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Abstract— Using robots as therapeutic or educational tools
for children with autism requires robots to be able to adapt their
behavior specifically for each child with whom they interact.
In particular, some children may like to be looked into the
eyes by the robot while some may not. Some may like a robot
with an extroverted behavior while others may prefer a more
introverted behavior. Here we present an algorithm to adapt the
robot’s expressivity parameters of action (mutual gaze duration,
hand movement expressivity) in an online manner during the
interaction. The reward signal used for learning is based on
an estimation of the child’s mutual engagement with the robot,
measured through non-verbal cues such as the child’s gaze and
distance from the robot. We first present a pilot joint attention
task where children with autism interact with a robot whose
level of expressivity is pre-determined to progressively increase,
and show results suggesting the need for online adaptation of
expressivity. We then present the proposed learning algorithm
and some promising simulations in the same task. Altogether,
these results suggest a way to enable robot learning based
on non-verbal cues and to cope with the high degree of non-
stationarities that can occur during interaction with children.

Keywords: HRI, Reinforcement Learning, Active Explo-
ration, Autonomous Robotics, Engagement, Joint Action.

I. INTRODUCTION

This paper is an extension for the BAILAR 2018 workshop
of the short paper accepted as Late Breaking Report at
the RO-MAN 2018 main conference. We present recent
progresses in developing robot learning abilities for the
adaptation to human-specific requirements during child-robot
interaction. In particular, we aim at enabling the robot to vary
the level of expressivity of its actions in order to increase the
child’s mutual engagement with the robot and thus contribute
to further develop children’s social interaction skills.

Mutual engagement can be defined as “the process by
which interactors start, maintain and end their perceived
connection to each other during an interaction” [1]. More
specifically, according to [2], “engagement is a category
of user experience characterized by attributes of challenge,
positive affect, endurability, aesthetic and sensory appeal, at-
tention, feedback, variety/novelty, interactivity, and perceived
user control”. As is clear from these definitions, engagement
is a wide notion which encompasses many different aspects
and features. Nevertheless, here for sake of simplicity we will
focus on measurements of joint attention between interacting
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child and robot which can be measured through gaze and
body posture.

Researches in the field of social robotics have recently
shown a growing interest in monitoring human and robot
gaze during social interaction [3], [4], [5], [6]. Results show
that gaze following improves intention readout, efficiency of
joint action, and arouses on human partners the illusion of
a social intelligence. Conversely, it has been proposed that
monitoring the level of engagement of the human during the
task, for instance through the monitoring of body posture
and gaze, may provide the robot with crucial information to
assess how it is perceived by the human, how this perception
changes according to the behaviors shown by the social
robot, and hence to improve the quality of human-robot
interaction [7], [8], [9], [10], [11], [12], [13]. However, to
our knowledge no one has yet proposed a way to make the
robot learn on the fly which actions to perform in response to
changes in human engagement. Previous researches having
applied reinforcement learning to human-robot interaction
have most of the time employed discrete action spaces (e.g.
[14], [15], [16]), hence preventing generalization to more
complex tasks requiring continuous motor actions.

In this work, we develop a robot reinforcement learning al-
gorithm which uses human engagement monitoring signals as
a reward signal during non-verbal social interaction. Specif-
ically, the proposed reward function consists in a weighted
sum of the human’s current engagement and variations of
this engagement (so that a low but increasing engagement
is rewarding). A second originality consists in applying the
parameterized framework of reinforcement learning [17],
[18] to human-robot interaction (HRI): this employs a set
of discrete actions Ad = {a1, a2, ..., ak}, where each action
a ∈ Ad features ma continuous parameters {θa1 , ..., θama

} ∈
Rma , which enables to benefit from the simplicity of task
decomposition into a small set of discrete actions while at
the same time being able to exploit the precision of contin-
uous motor execution. The third originality of the proposed
approach consists in achieving robot fast adaptation during
social interaction through active exploration [19], [20], [21],
[22]. The proposed solution relies on a novel combination of
existing methods applied to a simple human-robot interaction
scenario in the following manner: We apply Gaussian explo-
ration [23] to actions’ continuous action parameters, which
in the original formulation uses a fixed Gaussian width σ,
hence a fixed exploration rate. Here we apply a noiseless
version of the meta-learning algorithm of [24], which tracks
online variations of the agent’s performance measured by
short-term and long-term reward running averages. At each



Fig. 1. Pilot child-robot interaction study with children with autism. The figure shows a moment where a child with ASD showed moderate engagement
while the robot moved its arm up and down to point at an object on a table.

timestep, we use the difference between the two averages
to simultaneously tune the inverse temperature βt used for
selecting between discrete actions aj , and the width σt of
the Gaussian distribution from which each continuous action
parameter θai is sampled around its current value.

