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Summary. Planning footsteps before the actual walking motion is a way to ignore the dy-
namic complexity of bipedal walking in the motion planning process without losing the pos-
sibility to exploit the essential characteristic of walking: the fact that it relies on isolated con-
tacts with the ground, and therefore provides the ability to traverse irregular or discontinuous
terrain. The duality between a continuous environment and discrete sequences of contacts
confers to footstep planning a hybrid nature and an interesting theoretical aspect, which adds
up to its obvious practical interest. Well incorporated and efficient footstep planning abilities
would give humanoid robots a navigation autonomy allowing them to perform a great num-
ber of versatile tasks in unstructured environments. Many approaches have been considered to
obtain efficient footstep planning, for example using only a finite number of predefined steps,
or bounding boxes for fast collision checking. And for really reactive footstep planning, dy-
namics have to be put back into the equation, either by merging footstep planning with gait
control, or by adaptively switching between different layers of planning. In this chapter, we
give an overview of the main techniques that have been proposed and tested over the past 15
years.
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50.1 Introduction

Bipedal walking is a difficult problem in itself, but as a mode of transport, it should be us-
able as a low-level tool whose complexity is abstracted away from higher-level tasks such as
path planning. Although the particular dynamics of walking have to be addressed carefully,
reasoning on footstep plans is a natural choice for this abstraction. Indeed, it hides most of
the complexity of walking without losing its essential characteristic: the fact that it relies on
isolated contacts with the ground, and therefore provides the ability to traverse irregular or
discontinuous terrain. The duality between a continuous environment and discrete sequences
of contacts confers to footstep planning a hybrid nature and an interesting theoretical aspect,
which adds up to its obvious practical interest. Well incorporated and efficient footstep plan-
ning abilities would give humanoid robots a navigation autonomy allowing them to perform
a great number of versatile tasks in unstructured environments.

Over the past two decades, the progressive development of reliable humanoids made ex-
tensive research on this topic possible, with the goal of reaching abilities comparable to those
of humans. But this is not an easy challenge, as humans plan and execute walking motions
with absolutely remarkable ease. Through a long process of learning, humans develop, in
parallel to their motor skills, various heuristics that help them evaluate the terrain and obsta-
cles (whether the floor is going to be slippery or not, whether an object can be stepped on
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or not, etc.), plan efficiently adequate paths and guess quickly and accurately whether they
will be hard to follow or not, without having to think precisely about the motions that will
be required, except in complex scenarios. Precise footsteps are planned only when needed,
and they can be modified very reactively when unpredicted events occur, while dealing well
with balance issues. Humanoid robots are still far from this level of virtuosity, but a lot of
promising approaches and algorithms have been introduced and tested.

The biggest challenge is that footstep planning is hard to dissociate from the realiza-
tion of the walking motion, which involves underactuation and complex dynamics in high
dimensional spaces. A lot of research has aimed at introducing good simplifying hypotheses
to make the problem computationally affordable while still being able to exploit well the ad-
vantages of legged locomotion, and produce efficient and fast walking. But a good trade-off
is very hard to obtain. For example, it is easier to plan and control statically stable walking
motions (motions that involve only balanced postures, see [28]), but they are usually slow, not
energy-efficient, and better obstacle clearance can be obtained with more dynamic motions.
Another common method for footstep planning is called the bounding box method (see [49]):
it first plans the continuous motion of a large box that contains the whole robot, and then a
sequence of steps that follows the box trajectory. If the bounding box trajectory is collision-
free, then the robot trajectory is a fortiori collision-free, but the drawback of this method is
obvious: the bounding box must circumvent all the obstacles on the floor, even the smallest
ones that could easily be stepped over. Thus, it becomes quite unnecessary for the robot to
have legs, making this method better suited for wheeled robots such as the PR2.

Probably the most successful approaches for footstep planning are based on the use of
the A* search algorithm (or variants) with a finite transition model, i.e. a finite set of possible
steps decided in advance (see for example [28], [5], [8], [9], [16]). However, using finite ac-
tion sets is not ideal, one reason being that the complexity of the A* search quickly increases
with the size of the transition model, therefore this size is limited and so are the stepping ca-
pabilities. It can lead to walking motions with little flexibility, or unnecessarily large number
of steps for simple actions. A lot of ad hoc methods have been proposed to extend this ap-
proach and perform better footstep planning, such as for instance local footstep adjustments
[10], human-like strategies [3], or tiered planning combining different low-level and high-
level planners [7]. There are also continuous methods that rely on the capacity of the robot to
make infinitesimally small steps: sequences of steps are produced based on trajectories of the
robot “sliding” on the ground [25, 12]. However, with these methods stepping over obstacles
is not possible. Other methods are based on solving optimization problems [18, 13]. In fact,
a full spectrum of strategies has emerged, ranging from “discrete approaches” on one end to
“continuous approaches” on the other, with very different associated planning techniques. In
this chapter, without being exhaustive, we propose a review of some of the approaches that
have been proposed for biped footstep planning.

