. We considered sequences or replays implying three or more
consecutive steps; with 128 possible states, a 3-state sequence has a chance level
of 0.01% of being produced by a uniform random selection process. We observed
in all cases (Fig. 5) that a bit more than 80% of the state reactivations did not
correspond to actual sequences. Most of the sequences are backward, except for
the alternate task, which also generated 4.5% of forward ones. As in [6], we clas-
sified these sequences as being on the same side as the current agent location, on
the opposite side, or in the central part of the maze. There is no clear pattern
here, except that central reactivations were observed in the alternate task only.

4 Discussion

We proposed a new neural network architecture (GALMO) designed to associate
multiple outputs to a single input, based on the multiple expert principle [21]. We
implemented a neural version of the DynaQ algorithm [16], using the prioritized
sweeping principle [13, 14], using GALMO to learn the world model. This was
necessary because the evaluation task, adapted from [6], contained some states
that have multiple predecessor.

We showed that this system is able to learn the multiple predecessors cases,
and to solve the task faster than the corresponding Q-learning system (i.e., with-
out replays). This required learning the world-model off-line, with data presented
in shuffled order, so as to break the sequential correlations between them, which
prevented the convergence of the learning process. A neuroscience prediction de-
rives from this result (independently from the use of GALMO): if the learning
principles of the rat brain are similar to those of the gradient descent for artificial
neural network, then the world model has to be learned off-line, which would
be compatible with non-sequential hippocampal replays. Besides, the part of the
DynaQ algorithm that uses the world model to update the Q-values predicts a
majority of non-sequential replays, but also 15 to 20% of sequential reactivations,
both backward and forward.

Concerning GALMO, it has been tested with a quite limited set of data,
and should thus be evaluated against larger sets in future work. In our specific
case, the reward networks Na

R did not require the use of GALMO; a single net-
work could learn the full (s, a)→ r mapping as rewards were deterministic. But
should they be stochastic, GALMO could be used to learn the multiple possible
outcomes. Note that, while it has been developed in order to learn a predecessor
model in a DynaQ architecture, GALMO is much more general, and would in
principle be able to learn any one-to-many mapping. Finally, in the model-based
and dyna reinforcement learning contexts, having multiple predecessors or suc-
cessors is not an exceptional situation, especially in a robotic paradigm. The
proposed approach is thus of interest beyond the task used here.

Acknowledgements

The authors would like to thank Olivier Sigaud for fruitful discussions. This
work has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No 640891 (DREAM Project).
This work was performed within the Labex SMART (ANR-11-LABX-65) sup-
ported by French state funds managed by the ANR within the Investissements
d’Avenir programme under reference ANR-11-IDEX-0004-02.

References

1. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary ev-
idence from unit activity in the freely-moving rat. Brain research 34(1) (1971)
171–175

2. Wilson, M.A., McNaughton, B.L., et al.: Reactivation of hippocampal ensemble
memories during sleep. Science 265(5172) (1994) 676–679

3. Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., Zugaro, M.B.: Selective
suppression of hippocampal ripples impairs spatial memory. Nature neuroscience
12(10) (2009) 1222–1223

4. Foster, D.J., Wilson, M.a.: Reverse replay of behavioural sequences in hippocampal
place cells during the awake state. Nature 440(7084) (2006) 680–3

5. Lee, A.K., Wilson, M.A.: Memory of Sequential Experience in the Hippocampus
during Slow Wave Sleep. Neuron 36(6) (2002) 1183–1194

6. Gupta, A.S., van der Meer, M.A.A., Touretzky, D.S., Redish, A.D.: Hippocampal
Replay Is Not a Simple Function of Experience. Neuron 65(5) (2010) 695–705

7. Chen, Z., Wilson, M.A.: Deciphering neural codes of memory during sleep. Trends
in Neurosciences (2017)

8. Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S.I., Battaglia, F.P.: Replay
of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature
Neuroscience 12(7) (2009) 919–926

9. McClelland, J.L., McNaughton, B.L., O’reilly, R.C.: Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes
and failures of connectionist models of learning and memory. Psychological review
102(3) (1995) 419

10. De Lavilléon, G., Lacroix, M.M., Rondi-Reig, L., Benchenane, K.: Explicit memory
creation during sleep demonstrates a causal role of place cells in navigation. Nature
neuroscience 18(4) (2015) 493–495

11. Cazé, R., Khamassi, M., Aubin, L., Girard, B.: Hippocampal replays under the
scrutiny of reinforcement learning models. submitted (2018)

12. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In: Proceedings of the seventh international
conference on machine learning. (1990) 216–224

13. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: Reinforcement learning with
less data and less time. Machine learning 13(1) (1993) 103–130

14. Peng, J., Williams, R.J.: Efficient learning and planning within the dyna frame-
work. Adaptive Behavior 1(4) (1993) 437–454

15. Khamassi, M., Lacheze, L., Girard, B., Berthoz, A., Guillot, A.: Actor-critic mod-
els of reinforcement learning in the basal ganglia: from natural to arificial rats.
Adaptive Behavior 13 (2005) 131–148

16. Lin, L.H.: Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine learning 8(3/4) (1992) 69–97

17. Paz-Villagrán, V., Save, E., Poucet, B.: Independent coding of connected environ-
ments by place cells. European Journal of Neuroscience 20(5) (2004) 1379–1390

18. Eichenbaum, H.: Prefrontal–hippocampal interactions in episodic memory. Nature
Reviews Neuroscience 18(9) (2017) 547

19. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press (1998)

20. Tsitsiklis, J.N., Van Roy, B.: Analysis of temporal-diffference learning with function
approximation. In: Advances in neural information processing systems. (1997)
1075–1081

21. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural computation 3(1) (1991) 79–87