The present paper starts by presenting the child-robot
interaction pilot studies we have done with children with
Autistic Spectrum Disorders (ASD), in which we illustrate
the need for robot’s adaptation to each specific child require-
ment. We then present the proposed reinforcement learning
algorithm and its formalism. We finish by presenting a
set of numerical simulations which are meant to assess its
performance in simulation before deploying it during the real
child-robot interaction experiments.

II. PILOT CHILD-ROBOT INTERACTION STUDY WITH
CHILDREN WITH AUTISM

The general experimental paradigm adopted here consists
in having a small humanoid robot interact with children (one
at a time), under the supervision of an observing human
adult, and finding the appropriate robot behavior to maximize
children’s engagement in the task. This paradigm follows
the objectives defined in the framework of the EU-funded
project BabyRobot (H2020-ICT-24-2015-6878310), where a
set of child-robot interaction use-cases have been designed
and implemented to study the development of specific socio-
affective, communication and collaborative skills in typically
developing children as well as children with ASD. In this
framework, we have set up a pilot experiment1 where the
NAO robot is interacting with a child (Fig. 1), and repeatedly
points at an unreachable object while varying the level of
expressivity of its pointing gesture (i.e., opening-and-closing
hand for a certain duration, bending its torso with a certain
angle in the direction of the object, gazing at the child for a

1This experiment has been approved by the ethical committee of Athena
Research Center, Greece. The children’s parents provided written consents.

certain duration) until the child understands the “intention”
of the robot and engages himself/herself into joint action in
order to help the robot grasp the object. The engagement
estimation, in this pilot study, was provided in real-time by
an expert who observed the child during the interaction with
the robot, considering five discrete levels of engagement (0
to 4, with 0 meaning absence of engagement and 4 meaning
full engagement and attempt to offer help).

We present here some preliminary results for this real HRI
task for which we have yet performed the experiment only
with a small number of children with mild and moderate
ASD symptoms, plus a few children with severe symptoms
(12 children in total so far). First, children with severe
symptoms expressed no interest in the task, neither in the
condition with the robot nor in a control condition where
the child interacts with a human expert rather than with the
robot. In contrast, children with mild symptoms displayed
great enthusiasm and interest in playing with the robot as
well as with the researcher and enjoyed the whole process.
These children were able to respond quite well to the task
and completed the experiment with success. Overall, we
found that two out of eight children with mild symptoms
successfully maximized their engagement in joint attention
with the robot and gave the object to the robot spontaneously.
The remaining six children successfully increased their en-
gagement, although not optimally, ending up moving the
object closer to the robot but not handing it in. The two
children with moderate symptoms also increased engagement
and ended up exploring the object pointed at by the robot.
Finally, again children with severe symptoms did not respond
to the task.

Figure 1 shows one child performing the task, looking
at the NAO robot (moderate engagement) while the latter
moved its arm down after pointing at the object on the small
white table. The psychologist, who can be seen near the red
door, is manually annotating the child’s engagement so that
the robot can adapt its behavior. These results are promising



and stimulating in that eight children that we interviewed
after the task said that they would like to play more often
with the robot and that they found the tasks we proposed
them relatively easy. But many more subjects for each level
of severity of ASD symptoms are required before allowing
some statistics on the results. Interestingly, studying how
the robot’s movements affected the child’s engagement, we
observed that when the robot opened and closed its grip or
exchanged glances between the child and the object for a
period of time while pointing at the object, it contributed
to an increase in the child’s engagement. This suggests that
varying the level of expressivity in the robot’s actions in time
was key to increase child engagement. Nevertheless, different
levels of expressivity appeared to be appropriate for different
children. It is thus relevant to propose a way for the robot
to autonomously learn the appropriate degree of expressivity
appropriate for each child.