Fig. 50.1 gives an overview of the motivation for footstep planning and its main chal-
lenges.

50.2 Footstep planning problem formulation in 2D

The simplest case of footstep planning consists in planning sequences of footsteps on a flat
horizontal ground with 2D obstacles. Potential collisions between obstacles above the ground
and the legs or the upper body of the robot are ignored.

A state of the robot corresponds to a double-support stance, and is described by the
configurations of both feet (in position and orientation). A foot configuration is a 4-tuple
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Fig. 50.1. Footstep planning is an example of a natural and widespread technique that consists
in solving difficult problems via several phases of computation, using at first abstractions that
hide part of the problem complexity but lead to a rough estimate of a potential solution. It
faces the same issues as all approaches based on this principle: by not dealing with the full
complexity of the problem right away, it computes estimates that can lead to either largely
suboptimal solutions or no solution at all. In this chapter we present various methods and
heuristics that have been designed to obtain a good compromise between the quality of the
footstep plan and the algorithmic efficiency.
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(P,x,y,θ)∈ {L,R}×SE(2) =CFS (here the subscript FS stands for “footstep”), where SE(2)
denotes the 3-dimensional special Euclidean group of rigid-body motions in the plane. The
first element of the tuple, P, can be either L or R; it differentiates left footsteps from right
footsteps. The other elements, (x,y,θ), uniquely define the position and orientation of the
footstep.

The obstacles define a collision-free space FFS ⊂ CFS. The objective of footstep plan-
ning is to find a sequence of footsteps in FFS from an initial state to a goal region, with
some constraints on the transitions between states. Indeed, the kinematics of the robot and
its actuation restrict the set of steps that can be performed. There are many options to define
the transition restrictions. Ideally, the set of possible steps in a given state should depend on
the steps previously performed, and on how these steps were performed. If, for example, the
robot is walking forward at a fast pace, it is likely that it will be impossible for it to suddenly
step backwards. However, this dependency on previous steps results in an explosion of the
dimensionality, and in general footstep planning is simplified by considering that the set of
possible next footsteps depends only on the configuration of the support foot. From a state
(l,r) ∈ C 2

FS, the set of new states (l′,r) reachable with a left step is defined by the following
constraint:

l′ ∈ S(r). (50.1)

Similarly, the set of states (l,r′) reachable with a right step is defined by the constraint:

r′ ∈ S(l). (50.2)

S : CFS→P(CFS) is such that for any right footstep r, S(r) contains only left footsteps,
and reciprocally, for any left footstep l, S(l) contains only right footsteps. This makes it
compulsory for the robot to alternate right and left steps, which is usually not an issue since
allowing consecutive left (or right) steps does not change the robot navigation abilities. The
possibility of in-place stepping is ensured by the following symmetry property, often verified
in practice:

∀l = (L,x,y,θ),∀r = (R,x′,y′,θ ′), l ∈ S(r)⇔ r ∈ S(l) (50.3)

Let us call S the transition function.
There are different ways to define the goal region, and we choose to define it as a subset

of FFS, reached as soon as one of the footsteps belongs to it. We can now formally specify
the input and output of footstep planning in 2D:

Data:
– S : CFS→P(CFS), the transition function
– FFS, the free space (usually known implicitly via the description of the obstacles)
– (s0,s1) ∈F 2

FS: the initial state, verifying s1 ∈ S(s0)
– G⊂FFS: the goal region

Result: A sequence of footsteps s2, s3, . . . , sn ∈FFS such that ∀i ∈ {1, . . . ,n−1},
si+1 ∈ S(si), and sn ∈ G.

Fig. 50.2 illustrates footstep planning in 2D, and Fig. 50.3 shows a classical example
of transition function model for a humanoid robot. An ideal transition function should have
a relatively simple structure, and yet model accurately the stepping capabilities of the robot.
For a given robot with a given walking algorithm, a good choice for the function S can be pro-
gressively obtained after thorough tests and experiments. Conservativeness of the transition
function is always preferred over allowing infeasible steps.

The main particularity of footstep planning is that it is not an entirely discrete planning
problem, because of the continuity of the configuration space, and at the same time it is not
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Fig. 50.2. On the left: an instance of the footstep planning problem in 2D; on the right: a
solution.

Fig. 50.3. An example of classical “shape” for the transition function, usually empirically
defined. The maximum distance between the feet is limited by the length of the legs and
kinematic constraints. The transition function should also prevent self-collisions from occur-
ring, so El and Er are defined in a way that keeps the feet at a safe distance from each other. A
constraint also bounds the difference of orientation of the feet, as very different orientations
can typically result in collisions between the knees or violations of kinematic constraints at
the hips.
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a continuous motion planning problem either. It is a motion planning problem of hybrid na-
ture, and, as a result, neither classical algorithms for continuous motion planning (the piano
mover’s problem) nor discrete planning techniques can be directly applied. That is why devel-
oping the footstep planning abilities of humanoid robots has required the creation of specific
approaches. And although footstep planning is a very applied problem, its particular hybrid
nature gives it an additional theoretical interest, and can be studied in more abstract problems,
for example by considering point feet, ignoring orientations, and choosing a simple transition
function. See [4] and [42] for theoretical studies of such problems. Fig. 50.4 illustrates the
“flea motion planning problem”, introduced in [44], which can be seen as a very simplified
footstep planning problem.

Fig. 50.4. Flea motion planning: a variant of 2D footstep planning with state-space R2.

50.3 2D footstep planning problem solution via finite transition
sets

The most widespread method to obtain easily implementable and efficient algorithms for
footstep planning is to use finite sets for the transitions. With S(s) finite for any state s (using
the notation of the previous section), the problem can be solved with search algorithms on
discrete graphs. As in [9], a classical choice is the A* algorithm, described by the pseudo-
code of Algorithm 1 (where Q is a priority queue).

In this algorithm, Q.ExtractMin() extracts and removes from the queue an element with
minimum reach cost + expected cost value. StepCost() attributes a cost to steps. For exam-
ple, a large step can be judged more costly than a standard one, and therefore be associated
to a greater cost. Alternatively, if one is interested only in minimizing the number of steps,
StepCost() can be defined to return a constant value. LocationCost() attributes to footstep lo-
cations a cost that depends on terrain information. For instance, if the terrain representation is
stored as a heightmap, some regions are considered as obstacles, and for acceptable footsteps
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Data: S, FFS, (s0,s1) ∈F 2
FS, G⊂FFS

Q.Insert( s1, 0, 0, s0 )
while running time < tmax do

(sbest ,reach cost,expected cost,sparent)← Q.ExtractMin()
if sbest ∈ G then

return sbest
end
foreach snext ∈ S(sbest) do

cs← StepCost(sparent , sbest , snext )
cl ← LocationCost(snext )
ce← ExpectedCost(snext , G)
Q.Insert( snext , reach cost + cs + cl , ce, sbest )

end
end

Algorithm 1: A* for footstep planning. Remark: when the algorithm is success-
ful, a sequence of steps from (s0,s1) to the goal region G is implicitly created; for
the sake of clarity, the pseudo-code contains no data structure that would enable
a reconstruction of this path after termination of the algorithm, but it is neces-
sary in any real implementation. See the second paragraph of section 50.3 for a
description of Q.ExtractMin(), StepCost(), LocationCost() and ExpectedCost().

outside these regions, the location cost is high if the terrain is perceived as rough, inclined, or
if it is partially unknown. The lowest location costs are usually in flat and horizontal regions
with a lot of data. In [8], Chestnutt et al. discuss various criteria for location costs. Finally,
ExpectedCost() is the heuristic used by the A* algorithm, which estimates the remaining total
cost to go to the goal. Assuming the existence of a solution, A* is guaranteed to find an opti-
mal one if this heuristic never overestimates the remaining cost. However, A* with an inflated
heuristic or overestimations is sub-optimal but proves to find good solutions faster in many
cases. In footstep planning, there are several options for the heuristic. The most naive one is to
use the Euclidean distance between the current footstep and the goal region. With appropriate
choices for the location and step costs, the Euclidean distance is an “admissible” heuristic,
i.e. a heuristic that never overestimates the cost-to-go. Another common approach is to plan
backwards from the goal region with a standard mobile robot planner as a precomputation
step. The planner explores outwards from the goal region, and records the cost to reach each
location. As explained in [9], this cost provides an informed estimate of the actual cost, and
steers the robot away from local minima (unlike the Euclidean heuristic). Since mobile robot
planners are typically fast (compared to the A* search for sequences of footsteps), this pre-
computation step is not overly computationally expensive. However, by ignoring the ability
of the robot to step over obstacles, the resulting heuristic can overestimate the cost-to-go,
which means that this heuristic sacrifices optimality guarantees for execution speed.