Algorithm 1 Active exploration with meta-learning
1: Initialize V0(s), θai,0(s), Q0(s, a), β0 and σ0
2: for t = 0, 1, 2, ... do
3: Select discrete action at (Eq. 2)
4: Select action parameters θ̃ai,t (Eq. 3)
5: Observe new state and reward (Eq. 6)
6: Update Qt+1(st, at) (Eq. 1)
7: Update Vt+1(st) and θai,t+1(st) (Eq. 4-5)
8: if meta-learning then
9: Update reward running averages r̄t and ¯̄rt

10: Update βt+1 and σt+1

11: end if
12: end for

III. ROBOT LEARNING ALGORITHM

The proposed algorithm is summarised in Algorithm 1.
It is based on reinforcement learning with parameterized
action spaces [17], [18]. It employs a set of discrete actions
Ad = {a1, a2, ..., ak}, where each action a ∈ Ad features ma

continuous parameters {θa1 , ..., θama
} ∈ Rma , which enables

to benefit from the simplicity of task decomposition into a
small set of discrete actions while at the same time being
able to exploit the precision of continuous motor execution.
Learning the value of discrete action at ∈ Ad selected at
timestep t in state st is done through Q-Learning [25]:

∆Qt(st, at) = αQ

(
rt + γmax

a
(Qt(st+1, a))−Qt(st, at)

)
(1)

where αQ is a learning rate and γ is a discount factor. The
probability of executing discrete action aj at timestep t is
given by a Boltzmann softmax equation:

P (a|st, βt) =
exp (βtQt(st, a))∑
a′ exp (βtQt(st, a′))

(2)

where βt is a dynamic inverse temperature meta-parameter
which will be tuned through meta-learning (see below).

In parallel, continuous parameters θ̃ai,t with which action
a is executed at timestep t are selected from a Gaussian
exploration function centered at the current values θai,t(st)
in state st of the parameters of this action:

P (θ̃ai,t|st, at, σt) =
1√

2πσt
exp

(
−(θ̃ai,t − θai,t(st))2/(2σ2

t )
)

(3)

where the width σt of the Gaussian is tuned through
meta-learning (see below) and continuous action parameters
θai,t(st) are learned with the CACLA algorithm [23]. A
reward prediction error is computed from the critic: δt =
rt + γVt(st+1)− Vt(st) and is used to update the critic and
the actor:

Vt+1(st) = Vt(st) + αCδt (4)

θai,t+1(st) = θai,t(st) + αAδt(θ̃
a
i,t − θai,t(st)) (5)

where αC and αA are learning rates.
In order to perform active exploration, we apply a noise-

less version of the meta-learning algorithm of [24], which
tracks online variations of the agent’s performance measured
by short-term r̄t and long-term ¯̄rt reward running averages
(with timeconstant τ1 and τ2 respectively). At each timestep,
we use the difference between the two averages to simulta-
neously tune the inverse temperature βt used for selecting
between discrete actions a, and the width σt of the Gaussian
distribution from which each continuous action parameter
θai is sampled around its current value. The main idea is
that when the performance is better than average, exploration
should be decreased in order to reach optimality levels. In
contrast, sudden drops in the performance should lead to
increases in exploration in order to adapt to environmental
non-stationarities.

Finally, we need to define a reward function for human-
robot interaction tasks. This is not an easy task since
during interaction the actions performed by a robot may
have delayed effects on the human’s behavior and on his
engagement. To mimic this, we chose a reward component to
be given by a dynamical system which is based on the virtual
engagement E of the human in the task. This engagement
represents the attention that the human pays to the robot
and will constitute a reward signal, since this type of joint
attention social signals have been shown to activate the
same brain regions that are activated by non-social extrinsic
rewards such as food or money [26]. In our simulations, the
quantified engagement arbitrarily starts at 5, increases up to a
maximum EM = 10 when the robot performs the appropriate
actions with the appropriate parameters, and decreases down
to a minimum Em = 0 otherwise:

Et+1 =

{
Et + η1(EM − Et)H(θat ), if at = a? & H(θa

t ) ≥ 0

Et − η2(Em − Et)H(θat ), if at = a? & H(θa
t ) < 0

Et + η2(Em − Et), otherwise
(6)



where η1 = 0.1 is the increasing rate, η2 = 0.05 is the
decreasing rate, and H(x) is the re-engagement function
given by

H(x) = 2 exp

(
−1

2
(x− µ?)T (Σ?)−1(x− µ?)