One of the main issues with the A* approach is the size of the transition sets S(s), or
action sets. Usually, it is constant or has a few possible different values. For instance, in
[9], two different transition sets are used, depending on whether the robot is walking at full
speed or standing still. Fig. 50.5 shows an example of transition set. In [8], experiments show
that decreasing the number of transitions, i.e. the branching factor, decreases in general the
computation time, but also that on the other hand, a smaller number of options reduces the set
of solvable maps. It is rather difficult to find a good compromise, and the size of the transition
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set should ideally depend on the complexity of the environment. Based on the literature, good
results can be obtained with sets of about 15 transitions in average.

Fig. 50.5. A finite transition set for right steps. The current step is in dark green (the left foot),
and the 9 potential next right foot placements are in light green. Typically, such a set of steps
is defined manually with the aim to give good stepping capabilities to the robot, allowing it
to perform forward, backward and sideway steps, and to turn left and right.

Variants and extensions of the A* approach have been studied. In [21], ARA* [31] and
R* [32] are used instead of A*. ARA* stands for Anytime Repairing A*. Its main property
is that it quickly finds a feasible solution and then continually works on improving it until
time runs out. Therefore, it is better suited for the time constraints often imposed in footstep
planning. R* is another heuristic search algorithm that depends much less than A* on the
quality of the heuristic function, which is often difficult to chose appropriately. Both ARA*
and R* run series of A* searches with inflated heuristics (in the case of R* towards randomly
chosen subgoals), and both have bounds (probabilistic bounds for R*) on the sub-optimality
of the solutions they find. For footstep planning in changing environments, Garimort et al.
[15] used the incremental D* Lite algorithm [26] which extends A* by continually searching
for shortest paths in the environment while the current starting state progresses along the path
and the edge costs may change arbitrarily.

Ayaz et al. [3] proposed to classify the transitions into several categories based upon the
function they realize: stepping over obstacles, walking straight, turning, etc. A planning algo-
rithm can then perform more human-like footstep planning by first deciding which category
of motion is required, and then looking for the right step to perform.

To go beyond finite action sets and get better flexibility, Chestnutt et al. proposed an
extension of the A* search algorithm with possible local adjustments of the footsteps [10].In
[21], transitions are dynamically added in special situations, for instance to reach the goal
region.
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Hauser introduced a general two-stage approach for legged locomotion [17]. Random
sampling-based methods generate key intermediate stances, or milestones, and then a finite
set of motion primitives is used to help the planner generate motions between the milestones
(the motion primitives are transformed to match the terrain and the intermediate stances).

Other attempts to combine sampling-based algorithms (such as RRT [29]) and finite ac-
tion sets have been proposed [48, 43, 33]. In [45] and [42], a geometric property of the
flea motion planning problem is generalized and used to transform footstep planning into a
continuous problem, thus avoiding finite transition sets and enabling a direct application of
traditional sampling-based algorithms.

50.4 Bounding boxes

In practice, it is not enough to reason only about the footsteps since the whole body of
the robot must be taken into account. This implies checking for collisions between all the
body parts and the environment. But the geometrical complexity of humanoid robots, the dy-
namicity of walking motions, and the need to explore many paths in cluttered environments
make direct approaches almost surely intractable. A common solution is to consider bound-
ing boxes to simplify collision tests. The most basic approach consists in using a unique large
box that contains the whole robot. A preliminary phase finds a collision free path for the box
towards a goal region, sliding it on the ground with translations and rotations. It is particu-
larly convenient that this can be done using classical sampling-based planning algorithms. To
obtain natural-looking motions, it might be adequate to perform nonholonomic motion plan-
ning, since evidence suggests that this is what humans tend to do [1]. After the motion of the
box has been set, a walking motion following the same path is computed. If along this motion
the robot remains inside the volume swept by the bounding box, no additional collision test
is required.

The main problem of this method is that it is over-conservative in several ways. For
instance, in narrow passages, the box might not pass while the robot could, and, more impor-
tantly, the use of such a bounding box removes the ability to step over obstacles, which is one
of the main advantages of legged locomotion.

Fig. 50.6. A few examples of bounding boxes.
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Planning first a bounding box motion makes completeness impossible in the sense that
some solutions will necessarily be missed. Nevertheless, there exist various methods to limit
this drawback. In some cases, partial boxes suffice [49]. Different shapes can also be con-
sidered to better fit the robot’s geometry. Furthermore, the bounding volume can actually be
a union of several boxes (e.g. [16]; see also Fig. 50.6), either rigidly linked together in one
particular configuration, or with degrees of freedom allowing relative movements of the dif-
ferent boxes. The bounding box can also be adaptive, for example with a structure of bound-
ing volume hierarchy, but using a tight approximation is difficult, for as the bounding volume
becomes more complex, the motion planning gets increasingly closer to directly planning
the whole-body motion. Another challenge with relatively tight bounding boxes is to make
sure that the robot remains inside the box during its motion. For that, bounding volumes can
directly be computed from robot motions, as in [6], rather than from fixed configurations. In
particular, with a finite set of transitions, a bounding volume can be computed for each ac-
tion, provided that concatenating these actions does not require a modification of the motion.
This issue is addressed in [43], where an approximated bounding volume is computed for a
set of half-steps. In [35], for each action of the finite set of transitions, an inverse heightmap
(IHM) is computed. These inverse heightmaps are compact representations of bounding vol-
umes that are especially useful to check quickly and precisely which obstacles the robot can
circumvent or step over. Other works have addressed the problem of stepping over obstacles
by using special bounding boxes for the legs ([44, 13]). Here again, one of the difficulties is
to keep the motion planning for the box easier than a direct motion planning of the steps of
the robot.

In summary, with approaches based on bounding boxes, the main issue is to find a good
compromise that avoids over-conservativeness and still provides a significant speed-up. Be-
cause of the complex motions and the nonlinear dynamics involved in walking, combining
seamlessly bounding box-based and more precise motion planning in a hierarchical way re-
mains an open challenge.

Bounding boxes also permit to accelerate precomputations, as shown in [13] where a
bounding box is used to find large convex regions of the configuration space that are free
from obstacles.

50.5 Tiered strategies

Bounding box approaches are usually tiered strategies in the sense that they divide the plan-
ning into two phases: a high-level planning phase that computes a path for the bounding box,
and a low-level planning phase that defines the footsteps and the actual motion of the robot.
There exist various types of tiered strategies, which are a very natural way to tackle the prob-
lem, by using simple models and heuristics to find a global path, and extract information from
this path to guide precise, low-level motion planning algorithms.

In [7], the environment (e.g. a building floor) is represented as a finite graph (where the
vertices are rooms or specific areas, and edges correspond to doors, corridors or adjacency
between rooms or areas) and the high-level planner performs a graph search to find a path
from the initial location to the goal. A mid-level planner based on mobile robot path plan-
ning provides a heuristic that enables the low-level planner to find sequences of footsteps to
intermediate goals (subgoals) along the global path. Fig. 50.7 illustrates a similar tiered strat-
egy. Strict subgoals should in general be avoided since they might constrain the robot’s path
through undesirable locations. In [7], the authors propose two options: either switching to
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Fig. 50.7. An example of tiered strategy: first, a high-level path is planned, for instance with
a bounding box or a mobile robot motion planning algorithm. All the obstacles are avoided,
even the gray ones which can potentially be stepped over. In a second phase, the sequence
of footsteps is planned, using intermediate goals taken from the high-level path. At this stage
“shortcuts” can be found, using the ability of the robot to step over small obstacles. Addi-
tional levels of planning can be considered: for example, a higher level using a finite topolog-
ical graph describing a building’s floor plan, or a lower level motion planner that computes
collision-free whole-body motions given short sequences of footsteps and obstacles in prox-
imity.

the next subgoal before actually reaching the current one, or constantly updating the subgoal
to some distance ahead of the robot’s current position, thus introducing a receding planning
horizon.

The tiered strategy proposed in [16] also relies on a three-level architecture: a perception
layer creates a 2.5D terrain model, following the method introduced in [24], and classifies the
areas into one of six different types. A control layer takes in input the environment classifi-
cation and selects a sequence of actions based on behavior modules, such as normal walking,
crawling, walking sideways, climbing stairs, etc. Finally, a planning layer takes the sequence
of actions in input and searches for a collision-free path in the environment map.