)
− 1 (7)

where a?, is the optimal discrete action, µ? is the optimal
parameter vector θa? for the optimal action and Σ? is
a diagonal matrix σ?2I of size ma? × ma? . To picture
the idea, the parameters for which H(x) = 0 define the
boundaries of an m?

a-dimensional ball in the parameter space,
inside which the engagement is increased. In general, each
parameter might have difference tolerance, however for all
the experiments we will be using a common σ? = 10, while
all parameter values will be in [-100,100]. Fig. 2 depicts H-
function in the case where the optimal action has only one
continuous parameter.

The reward function is then computed as rt+1 = Et+1 +
λ∆Et where λ = 0.7 is a weight and ∆Et = Et+1 −
Et. This reward function ensures that the algorithm gets
rewarded in cases where the engagement Et+1 is low but
nevertheless has just been increased by the action n-tuple
(at, θ

a
1,t, θ

a
2,t, .., θ

a
ma,t) performed by the robot.

IV. SIMULATIONS

Here we present two sets of numerical simulations: (1)
an abstract task where the robot needs at each trial to
choose between 6 different cubes on a table to point at
(a1, a2, .., a6 are the discrete actions), and at the same time
to choose a continuous parameter θ between -100 and 100
which abstractly represents the expressivity of the pointing
gesture. We consider that the optimal action tuple (a∗, θ∗)
that the robot has to learn is stable during 1000 timesteps,

µ?
θα

H(θα)

Fig. 2. Principle adopted to simulate variations of child engagement as a
function of the distance between the robot’s current continuous parameters
of action and optimal ones.

1

Fig. 3. Parameter optimization in the first task. Each datapoint corresponds
to the average engagement obtained for 10 simulations of the task with a
given parameter set. The color indicates engagement value between 0 (min)
and 10 (max).

making the simulated child engagement vary according to
Equation 6. Then the optimal action tuple abruptly changes
in an unsignalled manner – representing a change in the
expectation by the simulated child, to which the robot should
adapt. The task was chosen to fine tune the parameters of
the algorithm which optimize performance and as a first
assessment of the algorithm’s adaptivity; (2) the second set
of numerical simulations employ a task identical to the child-
robot interaction pilot task described above. This second task
was simulated in the virtual robot experimentation platform
(V-REP). In the considered scenario, the NAO robot points
at an object on a table with different degrees of action
expressivity so as to catch the child’s attention and thus
increase mutual engagement.

We used the first task as a reference experiment to
perform an exhaustive search of the parameters that permit
the algorithm to reach its highest performance in cases of
multiple successive abrupt changes in conditions (Fig. 3).
The parameter-set which produced the best performance
yielded an average engagement of 9.2 (the arbitrarily defined
maximum being 10). Interestingly, the performance was not
very sensitive of the values of parameters τ1 and τ2, while in
the original article they were always chosen so that τ1 = τ2
[24]. Figure 4 shows the average and standard deviation
of the simulated engagement obtained for 10 simulations
of the task with the proposed active exploration algorithm
compared to a passive exploration version of it (i.e., where
instruction 10 in Algorithm 1 is removed so that βt = 35
and σt = 19 are fixed after having been obtained through
parameter optimization). The blue curve shows the perfor-
mance of the algorithm without active exploration, which
adapts to each new condition but never exceeds a plateau of
about 6. This is because the algorithm continues to explore
regularly even after having found the optimal action and
continuous parameter to perform, as any algorithm with fixed
exploration does. Obviously, an algorithm with an annealing
process (iteratively decreasing exploration rate during a fixed
duration) would have progressively reached optimal perfor-
mance before the first change in task condition (timestep
1000). Nevertheless, it would not have been able to adapt to
task changes. The red curve shows the performance of the
algorithm with active exploration, which adapts faster and
faster after each task change, only performing short transient
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Fig. 4. Comparison of engagement in the first task for 10 simulations of
the algorithm with active exploration (red), and a version of the algorithm
without active exploration (blue). Vertical dashed lines represent changes in
the optimal action tuple (a∗, θ∗) that the robot has to relearn every 1000
timesteps.



explorations when drops in performance are detected, and
reaches each time the optimum engagement of 10.