The hierarchical planner proposed in [6] is also based on an initial workspace decom-
position: from a 3D polygonal mesh of the environment, the height of the floor, height of
the ceiling and orientation of the floor are extracted into a set of 2D maps, which constitute
the 2.5D representation. Then a global planner identifies a set of regions through which the
robot can move, and represents the ability of the robot to move between these regions in
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a graph structure. This connectivity graph is used to find subgoal regions towards a target
location, and a local planner performs modified A* searches to compute sequences of mo-
tion primitives (such as forward step, side step, turning in place, step up or down, etc.) that
make the robot go from a subgoal region to the next while avoiding the obstacles. The local
planner may be unable to find a collision-free trajectory. In that case, it reports the failure
to the global planner that processes the information and tries to propose another path to the
goal. The possibility of failure of the local planner shows that hierarchical approaches are
not always “sound” at every level of planning. This notion of soundness, dual to the issue
of completeness already raised by bounding box approaches, is crucial in tiered strategies:
indeed, it is difficult to guarantee that the paths found by a high-level planner always lead
to feasible queries for the low-level planner. For example, the method described in [30] sug-
gests to use a rough evaluation of the obstacles to plan a trajectory for the body trunk, and
then a local planner to place the footsteps and compute the motion of the legs. Planning first
the trajectory of the upper body is computationally efficient, but for a given trajectory there
is no guarantee that valid steps can be found. Giving more degrees of freedom to the low-
level planners can decrease the likelihood of failure, but it remains an open problem to get
very precise notions of completeness and soundness in tiered strategies for humanoid robot
footstep planning, although handling these issues with flexibility and uncertainty might be a
better solution. In [20], an evaluation of the terrain is used to decide switches between direct
footstep planning in cluttered regions of the environment, and a fast grid-based 2D planning
in open spaces. When grid-based planning is used, soundness is ensured by “inflating” the ob-
stacles, which raises again the question of completeness since this conservative choice might
cause the robot to miss some solutions. But this does not happen since the algorithm switches
back to direct footstep planning when the obstacles are difficult to avoid, showing that adap-
tive level-of-detail planning leads to a good compromise between efficiency, soundness and
completeness.

50.6 Optimization-based footstep planning

Instead of defining hierarchical layers of motion planning, a completely different way to solve
footstep planning is to merge it with low-level tasks by incorporating it to the whole-body
controller. As mentioned in [46], the motivation comes from the fact that separating planning
from control makes it difficult to account for the whole-body motion objectives and con-
straints in the plan. In [46], footstep planning and control are merged together by introducing
long-term balance constraints in the whole-body controller. Steps are triggered automatically
whenever achieving a task (for instance a reaching task) would require a balance constraint to
be violated. Potential future steps are taken into account via model predictive control. Using
discrete time, finding the steps and control inputs amounts to solving an optimization prob-
lem. Similarly, [18] proposed a model predictive control scheme that solves convex quadratic
programming problems to plan footsteps and the center of mass trajectory, with the objective
to track a reference velocity as well as possible while ensuring the feasibility of the steps and
their dynamic balance (under some classical assumptions involving simplified dynamics).

In the original method presented in [25], footstep planning is done via inverse kinematics.
Given a task (e.g. grasping an object), an upper bound N on the number of steps needed is
estimated. Then, the N potential footsteps are linked with a virtual kinematic chain, and
the configuration of the chain is iteratively improved through inverse kinematics. The main
advantage of this approach is that the virtual kinematic chain can be considered as a part of the
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robot. This implies that a unique framework of iterative inverse kinematics can compute the
positioning of the footsteps and the continuous motion of the robot limbs in a similar way.
Adding constraints on joint limits, collision avoidance, relative feet placement, position of
the center of mass, etc., each configuration update can be solved as a nonlinear optimization
problem that tries to minimize a cost related to one or several task objectives, while always
satisfying the constraints.

These examples show that approaches merging planning and control have many advan-
tages, but they also tend to have two major drawbacks: their relatively high computational
complexity, and the fact that it is usually difficult to obtain a global optimum, or a “good”
local optimum, in reasonable time.

Optimization-based approaches have also been used in strategies that separate footstep
planning from the whole-body control. For example with evolutionary algorithms dealing
with multiple objectives [19], or in [14] where bounding box paths are optimized using
knowledge on the robot walking abilities (for example, that it walks faster straight than side-
ways).

In [13], an optimization of the footsteps is done in two phases. In a precomputation phase,
large convex obstacle-free regions of the configuration space are computed using a multi-
level bounding box. This leads to a finite set of convex regions where the feet can safely be
placed. Footsteps are assigned to regions via a matrix of binary variables. Given the initial
location and the goal region, an upper bound on the total number of footsteps is fixed, and
new binary variables are added to allow an optimization of the number of steps actually used.
The complete formulation takes into account the precise placement of the footsteps (position
and orientation), linear constraints on relative configurations between consecutive footsteps
(computed based on piecewise linear approximations of sine and cosine), and various costs
on the steps. It results in an optimization problem where the typically nonlinear, non-convex
constraints of footstep planning, are replaced by mixed-integer convex constraints. The main
advantage is that the corresponding mixed-integer quadratically-constrained quadratic pro-
gram (MIQCQP) can be efficiently solved to its global optimum.

In [23], another algorithm based on mixed-integer programming realizes footstep plan-
ning within a model predictive control scheme based on simplified dynamics of the robot,
and shows the following important point: merging footstep planning with control does not
necessarily mean losing the ability to search for globally optimal trajectories.