Fig. 5(b) illustrates how the algorithm works in the second
task, which mimics the real child-robot pilot study described
above. We parameterized the simulated pointing action of the
robot with two parameters (t1, t2) corresponding to the time
in seconds the robot would spend iteratively opening-closing
its hand during pointing, and the time spent exchanging
glances with the child. Examples of different expressivity
levels defined by these parameters are shown in Table I.

Pointing gesture

expressivity

x
point + open-close + glance (t1 6= 0, t2 6= 0)

point + exchange glance (t1 = 0, t2 6= 0)
point + open-close hand (t1 6= 0, t2 = 0)

point (t1 = 0, t2 = 0)

TABLE I
ROBOT’S POINTING ACTION IN THE SECOND TASK, WITH PARAMETERS

CORRESPONDING TO INCREASING LEVELS OF EXPRESSIVITY.

We initialized the algorithm based on the parameters ob-
tained on average during previous interactions with simulated
children. This way, the algorithm started from a meaningful
average value of action parameters/durations (t̄1, t̄2), rather
than being initialized randomly, and then adapted to each
specific child. We defined a time range from 0 to 10 seconds.
Fig. 5(b) shows the average performance over 10 simulations.
The robot firstly interacted with an “average child”, meaning
that the child engaged optimally with parameters (t̄1, t̄2).
Then, at timestep 40, the experiment involved another child
(child 1) with different optimal parameters. The engagement
of child 1 was initially low but progressively re-increased
as the robot was finding the optimal continuous action
parameters. The figure also illustrated the increased variance
in executed action parameters during exploration followed by
a re-focus around the learned parameters during exploitation.
Similarly, at timestep 80 child 2 took the place of child
1 and the robot readjusted its parameters. Importantly, we
observe that in less than 10 timesteps the robot found the
optimal parameter values for the different children whose
engagement reached 8 in just a few timesteps. This thus
illustrates a sufficiently fast adaptation process to work online
during real child-robot interactions.

V. CONCLUSIONS AND FUTURE WORK

In this short paper, we presented recent progresses in
developing robot learning abilities for the adaptation to
human-specific requirements during child-robot interaction.
In particular, we aimed at enabling the robot to vary the level
of expressivity of its actions in order to increase the child’s
mutual engagement with the robot and thus contribute to
further develop children’s social interaction skills. We first
showed some preliminary results in a pilot study involving a
robot with a predetermined sequence of increased expressiv-
ity of action while pointing at an unreachable object until
a child with ASD understands that the robot needs help
and engages in joint action. The preliminary results suggest
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Fig. 5. Numerical simulations in the second task. (a) Setup used for
the simulations of the same task as the pilot real child-robot interaction
experiment. (b) Simulation results. Left: Before timestep 40 the robot
executed the default parameters values, no adaptation was performed. After
timestep 40, the robot adapted its action parameters (black) towards the
optimal action parameters (red). Right: Child’s engagement reached 90%
within less than 10 trials.

that the level of expressivity does play a role in engaging
the child, but should nevertheless be adapted through on-
line learning to each interacting child. We then presented
a learning algorithm based on reinforcement learning in
parameterized action spaces [17], [18] – to benefit from
the simplicity of task decomposition into a small set of
discrete actions while at the same time being able to exploit
the precision of continuous motor execution – to which we
added active exploration so as to cope with the frequent non-
stationarities that can occur during human-robot interaction.
We presented simulation results showing that the algorithm
can adapt in a sufficiently small number of trials to be applied



to adaptation in real-time during interaction.
In future work, we plan to test the learning algorithm dur-

ing real child-robot interaction. We moreover plan to study
whether the average parameters over different interacting
children is efficient or whether there exists distinct clusters of
parameters – especially within the data obtained in the real
experiments – that should be used as separate initialization
points for the learning algorithm.
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