50.7 Dynamics and reactiveness

Footsteps are not only used for navigation, they also play an important role in maintaining
balance. In slow walking, when all the velocities involved in the robot motion can be approx-
imated to zero (this is called “quasi-static walking”), a configuration is balanced if and only
if the vertical projection of the center of mass on the ground is inside the convex hull defined
by all the supporting contact points between the robot and the environment. For example,
during single support, this corresponds to the center of mass being vertically aligned with the
support foot. Quasi-static walking is characterized by successive shifts of the center of mass
from one foot to the other. These shifts result in unnecessary sway motions, and excessive
energy consumption. Dynamic walking is much more efficient and interesting, but it implies
that the robot is almost constantly in a falling motion, the fall only being prevented by the
next footstep(s). As a result, the required balance criteria become more complicated, and it
becomes more difficult to concatenate steps. For example, during moderately fast walking, it
is usually impossible to perform a backward step just after a forward step.
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In [27], Kuffner et al. proposed a method for dynamic locomotion planning that uses
a sampling-based algorithm to find dynamic trajectories between consecutive stances. Al-
though the walking motions produced by this method are not quasi-static, they are not fully
dynamic either since the concatenation of steps still requires them to start and end with zero
speed. In [43], zero-speed connections are removed using a homotopy that continuously mod-
ifies the trajectory, making it faster and smoother. Dalibard et al. proved a controllability
property of dynamic walking and used it in an original algorithm for walking and whole-
body motion planning [12]. In a nutshell, the idea is that any statically balanced trajectory of
the robot sliding on the ground can be approximated arbitrarily closely by a dynamic walking
trajectory (but not by a quasi-static walking trajectory). This enables a two-phase planning
that first considers only statically balanced trajectories, and then generates dynamic walking
motions.

Another major issue is reactiveness, which is truly of key importance in changing envi-
ronments. As seen in section 50.3, some approaches focus on reactively planning sequences
of footsteps [15], which raises the following difficult question: until when can a planned
footstep be modified, and how? For instance, while the swing foot is moving, it might be
impossible to suddenly decide to change a forward step into a side step, or a backward step.
In fact, due to inertial effects, it may even be difficult to modify significantly a planned step
during the execution of the previous step. Therefore, when an obstacle appears or moves,
reacting accordingly can only be done with a gradual modification of the planned walking
motion. This is similar to mobile robots with bounded acceleration or bounded curvature dur-
ing turns, except that the inertial effects involved in bipedal walking are much more complex,
and it is difficult to know precisely what amount of trajectory change a walking robot could
withstand. Simple models have been studied for this purpose, and, as far as reactiveness is
concerned, the dynamics of running are surprisingly simpler than the dynamics of walking,
which is one of the reasons why reactive motion strategies on spring-mass hoppers have been
studied quite extensively (see for example [2]). In [47], a robust control policy uses knowl-
edge about the dynamics of the 3D spring-mass model to constantly modify, in a feedforward
manner, the position of the next footstep as the swing foot goes down, thereby removing the
necessity to accurately predict the ground level. This controller can steer the system along
reference trajectories with a high robustness to unknown changes in the ground height.

A particularly relevant notion in the field of reactive stepping is capturability, and it is
presented in details in chapter 46, which discusses stepping strategies for balance recovery, a
problem related to reactive footstep planning.

Dynamic footstep planning has also been studied by the computer graphics and anima-
tion community. Notable results include the work of Mordatch et al. [38] who introduced an
algorithm for torque control that optimizes at each instant of the simulation the trajectory of
a low-dimensional preview model based on the Spring-Load Inverted Pendulum (see chapter
23). It can plan and control walking and running motions on uneven terrain, is robust to ex-
ternal disturbance and can dodge projectiles. Although the transfer of animation techniques
to physical platforms requires a lots of additional considerations (e.g. limitations in sensing
and actuation), they are an important source of ideas and inspiration for future research in
robotics.

Overall, planning walking motions while taking well and efficiently into account the
robot dynamics remains a largely open problem, at least when the objective is to do it in
real time. The main issue is that some dynamical effects important for smooth and robust
walking (for instance related to the motion of the arms) are difficult to account for with
simplified models (like the inverted pendulum). And with more precise models of the robot
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dynamics, the problem of whole-body trajectory generation usually requires costly nonlinear
optimization procedures, which makes the more complex problem of motion planning very
hard to tackle in a computationally efficient way.

50.8 Vision-based footstep planning

To further improve reactiveness and adaptiveness, footstep planning should be tightly coupled
with the ability to map the environment in real-time. Okada et al. [40, 41] used binocular
stereo-vision and extracted planar surfaces from the 3D vision input to define safe regions
for the robot feet. With an accuracy of about 10 mm on the position of these surfaces, they
managed to combine their vision system to a 3D footstep planner.

Michel et al. [37] proposed a footstep planning algorithm using a floor map built from an
external camera information, but most recent approaches aim at on-board sensing. The same
authors and Kagami and Nishiwaki proposed in [36] a GPU implementation of a 3D tracking
algorithm combined with heightmap-based footstep planning. Thanks to the computational
power of the Graphics Processing Unit (GPU), the tracker can reliably recover the 6D pose
of viewable objects relative to the robot. This enables to accurately and rapidly localize stairs
and obstacles. A finite transition set and local adjustments are used to find a footstep path,
and swing leg trajectories are defined based on computations of the convex hull of the terrain
between successive locations for each foot.

Chestnutt et al. [11, 39] introduced a method for navigation in rough environments using
a pivoting laser scanner creating point clouds from which 3D obstacles are extracted. To
improve stability and the accuracy of measurements, the laser scanner is mounted on the
torso of the robot with a swinging mechanism. A mixed-reality interface allows navigation
control by a user who can easily define a path along which the robot will plan footsteps.

Self-localization is as important as mapping, and due to the frequent changes of direction
and sway motions in bipedal walking, odometry is usually quite inefficient. Improvements
in this field can be expected to follow advances in sensor fusion. In [22], a Monte-Carlo
localization of the 6D pose of the torso is obtained by combining information from odometry,
attitude and joint angle sensors, and a head-mounted 2D laser rangefinder. Maier et al. [34]
extended this framework to use a head-mounted depth camera instead of the laser rangefinder,
and used a static map as well as probabilistic updates of a local map to perform real-time
navigation. In [35], a more advanced framework integrates perception, mapping, and footstep
planning. As mentioned in section 50.4, for whole-body collision checking, a representation
called inverse heightmap (IHM) is computed for each action of the robot (among a finite set
of actions). It consists of a local grid storing at each cell the minimum height of any body
part going above this cell while executing the action. IHMs are particularly well suited for
efficient whole-body collision checking when the terrain is represented as a heightmap.

For more details on SLAM and vision-based humanoid navigation, the reader can refer
to chapter 52.

50.9 Future directions and open problems

Over the past 15 years, significant advances have been made in footstep planning, and steady
progress in autonomy, reactiveness and adaptiveness has been possible thanks to the appli-
cation of techniques from various fields (planning, control, optimization, vision, etc.) and
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to well organized combinations of different approaches, such as adaptive level-of-detail al-
gorithms for high-level and low-level planning, finite transition sets with local adjustments,
mixed-integer programming and model predictive control to perform footstep planning within
control schemes, sensor fusion for real-time mapping and localization, etc.

Nevertheless, there remain many challenges that need to be overcome. The hybrid dy-
namics involved in bipedal locomotion (see chapter 29) should be better understood to allow
a seamless insertion of footstep planning in reactive tasks such as balance recovery. The ar-
ticulation between lower body and upper body motion planning should also be improved,
to permit a better use of the upper body and arms, even when they are constrained by tasks
such as carrying, pushing or pulling an object. The transitions from footstep planning to more
general methods of multi-contact planning (see chapter 56) should also be handled with bet-
ter efficiency. Like humans, humanoid robots use only their feet for standard locomotion,
but in many exceptional cases (rough terrain, sudden balance perturbations, etc.), the robot
needs to be able to extremely quickly plan contacts with potentially any part of its body. And
the constant access to such complex behaviors should not be a computational burden for the
robot.

In fact, as computational power continues to increase and becomes cheaper, footstep
planning will probably be completely replaced by more general multi-contact planning meth-
ods. But in the long term, it will become more efficient to use entirely flexible hierarchies
of motion planning. Depending on the environment and on the type of motion considered,
algorithms will use different kinds of representations, developed over time, to first guess im-
precise motion plans and then incrementally refine them. So the next biggest challenge may
be the use of lifelong learning to continually improve the ability of the robot to plan walking
motions. Ideally, the robot should be able to analyze its own experience, understand and even
extend its stepping capabilities over time, and learn from its environment (with or without
supervision) to guess what surfaces are possibly unstable or slippery, what obstacles can be
pushed away, what objects can be used for support, how different doors should be operated,
etc. In [50], optimization and learning are used to perform footstep planning on rough terrain
with a quadruped. Similar approaches could pave the way towards learning-based planning
of walking motions, but balance issues are more drastic with bipeds than quadrupeds, which
makes failures more critical and exploration of new behaviors more difficult. On the other
hand, the numerous problems related to bipedal walking make it a very interesting testbed for
machine learning, and both fields could benefit from an increasing effort in this direction.
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